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ABSTRACT

We propose an adaptive node feature selection approach for graph neural net-
works (GNNs) that identifies and removes unnecessary features during training.
The ability to measure how features contribute to model output is key for inter-
preting decisions, reducing dimensionality, and even improving performance by
eliminating unhelpful variables. However, graph-structured data introduces com-
plex dependencies that may not be amenable to classical feature importance met-
rics. Inspired by this challenge, we present a model- and task-agnostic method that
determines relevant features during training based on changes in validation perfor-
mance upon permuting feature values. We theoretically motivate our intervention-
based approach by characterizing how GNN performance depends on the rela-
tionships between node data and graph structure. Not only do we return feature
importance scores once training concludes, we also track how relevance evolves
as features are successively dropped. We can therefore monitor if features are
eliminated effectively and also evaluate other metrics with this technique. Our
empirical results verify the flexibility of our approach to different graph architec-
tures as well as its adaptability to more challenging graph learning settings.

1 INTRODUCTION

Graphs provide powerful yet well-understood representations of complex data (Bronstein et al.,
2017). Their rich modeling capabilities motivated the development of graph neural networks
(GNNs) to exploit connectivity for predictive tasks (Wu et al., 2021). However, insufficient un-
derstanding of model decisions renders them untrustworthy for critical applications and potentially
inefficient or suboptimal (Dong et al., 2022; Yuan et al., 2023; Wang & Ding, 2025; Chien et al.,
2024). Deciphering how deep learning models extract information from data is challenging, partic-
ularly when data is equipped with complex interdependencies (Zhu et al., 2024). While some tools
such as decision trees inherently provide model explanations, the most expressive tools are not di-
rectly interpretable and require explanation via heuristic-based metrics (Mandler & Weigand, 2024).
As a prominent example, measuring feature importance is a fundamental technique for understand-
ing how a model forms decisions (Wang et al., 2024). In particular, we are interested in determining
how node features contribute to GNN outputs (Shao et al., 2024).

Beyond interpretability, identifying relevant attributes allows us to build models that are both eco-
nomical and potent by eliminating unnecessary features (Li et al., 2018). Moreover, simplifying
models can improve our understanding of complex real-world systems by reducing them to their
most parsimonious representations (Georg et al., 2023). However, classical feature importance met-
rics do not account for an underlying graph structure and therefore may not be suitable for reducing
nodal attributes (Chereda et al., 2024; Mahmoud et al., 2023). Additionally, past graph-based fea-
ture selection methods often involve assumptions about how graph structure contributes to learning,
rendering these techniques problem-specific (Maurya et al., 2022; 2023; Zheng et al., 2025). To
remove dependence on prior information, we may instead compute changes in model performance
upon perturbing features to assess their contributions (Datta et al., 2016; Fisher et al., 2019). As
these measurements require a trained model, feature selection using perturbation-based scores may
require training multiple models, which can be costly for large-scale data or complicated architec-
tures (Alkhoury et al., 2025). While some works train submodules to learn masks for identifying
important features, these approaches can require learning additional parameters, undermining the
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Homophilic node features

(a)

Heterophilic node features

(b)

Homophilic node features
with high within-class variance

(c)

Figure 1: Example graphs for which graph structure can alter how node features affect node classi-
fication. Class labels are denoted by “0” or “1”. Node features are represented by color, where red
and blue indicate features from different distributions, and brightness indicates different magnitudes.
(a) Edges directly imply similarity of node labels and features. (b) While most connected nodes be-
long to the same class, edges also tend to indicate distribution shifts in node features. (c) Both node
labels and features are homophilic, but the high variance of node feature distributions may render
classification more challenging.

goal of reducing dimensionality (Maurya et al., 2022; Acharya & Zhang, 2020; Lin et al., 2020;
Zheng et al., 2020). A more in-depth overview of related works is shared in Appendix A.

Instead, we propose an adaptive node feature selection algorithm that measures permutation-based
feature importance during training using GNN predictions. More specifically, we periodically per-
mute the values of each node feature and measure changes in GNN performance on a validation
dataset. Our scores are thus inherently tied to the predictive task, adapting to model learning and
therefore allowing flexibility to GNN architecture, requiring no assumptions on graph data. More-
over, unlike graph-based feature selection works that use black-box models to learn importance val-
ues during training, we employ well-established permutation tests to quantify feature influence (Alt-
mann et al., 2010; Yang et al., 2009; Breiman, 2001; Datta et al., 2016), allowing us to theoretically
show how permutations reflect node feature influence. Our contributions are summarized below.

• We first characterize the effects of graph structure and node features on GNN performance, both
theoretically and empirically. For the former, we show how connections influence the effect of
node features on graph convolutional network (GCN) outputs. For the latter, we compare GNN
accuracy under various perturbations to distinguish model dependence on graphs versus features.

• We propose an adaptive node feature selection approach that dynamically identifies which fea-
tures are relevant to GNN performance via permutation-based importance scores. Because we
measure these scores as training progresses, we can monitor how feature contributions change
as the model evolves and variables are eliminated. We thus visualize importance scores during
training to track model quality and verify that we indeed eliminate unhelpful attributes.

• We demonstrate that our algorithm rivals the performance of a GNN using all available node fea-
tures in comparison with other node feature selection methods for multiple benchmark datasets.
Furthermore, we show that our approach is flexible to model architecture and for various settings,
such as homophilic or heterophilic node labels.

1.1 NOTATION

For any positive integer N ∈ N, we define the notation [N ] := {1, 2, . . . , N}. For the vector
x ∈ RN , we index entries via xi for any i ∈ [N ], whereas for a matrix X ∈ RN×M , we index
entries by Xij , rows by Xi,:, and columns by X:,j . We let boldfaced numbers 0 and 1 represent
vectors or matrices of all zeros and ones, respectively. Furthermore, we have I as the identity matrix
and ei = I:,i as the i-th standard basis vector. For 0, 1, I, and ei, we specify dimensions when it
is unclear from context. The operator diag(x) ∈ RN×N evaluated on a vector x ∈ RN returns a
diagonal matrix with entries of x along the diagonal, while diag(X) ∈ RN for a square X ∈ RN×N

returns a vector of the diagonal entries of X. We also let vec(X) ∈ RNM return the concatenation
of columns in the matrix X ∈ RN×M . Moreover, let I(·) denote the indicator function, where
I(A) = 1 when its argument A is true and I(A) = 0 otherwise.
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2 FEATURE IMPORTANCE FOR NODE CLASSIFICATION

We are interested in a semi-supervised node classification setup, where we have a graph G = (V, E)
consisting of a set of N nodes V and a set of edges E ⊆ V × V connecting pairs of nodes in V .
To use a graph in model training, we consider the adjacency matrix A ∈ RN×N

+ , where Aij ̸= 0
if and only if the edge (i, j) ∈ E connects nodes i and j, and Aij > 0 denotes weight of the
edge (i, j). We can account for nodes with differing degrees d := A1 by employing normalized
adjacency matrices such as Ã := D̃−1/2(A + I)D̃−1/2 for D̃ := diag(d + 1) or a random-walk
adjacency matrix Ãrw := D̃−1(A + I) (Kipf & Welling, 2017). In addition to graph connections,
each node is equipped withM real-valued features, which we collect in the data matrix X ∈ RN×M .
Furthermore, nodes are assigned labels y = [y⊤

train,y
⊤
val,y

⊤
test]

⊤ ∈ [C]N , of which we only observe
a subset [y⊤

train,y
⊤
val] ∈ [C]Ntrain+Nval for Ntrain, Nval < N . We also let Y ∈ {0, 1}N×C denote

the one-hot matrix indicating the class of each node, along with P := diag(p) for p := Y⊤1 ∈ NC ,
which contains the number of nodes in each class. We aim to predict the unknown labels ytest by
learning the parameters of a GNN f(·; ·,Θ) : RN×M → RN×H that yields embeddings Z :=
f(X;A,Θ) such that we may predict labels ŷ = g(Z) with some classifier g : RN×H → [C]N .

