
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE NODE FEATURE SELECTION FOR GRAPH
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an adaptive node feature selection approach for graph neural net-
works (GNNs) that identifies and removes unnecessary features during training.
The ability to measure how features contribute to model output is key for inter-
preting decisions, reducing dimensionality, and even improving performance by
eliminating unhelpful variables. However, graph-structured data introduces com-
plex dependencies that may not be amenable to classical feature importance met-
rics. Inspired by this challenge, we present a model- and task-agnostic method that
determines relevant features during training based on changes in validation perfor-
mance upon permuting feature values. We theoretically motivate our intervention-
based approach by characterizing how GNN performance depends on the rela-
tionships between node data and graph structure. Not only do we return feature
importance scores once training concludes, we also track how relevance evolves
as features are successively dropped. We can therefore monitor if features are
eliminated effectively and also evaluate other metrics with this technique. Our
empirical results verify the flexibility of our approach to different graph architec-
tures as well as its adaptability to more challenging graph learning settings.

1 INTRODUCTION

Graphs provide powerful yet well-understood representations of complex data (Bronstein et al.,
2017). Their rich modeling capabilities motivated the development of graph neural networks
(GNNs) to exploit connectivity for predictive tasks (Wu et al., 2021). However, insufficient un-
derstanding of model decisions renders them untrustworthy for critical applications and potentially
inefficient or suboptimal (Dong et al., 2022; Yuan et al., 2023; Wang & Ding, 2025; Chien et al.,
2024). Deciphering how deep learning models extract information from data is challenging, partic-
ularly when data is equipped with complex interdependencies (Zhu et al., 2024). While some tools
such as decision trees inherently provide model explanations, the most expressive tools are not di-
rectly interpretable and require explanation via heuristic-based metrics (Mandler & Weigand, 2024).
As a prominent example, measuring feature importance is a fundamental technique for understand-
ing how a model forms decisions (Wang et al., 2024). In particular, we are interested in determining
how node features contribute to GNN outputs (Shao et al., 2024).

Beyond interpretability, identifying relevant attributes allows us to build models that are both eco-
nomical and potent by eliminating unnecessary features (Li et al., 2018). Moreover, simplifying
models can improve our understanding of complex real-world systems by reducing them to their
most parsimonious representations (Georg et al., 2023). However, classical feature importance met-
rics do not account for an underlying graph structure and therefore may not be suitable for reducing
nodal attributes (Chereda et al., 2024; Mahmoud et al., 2023). Additionally, past graph-based fea-
ture selection methods often involve assumptions about how graph structure contributes to learning,
rendering these techniques problem-specific (Maurya et al., 2022; 2023; Zheng et al., 2025). To
remove dependence on prior information, we may instead compute changes in model performance
upon perturbing features to assess their contributions (Datta et al., 2016; Fisher et al., 2019). As
these measurements require a trained model, feature selection using perturbation-based scores may
require training multiple models, which can be costly for large-scale data or complicated architec-
tures (Alkhoury et al., 2025). While some works train submodules to learn masks for identifying
important features, these approaches can require learning additional parameters, undermining the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Homophilic node features

(a)

Heterophilic node features

(b)

Homophilic node features
with high within-class variance

(c)

Figure 1: Example graphs for which graph structure can alter how node features affect node classi-
fication. Class labels are denoted by “0” or “1”. Node features are represented by color, where red
and blue indicate features from different distributions, and brightness indicates different magnitudes.
(a) Edges directly imply similarity of node labels and features. (b) While most connected nodes be-
long to the same class, edges also tend to indicate distribution shifts in node features. (c) Both node
labels and features are homophilic, but the high variance of node feature distributions may render
classification more challenging.

goal of reducing dimensionality (Maurya et al., 2022; Acharya & Zhang, 2020; Lin et al., 2020;
Zheng et al., 2020). A more in-depth overview of related works is shared in Appendix A.

Instead, we propose an adaptive node feature selection algorithm that measures permutation-based
feature importance during training using GNN predictions. More specifically, we periodically per-
mute the values of each node feature and measure changes in GNN performance on a validation
dataset. Our scores are thus inherently tied to the predictive task, adapting to model learning and
therefore allowing flexibility to GNN architecture, requiring no assumptions on graph data. More-
over, unlike graph-based feature selection works that use black-box models to learn importance val-
ues during training, we employ well-established permutation tests to quantify feature influence (Alt-
mann et al., 2010; Yang et al., 2009; Breiman, 2001; Datta et al., 2016), allowing us to theoretically
show how permutations reflect node feature influence. Our contributions are summarized below.

• We first characterize the effects of graph structure and node features on GNN performance, both
theoretically and empirically. For the former, we show how connections influence the effect of
node features on graph convolutional network (GCN) outputs. For the latter, we compare GNN
accuracy under various perturbations to distinguish model dependence on graphs versus features.

• We propose an adaptive node feature selection approach that dynamically identifies which fea-
tures are relevant to GNN performance via permutation-based importance scores. Because we
measure these scores as training progresses, we can monitor how feature contributions change
as the model evolves and variables are eliminated. We thus visualize importance scores during
training to track model quality and verify that we indeed eliminate unhelpful attributes.

• We demonstrate that our algorithm rivals the performance of a GNN using all available node fea-
tures in comparison with other node feature selection methods for multiple benchmark datasets.
Furthermore, we show that our approach is flexible to model architecture and for various settings,
such as homophilic or heterophilic node labels.

1.1 NOTATION

For any positive integer N ∈ N, we define the notation [N] := {1, 2, . . . , N}. For the vector
x ∈ RN , we index entries via xi for any i ∈ [N], whereas for a matrix X ∈ RN×M , we index
entries by Xij , rows by Xi,:, and columns by X:,j . We let boldfaced numbers 0 and 1 represent
vectors or matrices of all zeros and ones, respectively. Furthermore, we have I as the identity matrix
and ei = I:,i as the i-th standard basis vector. For 0, 1, I, and ei, we specify dimensions when it
is unclear from context. The operator diag(x) ∈ RN×N evaluated on a vector x ∈ RN returns a
diagonal matrix with entries of x along the diagonal, while diag(X) ∈ RN for a square X ∈ RN×N

returns a vector of the diagonal entries of X. We also let vec(X) ∈ RNM return the concatenation
of columns in the matrix X ∈ RN×M . Moreover, let I(·) denote the indicator function, where
I(A) = 1 when its argument A is true and I(A) = 0 otherwise.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 FEATURE IMPORTANCE FOR NODE CLASSIFICATION

We are interested in a semi-supervised node classification setup, where we have a graph G = (V, E)
consisting of a set of N nodes V and a set of edges E ⊆ V × V connecting pairs of nodes in V .
To use a graph in model training, we consider the adjacency matrix A ∈ RN×N

+ , where Aij ̸= 0
if and only if the edge (i, j) ∈ E connects nodes i and j, and Aij > 0 denotes weight of the
edge (i, j). We can account for nodes with differing degrees d := A1 by employing normalized
adjacency matrices such as Ã := D̃−1/2(A + I)D̃−1/2 for D̃ := diag(d + 1) or a random-walk
adjacency matrix Ãrw := D̃−1(A + I) (Kipf & Welling, 2017). In addition to graph connections,
each node is equipped withM real-valued features, which we collect in the data matrix X ∈ RN×M .
Furthermore, nodes are assigned labels y = [y⊤

train,y
⊤
val,y

⊤
test]

⊤ ∈ [C]N , of which we only observe
a subset [y⊤

train,y
⊤
val] ∈ [C]Ntrain+Nval for Ntrain, Nval < N . We also let Y ∈ {0, 1}N×C denote

the one-hot matrix indicating the class of each node, along with P := diag(p) for p := Y⊤1 ∈ NC ,
which contains the number of nodes in each class. We aim to predict the unknown labels ytest by
learning the parameters of a GNN f(·; ·,Θ) : RN×M → RN×H that yields embeddings Z :=
f(X;A,Θ) such that we may predict labels ŷ = g(Z) with some classifier g : RN×H → [C]N .

Of particular relevance to us is how to identify which node features in X are important for predicting
labels y while accounting for the graph structure A (Maurya et al., 2023; Chen et al., 2020). Some
works apply traditional, graph-agnostic metrics to determine important features for a pre-trained
GNN (Wang & Ding, 2025; Basaad et al., 2024; Chereda et al., 2024). However, the presence
of edges used by the GNN can significantly alter which node features are relevant. For example,
GCNs assume that edges directly indicate nodes that likely belong to the same class. Figure 1
illustrates how this assumption can alter how informative node features are. As GCNs are best
suited to homophilic node features and labels as in Figure 1a, it is common to assess feature quality
through its smoothness, that is, how similar feature values are between connected nodes (Zhu et al.,
2024). However, even with homophilic node labels, a GCN applied to the graph in Figure 1b may
not yield sufficiently separable node embeddings (Luan et al., 2024). Furthermore, if labels are
homophilic and node features in different classes follow distinctly different distributions yet exhibit
high variance, exemplified in Figure 1c, a graph-agnostic classifier may distinguish classes more
easily than a GCN. Motivated by this consideration, we theoretically characterize how A and X
influence GCN performance, which we then empirically verify on real-world graph data.

Recall that our goal is for our embeddings Z = f(X;A,Θ) to be distinguishable across classes.
A reasonable requirement for this task is that node embeddings exhibit sufficient separation across
classes (Tenorio et al., 2025; Nt et al., 2021). However, we encounter at least two potential sources
of error: noise in features X and in edges A. For the former, we consider the idealized node features
to be X∗ := YP−1Y⊤X, that is, the matrix closest to X whose rows are identical for nodes in the
same class, or equivalently,

X∗ = argmin
X∗

∥X∗ −X∥2F s.t. X∗
i,: = X∗

j,: ∀ i, j ∈ [N] s.t. yi = yj . (1)

By (1), we obtain a notion of feature informativeness: Even if the rows of X∗ are equivalent within
classes, they may be very similar or even identical across classes, rendering classification effectively
infeasible (Nt et al., 2021). Thus, we consider the features X to be informative enough if X∗

contains distinct rows for different classes, indicating a sufficient shift in feature distributions across
classes (Tenorio et al., 2025). Note that we define X∗ as above for simplicity, representing the
most straightforward relationship between informative features and labels y; node classes containing
distribution shifts can still yield informative predictions (Luan et al., 2024).

For the latter, it is well established that cross-class edges, that is, those connecting nodes of different
classes, mar GCN performance (Zhu et al., 2020). Hence, we define the idealized graph A∗ as
having no cross-class edges, where

A∗
ij :=

{
Aij , yi = yj
0 otherwise

}
∀ i, j ∈ [N]. (2)

We then let ∆ := A−A∗ collect all edges between nodes of different classes. We next characterize
the performance of a GCN with respect to features X, edges A, and labels y by comparing our
embeddings Z to the idealized ones Z∗ := f(X∗;A∗,Θ).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Node classification accuracy for multiple datasets under various perturbations. The top
performing method is boldfaced, and the secondmost underlined.

Setting Cora CiteSeer PubMed Photo Computers Cornell Texas Wisconsin

GNN(X;A,Θ) 85.83 ± 0.46 74.38 ± 1.09 88.85 ± 0.42 94.04 ± 0.69 90.58 ± 0.79 74.59 ± 7.76 82.70 ± 4.05 82.80 ± 3.25

MLP(X;Θ) 74.21 ± 1.40 70.02 ± 1.39 88.65 ± 0.41 88.73 ± 0.73 81.63 ± 0.75 78.92 ± 5.51 82.70 ± 2.16 83.60 ± 6.62
GNN(X̃;A,Θ) 76.53 ± 1.12 63.34 ± 1.44 47.42 ± 3.25 66.76 ± 8.58 51.09 ± 8.84 43.78 ± 8.95 52.97 ± 6.07 46.80 ± 6.76
GNN(W;A,Θ) 82.92 ± 1.54 67.37 ± 1.61 76.23 ± 0.53 89.92 ± 0.58 85.49 ± 0.44 49.19 ± 7.91 55.68 ± 2.76 47.20 ± 7.00
GNN(X; Ã,Θ) 36.97 ± 1.80 35.13 ± 2.41 67.07 ± 0.80 30.52 ± 5.77 37.64 ± 0.45 67.57 ± 7.83 70.27 ± 7.05 78.40 ± 6.37

Theorem 1 Let f : RN×M → RN×H be a two-layer GCN

f(X;A,Θ) = σ
(
Ãrwσ

(
ÃrwXΘ(1)

)
Θ(2)

)
(3)

for a τ -Lipschitz nonlinearity σ and learnable weights Θ = (Θ(1),Θ(2)) such that ∥Θ(ℓ)∥2 ≤ ω
for ℓ = 1, 2. Then, with Z∗ = f(X∗;A∗,Θ) for X∗ in (1), A∗ in (2), and ∆ = A−A∗, we have

∥Z∗ − Z∥F ≤ τ2ω2

[
(1 +

√
N)∥∆∥F ∥X∥F +

C∑
c=1

N∑
i=1

N∑
j=1

∣∣∣∣YicYjcpc
− Aij

di + 1

∣∣∣∣ · ∥Xi,: −Xj,:∥2
]
.