Of particular relevance to us is how to identify which node features in X are important for predicting
labels y while accounting for the graph structure A (Maurya et al., 2023; Chen et al., 2020). Some
works apply traditional, graph-agnostic metrics to determine important features for a pre-trained
GNN (Wang & Ding, 2025; Basaad et al., 2024; Chereda et al., 2024). However, the presence
of edges used by the GNN can significantly alter which node features are relevant. For example,
GCNs assume that edges directly indicate nodes that likely belong to the same class. Figure 1
illustrates how this assumption can alter how informative node features are. As GCNs are best
suited to homophilic node features and labels as in Figure 1a, it is common to assess feature quality
through its smoothness, that is, how similar feature values are between connected nodes (Zhu et al.,
2024). However, even with homophilic node labels, a GCN applied to the graph in Figure 1b may
not yield sufficiently separable node embeddings (Luan et al., 2024). Furthermore, if labels are
homophilic and node features in different classes follow distinctly different distributions yet exhibit
high variance, exemplified in Figure 1c, a graph-agnostic classifier may distinguish classes more
easily than a GCN. Motivated by this consideration, we theoretically characterize how A and X
influence GCN performance, which we then empirically verify on real-world graph data.

Recall that our goal is for our embeddings Z = f(X;A,Θ) to be distinguishable across classes.
A reasonable requirement for this task is that node embeddings exhibit sufficient separation across
classes (Tenorio et al., 2025; Nt et al., 2021). However, we encounter at least two potential sources
of error: noise in features X and in edges A. For the former, we consider the idealized node features
to be X∗ := YP−1Y⊤X, that is, the matrix closest to X whose rows are identical for nodes in the
same class, or equivalently,

X∗ = argmin
X∗

∥X∗ −X∥2F s.t. X∗
i,: = X∗

j,: ∀ i, j ∈ [N ] s.t. yi = yj . (1)

By (1), we obtain a notion of feature informativeness: Even if the rows of X∗ are equivalent within
classes, they may be very similar or even identical across classes, rendering classification effectively
infeasible (Nt et al., 2021). Thus, we consider the features X to be informative enough if X∗

contains distinct rows for different classes, indicating a sufficient shift in feature distributions across
classes (Tenorio et al., 2025). Note that we define X∗ as above for simplicity, representing the
most straightforward relationship between informative features and labels y; node classes containing
distribution shifts can still yield informative predictions (Luan et al., 2024).

For the latter, it is well established that cross-class edges, that is, those connecting nodes of different
classes, mar GCN performance (Zhu et al., 2020). Hence, we define the idealized graph A∗ as
having no cross-class edges, where

A∗
ij :=

{
Aij , yi = yj
0 otherwise

}
∀ i, j ∈ [N ]. (2)

We then let ∆ := A−A∗ collect all edges between nodes of different classes. We next characterize
the performance of a GCN with respect to features X, edges A, and labels y by comparing our
embeddings Z to the idealized ones Z∗ := f(X∗;A∗,Θ).

3
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Table 1: Node classification accuracy for multiple datasets under various perturbations. The top
performing method is boldfaced, and the secondmost underlined.

Setting Cora CiteSeer PubMed Photo Computers Cornell Texas Wisconsin

GNN(X;A,Θ) 85.83 ± 0.46 74.38 ± 1.09 88.85 ± 0.42 94.04 ± 0.69 90.58 ± 0.79 74.59 ± 7.76 82.70 ± 4.05 82.80 ± 3.25

MLP(X;Θ) 74.21 ± 1.40 70.02 ± 1.39 88.65 ± 0.41 88.73 ± 0.73 81.63 ± 0.75 78.92 ± 5.51 82.70 ± 2.16 83.60 ± 6.62
GNN(X̃;A,Θ) 76.53 ± 1.12 63.34 ± 1.44 47.42 ± 3.25 66.76 ± 8.58 51.09 ± 8.84 43.78 ± 8.95 52.97 ± 6.07 46.80 ± 6.76
GNN(W;A,Θ) 82.92 ± 1.54 67.37 ± 1.61 76.23 ± 0.53 89.92 ± 0.58 85.49 ± 0.44 49.19 ± 7.91 55.68 ± 2.76 47.20 ± 7.00
GNN(X; Ã,Θ) 36.97 ± 1.80 35.13 ± 2.41 67.07 ± 0.80 30.52 ± 5.77 37.64 ± 0.45 67.57 ± 7.83 70.27 ± 7.05 78.40 ± 6.37

Theorem 1 Let f : RN×M → RN×H be a two-layer GCN

f(X;A,Θ) = σ
(
Ãrwσ

(
ÃrwXΘ(1)

)
Θ(2)

)
(3)

for a τ -Lipschitz nonlinearity σ and learnable weights Θ = (Θ(1),Θ(2)) such that ∥Θ(ℓ)∥2 ≤ ω
for ℓ = 1, 2. Then, with Z∗ = f(X∗;A∗,Θ) for X∗ in (1), A∗ in (2), and ∆ = A−A∗, we have

∥Z∗ − Z∥F ≤ τ2ω2

[
(1 +

√
N)∥∆∥F ∥X∥F +

C∑
c=1

N∑
i=1

N∑
j=1

∣∣∣∣YicYjcpc
− Aij

di + 1

∣∣∣∣ · ∥Xi,: −Xj,:∥2
]
.

(4)
The proof of Theorem 1 can be found in Appendix B. Thus, our GCN error bound depends on cross-
class edges in A via the first term in (4) and the alignment of labels y, edges in A, and similarity
of features in X. First, we discuss when the presence of A necessitates stricter conditions on X for
satisfactory GCN performance according to Theorem 1. While the result in (4) does not necessitate
unweighted edges, the following discussion assumes A ∈ {0, 1}N×N for ease of interpretation.
Unsurprisingly, GCNs require features X to be highly indicative of y if A is sparse or noisy. More
specifically, for any node pair i and j in the same class c that are not connected (i, j) /∈ E , we
rely on similarity between node features ∥Xi,: − Xj,:∥2 to reduce the second term in (4). Thus,
graph-agnostic feature importance metrics may be suitable for sparse A. However, if X is separable
across classes, that is, ∥Xi,: −Xj,:∥2 is higher when YicYjc = 0, we incur greater error from cross-
class connections Aij = 1. In this setting, if we disregard A when selecting features, we may
retain attributes that are highly separable with respect to classes, causing larger ∥Xi,:−Xj,:∥2 when
YicYjc = 0 and unknowingly introducing error due to cross-class edges in A.

Conversely, the presence of A can also mitigate error due to noisy features X. In particular, if y is
sufficiently homophilic with respect to A, that is, if YicYjc = Aij holds for sufficiently many node
pairs, then we can still achieve a low error via (4), even if y and X are unrelated. Moreover, the
bound in (4) can be reduced when the variance in X is sufficiently dominated by class sizes p and
node degrees d, reflecting the intuitive fact that nodes with high degree di belonging to a class of
large size pc are easier to predict (Liu et al., 2023; Kang et al., 2022). Thus, Theorem 1 shows that
measuring feature importance based solely on dependencies between y and X may not be sufficient
for GNN feature selection (Zheng et al., 2024). More specifically, the bound in (4) reveals that
certain compositions of features and edges may render a feature important or unimportant regardless
of its relevance in the absence of the graph.

We next empirically verify the intuition from Theorem 1 by comparing GNN node classification ac-
curacy on real-world benchmark datasets under various perturbations intended to remove dependen-
cies among X, A, and y. All simulation details can be found in Appendix D, which includes dataset
details. To assess the joint influence of a graph and its features, we consider (i) GNN(X; Ã,Θ) using
an Erdos-Renyi (ER) graph with the same number of edges as A, (ii) MLP(X;Θ), a multilayer per-
ceptron (MLP) that considers no graph, (iii) GNN(W;A,Θ) using Gaussian noise W ∼ N (0, I)

as node features, and (iv) GNN(X̃;A,Θ), where X̃ contains randomly permuted rows of X. We
train GCNs for Cora, Citeseer, and PubMed (Sen et al., 2008; Namata et al., 2012) and graph isomor-
phism networks (GINs) (Xu et al., 2019) for Photo and Computers (McAuley et al., 2015; Shchur
et al., 2018), while for Cornell, Texas, and Wisconsin graphs with heterophilic labels (Pei et al.,
2020), we consider topology adaptive GCNs (TAGCNs), which can aggregate features of nodes in
multi-hop neighborhoods (Du et al., 2017).

Table 1 demonstrates both the importance of node features in these datasets along with their depen-
dence on the associated graph. For the first five datasets, the respectable performance of MLP(X;Θ)
and GNN(W;A,Θ) demonstrates that both features X and graph structure A are semantically
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relevant. We also observe particularly low accuracy for GNN(X; Ã,Θ), reflecting the error due to
cross-class edges in (4), which is caused by the arbitrary connections in Ã despite the informative-
ness of X. Furthermore, if X experiences significant shifts across classes, then applying permuted
features via GNN(X̃;A,Θ) is expected to perform worse than GNN(W;A,Θ) for sparse A since
summands in the second term of (4) may have large ∥Xi,: − Xj,:∥2 for YicYjc = 1. Indeed, we
find GNN(W;A,Θ) outperforms GNN(X̃;A,Θ) for all datasets in Table 1. We also corrobo-
rate known challenges of graph convolutions for data with heterophilic y, as MLP(X;Θ) rivals
and can even outperform GNN(X;A;Θ) for Cornell, Texas, and Wisconsin. For these datasets,
GNN(X; Ã,Θ) is significantly superior to GNN(X̃;A,Θ) and GNN(W;A,Θ), which reflects
the difficulty of convolving node features that are both irrelevant to labels y and heterophilic on A,
as even random connections in Ã yield significantly higher accuracy.

3 PERMUTATION TESTS FOR NODE FEATURE IMPORTANCE

Inspired by Theorem 1 and Table 1, we propose node feature permutation testing (NPT) to measure
feature importance via permutation-based scores (Altmann et al., 2010; Khan et al., 2025; Yang
et al., 2009). In particular, let Π be the set of permutations of [N ]. Then, if X̃(m) denotes X with
values of feature m reordered according to some random π ∈ Π, we measure feature importance
through permutation tests

δm(y,X, X̃(m)) := Acc(y, f(X;A,Θ))−Acc
(
y, f(X̃(m);A,Θ)

)
, (5)

where Acc(y,Z) measures the accuracy of embeddings ŷ = g(Z) for classifier g. With some abuse
of notation, we let δm(ytrain,X, X̃

(m)) denote the accuracy for the subset of nodes corresponding
to observed training nodes, with analogous definitions for other subsets of nodes. Permutation tests
are a classical approach to isolate the effects of a feature (Breiman, 2001; Toth, 2020; Altmann et al.,
2010), and we next show that it can be particularly informative in the presence of A. To this end, we
validate that permuting columns of X indeed decouples node features from y and A, which verifies
that δm reflects feature influence for GCN predictions, supporting the results in Table 1.

Theorem 2 Consider X̃ ∈ RN×M such that X̃i,: = Xπ(i),: for all i ∈ [N ] and some per-
mutation π ∈ Π chosen uniformly at random. For the same GCN defined in (3), let Z̃

∗
:=

f(X̃
∗
;A∗,Θ) for X̃

∗
:= YP−1Y⊤X̃, A∗ in (2), and ∆ = A − A∗. Furthermore, if

α := maxm∈[M ] maxk,ℓ∈[N ](Xkm −Xℓm)2, then with probability at least e−t2/4, we have that

∥Z̃∗ − Z̃∥F ≤ τ2ω2
[
(1 +

√
N)∥∆∥F ∥X∥F +

√
γ
∥∥vec(YP−1Y⊤ − D̃

−1
A
)∥∥

1

]
,

where γ :=
2

N − 1

(
∥X∥2F − 1

N
∥X⊤1∥22

)
+ αtM

√
N. (6)

We prove Theorem 2 in Appendix C. The bound in (6) reveals how comparing accuracy with and
without permuting node features reveals the influence of X. Because the heterophily of y encoded
in ∥vec(YP−1Y⊤ − D̃−1A)∥1 can no longer be mitigated by node feature similarities as in the
original bound (4), permuting features will likely worsen GCN performance if X is informative.
However, a highly homophilic y can reduce the error bound in (6), implying less informative features
X, where a small bound in (6) relative to that of (4) implies low values of δm. Similarly, we
also observe that features with low variance will reduce γ and therefore the error bound (6), as
expected since features that exhibit smaller differences are likely to be less informative. Thus,
Theorem 2 supports comparing GNN performance before and after permuting feature values to
determine feature importance.

3.1 ADAPTIVE NODE FEATURE SELECTION

Given the value of permutation tests for node feature importance, we propose an adaptive feature
selection method in Algorithm 1 to identify and remove unnecessary features during training. The
matrix X̂ in Algorithm 1 denotes the pruned feature matrix with masked columns corresponding to
b ∈ {0, 1}M , representing selected features. After the model f has been trained for Tburn epochs,
we periodically compute the empirical average δ̂m of the NPT importance score δm(yval, X̂, X̃

(m))

5
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Algorithm 1: Adaptive node feature selection via NPT.

Input: Step size λ > 0, Tburn, T ∈ N, K ∈ N, r ∈ (0, 1)

1 Initialize X̂ = X, feature mask b ∈ {0, 1}M , counter t = 1.
2 while Stopping criteria not met do
3 Gradient update: Θ← Θ− λ∇ΘL(ytrain, f(X̂;A,Θ)).
4 Update t← t+ 1.
5 if t > max(T, Tburn) then
6 Reset t← 1.
7 for m ∈ {ℓ | bℓ = 1, ℓ ∈ [M ]} do
8 Initialize average score δ̂m = 0.
9 for k ∈ [K] do

10 Sample random permutation π ∼ Π.

11 Permute X̂:,m for X̃
(m)

such that X̃(m)
im = X̂π(i),m and X̃

(m)
iℓ = X̂iℓ

12 ∀i ∈ [N ], ℓ ∈ [M ]\{m}.
13 Update δ̂m ← δ̂m + 1

K
δm(yval, X̂, X̃

(m)
) via (5).