(4)
The proof of Theorem 1 can be found in Appendix B. Thus, our GCN error bound depends on cross-
class edges in A via the first term in (4) and the alignment of labels y, edges in A, and similarity
of features in X. First, we discuss when the presence of A necessitates stricter conditions on X for
satisfactory GCN performance according to Theorem 1. While the result in (4) does not necessitate
unweighted edges, the following discussion assumes A ∈ {0, 1}N×N for ease of interpretation.
Unsurprisingly, GCNs require features X to be highly indicative of y if A is sparse or noisy. More
specifically, for any node pair i and j in the same class c that are not connected (i, j) /∈ E , we
rely on similarity between node features ∥Xi,: − Xj,:∥2 to reduce the second term in (4). Thus,
graph-agnostic feature importance metrics may be suitable for sparse A. However, if X is separable
across classes, that is, ∥Xi,: −Xj,:∥2 is higher when YicYjc = 0, we incur greater error from cross-
class connections Aij = 1. In this setting, if we disregard A when selecting features, we may
retain attributes that are highly separable with respect to classes, causing larger ∥Xi,:−Xj,:∥2 when
YicYjc = 0 and unknowingly introducing error due to cross-class edges in A.

Conversely, the presence of A can also mitigate error due to noisy features X. In particular, if y is
sufficiently homophilic with respect to A, that is, if YicYjc = Aij holds for sufficiently many node
pairs, then we can still achieve a low error via (4), even if y and X are unrelated. Moreover, the
bound in (4) can be reduced when the variance in X is sufficiently dominated by class sizes p and
node degrees d, reflecting the intuitive fact that nodes with high degree di belonging to a class of
large size pc are easier to predict (Liu et al., 2023; Kang et al., 2022). Thus, Theorem 1 shows that
measuring feature importance based solely on dependencies between y and X may not be sufficient
for GNN feature selection (Zheng et al., 2024). More specifically, the bound in (4) reveals that
certain compositions of features and edges may render a feature important or unimportant regardless
of its relevance in the absence of the graph.

We next empirically verify the intuition from Theorem 1 by comparing GNN node classification ac-
curacy on real-world benchmark datasets under various perturbations intended to remove dependen-
cies among X, A, and y. All simulation details can be found in Appendix D, which includes dataset
details. To assess the joint influence of a graph and its features, we consider (i) GNN(X; Ã,Θ) using
an Erdos-Renyi (ER) graph with the same number of edges as A, (ii) MLP(X;Θ), a multilayer per-
ceptron (MLP) that considers no graph, (iii) GNN(W;A,Θ) using Gaussian noise W ∼ N (0, I)

as node features, and (iv) GNN(X̃;A,Θ), where X̃ contains randomly permuted rows of X. We
train GCNs for Cora, Citeseer, and PubMed (Sen et al., 2008; Namata et al., 2012) and graph isomor-
phism networks (GINs) (Xu et al., 2019) for Photo and Computers (McAuley et al., 2015; Shchur
et al., 2018), while for Cornell, Texas, and Wisconsin graphs with heterophilic labels (Pei et al.,
2020), we consider topology adaptive GCNs (TAGCNs), which can aggregate features of nodes in
multi-hop neighborhoods (Du et al., 2017).

Table 1 demonstrates both the importance of node features in these datasets along with their depen-
dence on the associated graph. For the first five datasets, the respectable performance of MLP(X;Θ)
and GNN(W;A,Θ) demonstrates that both features X and graph structure A are semantically

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

relevant. We also observe particularly low accuracy for GNN(X; Ã,Θ), reflecting the error due to
cross-class edges in (4), which is caused by the arbitrary connections in Ã despite the informative-
ness of X. Furthermore, if X experiences significant shifts across classes, then applying permuted
features via GNN(X̃;A,Θ) is expected to perform worse than GNN(W;A,Θ) for sparse A since
summands in the second term of (4) may have large ∥Xi,: − Xj,:∥2 for YicYjc = 1. Indeed, we
find GNN(W;A,Θ) outperforms GNN(X̃;A,Θ) for all datasets in Table 1. We also corrobo-
rate known challenges of graph convolutions for data with heterophilic y, as MLP(X;Θ) rivals
and can even outperform GNN(X;A;Θ) for Cornell, Texas, and Wisconsin. For these datasets,
GNN(X; Ã,Θ) is significantly superior to GNN(X̃;A,Θ) and GNN(W;A,Θ), which reflects
the difficulty of convolving node features that are both irrelevant to labels y and heterophilic on A,
as even random connections in Ã yield significantly higher accuracy.

3 PERMUTATION TESTS FOR NODE FEATURE IMPORTANCE

Inspired by Theorem 1 and Table 1, we propose node feature permutation testing (NPT) to measure
feature importance via permutation-based scores (Altmann et al., 2010; Khan et al., 2025; Yang
et al., 2009). In particular, let Π be the set of permutations of [N]. Then, if X̃(m) denotes X with
values of feature m reordered according to some random π ∈ Π, we measure feature importance
through permutation tests

δm(y,X, X̃(m)) := Acc(y, f(X;A,Θ))−Acc
(
y, f(X̃(m);A,Θ)

)
, (5)

where Acc(y,Z) measures the accuracy of embeddings ŷ = g(Z) for classifier g. With some abuse
of notation, we let δm(ytrain,X, X̃

(m)) denote the accuracy for the subset of nodes corresponding
to observed training nodes, with analogous definitions for other subsets of nodes. Permutation tests
are a classical approach to isolate the effects of a feature (Breiman, 2001; Toth, 2020; Altmann et al.,
2010), and we next show that it can be particularly informative in the presence of A. To this end, we
validate that permuting columns of X indeed decouples node features from y and A, which verifies
that δm reflects feature influence for GCN predictions, supporting the results in Table 1.

Theorem 2 Consider X̃ ∈ RN×M such that X̃i,: = Xπ(i),: for all i ∈ [N] and some per-
mutation π ∈ Π chosen uniformly at random. For the same GCN defined in (3), let Z̃

∗
:=

f(X̃
∗
;A∗,Θ) for X̃

∗
:= YP−1Y⊤X̃, A∗ in (2), and ∆ = A − A∗. Furthermore, if

α := maxm∈[M] maxk,ℓ∈[N](Xkm −Xℓm)2, then with probability at least e−t2/4, we have that

∥Z̃∗ − Z̃∥F ≤ τ2ω2
[
(1 +

√
N)∥∆∥F ∥X∥F +

√
γ
∥∥vec(YP−1Y⊤ − D̃

−1
A
)∥∥

1

]
,

where γ :=
2

N − 1

(
∥X∥2F − 1

N
∥X⊤1∥22

)
+ αtM

√
N. (6)

We prove Theorem 2 in Appendix C. The bound in (6) reveals how comparing accuracy with and
without permuting node features reveals the influence of X. Because the heterophily of y encoded
in ∥vec(YP−1Y⊤ − D̃−1A)∥1 can no longer be mitigated by node feature similarities as in the
original bound (4), permuting features will likely worsen GCN performance if X is informative.
However, a highly homophilic y can reduce the error bound in (6), implying less informative features
X, where a small bound in (6) relative to that of (4) implies low values of δm. Similarly, we
also observe that features with low variance will reduce γ and therefore the error bound (6), as
expected since features that exhibit smaller differences are likely to be less informative. Thus,
Theorem 2 supports comparing GNN performance before and after permuting feature values to
determine feature importance.

3.1 ADAPTIVE NODE FEATURE SELECTION

Given the value of permutation tests for node feature importance, we propose an adaptive feature
selection method in Algorithm 1 to identify and remove unnecessary features during training. The
matrix X̂ in Algorithm 1 denotes the pruned feature matrix with masked columns corresponding to
b ∈ {0, 1}M , representing selected features. After the model f has been trained for Tburn epochs,
we periodically compute the empirical average δ̂m of the NPT importance score δm(yval, X̂, X̃

(m))

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Adaptive node feature selection via NPT.

Input: Step size λ > 0, Tburn, T ∈ N, K ∈ N, r ∈ (0, 1)

1 Initialize X̂ = X, feature mask b ∈ {0, 1}M , counter t = 1.
2 while Stopping criteria not met do
3 Gradient update: Θ← Θ− λ∇ΘL(ytrain, f(X̂;A,Θ)).
4 Update t← t+ 1.
5 if t > max(T, Tburn) then
6 Reset t← 1.
7 for m ∈ {ℓ | bℓ = 1, ℓ ∈ [M]} do
8 Initialize average score δ̂m = 0.
9 for k ∈ [K] do

10 Sample random permutation π ∼ Π.

11 Permute X̂:,m for X̃
(m)

such that X̃(m)
im = X̂π(i),m and X̃

(m)
iℓ = X̂iℓ

12 ∀i ∈ [N], ℓ ∈ [M]\{m}.
13 Update δ̂m ← δ̂m + 1

K
δm(yval, X̂, X̃

(m)
) via (5).

14 end
15 end
16 Compute r-quantile δ(r) from

{
δ̂m | bm = 1,m ∈ [M]

}
.

17 for m ∈ {ℓ | bℓ = 1, ℓ ∈ [M]} do
18 if δ̂m < δ(r) then
19 Prune unimportant feature bm ← 0.
20 end
21 end
22 end
23 end

Output: Model f(·;A;Θ), pruned features X̂, mask b, scores δ̂

for every feature m ∈ [M] over K random permutations π ∈ Π (lines 7-15). We then keep the
top r-th percentile of features based on δ̂ by setting bm = 0 for the remaining ones. We then
continue training to update model parameters given the new subset of features. Algorithm 1 thus
yields a single process to both train a GNN f and successively prune unnecessary features. The most
complex step of Algorithm 1 occurs at the first checkpoint when t = T + 1, where all M features
must be permuted K times, resulting in O(KNM). However, at nT + 1 for n > 1, we need only
permute rnM < M features, so we may choose r ∈ (0, 1) with no cost to theoretical complexity.

In addition, advantages of Algorithm 1 include flexibility to graph data, architecture choice, and
more. More specifically, since the metric δm is defined by changes in performance, we may re-
place accuracy Acc in (5) with any quality to which features ought to contribute, such as promoting
fairness (Little et al., 2024; Navarro et al., 2024a;b). Thus, the model f adapts to the learning task
by the definition of δm without requiring prior assumptions on the graph, nor are we restricted to
particular architectures (Maurya et al., 2022; 2023). Algorithm 1 is therefore amenable to various
scenarios, including heteophilic labels y or features X. Finally, while we espouse permutation tests
due to our results in Theorems 1 and 2, line 14 may be computed using any feature importance
score, as another may be particularly suited to the task given prior knowledge. However, many prior
graph-based metrics do not account for model behavior (Mahmoud et al., 2023; Zheng et al., 2025),
whereas δm explicitly aims to promote the accuracy of f , rendering it an appropriate general choice.

4 NUMERICAL EXPERIMENTS

We next evaluate our importance scores and algorithm based on node feature permutation tests. We
consider the same datasets and architectures as in Table 1, with minimal details explained below.
Dataset statistics, along with other dataset details, are included in Appendix D.
Datasets.
• Citation networks: Cora, Citeseer, and PubMed consist of papers as nodes, which are connected

based on citations (Sen et al., 2008; Namata et al., 2012). The goal is to predict paper topic y
from bag-of-words paper representations X.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Node classification accuracy for multiple datasets with feature selection. The top perform-
ing method is boldfaced, and the secondmost underlined.

Method Cora CiteSeer PubMed Photo Computers Cornell Texas Wisconsin

All features 85.83 ± 0.46 74.38 ± 1.09 88.85 ± 0.42 94.04 ± 0.69 90.58 ± 0.79 74.59 ± 7.76 82.70 ± 4.05 82.80 ± 3.25

NPT 79.19 ± 2.45 69.35 ± 1.49 87.11 ± 0.75 93.59 ± 0.79 90.09 ± 0.51 69.73 ± 6.26 72.97 ± 9.21 73.20 ± 6.88
NPT-mask 76.05 ± 1.08 68.12 ± 1.69 86.11 ± 0.82 93.48 ± 0.59 89.94 ± 0.22 63.24 ± 4.39 64.86 ± 5.13 72.40 ± 7.31
TFI 72.73 ± 5.47 65.77 ± 2.04 83.80 ± 0.92 93.02 ± 0.68 90.09 ± 0.23 61.62 ± 7.13 61.08 ± 4.39 52.40 ± 3.44
MI 66.83 ± 3.68 63.79 ± 1.02 85.96 ± 1.00 93.56 ± 0.61 90.33 ± 0.32 63.78 ± 5.82 65.41 ± 7.33 69.60 ± 5.99
hattr 39.96 ± 1.00 22.59 ± 1.01 78.85 ± 0.21 93.53 ± 0.46 90.09 ± 0.46 55.14 ± 5.01 58.38 ± 5.01 45.60 ± 6.62
hEuc 32.77 ± 1.66 22.62 ± 1.03 74.37 ± 0.60 93.59 ± 0.50 89.19 ± 0.51 52.43 ± 4.05 57.30 ± 3.15 44.00 ± 7.48
hGE 31.44 ± 1.35 22.47 ± 1.01 70.52 ± 0.55 93.41 ± 0.46 89.24 ± 0.25 52.43 ± 4.05 57.30 ± 3.15 44.00 ± 7.48
Rnd. 39.76 ± 1.22 34.39 ± 4.07 70.71 ± 1.08 91.99 ± 0.49 88.27 ± 0.26 56.65 ± 4.69 58.49 ± 3.23 57.04 ± 4.49

• Co-purchase graphs: Photo and Computers represent Amazon goods as nodes that are con-
nected if frequently purchased together, with y as product category and X as word embeddings
of product reviews (McAuley et al., 2015; Shchur et al., 2018).

• Webpage graphs: Cornell, Texas, and Wisconsin connect linked webpages of individuals in
computer science departments across various universities (Pei et al., 2020). Labels y represent
the role of individuals to be predicted from webpage word embeddings X.

Architectures. Cora, Citeseer, and PubMed are trained with GCNs (Kipf & Welling, 2017), whereas
we use TAGCNs for Cornell, Texas, and Wisconsin (Du et al., 2017). As for Photo and Computers,
frequently co-purchased items likely indicate similar product categories, thus y is homophilic on
A. However, while reviews contain valuable keywords for prediction, positive and negative reviews
may contain different words despite products belonging in the same category. Thus, since features X
may exhibit both homophily and heterophily, we employ a GIN model, which can extract complex
interactions of informative features (Xu et al., 2019).
Metrics. We compare our NPT scores to various alternative metrics for node feature importance.
The full list can be found in Appendix D.3.

4.1 NODE FEATURE SELECTION COMPARISON

To validate our importance metric δm in (5), we train a GNN with the full set of features per dataset
in Table 2, which we compare to GNNs trained with a subset of features selected based on NPT
and other feature selection baselines described in Appendix D.3. For each method, we select the top
r% of features ranked by the importance metric and retrain the GNN using only these features, with
r = 5% for PubMed, Photo, and Computers and r = 2% otherwise. We observe that for all datasets,
NPT achieves among the highest or the highest accuracy compared to other importance scores.

For the graphs with homophilic y (Cora, Citeseer, and PubMed), while both NPT and its masking
variant NPT-mask outperform the rest, NPT is consistently superior. This aligns with our expec-
tations from Theorems 1 and 2 that GCNs exhibit low error for features that are separable across
classes, but permuting them will likely increase error more when permuted for graphs with ho-
mophilic labels. Indeed, Table 1 validates the informativeness of X for these three datasets, while
Table 2 shows that permuting features is more effective at identifying relevant features for GCNs.

We similarly find that NPT performs best for the graphs Cornell, Texas, and Wisconsin with het-
erophilic labels, but we also witness worse performance for NPT-mask. Again, this follows our
intuition from (4), which shows that for GCNs, reducing the variance for heterophilic features may
actually decrease error, so masking features that are relevant to y by setting them to zero may un-
derestimate their importance for settings of heterophily. On the contrary, the graph-agnostic MI
performs well for Cornell, Texas, and Wisconsin in comparison with other metrics.

Finally, for Photo and Computers, we observe less differences in performance across all feature
selection methods, even relative to Rnd, that is, randomly chosen features. Indeed, Table 1 indicated
that graph structure is highly informative for node classification. Moreover, homophily metrics find
much greater use for Photo and Computer than for the other datasets. As mentioned previously,
review text containing keywords related to product category are likely to be not only homophilic
but also correlated with labels y, indicating the value of employing homophily-based scores for
these two datasets. Similarly, for certain features, MI may be better able to identify review content

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 100 200 300 400

Epochs

40

60

80
V

al
id

at
io

n
A

cc
u

ra
cy

(%
)

(a) Cora

All

NPT

TFI

MI

0 100 200 300 400

Epochs

40

60

80

T
es

t
A

cc
u

ra
cy

(%
)

(b) Cora

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−20

−10

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
)

(c) Cora

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

Figure 2: Node classification accuracy during training for a GCN and Cora using Algorithm 1 with
different feature importance metrics. (a) Validation accuracy comparing a model trained using all
features versus NPT, TFI, and MI. (b) Test accuracy comparing a model trained using all features
versus NPT, TFI, and MI. (c) The difference in test accuracy between the full model and the model
trained with Algorithm 1.

that is unrelated to y and A since it assumes no graph structure. We explore this context-specific
information further for our adaptive approach.

4.2 ADAPTIVE NODE FEATURE SELECTION

Next, we assess our adaptive node feature selection approach. In particular, we apply Algorithm 1 to
train GNNs while dropping less important features during training. To evaluate the tradeoff between
maintaining performance and improving model efficiency, we evaluate accuracy in comparison with
using the full dataset as the model is trained. At every T = 50 epochs, we drop 50% (r = 0.5)
of features based on the scores δm in (5). Moreover, we also apply our algorithm with TFI and
MI in place of δm to measure feature importance. Figure 2a,b depict accuracy during training to
evaluate how models perform for the same number of features. For each checkpoint, we measure
the difference between test accuracy using feature selection and the full dataset, shown in Figure 2c.

We present results for Cora in Figure 2, but we also include results for the remaining eight datasets
mentioned in Appendix D.1. To evaluate on larger graphs, we also train GraphSAGE models (Hamil-
ton et al., 2017) on the ArXiv citation network from the Open Graph Benchmark (Hu et al., 2020)
with word embeddings as features and paper subjects as labels, for which we use r = 0.4. In Fig-
ure 2, we observe that NPT is better able to preserve accuracy than MI and even the GCN-specific
TFI at low r. Furthermore, we observe smaller drops in accuracy for NPT as features are elimi-
nated, as expected since our method adapts to GNN performance, allowing the model to focus on the
importance of only the remaining features. We find similar comparisons of accuracy during training
for the remaining datasets with NPT consistently demonstrating a competitive or superior ability to
identify the most relevant features. Figures of accuracy during training analogous to Figure 2 can be
found in Appendix F, while we provide a table including a subset of the results in Table 3. We find
NPT effective for selecting important features during training, while MI is competitive for Cornell,
Texas, and Wisconsin, similarly to Table 2. Moreover, we find TFI and MI to be effective impor-
tance metrics in our algorithm for Photo and Computers, which align with our intuition about these

Table 3: Node classification accuracy for multiple datasets with adaptive feature selection via Algo-
rithm 1. The top performing method per ratio is boldfaced.
% Method Cora CiteSeer PubMed Photo Computers ArXiv Cornell Texas Wisconsin

6.25

NPT 82.47 ± 1.68 71.82 ± 1.48 87.06 ± 0.89 83.54 ± 5.12 81.00 ± 2.42 40.84 ± 0.44 63.78 ± 3.67 72.43 ± 5.51 74.00 ± 6.07
TFI 81.40 ± 1.47 70.02 ± 2.04 84.25 ± 1.34 91.95 ± 1.10 84.47 ± 1.73 − 63.24 ± 8.48 61.08 ± 6.96 64.40 ± 6.86
MI 78.23 ± 0.96 68.66 ± 1.98 86.48 ± 1.10 91.06 ± 1.06 83.82 ± 3.15 40.26 ± 0.18 66.49 ± 3.67 69.19 ± 3.67 78.00 ± 1.79

3.13

NPT 81.88 ± 2.65 70.14 ± 1.50 86.51 ± 0.84 89.12 ± 2.29 86.92 ± 1.61 35.54 ± 0.63 67.57 ± 4.52 69.73 ± 8.44 69.60 ± 4.96
TFI 77.60 ± 1.13 68.30 ± 1.58 81.56 ± 1.66 93.05 ± 0.61 88.27 ± 0.74 − 63.24 ± 9.61 61.08 ± 5.57 58.00 ± 2.19
MI 71.88 ± 1.48 65.11 ± 1.87 85.16 ± 1.01 92.39 ± 0.97 87.67 ± 1.65 35.30 ± 0.10 63.24 ± 4.05 70.81 ± 6.92 68.80 ± 5.74

1.56

NPT 78.52 ± 2.17 69.08 ± 2.26 84.88 ± 0.69 88.71 ± 1.16 80.92 ± 4.33 30.58 ± 0.49 67.57 ± 3.82 70.27 ± 4.19 68.80 ± 5.46
TFI 71.73 ± 4.72 65.02 ± 1.82 79.38 ± 0.33 91.41 ± 0.94 86.65 ± 1.07 − 55.68 ± 6.30 60.54 ± 3.67 49.20 ± 5.46
MI 63.51 ± 3.43 62.17 ± 0.49 83.41 ± 0.39 92.14 ± 0.55 86.87 ± 1.57 28.79 ± 1.32 60.54 ± 8.65 61.08 ± 10.76 66.00 ± 5.93

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7

Checkpoints

Low

High

(a) Cora

0 1 2 3 4 5 6 7

Checkpoints

Low

High

(b) PubMed

0 25 50 75 100 125

Feature Index

0

2

4

6

L
as

t
C

h
ec

kp
oi

nt

(c) ArXiv

Per run

Average

0.000 0.002 0.004 0.006 0.008 0.010

Normalized NPT Score

0.000

0.002

0.004

0.006

N
or

m
al

iz
ed

S
co

re

(d) Wisconsin

MI

TFI

hattr

hEuc

hGE

Figure 3: Analysis of feature importance scores obtained from Algorithm 1. (a) Heatmap of feature
importance δm during training for a GCN trained on Cora (high δm is red and low δm is blue).
(b) Heatmap of feature importance δm during training for a GCN trained on PubMed. (c) Last
checkpoint each feature is kept before dropping for GraphSAGE trained on ArXiv. (d) Normalized
importance scores per baseline versus normalized NPT scores for a TAGCN trained on Wisconsin.

datasets. Thus, with prior information, our algorithm can be further improved with an appropriate
choice of metric, while permutation-based tests remain effective for general scenarios.

4.3 FEATURE IMPORTANCE ANALYSIS

We demonstrate our ability to dynamically track feature relevance during training, confirming that
features can be appropriately dropped even before the model is fully trained. We exemplify peri-
odically monitoring the scores δm in (5) for the Cora and PubMed datasets in Figure 3a,b. At each
checkpoint, that is, every 50 epochs, we compute feature importance scores with NPT. When train-
ing is finished, we sort the features by the scores at the final checkpoint, corresponding to the fully
trained model. We then fix the feature ordering based on their final scores and partition features into
bins according to this ordering for each checkpoint. Thus, each row of each heatmap in Figure 3
represents the same set of features for the corresponding dataset, allowing us to track the average
δm of each bin over time. For both datasets, we indeed identify relevant features as early as the first
checkpoint, as the ranking of features is relatively consistent throughout training. This validates that
with our adaptive approach, we can identify and preserve the relative importance of features even
before full convergence, as the importance trends remain consistent over the course of training.