14 end
15 end
16 Compute r-quantile δ(r) from

{
δ̂m | bm = 1,m ∈ [M ]

}
.

17 for m ∈ {ℓ | bℓ = 1, ℓ ∈ [M ]} do
18 if δ̂m < δ(r) then
19 Prune unimportant feature bm ← 0.
20 end
21 end
22 end
23 end

Output: Model f(·;A;Θ), pruned features X̂, mask b, scores δ̂

for every feature m ∈ [M ] over K random permutations π ∈ Π (lines 7-15). We then keep the
top r-th percentile of features based on δ̂ by setting bm = 0 for the remaining ones. We then
continue training to update model parameters given the new subset of features. Algorithm 1 thus
yields a single process to both train a GNN f and successively prune unnecessary features. The most
complex step of Algorithm 1 occurs at the first checkpoint when t = T + 1, where all M features
must be permuted K times, resulting in O(KNM). However, at nT + 1 for n > 1, we need only
permute rnM < M features, so we may choose r ∈ (0, 1) with no cost to theoretical complexity.

In addition, advantages of Algorithm 1 include flexibility to graph data, architecture choice, and
more. More specifically, since the metric δm is defined by changes in performance, we may re-
place accuracy Acc in (5) with any quality to which features ought to contribute, such as promoting
fairness (Little et al., 2024; Navarro et al., 2024a;b). Thus, the model f adapts to the learning task
by the definition of δm without requiring prior assumptions on the graph, nor are we restricted to
particular architectures (Maurya et al., 2022; 2023). Algorithm 1 is therefore amenable to various
scenarios, including heteophilic labels y or features X. Finally, while we espouse permutation tests
due to our results in Theorems 1 and 2, line 14 may be computed using any feature importance
score, as another may be particularly suited to the task given prior knowledge. However, many prior
graph-based metrics do not account for model behavior (Mahmoud et al., 2023; Zheng et al., 2025),
whereas δm explicitly aims to promote the accuracy of f , rendering it an appropriate general choice.

4 NUMERICAL EXPERIMENTS

We next evaluate our importance scores and algorithm based on node feature permutation tests. We
consider the same datasets and architectures as in Table 1, with minimal details explained below.
Dataset statistics, along with other dataset details, are included in Appendix D.
Datasets.
• Citation networks: Cora, Citeseer, and PubMed consist of papers as nodes, which are connected

based on citations (Sen et al., 2008; Namata et al., 2012). The goal is to predict paper topic y
from bag-of-words paper representations X.
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Table 2: Node classification accuracy for multiple datasets with feature selection. The top perform-
ing method is boldfaced, and the secondmost underlined.

Method Cora CiteSeer PubMed Photo Computers Cornell Texas Wisconsin

All features 85.83 ± 0.46 74.38 ± 1.09 88.85 ± 0.42 94.04 ± 0.69 90.58 ± 0.79 74.59 ± 7.76 82.70 ± 4.05 82.80 ± 3.25

NPT 79.19 ± 2.45 69.35 ± 1.49 87.11 ± 0.75 93.59 ± 0.79 90.09 ± 0.51 69.73 ± 6.26 72.97 ± 9.21 73.20 ± 6.88
NPT-mask 76.05 ± 1.08 68.12 ± 1.69 86.11 ± 0.82 93.48 ± 0.59 89.94 ± 0.22 63.24 ± 4.39 64.86 ± 5.13 72.40 ± 7.31
TFI 72.73 ± 5.47 65.77 ± 2.04 83.80 ± 0.92 93.02 ± 0.68 90.09 ± 0.23 61.62 ± 7.13 61.08 ± 4.39 52.40 ± 3.44
MI 66.83 ± 3.68 63.79 ± 1.02 85.96 ± 1.00 93.56 ± 0.61 90.33 ± 0.32 63.78 ± 5.82 65.41 ± 7.33 69.60 ± 5.99
hattr 39.96 ± 1.00 22.59 ± 1.01 78.85 ± 0.21 93.53 ± 0.46 90.09 ± 0.46 55.14 ± 5.01 58.38 ± 5.01 45.60 ± 6.62
hEuc 32.77 ± 1.66 22.62 ± 1.03 74.37 ± 0.60 93.59 ± 0.50 89.19 ± 0.51 52.43 ± 4.05 57.30 ± 3.15 44.00 ± 7.48
hGE 31.44 ± 1.35 22.47 ± 1.01 70.52 ± 0.55 93.41 ± 0.46 89.24 ± 0.25 52.43 ± 4.05 57.30 ± 3.15 44.00 ± 7.48
Rnd. 39.76 ± 1.22 34.39 ± 4.07 70.71 ± 1.08 91.99 ± 0.49 88.27 ± 0.26 56.65 ± 4.69 58.49 ± 3.23 57.04 ± 4.49

• Co-purchase graphs: Photo and Computers represent Amazon goods as nodes that are con-
nected if frequently purchased together, with y as product category and X as word embeddings
of product reviews (McAuley et al., 2015; Shchur et al., 2018).

• Webpage graphs: Cornell, Texas, and Wisconsin connect linked webpages of individuals in
computer science departments across various universities (Pei et al., 2020). Labels y represent
the role of individuals to be predicted from webpage word embeddings X.

Architectures. Cora, Citeseer, and PubMed are trained with GCNs (Kipf & Welling, 2017), whereas
we use TAGCNs for Cornell, Texas, and Wisconsin (Du et al., 2017). As for Photo and Computers,
frequently co-purchased items likely indicate similar product categories, thus y is homophilic on
A. However, while reviews contain valuable keywords for prediction, positive and negative reviews
may contain different words despite products belonging in the same category. Thus, since features X
may exhibit both homophily and heterophily, we employ a GIN model, which can extract complex
interactions of informative features (Xu et al., 2019).
Metrics. We compare our NPT scores to various alternative metrics for node feature importance.
The full list can be found in Appendix D.3.

4.1 NODE FEATURE SELECTION COMPARISON

To validate our importance metric δm in (5), we train a GNN with the full set of features per dataset
in Table 2, which we compare to GNNs trained with a subset of features selected based on NPT
and other feature selection baselines described in Appendix D.3. For each method, we select the top
r% of features ranked by the importance metric and retrain the GNN using only these features, with
r = 5% for PubMed, Photo, and Computers and r = 2% otherwise. We observe that for all datasets,
NPT achieves among the highest or the highest accuracy compared to other importance scores.

For the graphs with homophilic y (Cora, Citeseer, and PubMed), while both NPT and its masking
variant NPT-mask outperform the rest, NPT is consistently superior. This aligns with our expec-
tations from Theorems 1 and 2 that GCNs exhibit low error for features that are separable across
classes, but permuting them will likely increase error more when permuted for graphs with ho-
mophilic labels. Indeed, Table 1 validates the informativeness of X for these three datasets, while
Table 2 shows that permuting features is more effective at identifying relevant features for GCNs.

We similarly find that NPT performs best for the graphs Cornell, Texas, and Wisconsin with het-
erophilic labels, but we also witness worse performance for NPT-mask. Again, this follows our
intuition from (4), which shows that for GCNs, reducing the variance for heterophilic features may
actually decrease error, so masking features that are relevant to y by setting them to zero may un-
derestimate their importance for settings of heterophily. On the contrary, the graph-agnostic MI
performs well for Cornell, Texas, and Wisconsin in comparison with other metrics.