To illustrate the consistency of NPT feature selection, we also compute the average last checkpoint
in which each ArXiv feature is kept before being dropped in Figure 3c. We find that the features
of highest importance are consistently ranked high, while the least important features are always
dropped early. For more concrete verification that NPT can identify importance in a controlled
setting, Figure 12 in Appendix G visualizes importance scores using synthetic graph data, comparing
scores obtained from NPT, TFI, MI, and PT (permutation testing via an MLP instead of a GNN).

Furthermore, we analyze the types of features deemed important by NPT across datasets, as well
as verifying the generality of NPT as the metric in Algorithm 1. To this end, we plot normalized
importance scores computed from baseline metrics versus NPT for Wisconsin in Figure 3d. We
observe that NPT tends to rank Wisconsin features as more important with higher MI and lower
homophily hGE, as expected for data with heterophilic labels. To expand on this analysis, Table 4
lists the linear correlation between NPT scores and scores from each baseline for all datasets. In
all cases, NPT attains its highest correlation with the metrics that performed best in Table 2. This
result indicates two takeaways. First, NPT indeed identifies feature importance in based on relevant

Table 4: Pearson correlation coefficient between NPT feature importance δm and importance mea-
sured via other metrics. The top performing method is boldfaced, and the second best is underlined.

Method Cora CiteSeer PubMed Photo Computers ArXiv Cornell Texas Wisconsin

TFI 0.6234 0.5032 0.2618 0.3098 0.3510 − 0.3659 0.3048 0.5225
MI 0.6178 0.4969 0.6026 0.5897 0.6380 0.5872 0.4314 0.4142 0.5658
hattr 0.1800 0.0373 0.2192 0.5260 0.6245 0.5656 0.0417 -0.0093 0.0335
hEuc 0.0208 0.0266 0.1116 0.4152 0.2715 0.4523 0.0016 -0.0171 0.0370
hGE -0.6479 -0.5349 -0.2285 0.1541 0.3072 0.0411 -0.5712 -0.5204 -0.6635

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

100.0 25.0 6.25 1.56 0.39 0.10 0.02 0.01

Percentage of Features (%)

−50

−40

−30

−20

−10

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
)

(a) PubMed

r = 0.75, K = 10

r = 0.5, K = 10

r = 0.25, K = 10

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−10.0

−7.5

−5.0

−2.5

0.0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
)

(b) PubMed

r = 0.5, K = 5

r = 0.5, K = 10

r = 0.5, K = 15

r = 0.5, K = 20

0 1 2 3 4 5 6 7

Checkpoints

100

101

102

103

104

T
im

e
in

S
ec

on
d

s

(c) Permutation Time

Cora

CiteSeer

PubMed

Photo

Computers

ArXiv

Cornell

Texas

Wisconsin

Figure 4: Evaluation of Algorithm 1 in various scenarios. (a) GCN performance on PubMed for
fixed K = 10 and varying r ∈ {0.25, 0.5, 0.75}. (b) GCN performance on PubMed for fixed
r = 0.5 and varying K ∈ {5, 10, 15, 20}. (c) Time to permute node features for each checkpoint of
Algorithm 1, that is, for t = nT for n ∈ N, across multiple datasets.

data properties without requiring prior information. Second, because NPT detects relevant char-
acteristics and attains competitive performance across datasets of various types, our approach is a
theoretically valid and empirically effective general choice for node feature selection. Analogous
plots of Figures 3c,d for the remaining datasets are in Appendix G.

4.4 METHOD PERFORMANCE ANALYSIS

We next demonstrate the performance of Algorithm 1 using NPT for PubMed while varying either r
or K, shown in Figure 4a,b. Further results can be found in Appendix H. As we drop more features
via larger r%, we naturally experience an increasing drop in accuracy. However, dropping features
more slowly with r = 0.25 may improve performance, although we retain more features for the
same number of training iterations. Moreover, we require a large enough K to perform enough
permutations for a statistically relevant result. In Figure 4b, increasing K above our choice of 10 in
previous simulations does not drastically change results, but lower K can have negative effects on
performance, as expected. For a statistical choice of K, see Proposition 1 in Appendix E. Finally,
we measure the additional cost of permuting during training in Figure 4d. We observe the exact
decay in permutation time as discussed in Section 3.1, where the cost of permutations is largest at
the first checkpoint, but subsequent checkpoints decrease exponentially in duration. Moreover, as
expected, graph size N and the number of features M control how costly computation will be, with
dataset details listed in Appendix D.1.

5 CONCLUSION

In this work, we presented permutation tests for node feature importance. We verified the use of
permutation-based importance scores for GCNs both theoretically and empirically. Furthermore,
we presented an adaptive algorithm to eliminate features during training. We compared our per-
mutation scores to other importance metrics for feature selection. We also demonstrated the effec-
tiveness of our algorithm on multiple datasets, where we compared using permutation-based feature
importance versus other metrics for adaptive feature selection. Our approach allows us to exploit
a well-established statistical metric, but we also verified that it returns relevant information that is
unique to GNNs for graph-structured data.

We also share limitations of this work that we hope inspire future directions. We require no as-
sumptions on graph data, but performance-based metrics such as ours necessitate an appropriate
selection of the GNN architecture. While a reasonable requirement, the interpretation of the impor-
tance scores may change depending on the model used. Furthermore, we demonstrated our approach
only for node classification, but as δm can be employed to evaluate the effect of node features on any
quantity, future work will see feature selection for link prediction and graph classification. More-
over, while permutation tests are typically found to be very effective (Khan et al., 2025), permuting
features that are correlated may result in overestimated importance scores (Hooker et al., 2021).
Thus, we plan to explore conditional permutation tests for the explainability of graph data. Finally,
we expect that the performance of our algorithm can be improved further by adaptively eliminating
features for which δm ≤ 0, which we explore in future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The model architectures, training hyperparameters, and experimental settings are detailed in Ap-
pendix D. Proofs of the theoretical results are given Appendix B and Appendix C. Dataset statistics
are also reported in Appendix D.1. Finally, the source code and scripts are included in the supple-
mentary materials, along with instructions to reproduce all experiments and results.

REFERENCES

Deepak Bhaskar Acharya and Huaming Zhang. Feature selection and extraction for graph neural
networks. In ACM Southeast Conference, pp. 252–255. ACM, 2020.

Selahattin Akkas and Ariful Azad. GNNShap: Scalable and accurate GNN explanation using Shap-
ley values. In ACM Web Conference, pp. 827–838. ACM, 2024.

Fouad Alkhoury, Tamás Horváth, Christian Bauckhage, and Stefan Wrobel. Improving graph neural
networks through feature importance learning. Machine Learning, 114(8), 2025.

André Altmann, Laura Toloşi, Oliver Sander, and Thomas Lengauer. Permutation importance: A
corrected feature importance measure. Bioinformatics, 26(10):1340–1347, 2010.

Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical
Journal, 19(3), 1967.

Abdullah Basaad, Shadi Basurra, Edlira Vakaj, Mohammed Aleskandarany, and Mohammed M.
Abdelsamea. GraphX-Net: A graph neural network-based Shapley values for predicting breast
cancer occurrence. IEEE Access, 12:93993–94007, 2024.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geo-
metric deep learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. L-shapley and c-shapley:
Efficient model interpretation for structured data. In International Conference on Learning Rep-
resentations (ICLR), 2019.

Leiyang Chen, Ying Xi, Liang Dong, Manjun Zhao, Chenliang Li, Xiao Liu, and Xiaohui Cui.
Identifying influential nodes in complex networks via Transformer. Information Processing &
Management, 61(5):103775, 2024a.

Ting Chen, Song Bian, and Yizhou Sun. Are powerful graph neural nets necessary? A dissection on
graph classification. arXiv preprint arXiv:1905.04579, 2020.

Xuexin Chen, Ruichu Cai, Yuan Fang, Min Wu, Zijian Li, and Zhifeng Hao. Motif graph neural
network. IEEE Transactions on Neural Networks and Learning Systems, 35(10):14833–14847,
2024b.

Yuhan Chen, Yihong Luo, Jing Tang, Liang Yang, Siya Qiu, Chuan Wang, and Xiaochun Cao.
LSGNN: Towards general graph neural network in node classification by local similarity. In
International Joint Conference on Artificial Intelligence, 2023.

Hryhorii Chereda, Andreas Leha, and Tim Beißbarth. Stable feature selection utilizing graph con-
volutional neural network and layer-wise relevance propagation for biomarker discovery in breast
cancer. Artificial Intelligence in Medicine, 151:102840, 2024.

Eli Chien, Mufei Li, Anthony Aportela, Kerr Ding, Shuyi Jia, Supriyo Maji, Zhongyuan Zhao, Javier
Duarte, Victor Fung, Cong Hao, Yunan Luo, Olgica Milenkovic, David Pan, Santiago Segarra, and
Pan Li. Opportunities and challenges of graph neural networks in electrical engineering. Nature
Reviews Electrical Engineering, 1(8):529–546, 2024.

Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: A unified framework for
model explanation. Journal of Machine Learning Research (JMLR), 22(209):1–90, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quantitative input in-
fluence: Theory and experiments with learning systems. In IEEE Symposium on Security and
Privacy (SP), pp. 598–617. IEEE, May 2016.

Yushun Dong, Song Wang, Yu Wang, Tyler Derr, and Jundong Li. On structural explanation of bias
in graph neural networks. In International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 316–326. ACM, 2022.

Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya Kar. Topology adaptive
graph convolutional networks. arXiv preprint arXiv:1710.10370, 2017.

Junfeng Fang, Xiang Wang, An Zhang, Zemin Liu, Xiangnan He, and Tat-Seng Chua. Cooperative
explanations of graph neural networks. In ACM International Conference on Web Search and
Data Mining, pp. 616–624. ACM, 2023.

Dingcheng Feng, Feng Chen, and Wenli Xu. Efficient leave-one-out strategy for supervised feature
selection. Tsinghua Science and Technology, 18:629–635, 2013.

Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but many are useful:
Learning a variable’s importance by studying an entire class of prediction models simultaneously.
Journal of Machine Learning Research (JMLR), 20(177):1–81, 2019.

Peter Georg, Lars Grasedyck, Maren Klever, Rudolf Schill, Rainer Spang, and Tilo Wettig. Low-
rank tensor methods for Markov chains with applications to tumor progression models. Journal
of Mathematical Biology, 86(1):7, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

Giles Hooker, Lucas Mentch, and Siyu Zhou. Unrestricted permutation forces extrapolation: Vari-
able importance requires at least one more model, or there is no free variable importance. Statistics
and Computing, 31(6), 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 22118–22133. Curran Associates, Inc., 2020.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. GraphLIME: Local in-
terpretable model explanations for graph neural networks. IEEE Transactions on Knowledge and
Data Engineering, 35(7):6968–6972, 2023.

Bo Jiang, Beibei Wang, and Bin Luo. Sparse norm regularized attribute selection for graph neural
networks. Pattern Recognition, 137:109265, 2023.

Di Jin, Rui Wang, Meng Ge, Dongxiao He, Xiang Li, Wei Lin, and Weixiong Zhang. RAW-GNN:
RAndom Walk Aggregation based Graph Neural Network. In Luc De Raedt (ed.), International
Joint Conference on Artificial Intelligence, pp. 2108–2114, 2022.

Jian Kang, Yan Zhu, Yinglong Xia, Jiebo Luo, and Hanghang Tong. RawlsGCN: Towards Rawlsian
difference principle on graph convolutional network. In ACM Web Conference, pp. 1214–1225.
ACM, 2022.

Adam Khan, Asad Ali, Jahangir Khan, Fasee Ullah, and Muhammad Faheem. Using permutation-
based feature importance for improved machine learning model performance at reduced costs.
IEEE Access, 13:36421–36435, 2025.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry Wasserman. Distribution-
free predictive inference for regression. Journal of the American Statistical Association, 113
(523):1094–1111, 2018.

Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang Tang, and
Huan Liu. Feature selection: A data perspective. ACM Computing Surveys, 50(6):1–45, 2018.

Chris Lin, Gerald J. Sun, Krishna C. Bulusu, Jonathan R. Dry, and Marylens Hernandez. Graph
neural networks including sparse interpretability. arXiv preprint arXiv:2007.00119, 2020.

Camille Olivia Little, Debolina Halder Lina, and Genevera I. Allen. Fair feature importance scores
for interpreting decision trees. Transactions on Machine Learning Research (TMLR), 2024.

Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. On generalized degree fairness in graph neural
networks. AAAI Conference on Artificial Intelligence, 37(4):4525–4533, 2023.

Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
Leskovec, and Doina Precup. When do graph neural networks help with node classification? In-
vestigating the homophily principle on node distinguishability. In Advances in Neural Information
Processing Systems, volume 36, pp. 28748–28760. Curran Associates, Inc., 2024.

Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee. Consistent individualized feature attribution
for tree ensembles. arXiv preprint arXiv:1802.03888, 2018.

Asmaa M. Mahmoud, Abeer S. Desuky, Heba F. Eid, and Hoda A. Ali. Node classification with
graph neural network based centrality measures and feature selection. International Journal of
Electrical and Computer Engineering (IJECE), 13(2):2114, 2023.

Hannes Mandler and Bernhard Weigand. A review and benchmark of feature importance methods
for neural networks. ACM Computing Surveys, 56(12), 2024.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node classification
in Graph Neural Networks. Journal of Computational Science, 62:101695, 2022.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Feature selection: Key to enhance node
classification with graph neural networks. CAAI Transactions on Intelligence Technology, 8(1):
14–28, 2023.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based recom-
mendations on styles and substitutes. In International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 43–52. ACM, 2015.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. International Workshop on Mining and Learning with Graphs, 2012.

Madeline Navarro, Samuel Rey, Andrei Buciulea, Antonio G. Marques, and Santiago Segarra. Fair
GLASSO: Estimating fair graphical models with unbiased statistical behavior. In Advances in
Neural Information Processing Systems, volume 37, pp. 139589–139620. Curran Associates, Inc.,
2024a.

Madeline Navarro, Samuel Rey, Andrei Buciulea, Antonio G. Marques, and Santiago Segarra. Mit-
igating subpopulation bias for fair network topology inference. In European Signal Processing
Conference (EUSIPCO), pp. 822–826, 2024b.

Hoang Nt, Takanori Maehara, and Tsuyoshi Murata. Revisiting graph neural networks: Graph
filtering perspective. In International Conference on Pattern Recognition (ICPR), pp. 8376–8383.
IEEE, 2021.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: Geomet-
ric graph convolutional networks. International Conference on Learning Representations (ICLR),
2020.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust you?”: Explaining
the predictions of any classifier. In International Conference on Knowledge Discovery and Data
Mining (SIGKDD), pp. 1135–1144, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93–93, 2008.

Sisi Shao, Pedro Henrique Ribeiro, Christina M Ramirez, and Jason H Moore. A review of feature
selection strategies utilizing graph data structures and Knowledge Graphs. Briefings in Bioinfor-
matics, 25(6), 2024.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Victor M Tenorio, Madeline Navarro, Samuel Rey, Santiago Segarra, and Antonio G Marques.
Adapting to heterophilic graph data with structure-guided neighbor discovery. arXiv preprint
arXiv:2506.08871, 2025.

Dipti Theng and Kishor K. Bhoyar. Feature selection techniques for machine learning: A survey
of more than two decades of research. Knowledge and Information Systems, 66(3):1575–1637,
2024.

Daniell Toth. A permutation test on complex sample data. Journal of Survey Statistics and Method-
ology, 8(4):772–791, 2020.

Donglin Wang and Wandi Ding. Innovative biomarker exploration in ASD: Combining Graph Neu-
ral Networks and permutation testing on fMRI data. NeuroImage: Reports, 5(2):100249, 2025.

Huanjing Wang, Qianxin Liang, John T. Hancock, and Taghi M. Khoshgoftaar. Feature selection
strategies: A comparative analysis of SHAP-value and importance-based methods. Journal of Big
Data, 11(1), 2024.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Jian-Bo Yang, Kai-Quan Shen, Chong-Jin Ong, and Xiao-Ping Li. Feature selection for MLP neural
network: The use of random permutation of probabilistic outputs. IEEE Transactions on Neural
Networks, 20(12):1911–1922, 2009.

Liang Yang, Mengzhe Li, Liyang Liu, bingxin niu, Chuan Wang, Xiaochun Cao, and Yuanfang
Guo. Diverse message passing for attribute with heterophily. In Advances in Neural Information
Processing Systems, volume 34, pp. 4751–4763. Curran Associates, Inc., 2021.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):
5782–5799, 2023.

Jin Zheng, Yang Wang, Wanjun Xu, Zilu Gan, Ping Li, and Jiancheng Lv. GSSA: Pay attention to
graph feature importance for GCN via statistical self-attention. Neurocomputing, 417:458–470,
2020.

Yilun Zheng, Sitao Luan, and Lihui Chen. What is missing for graph homophily? Disentangling
graph homophily for graph neural networks. In Advances in Neural Information Processing Sys-
tems, volume 37, pp. 68406–68452. Curran Associates, Inc., 2024.

Yilun Zheng, Xiang Li, Sitao Luan, Xiaojiang Peng, and Lihui Chen. Let your features tell the
differences: Understanding graph convolution by feature splitting. In International Conference
on Learning Representations (ICLR), 2025.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In Advances
in Neural Information Processing Systems, volume 33, pp. 7793–7804. Curran Associates, Inc.,
2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jiong Zhu, Gaotang Li, Yao-An Yang, Jing Zhu, Xuehao Cui, and Danai Koutra. On the impact
of feature heterophily on link prediction with graph neural networks. In Advances in Neural
Information Processing Systems, volume 37, pp. 65823–65851. Curran Associates, Inc., 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A RELATED WORK

Measuring variable importance is a fundamental task in several fields such as machine learning,
statistics, and signal processing (Fisher et al., 2019; Mandler & Weigand, 2024). Classical tech-
niques for classification tasks seek to identify correlations between features and labels to be pre-
dicted, such as their mutual information (Theng & Bhoyar, 2024). Simpler, interpretable models
such as linear regression and decision trees can be used as surrogate models to explain sample or
feature relevance (Ribeiro et al., 2016). To avoid training simple, albeit cheap, models, one of the
most common approaches is to apply perturbations, where model inputs or parameters are perturbed
and the change in output measured (Datta et al., 2016; Fisher et al., 2019; Covert et al., 2021). Sem-
inal examples include feature occlusion (Feng et al., 2013; Lei et al., 2018), permutation (Altmann
et al., 2010; Breiman, 2001; Datta et al., 2016), and Shapley values (Lundberg et al., 2018; Chen
et al., 2019). Scores based on measuring model outcomes under perturbations may require training
multiple models to be used for feature selection (Wang et al., 2024). Not only is this potentially
infeasible computationally, but for optimizing models with nonconvex losses, differences in perfor-
mance for models trained on perturbed data may be misleading.

For graph-structured data, a plethora of works seek to identify the contribution of nodes or edges to
particular GNN predictions (Alkhoury et al., 2025; Akkas & Azad, 2024; Chen et al., 2024a; Huang
et al., 2023). Among these, some works consider node feature relevance, albeit primarily as they
pertain to structural importance (Fang et al., 2023; Chen et al., 2024b). Feature importance methods
have been proposed specifically for graphs (Zheng et al., 2025), which often require assumptions
about the type of graph data (Mahmoud et al., 2023; Shao et al., 2024). For example, as GCNs
are a highly popular family of GNNs, the homophily of node features has been explored as rele-
vance measurements (Zhu et al., 2024). The score proposed in (Zheng et al., 2025) computes the
mutual information between labels and node features passed through a linear low-pass filter, imply-
ing relevance for a GCN. Authors considered all features informative, and their metric was used to
identify which features ought to be trained with a GNN versus an MLP. Thus, they did not evaluate
their metric for eliminating features to reduce model complexity or to remove unhelpful features.
Conversely, several works aim to select node features during training, albeit without returning im-
portance scores (Maurya et al., 2023; Jiang et al., 2023; Acharya & Zhang, 2020; Lin et al., 2020;
Zheng et al., 2020). Moreover, these methods learn which features to eliminate via an auxiliary
model, for which many tend to use uninterpretable models.

B PROOF OF THEOREM 1

The following proof is inspired by that of (Tenorio et al., 2025), which was itself motivated by (Nt
et al., 2021) for evaluating GCN dependence on homophily.

By the definitions of Z∗ and Z, we have that X∗ = Ã
∗
rwX

∗ and

∥Z∗ − Z∥F ≤
∥∥∥σ2 (Ã∗

rwσ1

(
Ã

∗
rwX

∗Θ(1)
)
Θ(2)

)
− σ2

(
Ãrwσ1

(
ÃrwXΘ(1)

)
Θ(2)

)∥∥∥2
F

≤ τω
∥∥∥Ã∗

rwσ1

(
Ã

∗
rwX

∗Θ(1)
)
− Ãrwσ1

(
ÃrwXΘ(1)

)∥∥∥2
F
,

with the latter inequality due to the τ -Lipschitzness of σ2 and the fact that ∥Θ(2)∥2 ≤ ω. Then, we
apply the triangle and Cauchy-Schwarz inequalities for

∥Z∗ − Z∥F ≤ τω
∥∥∥(Ã∗

rw − Ãrw)σ1(X
∗Θ(1))

∥∥∥
F
+ τω

∥∥∥Ãrw(σ1(X
∗Θ(1))− σ1(ÃrwXΘ(1)))

∥∥∥
F

≤ τω
∥∥∥Ã∗

rw − Ãrw

∥∥∥
F

∥∥∥σ1(X∗Θ(1))
∥∥∥
F
+ τω

∥∥∥Ãrw

(
σ1(X

∗Θ(1))− σ1(ÃrwXΘ(1))
)∥∥∥

F
.

Then, observing that ∥Ãrw∥2 = 1 and exploiting the definitions of σ1 and Θ(1), we have that

∥Z∗ − Z∥F ≤ τ2ω2
∥∥Ã∗

rw − Ãrw

∥∥
F
∥X∥F + τ2ω2∥X∗ − ÃrwX∥F . (7)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Next, let D̃
∗
:= diag((A∗+I)1), analogous to D̃ = diag(d+1), and recall that Ãrw = D̃

−1
(A+I)

and Ã
∗
rw = (D̃

∗
)−1(A∗ + I). Then, we bound the adjacency matrix discrepancy as∥∥Ã∗

rw − Ãrw

∥∥
F
=
∥∥Ã∗

rw − D̃
−1

(A∗ + I) + D̃
−1

(A∗ + I)− D̃
−1

(A+ I)
∥∥
F

≤
∥∥Ã∗

rw − D̃
−1

(A∗ + I)
∥∥
F
+
∥∥D̃−1(

A∗ −A
)∥∥

F

≤
∥∥(I− D̃

−1
D̃

∗)
Ã

∗
rw

∥∥
F
+
∥∥D̃−1

∆
∥∥
F
,

where D̃
−1

(A∗ + I) = D̃
−1

D̃
∗
Ã

∗
rw. Recalling that ∥Ã∗

rw∥2 = 1, we then have∥∥Ã∗
rw − Ãrw

∥∥
F
≤
∥∥D̃−1(

D̃− D̃
∗)∥∥

F
+ ∥∆∥F

≤ ∥D−D∗∥F + ∥∆∥F
= ∥diag(∆1)∥F + ∥∆∥F
≤ ∥∆1∥2 + ∥∆∥F
≤

√
N∥∆∥F + ∥∆∥F , (8)

which accounts for the first term in (7). For the second, we apply the definitions X̃
∗
= YP−1Y⊤X

and Ãrw = D̃
−1

(A+ I) for

∥X∗
i,: − [ÃrwX]i,:∥2 =

∥∥∥∥∥ 1

pyi

N∑
j=1

Yj,yi
Xj,: −

1

di + 1

N∑
j=1

[I+A]ijXj,:

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

pyi

N∑
j=1

Yj,:Y
⊤
i,:Xj,: −

1

di + 1
Xi,: −

1

di + 1

N∑
j=1

AijXj,:

∥∥∥∥∥
2

,

where the inner product Yj,:Y
⊤
i,: = 1 if and only if yi = yj . Then, we have that

∥X∗
i,: − [ÃrwX]i,:∥2 =

∥∥∥∥∥ 1

pyi

N∑
j=1

Yj,:Y
⊤
i,:Xj,: −Xi,: +

(
di

di + 1

)
Xi,: −

1

di + 1

N∑
j=1

AijXj,:

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

pyi

N∑
j=1

Yj,:Y
⊤
i,:

(
Xj,: −Xi,:

)
+

1

di + 1

N∑
j=1

Aij

(
Xi,: −Xj,:

)∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
j=1

(
Yj,:Y

⊤
i,:

pyi

− Aij

di + 1

)(
Xi,: −Xi,:

)∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
j=1

[
YP−1Y⊤ − D̃

−1
A
]
ij

(
Xi,: −Xj,:

)∥∥∥∥∥
2

,

which then leads to

∥X∗ − ÃrwX∥F =

 N∑
i=1

∥∥∥∥∥
N∑
j=1

[
YP−1Y⊤ − D̃

−1
A
]
ij

(
Xi,: −Xj,:

)∥∥∥∥∥
2

2

1/2

≤
N∑
i=1

N∑
j=1

∥∥∥[YP−1Y⊤ − D̃
−1

A
]
ij

(
Xi,: −Xj,:

)∥∥∥
2

=

C∑
c=1

N∑
i=1

N∑
j=1

I(yi = c)I(yj = c) ·
∥∥∥[YP−1Y⊤ − D̃

−1
A
]
ij

(
Xi,: −Xj,:

)∥∥∥
2

=

C∑
c=1

N∑
i=1

N∑
j=1

∥∥∥∥(YicYjcpc
− Aij

di + 1

)(
Xi,: −Xj,:

)∥∥∥∥
2

. (9)

Substituting (8) and (9) into the inequality (7) yields the result in (4), as desired. ■

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C PROOF OF THEOREM 2

Observe that we may repeat the steps of the proof of Theorem 1 in Appendix B to obtain

∥Z̃∗ − Z̃∥F ≤ τ2ω2

[
(1 +

√
N)∥∆∥F ∥X∥F +

N∑
i=1

N∑
j=1

∣∣∣∣∣Yi,:Y
⊤
j,:

pyi

− Aij

di + 1

∣∣∣∣∣ · ∥X̃i,: − X̃j,:∥2
]
.

(10)

Thus, for the remainder of the proof, we need only obtain a bound for ∥X̃i,: − X̃j,:∥2. We proceed
with bounding (X̃im−X̃jm)2 for anym ∈ [M]. For a given permutation π ∈ Π sampled uniformly
at random, we define the function

ψ(π) :=
(
Xπ(i),m −Xπ(j),m

)2
(11)

with expected value

E[ψ(π)] = E
[(
Xπ(i),m −Xπ(j),m

)2]
= E

[
X2

π(i),m

]
− 2E

[
Xπ(i),mXπ(j),m

]
+ E

[
X2

π(j),m

]
. (12)

Then, for any i, j ∈ [N] such that i ̸= j and m ∈ [M],

E[X2
π(i),m] =

1

N !

∑
π∈Π

X2
π(i),m =

1

N !

N∑
j=1

∑
π∈Π

X2
jmI(π(i) = j) =

1

N

N∑
j=1

X2
jm =

1

N
∥X:,m∥2

and

E[Xπ(i),mXπ(j),m] =
1

N !

∑
π∈Π

Xπ(i),mXπ(j),m

=
1

N !

N∑
k=1

N∑
ℓ=1

∑
π∈Π

XkmXℓmI(π(i) = k)I(π(j) = ℓ)

=
1

N !

∑
k ̸=ℓ

∑
π∈Π

XkmXℓm(N − 2)!

=
1

N(N − 1)

N∑
k=1

N∑
ℓ=1

XkmXℓm − 1

N(N − 1)

N∑
k=1

X2
km

=
1

N(N − 1)

(
(1⊤X:,m)2 − ∥X:,m∥22

)
,

which we substitute into (12) for

E[ψ(π)] =
2

N − 1

(
∥X:,m∥22 −

1

N
(1⊤X:,m)2

)
. (13)

Then, we define the Doob martingale {Qk}Nk=0 such that Q0 = E[ψ(π)] and

Qk = E[ψ(π) | π(1), . . . , π(k − 1)] ∀k = 1, . . . , N,

thus QN = ψ(π). Additionally, we have that

E[ψ(π) | π(1), . . . , π(k − 1)] =

N∑
ℓ=k

1

N − k + 1
E[ψ((kℓ)π) |π(1), . . . , π(k)],

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where ψ((kℓ)π) denotes ψ given π with elements k and ℓ swapped. Then, we bound the following
differences

|Qk −Qk−1| =
∣∣E[ψ(π) |π(1), . . . , π(k)]− E[ψ(π) |π(1), . . . , π(k − 1)]

∣∣
=

∣∣∣∣E[ψ(π) |π(1), . . . , π(k)]− N∑
ℓ=k

1

N − k + 1
E[ψ((kℓ)π) |π(1), . . . , π(k)]

∣∣∣∣
=

∣∣∣∣ 1

N − k + 1

N∑
ℓ=k

E[ψ(π) |π(1), . . . , π(k)]− E[ψ((kℓ)π) |π(1), . . . , π(k)]
∣∣∣∣

≤ 1

N − k + 1

N∑
ℓ=k

∣∣∣E[ψ(π)− ψ((kℓ)π) |π(1), . . . , π(k)]
∣∣∣. (14)

Then, with X̃
(kℓ)

:,m representing X̃:,m with elements k and ℓ swapped, we have

|ψ(π)− ψ((kℓ)π)| =
∣∣(X̃im − X̃jm

)2 − (X̃(kℓ)
im − X̃

(kℓ)
jm

)2∣∣,
which is zero for i = k, j = ℓ or i ̸= k, j ̸= ℓ, but for k = i, j ̸= ℓ, we instead have

|ψ(π)− ψ((kℓ)π)| =
∣∣(X̃im − X̃ℓm

)(
X̃im + X̃ℓm − 2X̃jm

)∣∣
=
∣∣X̃im − X̃ℓm

∣∣ · ∣∣X̃im + X̃ℓm − 2X̃jm

∣∣
≤
∣∣X̃im − X̃ℓm

∣∣ · (∣∣X̃im − X̃jm

∣∣+ ∣∣X̃ℓm − X̃jm

∣∣)
≤ 2α

by our assumption that maxm∈[M] maxk,ℓ∈[N](Xkm −Xℓm)2 = α. With (11), (13), and (14), we
apply the Azuma–Hoeffding inequality (Azuma, 1967; Hoeffding, 1963) for

P [ψ(π)− E[ψ(π)] ≥ η] ≤ exp

(
− η2

2Nα2

)
,

and with t := η/(α
√
N), we obtain(

Xπ(i),m −Xπ(j),m

)2 ≤ 2

N − 1

(
∥X:,m∥22 −

1

N
1⊤X:,m

)
+ αt

√
N

with probability at least e−t2/4, which yields

∥X̃i,: − X̃j,:∥2 =

√√√√[M∑
m=1

2

N − 1

(
∥X:,m∥22 −

1

N
(1⊤X:,m)2

)
+ αt

√
N

]

≤
√

2

N − 1

(
∥X∥2F − 1

N
∥X⊤1∥22

)
+Mαt

√
N,

which we substitute into (10) for the error bound in (6), as desired. ■

D EXPERIMENTAL DETAILS

This section provides further details regarding the simulations in this work, including the datasets
employed.

D.1 DATASET DETAILS

We share the statistics of the datasets used in our experiments in Table 5. Information about dataset
context, that is, the interpretation of nodes, features, edges, and labels is provided in Section 4.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Dataset #Nodes #Edges #Feats #Classes

Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3
Photo 7,650 119,043 745 8
Computers 13,752 245,778 767 10
ogbn-arxiv 169,343 1,166,243 128 40
Cornell 183 298 1,703 5
Texas 183 325 1,703 5
Wisconsin 251 515 1,703 5

Table 5: Statistics of the benchmark datasets used in our experiments, including the number of
nodes, edges, input features per node, and class labels.

D.2 TABLE 1 SIMULATION DETAILS

We elaborate on training details for the results in Table 1. All results are averaged over five runs,
except for the results in Figures 2 and 5-8, which are averaged over twenty runs. In each run, we
randomly split the nodes into 70% training, 10% validation, and 20% test, and we report the test
accuracy corresponding to the epoch with the highest validation accuracy. The train/validation/test
masks are re-sampled independently for each run. For Cora, CiteSeer, and PubMed, we use a 2-layer
GCN; for Amazon Computers and Photo we use a 2-layer GIN; for Cornell, Texas, and Wisconsin
we use a 2-layer TAGCN; and for the MLP baseline we use a 2-layer MLP, all with 512 hidden
units. Models on Computers and Photo are trained for 800 epochs, while the remaining datasets are
trained for 400 epochs. We use the Adam optimizer with a learning rate of 0.01 and weight decay
of 5× 10−4.

D.3 TABLE 2 BASELINES AND SIMULATION DETAILS

We next describe our process for the results in Table 2. Our evaluation follows a two-stage pipeline:
in the first stage, we train a model following the setup in Table 1 and compute feature importance
scores using the validation set. We then select the top r% of features according to each FS method
(r = 2% for all datasets except PubMed, Photo, and Computers, where r = 5% due to their smaller
feature dimension). In the second stage, we retrain the model using only these selected features, with
the same architecture and training configuration as in the first stage, and report the test accuracy.

As for baselines, we evaluate several feature selection (FS) methods listed below.

• NPT: Our node feature permutation tests (NPTs) for feature importance ranks features
based on the drop in validation accuracy upon permuting each feature.

• NPT-mask: We introduce a variant of NPT where, rather than permuting a feature to
remove its effect, we instead mask its values, that is, set all of its values to zero.

• MI: We measure the mutual information (MI) between each feature and the node labels.
• TFI: The Topological Feature Informativeness (TFI) metric was introduced in (Zheng

et al., 2025) to measure feature importance prior to training to be applicable for GCNs.
• Feature homophily: The homophily-based metrics, hattr (Yang et al., 2021), hEuc (Chen

et al., 2023), and hGE (Jin et al., 2022), score features according to different measures of
homophily, that is, measuring the smoothness of each node feature according to different
distance metrics.

• Rnd.: Our random (Rnd.) selection baseline, where we select features uniformly at ran-
dom to be retained or removed.

D.4 TABLE 3 AND FIGURE 2 SIMULATION DETAILS

For adaptive node feature selection, we set r = 0.5 in Algorithm 1 for all datasets, dropping half of
the features at each step of the feature importance calculation, except for ArXiv, where we use r =
0.4 due to its relatively small feature dimension (128). The burn-in period Tburn and interval period
T are fixed to 50 for all datasets, except for Computers, Photos, and arxiv, where Tburn, T = 100.
The model is trained for 400 epochs on all datasets and 800 epochs on Computers, Photos, and arxiv.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Test accuracy for each feature percentage is reported based on the epoch with the highest validation
accuracy: within each T interval, we identify the epoch that achieves the best validation accuracy
and use its corresponding test accuracy. This procedure is applied consistently across all feature
selection methods. The architecture and optimizer settings follow the configuration described in
Section D.2.

E CHOICE OF NUMBER OF FEATURE PERMUTATIONS

Let {x̃(k)}Kk=1 denote K ∈ N independent permutations of the vector x ∈ RN , where x̃i = xπ(k)(i)

for every i ∈ [N] for i.i.d. π(k) ∈ Π. We seek to sample a large enough K such that the empirical
expected value 1

K

∑K
k=1 x̃

(k) approximates the true expected value E[x̃(k)] = µ1 for any k ∈
[K], where µ := 1

N 1⊤x. This will indicate that the empirical distribution of feature permutations
approximates the true distribution. To this end, we consider the following result.

Proposition 1 For the vector x ∈ RN , we define {x̃(k)}Kk=1 such that x̃i = xπ(k)(i) for every k ∈
[K] and i ∈ [N], where π(k) ∈ Π denote i.i.d. permutations of [N]. Then, with xmax := maxi |xi|,
we have that

P

[∥∥∥∥∥ 1

K

K∑
k=1

x̃(k) − E[x̃(k)]

∥∥∥∥∥
2

2

≤ t
√
K − 1

2K

]
≥ 1− 2 exp

{
− Kt2

4N2(x2max − µ2)2

}
. (15)

Thus, we may choose K in Algorithm 1 such that our feature permutations are similar enough to the
true distribution of random feature permutations, where we determine a satisfactory similarity via
choice of t. The proof of Proposition 1 is as follows.