Finally, for Photo and Computers, we observe less differences in performance across all feature
selection methods, even relative to Rnd, that is, randomly chosen features. Indeed, Table 1 indicated
that graph structure is highly informative for node classification. Moreover, homophily metrics find
much greater use for Photo and Computer than for the other datasets. As mentioned previously,
review text containing keywords related to product category are likely to be not only homophilic
but also correlated with labels y, indicating the value of employing homophily-based scores for
these two datasets. Similarly, for certain features, MI may be better able to identify review content
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Figure 2: Node classification accuracy during training for a GCN and Cora using Algorithm 1 with
different feature importance metrics. (a) Validation accuracy comparing a model trained using all
features versus NPT, TFI, and MI. (b) Test accuracy comparing a model trained using all features
versus NPT, TFI, and MI. (c) The difference in test accuracy between the full model and the model
trained with Algorithm 1.

that is unrelated to y and A since it assumes no graph structure. We explore this context-specific
information further for our adaptive approach.

4.2 ADAPTIVE NODE FEATURE SELECTION

Next, we assess our adaptive node feature selection approach. In particular, we apply Algorithm 1 to
train GNNs while dropping less important features during training. To evaluate the tradeoff between
maintaining performance and improving model efficiency, we evaluate accuracy in comparison with
using the full dataset as the model is trained. At every T = 50 epochs, we drop 50% (r = 0.5)
of features based on the scores δm in (5). Moreover, we also apply our algorithm with TFI and
MI in place of δm to measure feature importance. Figure 2a,b depict accuracy during training to
evaluate how models perform for the same number of features. For each checkpoint, we measure
the difference between test accuracy using feature selection and the full dataset, shown in Figure 2c.

We present results for Cora in Figure 2, but we also include results for the remaining eight datasets
mentioned in Appendix D.1. To evaluate on larger graphs, we also train GraphSAGE models (Hamil-
ton et al., 2017) on the ArXiv citation network from the Open Graph Benchmark (Hu et al., 2020)
with word embeddings as features and paper subjects as labels, for which we use r = 0.4. In Fig-
ure 2, we observe that NPT is better able to preserve accuracy than MI and even the GCN-specific
TFI at low r. Furthermore, we observe smaller drops in accuracy for NPT as features are elimi-
nated, as expected since our method adapts to GNN performance, allowing the model to focus on the
importance of only the remaining features. We find similar comparisons of accuracy during training
for the remaining datasets with NPT consistently demonstrating a competitive or superior ability to
identify the most relevant features. Figures of accuracy during training analogous to Figure 2 can be
found in Appendix F, while we provide a table including a subset of the results in Table 3. We find
NPT effective for selecting important features during training, while MI is competitive for Cornell,
Texas, and Wisconsin, similarly to Table 2. Moreover, we find TFI and MI to be effective impor-
tance metrics in our algorithm for Photo and Computers, which align with our intuition about these

Table 3: Node classification accuracy for multiple datasets with adaptive feature selection via Algo-
rithm 1. The top performing method per ratio is boldfaced.
% Method Cora CiteSeer PubMed Photo Computers ArXiv Cornell Texas Wisconsin

6.25

NPT 82.47 ± 1.68 71.82 ± 1.48 87.06 ± 0.89 83.54 ± 5.12 81.00 ± 2.42 40.84 ± 0.44 63.78 ± 3.67 72.43 ± 5.51 74.00 ± 6.07
TFI 81.40 ± 1.47 70.02 ± 2.04 84.25 ± 1.34 91.95 ± 1.10 84.47 ± 1.73 − 63.24 ± 8.48 61.08 ± 6.96 64.40 ± 6.86
MI 78.23 ± 0.96 68.66 ± 1.98 86.48 ± 1.10 91.06 ± 1.06 83.82 ± 3.15 40.26 ± 0.18 66.49 ± 3.67 69.19 ± 3.67 78.00 ± 1.79

3.13

NPT 81.88 ± 2.65 70.14 ± 1.50 86.51 ± 0.84 89.12 ± 2.29 86.92 ± 1.61 35.54 ± 0.63 67.57 ± 4.52 69.73 ± 8.44 69.60 ± 4.96
TFI 77.60 ± 1.13 68.30 ± 1.58 81.56 ± 1.66 93.05 ± 0.61 88.27 ± 0.74 − 63.24 ± 9.61 61.08 ± 5.57 58.00 ± 2.19
MI 71.88 ± 1.48 65.11 ± 1.87 85.16 ± 1.01 92.39 ± 0.97 87.67 ± 1.65 35.30 ± 0.10 63.24 ± 4.05 70.81 ± 6.92 68.80 ± 5.74

1.56

NPT 78.52 ± 2.17 69.08 ± 2.26 84.88 ± 0.69 88.71 ± 1.16 80.92 ± 4.33 30.58 ± 0.49 67.57 ± 3.82 70.27 ± 4.19 68.80 ± 5.46
TFI 71.73 ± 4.72 65.02 ± 1.82 79.38 ± 0.33 91.41 ± 0.94 86.65 ± 1.07 − 55.68 ± 6.30 60.54 ± 3.67 49.20 ± 5.46
MI 63.51 ± 3.43 62.17 ± 0.49 83.41 ± 0.39 92.14 ± 0.55 86.87 ± 1.57 28.79 ± 1.32 60.54 ± 8.65 61.08 ± 10.76 66.00 ± 5.93
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Figure 3: Analysis of feature importance scores obtained from Algorithm 1. (a) Heatmap of feature
importance δm during training for a GCN trained on Cora (high δm is red and low δm is blue).
(b) Heatmap of feature importance δm during training for a GCN trained on PubMed. (c) Last
checkpoint each feature is kept before dropping for GraphSAGE trained on ArXiv. (d) Normalized
importance scores per baseline versus normalized NPT scores for a TAGCN trained on Wisconsin.

datasets. Thus, with prior information, our algorithm can be further improved with an appropriate
choice of metric, while permutation-based tests remain effective for general scenarios.

4.3 FEATURE IMPORTANCE ANALYSIS

We demonstrate our ability to dynamically track feature relevance during training, confirming that
features can be appropriately dropped even before the model is fully trained. We exemplify peri-
odically monitoring the scores δm in (5) for the Cora and PubMed datasets in Figure 3a,b. At each
checkpoint, that is, every 50 epochs, we compute feature importance scores with NPT. When train-
ing is finished, we sort the features by the scores at the final checkpoint, corresponding to the fully
trained model. We then fix the feature ordering based on their final scores and partition features into
bins according to this ordering for each checkpoint. Thus, each row of each heatmap in Figure 3
represents the same set of features for the corresponding dataset, allowing us to track the average
δm of each bin over time. For both datasets, we indeed identify relevant features as early as the first
checkpoint, as the ranking of features is relatively consistent throughout training. This validates that
with our adaptive approach, we can identify and preserve the relative importance of features even
before full convergence, as the importance trends remain consistent over the course of training.

To illustrate the consistency of NPT feature selection, we also compute the average last checkpoint
in which each ArXiv feature is kept before being dropped in Figure 3c. We find that the features
of highest importance are consistently ranked high, while the least important features are always
dropped early. For more concrete verification that NPT can identify importance in a controlled
setting, Figure 12 in Appendix G visualizes importance scores using synthetic graph data, comparing
scores obtained from NPT, TFI, MI, and PT (permutation testing via an MLP instead of a GNN).