Proof of Proposition 1. First, given that E[x̃(k)] = µ1, we have that∥∥∥∥∥ 1

K

K∑
k=1

x̃(k) − E[x̃(k)]

∥∥∥∥∥
2

2

=

N∑
i=1

(
1

K

K∑
k=1

(x̃
(k)
i − µ)

)2

=
1

K2

N∑
i=1

K∑
k=1

K∑
ℓ=1

(x̃
(k)
i − µ)(x̃

(ℓ)
i − µ)

=
1

K2

K∑
k=1

K∑
ℓ=1

(x̃(k) − µ1)⊤(x̃(ℓ) − µ1).

Since π(k) are independently sampled uniformly at random from Π, for each k, ℓ ∈ [K] such that
k ̸= ℓ, there exists some permutation ρ(j) ∈ Π such that (x̃(k) − µ1)⊤(x̃(ℓ) − µ1) = (x −
µ1)⊤(x̂(j) − µ1), where x̂(j) denotes the permutation of x by ρ(j) for every j ∈ [J] with J :=
K(K − 1)/2. Thus, our next step is to apply Hoeffding’s inequality. To this end, first observe
that the j-th inner product (x− µ1)⊤(x̂(j) − µ1) denotes an independent random variable bounded
between −N |x2max − µ2| and N |x2max − µ2|. Then, for any t0 > 0, Hoeffding’s inequality states
that

P

[∣∣∣∣∣
J∑

j=1

(x− µ1)⊤(x̂(j) − µ1)

∣∣∣∣∣ > t0

]
≤ 2 exp

{
− t20

2JN2(x2max − µ2)2

}
.

Recalling that J = K(K−1)
2 , we then let t = t0

√
K−1
J for

P

[∥∥∥∥∥ 1

K

K∑
k=1

x̃(k) − µ1

∥∥∥∥∥
2

2

> t

√
K − 1

2K

]
≤ 2 exp

{
− Kt2

4N2(x2max − µ2)2

}
,

as desired. ■

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F ADDITIONAL PLOTS ON ADAPTIVE NODE FEATURE SELECTION

We present additional plots analogous to those in Figure 2 measuring the accuracy of GNNs trained
using either all features available in a dataset versus using our adaptive Algorithm 1. We compare
our approach using our proposed permutation-based node feature importance scores, and we also
evaluate using TFI and MI as importance metrics to rank feature relevance in Algorithm 1. Fig-
ure 5 presents results for the datasets with homophilic labels Cora, CiteSeer, and PubMed; Figure 6
the datasets with heterophilic labels Cornell, Texas, and Wisconsin; and Figure 7 the larger-scale
datasets Photo, Computers, and ArXiv. To further verify our results, we repeat our experiments
on homophilic datasets Cora, CiteSeer, and PubMed using their official dataset splits into training,
validation, and testing in Figure 8.

G ADDITIONAL PLOTS ON FEATURE IMPORTANCE ANALYSIS

This section includes Figure 9, which contains additional plots analogous to Figure 3c. For each
feature, we measure the average last checkpoint of Algorithm 1 in which a feature is kept before be-
ing dropped for all datasets. In addition, Figure 10 plots the average last checkpoint for each feature
rank, that is, the most frequent last checkpoint assigned to each feature, analogous to Figure 3d. We
also include additional plots analogous to Figure 11 for all datasets.

Finally, we plot in Figure 12 the feature importance for synthetic graph data measured by NPT,
TFI, MI, and PT, which is analogous to NPT but uses an MLP instead of a GNN to compute
feature importance. More specifically, we generate five independent trials of graphs of N = 500
nodes and M = 50 features. We assign nodes to one of C = 2 classes. We vary the relationships
between features, labels, and graph structure as follows.

• Graph structure A ↔ labels y: When the graph and labels are independent (A ⊥⊥ y), we
generate an Erdos-Renyi graph with edge probability 0.1. Otherwise, when (A⊥̸⊥ y), we sample
the graph from a stochastic block-model whose communities correspond to classes, where within-
class edges are sampled with probability 0.1 and across-class edges with 0.05.

• Graph structure A ↔ node features X: When the graph and features are independent (A ⊥
⊥ X), we sample node features as Gaussian white noise X0 ∼ N (0, σI) for σ = 3. Otherwise,
when A ⊥̸⊥ X, we obtain the eigendecomposition of A = VΛV⊤ and generate bandlimited
graph signals as X0 = V:,BW for W ∼ N (0, σI), where B denotes the indices of graph
frequencies in diag(Λ) that are below λmax = 0.5|maxi Λii|.

• Labels y ↔ node features X: When the graph and labels are independent (y ⊥⊥ X), we further
process node features by sampling B0 ∼ N (0, I) for B0 ∈ RC×5. We normalize the columns of
B0 to sum to zero and rescale for B = 5diag−1(|B0|1)B0, where |B0| denotes the element-wise
absolute value of entries of B0. Finally, we update relevant entries of X as X:,m = [X0]:,m +
[YB]:,m for m ∈ [5]. Otherwise, when y ⊥̸⊥ X, we simply let X = X0.

H ADDITIONAL PLOTS ON MODEL PERFORMANCE ANALYSIS

We include additional plots in Figure 13 on hyperparameter tuning for Cora, CiteSeer, and PubMed,
which correspond to Figure 4a,b. In particular, we fix r = 0.5 and vary K ∈ {5, 10, 15, 20} in the
top row, whereas for the bottom row, we fix K = 10 and vary r ∈ {0.25, 0.5, 0.75}.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 100 200 300 400

Epochs

40

60

80

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (a) Cora

All

NPT

TFI

MI

0 100 200 300 400

Epochs

40

60

80
T

es
t

A
cc

u
ra

cy
(%

)

(b) Cora

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−20

−10

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (c) Cora

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

0 100 200 300 400

Epochs

20

40

60

80

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (d) CiteSeer

All

NPT

TFI

MI

0 100 200 300 400

Epochs

20

40

60

T
es

t
A

cc
u

ra
cy

(%
)

(e) CiteSeer

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−15

−10

−5

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (f) CiteSeer

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

0 100 200 300 400

Epochs

40

60

80

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (g) PubMed

All

NPT

TFI

MI

0 100 200 300 400

Epochs

40

60

80

T
es

t
A

cc
u

ra
cy

(%
)

(h) PubMed

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−30

−20

−10

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (i) PubMed

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

Figure 5: Node classification accuracy for homophilic datasets Cora, CiteSeer, and PubMed. (a,d,g)
Validation accuracy for full, NPT, TFI, and MI. (b,e,h) Test accuracy for full, NPT, TFI, and MI.
(c,f,i) Accuracy difference for full, NPT, TFI, and MI.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 100 200 300 400

Epochs

40

60

80

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (a) Cornell

All

NPT

TFI

MI

0 100 200 300 400

Epochs

40

60

80

T
es

t
A

cc
u

ra
cy

(%
)

(b) Cornell

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−30

−20

−10

0

10

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (c) Cornell

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

0 100 200 300 400

Epochs

40

60

80

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (d) Texas

All

NPT

TFI

MI

0 100 200 300 400

Epochs

40

50

60

70

80

T
es

t
A

cc
u

ra
cy

(%
)

(e) Texas

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−30

−20

−10

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (f) Texas

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

0 100 200 300 400

Epochs

40

60

80

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (g) Wisconsin

All

NPT

TFI

MI

0 100 200 300 400

Epochs

40

60

80

T
es

t
A

cc
u

ra
cy

(%
)

(h) Wisconsin

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−30

−20

−10

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (i) Wisconsin

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

Figure 6: Node classification accuracy for heterophilic datasets Cornell, Texas, and Wisconsin.
(a,d,g) Validation accuracy for full, NPT, TFI, and MI. (b,e,h) Test accuracy for full, NPT, TFI, and
MI. (c,f,i) Accuracy difference for full, NPT, TFI, and MI.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 200 400 600 800

Epochs

25

50

75

100

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (a) Photo

All

NPT

TFI

MI

0 200 400 600 800

Epochs

25

50

75

100

T
es

t
A

cc
u

ra
cy

(%
)

(b) Photo

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−20

0

20

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (c) Photo

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

0 200 400 600 800

Epochs

25

50

75

100

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (d) Computers

All

NPT

TFI

MI

0 200 400 600 800

Epochs

25

50

75

100

T
es

t
A

cc
u

ra
cy

(%
)

(e) Computers

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−20

0

20

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (f) Computers

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

0 200 400 600 800

Epochs

0

20

40

60

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (g) ArXiv

All

NPT

MI

0 200 400 600 800

Epochs

0

20

40

T
es

t
A

cc
u

ra
cy

(%
)

(h) ArXiv

All

NPT

MI

100.0 60.0 36.0 21.6 13.0 7.8 4.7 2.8

Percentage of Features (%)

−20

−10

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (i) ArXiv

AccNPT − AccFull

AccMI − AccFull

Figure 7: Node classification accuracy for larger-scale datasets Photo, Computers, and ArXiv.
(a,d,g) Validation accuracy for full, NPT, TFI, and MI. (b,e,h) Test accuracy for full, NPT, TFI, and
MI. (c,f,i) Accuracy difference for full, NPT, TFI, and MI.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 100 200 300 400

Epochs

20

40

60

80

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (a) Cora

All

NPT

TFI

MI

0 100 200 300 400

Epochs

20

40

60

80

T
es

t
A

cc
u

ra
cy

(%
)

(b) Cora

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−20

−10

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (c) Cora

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

0 100 200 300 400

Epochs

20

40

60

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (d) CiteSeer

All

NPT

TFI

MI

0 100 200 300 400

Epochs

20

40

60

T
es

t
A

cc
u

ra
cy

(%
)

(e) CiteSeer

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−10

−5

0

5

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (f) CiteSeer

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

0 100 200 300 400

Epochs

20

40

60

80

V
al

id
at

io
n

A
cc

u
ra

cy
(%

) (g) PubMed

All

NPT

TFI

MI

0 100 200 300 400

Epochs

20

40

60

80

T
es

t
A

cc
u

ra
cy

(%
)

(h) PubMed

All

NPT

TFI

MI

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−20

−10

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
) (i) PubMed

AccNPT − AccFull

AccTFI − AccFull

AccMI − AccFull

Figure 8: Node classification accuracy for homophilic datasets Cora, CiteSeer, and PubMed. Train,
validation, and test node subsets are selected via canonical splits. (a,d,g) Validation accuracy for
full, NPT, TFI, and MI. (b,e,h) Test accuracy for full, NPT, TFI, and MI. (c,f,i) Accuracy difference
for full, NPT, TFI, and MI.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 500 1000 1500

Feature Index

0.0

2.5

5.0

7.5

L
as

t
C

h
ec

kp
oi

nt

(a) Cora

Per run

Average

0 1000 2000 3000

Feature Index

0.0

2.5

5.0

7.5
L

as
t

C
h

ec
kp

oi
nt

(b) CiteSeer

Per run

Average

0 200 400

Feature Index

0

2

4

6

8

L
as

t
C

h
ec

kp
oi

nt

(c) PubMed

Per run

Average

0 200 400 600

Feature Index

0

2

4

6

L
as

t
C

h
ec

kp
oi

nt

(d) Photo

Per run

Average

0 200 400 600 800

Feature Index

0

2

4

6

L
as

t
C

h
ec

kp
oi

nt

(e) Computers

Per run

Average

0 50 100

Feature Index

0

2

4

6

L
as

t
C

h
ec

kp
oi

nt

(f) ArXiv

Per run

Average

0 500 1000 1500

Feature Index

0

2

4

6

L
as

t
C

h
ec

kp
oi

nt

(g) Cornell

Per run

Average

0 500 1000 1500

Feature Index

0.0

2.5

5.0

7.5

L
as

t
C

h
ec

kp
oi

nt

(h) Texas

Per run

Average

0 500 1000 1500

Feature Index

0

2

4

6

L
as

t
C

h
ec

kp
oi

nt

(i) Wisconsin

Per run

Average

Figure 9: Last checkpoint kept per feature for various datasets. Plots (a) through (i) are presented
in the following order: (a) Cora, (b) CiteSeer, (c) PubMed, (d) Photo, (e) Computers, (f) ArXiv, (g)
Cornell, (h) Texas, (i) Wisconsin.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7

Feature Ranking

0
1
2
3
4
5
6
7

L
as

t
C

h
ec

kp
oi

nt

(a) Cora

0 1 2 3 4 5 6 7

Feature Ranking

0
1
2
3
4
5
6
7

L
as

t
C

h
ec

kp
oi

nt

(b) CiteSeer

0 1 2 3 4 5 6 7

Feature Ranking

0
1
2
3
4
5
6
7

L
as

t
C

h
ec

kp
oi

nt

(c) PubMed

0 1 2 3 4 5 6 7

Feature Ranking

0
1
2
3
4
5
6
7

L
as

t
C

h
ec

kp
oi

nt

(d) Photo

0 1 2 3 4 5 6 7

Feature Ranking

0
1
2
3
4
5
6
7

L
as

t
C

h
ec

kp
oi

nt

(e) Computers

0 1 2 3 4 5 6 7

Feature Ranking

0
1
2
3
4
5
6
7

L
as

t
C

h
ec

kp
oi

nt

(f) ArXiv

0 1 2 3 4 5 6 7

Feature Ranking

0
1
2
3
4
5
6
7

L
as

t
C

h
ec

kp
oi

nt

(g) Cornell

0 1 2 3 4 5 6 7

Feature Ranking

0
1
2
3
4
5
6
7

L
as

t
C

h
ec

kp
oi

nt

(h) Texas

0 1 2 3 4 5 6 7

Feature Ranking

0
1
2
3
4
5
6
7

L
as

t
C

h
ec

kp
oi

nt

(i) Wisconsin

Figure 10: Last checkpoint kept per feature ranking for various datasets. Feature ranking for each
feature corresponds to the most common last checkpoint the feature is kept before being dropped
across independent trials. Each entry of a heatmap denotes the average last checkpoint across all
features in the same ranking. Plots (a) through (i) are presented in the following order: (a) Cora, (b)
CiteSeer, (c) PubMed, (d) Photo, (e) Computers, (f) ArXiv, (g) Cornell, (h) Texas, (i) Wisconsin.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0.000 0.005 0.010

Normalized NPT Score

0.000

0.005

0.010

0.015

N
or

m
al

iz
ed

S
co

re

(a) Cora

MI

TFI

hEuc

hattr

hGE

0.000 0.002 0.004 0.006 0.008

Normalized NPT Score

0.0000

0.0025

0.0050

0.0075

0.0100
N

or
m

al
iz

ed
S

co
re

(b) CiteSeer

MI

TFI

hEuc

hattr

hGE

0.00 0.01 0.02 0.03

Normalized NPT Score

0.00

0.01

0.02

0.03

N
or

m
al

iz
ed

S
co

re

(c) PubMed

MI

TFI

hEuc

hattr

hGE

0.000 0.002 0.004 0.006

Normalized NPT Score

0.000

0.002

0.004

0.006

0.008

N
or

m
al

iz
ed

S
co

re

(d) Photo

MI

TFI

hEuc

hattr

hGE

0.000 0.002 0.004 0.006

Normalized NPT Score

0.000

0.002

0.004

0.006

0.008

N
or

m
al

iz
ed

S
co

re

(e) Computers

MI

TFI

hEuc

hattr

hGE

0.00 0.01 0.02

Normalized NPT Score

0.00

0.01

0.02

0.03

N
or

m
al

iz
ed

S
co

re

(f) ArXiv

MI

hEuc

hattr

hGE

0.0000 0.0025 0.0050 0.0075 0.0100

Normalized NPT Score

0.000

0.002

0.004

0.006

N
or

m
al

iz
ed

S
co

re

(g) Cornell

MI

TFI

hEuc

hattr

hGE

0.00 0.01 0.02 0.03

Normalized NPT Score

0.000

0.002

0.004

0.006

N
or

m
al

iz
ed

S
co

re

(h) Texas

MI

TFI

hEuc

hattr

hGE

0.0000 0.0025 0.0050 0.0075 0.0100

Normalized NPT Score

0.000

0.002

0.004

0.006

N
or

m
al

iz
ed

S
co

re

(i) Wisconsin

MI

TFI

hEuc

hattr

hGE

Figure 11: Plot of normalized importance scores per baseline versus normalized NPT scores. Plots
(a) through (i) are presented in the following order: (a) Cora, (b) CiteSeer, (c) PubMed, (d) Photo,
(e) Computers, (f) ArXiv, (g) Cornell, (h) Texas, (i) Wisconsin.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 20 40

Feature Index m

1

2

3

4

Im
p

or
ta

n
ce

S
co

re NPT δm

0 20 40

Feature Index m

0.5

1.0

1.5

2.0

2.5
Im

p
or

ta
n

ce
S

co
re PT δMLP

m

0 20 40

Feature Index m

0.00

0.01

0.02

0.03

0.04

0.05

Im
p

or
ta

n
ce

S
co

re MI

0 20 40

Feature Index m

0.00

0.01

0.02

0.03

0.04

Im
p

or
ta

n
ce

S
co

re TFI

(a) y⊥⊥A, A⊥⊥X, y⊥⊥X

0 20 40

Feature Index m

0

1

2

3

Im
p

or
ta

n
ce

S
co

re NPT δm

0 20 40

Feature Index m

0

2

4

6

Im
p

or
ta

n
ce

S
co

re PT δMLP
m

0 20 40

Feature Index m

0.00

0.02

0.04

0.06

Im
p

or
ta

n
ce

S
co

re MI

0 20 40

Feature Index m

0.00

0.01

0.02

0.03

0.04

Im
p

or
ta

n
ce

S
co

re TFI

(b) y⊥⊥A, A⊥⊥X, y 6⊥⊥X

0 20 40

Feature Index m

0.5

1.0

1.5

2.0

2.5

3.0

Im
p

or
ta

n
ce

S
co

re NPT δm

0 20 40

Feature Index m

0.5

1.0

1.5

2.0

Im
p

or
ta

n
ce

S
co

re PT δMLP
m

0 20 40

Feature Index m

0.00

0.01

0.02

0.03

0.04

0.05

Im
p

or
ta

n
ce

S
co

re MI

0 20 40

Feature Index m

0.00

0.01

0.02

0.03

0.04

0.05

Im
p

or
ta

n
ce

S
co

re TFI

(c) y⊥⊥A, A 6⊥⊥X, y⊥⊥X

0 20 40

Feature Index m

0

2

4

6

8

10

Im
p

or
ta

n
ce

S
co

re NPT δm

0 20 40

Feature Index m

0

5

10

15

20

Im
p

or
ta

n
ce

S
co

re PT δMLP
m

0 20 40

Feature Index m

0.0

0.1

0.2

0.3

0.4

Im
p

or
ta

n
ce

S
co

re MI

0 20 40

Feature Index m

0.00

0.01

0.02

0.03

0.04

Im
p

or
ta

n
ce

S
co

re TFI

(d) y⊥⊥A, A 6⊥⊥X, y 6⊥⊥X

0 20 40

Feature Index m

1.0

1.5

2.0

2.5

3.0

Im
p

or
ta

n
ce

S
co

re NPT δm

0 20 40

Feature Index m

2.0

2.5

3.0

3.5

Im
p

or
ta

n
ce

S
co

re PT δMLP
m

0 20 40

Feature Index m

0.00

0.01

0.02

0.03

0.04

Im
p

or
ta

n
ce

S
co

re MI

0 20 40

Feature Index m

0.00

0.01

0.02

0.03

0.04

0.05

Im
p

or
ta

n
ce

S
co

re TFI

(e) y 6⊥⊥A, A⊥⊥X, y⊥⊥X

0 20 40

Feature Index m

0

1

2

3

4

5

Im
p

or
ta

n
ce

S
co

re NPT δm

0 20 40

Feature Index m

2

4

6

8

10

Im
p

or
ta

n
ce

S
co

re PT δMLP
m

0 20 40

Feature Index m

0.00

0.02

0.04

0.06

0.08

0.10

Im
p

or
ta

n
ce

S
co

re MI

0 20 40

Feature Index m

0.00

0.05

0.10

0.15

0.20

Im
p

or
ta

n
ce

S
co

re TFI

(f) y 6⊥⊥A, A⊥⊥X, y 6⊥⊥X

0 20 40

Feature Index m

0.5

1.0

1.5

2.0

2.5

Im
p

or
ta

n
ce

S
co

re NPT δm

0 20 40

Feature Index m

2

3

4

5

Im
p

or
ta

n
ce

S
co

re PT δMLP
m

0 20 40

Feature Index m

0.00

0.01

0.02

0.03

0.04

0.05

Im
p

or
ta

n
ce

S
co

re MI

0 20 40

Feature Index m

0.00

0.02

0.04

0.06

Im
p

or
ta

n
ce

S
co

re TFI

(g) y 6⊥⊥A, A 6⊥⊥X, y⊥⊥X

0 20 40

Feature Index m

0.0

0.5

1.0

1.5

2.0

2.5

Im
p

or
ta

n
ce

S
co

re NPT δm

0 20 40

Feature Index m

0.0

2.5

5.0

7.5

10.0

Im
p

or
ta

n
ce

S
co

re PT δMLP
m

0 20 40

Feature Index m

0.0

0.1

0.2

0.3

Im
p

or
ta

n
ce

S
co

re MI

0 20 40

Feature Index m

0.0

0.1

0.2

0.3

0.4

Im
p

or
ta

n
ce

S
co

re TFI

(h) y 6⊥⊥A, A 6⊥⊥X, y 6⊥⊥X

Figure 12: Feature importance scores for NPT, PT (permutation testing via MLP), TFI, and MI for
synthetic datasets. Analogous to δm for NPT scores, δMLP

m denotes PT scores. (a) Graph, labels,
and features are all independent. (b) Labels and features are correlated, but both are independent
of graph. (c) Graph and features are correlated, but both are independent of labels. (d) Features
are correlated with graph and labels, but labels and graph are independent. (e) Graph and labels are
correlated, but both are independent of features. (f) Labels are correlated with graph and features,
but graph and features are independent. (g) Graph is correlated with labels and features, but labels
and features are independent. (h) Graph, labels, and features are all pairwise correlated.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

100.0 25.0 6.25 1.56 0.39 0.10 0.02 0.01

Percentage of Features (%)

−40

−20

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
)

(a) Cora

r = 0.75, K = 10

r = 0.5, K = 10

r = 0.25, K = 10

100.0 25.0 6.25 1.56 0.39 0.10 0.02 0.01

Percentage of Features (%)

−40

−20

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
)

(b) CiteSeer

r = 0.75, K = 10

r = 0.5, K = 10

r = 0.25, K = 10

100.0 25.0 6.25 1.56 0.39 0.10 0.02 0.01

Percentage of Features (%)

−40

−20

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
)

(c) PubMed

r = 0.75, K = 10

r = 0.5, K = 10

r = 0.25, K = 10

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−10

−5

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
)

(d) Cora

r = 0.5, K = 5

r = 0.5, K = 10

r = 0.5, K = 15

r = 0.5, K = 20

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−10

−5

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
)

(e) CiteSeer

r = 0.5, K = 5

r = 0.5, K = 10

r = 0.5, K = 15

r = 0.5, K = 20

100.0 50.0 25.0 12.5 6.2 3.1 1.6 0.8

Percentage of Features (%)

−10

−5

0

A
cc

u
ra

cy
D

iff
er

en
ce

(%
)

(f) PubMed

r = 0.5, K = 5

r = 0.5, K = 10

r = 0.5, K = 15

r = 0.5, K = 20

Figure 13: Hyperparameter tuning by comparing GCN performance across various dropping rates
r and shuffling instances K for Cora, CiteSeer, and PubMed. The top row corresponds to fixing
K = 10 while varying r ∈ {0.25, 0.5, 0.75}, and the bottom row denotes fixing r = 0.5 while
varying K ∈ {5, 10, 15, 20}.

31

	Introduction
	Notation

	Feature importance for node classification
	Permutation Tests for Node Feature Importance
	Adaptive Node Feature Selection

	Numerical experiments
	Node feature selection comparison
	Adaptive node feature selection
	Feature importance analysis
	Method performance analysis

	Conclusion
	Related Work
	Proof of Theorem 1
	Proof of Theorem 2
	Experimental Details
	Dataset details
	Table 1 simulation details
	Table 2 baselines and simulation details
	Table 3 and Figure 2 simulation details

	Choice of number of feature permutations
	Additional plots on adaptive node feature selection
	Additional plots on feature importance analysis
	Additional plots on model performance analysis