Furthermore, we analyze the types of features deemed important by NPT across datasets, as well
as verifying the generality of NPT as the metric in Algorithm 1. To this end, we plot normalized
importance scores computed from baseline metrics versus NPT for Wisconsin in Figure 3d. We
observe that NPT tends to rank Wisconsin features as more important with higher MI and lower
homophily hGE, as expected for data with heterophilic labels. To expand on this analysis, Table 4
lists the linear correlation between NPT scores and scores from each baseline for all datasets. In
all cases, NPT attains its highest correlation with the metrics that performed best in Table 2. This
result indicates two takeaways. First, NPT indeed identifies feature importance in based on relevant

Table 4: Pearson correlation coefficient between NPT feature importance δm and importance mea-
sured via other metrics. The top performing method is boldfaced, and the second best is underlined.

Method Cora CiteSeer PubMed Photo Computers ArXiv Cornell Texas Wisconsin

TFI 0.6234 0.5032 0.2618 0.3098 0.3510 − 0.3659 0.3048 0.5225
MI 0.6178 0.4969 0.6026 0.5897 0.6380 0.5872 0.4314 0.4142 0.5658
hattr 0.1800 0.0373 0.2192 0.5260 0.6245 0.5656 0.0417 -0.0093 0.0335
hEuc 0.0208 0.0266 0.1116 0.4152 0.2715 0.4523 0.0016 -0.0171 0.0370
hGE -0.6479 -0.5349 -0.2285 0.1541 0.3072 0.0411 -0.5712 -0.5204 -0.6635
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Figure 4: Evaluation of Algorithm 1 in various scenarios. (a) GCN performance on PubMed for
fixed K = 10 and varying r ∈ {0.25, 0.5, 0.75}. (b) GCN performance on PubMed for fixed
r = 0.5 and varying K ∈ {5, 10, 15, 20}. (c) Time to permute node features for each checkpoint of
Algorithm 1, that is, for t = nT for n ∈ N, across multiple datasets.

data properties without requiring prior information. Second, because NPT detects relevant char-
acteristics and attains competitive performance across datasets of various types, our approach is a
theoretically valid and empirically effective general choice for node feature selection. Analogous
plots of Figures 3c,d for the remaining datasets are in Appendix G.

4.4 METHOD PERFORMANCE ANALYSIS

We next demonstrate the performance of Algorithm 1 using NPT for PubMed while varying either r
or K, shown in Figure 4a,b. Further results can be found in Appendix H. As we drop more features
via larger r%, we naturally experience an increasing drop in accuracy. However, dropping features
more slowly with r = 0.25 may improve performance, although we retain more features for the
same number of training iterations. Moreover, we require a large enough K to perform enough
permutations for a statistically relevant result. In Figure 4b, increasing K above our choice of 10 in
previous simulations does not drastically change results, but lower K can have negative effects on
performance, as expected. For a statistical choice of K, see Proposition 1 in Appendix E. Finally,
we measure the additional cost of permuting during training in Figure 4d. We observe the exact
decay in permutation time as discussed in Section 3.1, where the cost of permutations is largest at
the first checkpoint, but subsequent checkpoints decrease exponentially in duration. Moreover, as
expected, graph size N and the number of features M control how costly computation will be, with
dataset details listed in Appendix D.1.

5 CONCLUSION

In this work, we presented permutation tests for node feature importance. We verified the use of
permutation-based importance scores for GCNs both theoretically and empirically. Furthermore,
we presented an adaptive algorithm to eliminate features during training. We compared our per-
mutation scores to other importance metrics for feature selection. We also demonstrated the effec-
tiveness of our algorithm on multiple datasets, where we compared using permutation-based feature
importance versus other metrics for adaptive feature selection. Our approach allows us to exploit
a well-established statistical metric, but we also verified that it returns relevant information that is
unique to GNNs for graph-structured data.

We also share limitations of this work that we hope inspire future directions. We require no as-
sumptions on graph data, but performance-based metrics such as ours necessitate an appropriate
selection of the GNN architecture. While a reasonable requirement, the interpretation of the impor-
tance scores may change depending on the model used. Furthermore, we demonstrated our approach
only for node classification, but as δm can be employed to evaluate the effect of node features on any
quantity, future work will see feature selection for link prediction and graph classification. More-
over, while permutation tests are typically found to be very effective (Khan et al., 2025), permuting
features that are correlated may result in overestimated importance scores (Hooker et al., 2021).
Thus, we plan to explore conditional permutation tests for the explainability of graph data. Finally,
we expect that the performance of our algorithm can be improved further by adaptively eliminating
features for which δm ≤ 0, which we explore in future work.
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REPRODUCIBILITY STATEMENT

The model architectures, training hyperparameters, and experimental settings are detailed in Ap-
pendix D. Proofs of the theoretical results are given Appendix B and Appendix C. Dataset statistics
are also reported in Appendix D.1. Finally, the source code and scripts are included in the supple-
mentary materials, along with instructions to reproduce all experiments and results.
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A RELATED WORK

Measuring variable importance is a fundamental task in several fields such as machine learning,
statistics, and signal processing (Fisher et al., 2019; Mandler & Weigand, 2024). Classical tech-
niques for classification tasks seek to identify correlations between features and labels to be pre-
dicted, such as their mutual information (Theng & Bhoyar, 2024). Simpler, interpretable models
such as linear regression and decision trees can be used as surrogate models to explain sample or
feature relevance (Ribeiro et al., 2016). To avoid training simple, albeit cheap, models, one of the
most common approaches is to apply perturbations, where model inputs or parameters are perturbed
and the change in output measured (Datta et al., 2016; Fisher et al., 2019; Covert et al., 2021). Sem-
inal examples include feature occlusion (Feng et al., 2013; Lei et al., 2018), permutation (Altmann
et al., 2010; Breiman, 2001; Datta et al., 2016), and Shapley values (Lundberg et al., 2018; Chen
et al., 2019). Scores based on measuring model outcomes under perturbations may require training
multiple models to be used for feature selection (Wang et al., 2024). Not only is this potentially
infeasible computationally, but for optimizing models with nonconvex losses, differences in perfor-
mance for models trained on perturbed data may be misleading.

For graph-structured data, a plethora of works seek to identify the contribution of nodes or edges to
particular GNN predictions (Alkhoury et al., 2025; Akkas & Azad, 2024; Chen et al., 2024a; Huang
et al., 2023). Among these, some works consider node feature relevance, albeit primarily as they
pertain to structural importance (Fang et al., 2023; Chen et al., 2024b). Feature importance methods
have been proposed specifically for graphs (Zheng et al., 2025), which often require assumptions
about the type of graph data (Mahmoud et al., 2023; Shao et al., 2024). For example, as GCNs
are a highly popular family of GNNs, the homophily of node features has been explored as rele-
vance measurements (Zhu et al., 2024). The score proposed in (Zheng et al., 2025) computes the
mutual information between labels and node features passed through a linear low-pass filter, imply-
ing relevance for a GCN. Authors considered all features informative, and their metric was used to
identify which features ought to be trained with a GNN versus an MLP. Thus, they did not evaluate
their metric for eliminating features to reduce model complexity or to remove unhelpful features.
Conversely, several works aim to select node features during training, albeit without returning im-
portance scores (Maurya et al., 2023; Jiang et al., 2023; Acharya & Zhang, 2020; Lin et al., 2020;
Zheng et al., 2020). Moreover, these methods learn which features to eliminate via an auxiliary
model, for which many tend to use uninterpretable models.

B PROOF OF THEOREM 1

The following proof is inspired by that of (Tenorio et al., 2025), which was itself motivated by (Nt
et al., 2021) for evaluating GCN dependence on homophily.

By the definitions of Z∗ and Z, we have that X∗ = Ã
∗
rwX

∗ and

∥Z∗ − Z∥F ≤
∥∥∥σ2 (Ã∗

rwσ1

(
Ã

∗
rwX

∗Θ(1)
)
Θ(2)

)
− σ2

(
Ãrwσ1

(
ÃrwXΘ(1)

)
Θ(2)

)∥∥∥2
F

≤ τω
∥∥∥Ã∗

rwσ1

(
Ã

∗
rwX

∗Θ(1)
)
− Ãrwσ1

(
ÃrwXΘ(1)

)∥∥∥2
F
,

with the latter inequality due to the τ -Lipschitzness of σ2 and the fact that ∥Θ(2)∥2 ≤ ω. Then, we
apply the triangle and Cauchy-Schwarz inequalities for

∥Z∗ − Z∥F ≤ τω
∥∥∥(Ã∗

rw − Ãrw)σ1(X
∗Θ(1))

∥∥∥
F
+ τω

∥∥∥Ãrw(σ1(X
∗Θ(1))− σ1(ÃrwXΘ(1)))

∥∥∥
F

≤ τω
∥∥∥Ã∗

rw − Ãrw

∥∥∥
F

∥∥∥σ1(X∗Θ(1))
∥∥∥
F
+ τω

∥∥∥Ãrw

(
σ1(X

∗Θ(1))− σ1(ÃrwXΘ(1))
)∥∥∥

F
.

Then, observing that ∥Ãrw∥2 = 1 and exploiting the definitions of σ1 and Θ(1), we have that

∥Z∗ − Z∥F ≤ τ2ω2
∥∥Ã∗

rw − Ãrw

∥∥
F
∥X∥F + τ2ω2∥X∗ − ÃrwX∥F . (7)
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Next, let D̃
∗
:= diag((A∗+I)1), analogous to D̃ = diag(d+1), and recall that Ãrw = D̃

−1
(A+I)

and Ã
∗
rw = (D̃

∗
)−1(A∗ + I). Then, we bound the adjacency matrix discrepancy as∥∥Ã∗

rw − Ãrw

∥∥
F
=
∥∥Ã∗

rw − D̃
−1

(A∗ + I) + D̃
−1

(A∗ + I)− D̃
−1

(A+ I)
∥∥
F

≤
∥∥Ã∗

rw − D̃
−1

(A∗ + I)
∥∥
F
+
∥∥D̃−1(

A∗ −A
)∥∥

F

≤
∥∥(I− D̃

−1
D̃

∗)
Ã

∗
rw

∥∥
F
+
∥∥D̃−1

∆
∥∥
F
,

where D̃
−1

(A∗ + I) = D̃
−1

D̃
∗
Ã

∗
rw. Recalling that ∥Ã∗

rw∥2 = 1, we then have∥∥Ã∗
rw − Ãrw

∥∥
F
≤
∥∥D̃−1(

D̃− D̃
∗)∥∥

F
+ ∥∆∥F

≤ ∥D−D∗∥F + ∥∆∥F
= ∥diag(∆1)∥F + ∥∆∥F
≤ ∥∆1∥2 + ∥∆∥F
≤

√
N∥∆∥F + ∥∆∥F , (8)

which accounts for the first term in (7). For the second, we apply the definitions X̃
∗
= YP−1Y⊤X

and Ãrw = D̃
−1

(A+ I) for

∥X∗
i,: − [ÃrwX]i,:∥2 =

∥∥∥∥∥ 1

pyi

N∑
j=1

Yj,yi
Xj,: −

1

di + 1

N∑
j=1

[I+A]ijXj,:

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

pyi

N∑
j=1

Yj,:Y
⊤
i,:Xj,: −

1

di + 1
Xi,: −

1

di + 1

N∑
j=1

AijXj,:

∥∥∥∥∥
2

,

where the inner product Yj,:Y
⊤
i,: = 1 if and only if yi = yj . Then, we have that

∥X∗
i,: − [ÃrwX]i,:∥2 =

∥∥∥∥∥ 1

pyi

N∑
j=1

Yj,:Y
⊤
i,:Xj,: −Xi,: +

(
di

di + 1

)
Xi,: −

1

di + 1

N∑
j=1

AijXj,:

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

pyi

N∑
j=1

Yj,:Y
⊤
i,:

(
Xj,: −Xi,:

)
+

1

di + 1

N∑
j=1

Aij

(
Xi,: −Xj,:

)∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
j=1

(
Yj,:Y

⊤
i,:

pyi

− Aij

di + 1

)(
Xi,: −Xi,:

)∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
j=1

[
YP−1Y⊤ − D̃

−1
A
]
ij

(
Xi,: −Xj,:

)∥∥∥∥∥
2

,

which then leads to

∥X∗ − ÃrwX∥F =

 N∑
i=1

∥∥∥∥∥
N∑
j=1

[
YP−1Y⊤ − D̃

−1
A
]
ij

(
Xi,: −Xj,:

)∥∥∥∥∥
2

2

1/2

≤
N∑
i=1

N∑
j=1

∥∥∥[YP−1Y⊤ − D̃
−1

A
]
ij

(
Xi,: −Xj,:

)∥∥∥
2

=

C∑
c=1

N∑
i=1

N∑
j=1

I(yi = c)I(yj = c) ·
∥∥∥[YP−1Y⊤ − D̃

−1
A
]
ij

(
Xi,: −Xj,:

)∥∥∥
2

=

C∑
c=1

N∑
i=1

N∑
j=1

∥∥∥∥(YicYjcpc
− Aij

di + 1

)(
Xi,: −Xj,:

)∥∥∥∥
2

. (9)

Substituting (8) and (9) into the inequality (7) yields the result in (4), as desired. ■
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C PROOF OF THEOREM 2

Observe that we may repeat the steps of the proof of Theorem 1 in Appendix B to obtain

∥Z̃∗ − Z̃∥F ≤ τ2ω2

[
(1 +

√
N)∥∆∥F ∥X∥F +

N∑
i=1

N∑
j=1

∣∣∣∣∣Yi,:Y
⊤
j,:

pyi

− Aij

di + 1

∣∣∣∣∣ · ∥X̃i,: − X̃j,:∥2
]
.

(10)

Thus, for the remainder of the proof, we need only obtain a bound for ∥X̃i,: − X̃j,:∥2. We proceed
with bounding (X̃im−X̃jm)2 for anym ∈ [M ]. For a given permutation π ∈ Π sampled uniformly
at random, we define the function

ψ(π) :=
(
Xπ(i),m −Xπ(j),m

)2
(11)

with expected value

E[ψ(π)] = E
[(
Xπ(i),m −Xπ(j),m

)2]
= E

[
X2

π(i),m

]
− 2E

[
Xπ(i),mXπ(j),m

]
+ E

[
X2

π(j),m

]
. (12)

Then, for any i, j ∈ [N ] such that i ̸= j and m ∈ [M ],

E[X2
π(i),m] =

1

N !

∑
π∈Π

X2
π(i),m =

1

N !

N∑
j=1

∑
π∈Π

X2
jmI(π(i) = j) =

1

N

N∑
j=1

X2
jm =

1

N
∥X:,m∥2

and

E[Xπ(i),mXπ(j),m] =
1

N !

∑
π∈Π

Xπ(i),mXπ(j),m

=
1

N !

N∑
k=1

N∑
ℓ=1

∑
π∈Π

XkmXℓmI(π(i) = k)I(π(j) = ℓ)

=
1

N !

∑
k ̸=ℓ

∑
π∈Π

XkmXℓm(N − 2)!

=
1

N(N − 1)

N∑
k=1

N∑
ℓ=1

XkmXℓm − 1

N(N − 1)

N∑
k=1

X2
km

=
1

N(N − 1)

(
(1⊤X:,m)2 − ∥X:,m∥22

)
,

which we substitute into (12) for

E[ψ(π)] =
2

N − 1

(
∥X:,m∥22 −

1

N
(1⊤X:,m)2

)
. (13)

Then, we define the Doob martingale {Qk}Nk=0 such that Q0 = E[ψ(π)] and

Qk = E[ψ(π) | π(1), . . . , π(k − 1)] ∀k = 1, . . . , N,

thus QN = ψ(π). Additionally, we have that

E[ψ(π) | π(1), . . . , π(k − 1)] =

N∑
ℓ=k

1

N − k + 1
E[ψ((kℓ)π) |π(1), . . . , π(k)],
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where ψ((kℓ)π) denotes ψ given π with elements k and ℓ swapped. Then, we bound the following
differences

|Qk −Qk−1| =
∣∣E[ψ(π) |π(1), . . . , π(k)]− E[ψ(π) |π(1), . . . , π(k − 1)]

∣∣
=

∣∣∣∣E[ψ(π) |π(1), . . . , π(k)]− N∑
ℓ=k

1

N − k + 1
E[ψ((kℓ)π) |π(1), . . . , π(k)]

∣∣∣∣
=

∣∣∣∣ 1

N − k + 1

N∑
ℓ=k

E[ψ(π) |π(1), . . . , π(k)]− E[ψ((kℓ)π) |π(1), . . . , π(k)]
∣∣∣∣

≤ 1

N − k + 1

N∑
ℓ=k

∣∣∣E[ψ(π)− ψ((kℓ)π) |π(1), . . . , π(k)]
∣∣∣. (14)

Then, with X̃
(kℓ)

:,m representing X̃:,m with elements k and ℓ swapped, we have

|ψ(π)− ψ((kℓ)π)| =
∣∣(X̃im − X̃jm

)2 − (X̃(kℓ)
im − X̃

(kℓ)
jm

)2∣∣,
which is zero for i = k, j = ℓ or i ̸= k, j ̸= ℓ, but for k = i, j ̸= ℓ, we instead have

|ψ(π)− ψ((kℓ)π)| =
∣∣(X̃im − X̃ℓm

)(
X̃im + X̃ℓm − 2X̃jm

)∣∣
=
∣∣X̃im − X̃ℓm

∣∣ · ∣∣X̃im + X̃ℓm − 2X̃jm

∣∣
≤
∣∣X̃im − X̃ℓm

∣∣ · (∣∣X̃im − X̃jm

∣∣+ ∣∣X̃ℓm − X̃jm

∣∣)
≤ 2α

by our assumption that maxm∈[M ] maxk,ℓ∈[N ](Xkm −Xℓm)2 = α. With (11), (13), and (14), we
apply the Azuma–Hoeffding inequality (Azuma, 1967; Hoeffding, 1963) for

P [ψ(π)− E[ψ(π)] ≥ η] ≤ exp

(
− η2

2Nα2

)
,

and with t := η/(α
√
N), we obtain(

Xπ(i),m −Xπ(j),m

)2 ≤ 2

N − 1

(
∥X:,m∥22 −

1

N
1⊤X:,m

)
+ αt

√
N

with probability at least e−t2/4, which yields

∥X̃i,: − X̃j,:∥2 =

√√√√[ M∑
m=1

2

N − 1

(
∥X:,m∥22 −

1

N
(1⊤X:,m)2

)
+ αt

√
N

]

≤
√

2

N − 1

(
∥X∥2F − 1

N
∥X⊤1∥22

)
+Mαt

√
N,

which we substitute into (10) for the error bound in (6), as desired. ■

D EXPERIMENTAL DETAILS

This section provides further details regarding the simulations in this work, including the datasets
employed.

D.1 DATASET DETAILS

We share the statistics of the datasets used in our experiments in Table 5. Information about dataset
context, that is, the interpretation of nodes, features, edges, and labels is provided in Section 4.
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Dataset #Nodes #Edges #Feats #Classes

Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3
Photo 7,650 119,043 745 8
Computers 13,752 245,778 767 10
ogbn-arxiv 169,343 1,166,243 128 40
Cornell 183 298 1,703 5
Texas 183 325 1,703 5
Wisconsin 251 515 1,703 5

Table 5: Statistics of the benchmark datasets used in our experiments, including the number of
nodes, edges, input features per node, and class labels.

D.2 TABLE 1 SIMULATION DETAILS

We elaborate on training details for the results in Table 1. All results are averaged over five runs,
except for the results in Figures 2 and 5-8, which are averaged over twenty runs. In each run, we
randomly split the nodes into 70% training, 10% validation, and 20% test, and we report the test
accuracy corresponding to the epoch with the highest validation accuracy. The train/validation/test
masks are re-sampled independently for each run. For Cora, CiteSeer, and PubMed, we use a 2-layer
GCN; for Amazon Computers and Photo we use a 2-layer GIN; for Cornell, Texas, and Wisconsin
we use a 2-layer TAGCN; and for the MLP baseline we use a 2-layer MLP, all with 512 hidden
units. Models on Computers and Photo are trained for 800 epochs, while the remaining datasets are
trained for 400 epochs. We use the Adam optimizer with a learning rate of 0.01 and weight decay
of 5× 10−4.

D.3 TABLE 2 BASELINES AND SIMULATION DETAILS

We next describe our process for the results in Table 2. Our evaluation follows a two-stage pipeline:
in the first stage, we train a model following the setup in Table 1 and compute feature importance
scores using the validation set. We then select the top r% of features according to each FS method
(r = 2% for all datasets except PubMed, Photo, and Computers, where r = 5% due to their smaller
feature dimension). In the second stage, we retrain the model using only these selected features, with
the same architecture and training configuration as in the first stage, and report the test accuracy.

As for baselines, we evaluate several feature selection (FS) methods listed below.

• NPT: Our node feature permutation tests (NPTs) for feature importance ranks features
based on the drop in validation accuracy upon permuting each feature.

• NPT-mask: We introduce a variant of NPT where, rather than permuting a feature to
remove its effect, we instead mask its values, that is, set all of its values to zero.

• MI: We measure the mutual information (MI) between each feature and the node labels.
• TFI: The Topological Feature Informativeness (TFI) metric was introduced in (Zheng

et al., 2025) to measure feature importance prior to training to be applicable for GCNs.
• Feature homophily: The homophily-based metrics, hattr (Yang et al., 2021), hEuc (Chen

et al., 2023), and hGE (Jin et al., 2022), score features according to different measures of
homophily, that is, measuring the smoothness of each node feature according to different
distance metrics.

• Rnd.: Our random (Rnd.) selection baseline, where we select features uniformly at ran-
dom to be retained or removed.

D.4 TABLE 3 AND FIGURE 2 SIMULATION DETAILS

For adaptive node feature selection, we set r = 0.5 in Algorithm 1 for all datasets, dropping half of
the features at each step of the feature importance calculation, except for ArXiv, where we use r =
0.4 due to its relatively small feature dimension (128). The burn-in period Tburn and interval period
T are fixed to 50 for all datasets, except for Computers, Photos, and arxiv, where Tburn, T = 100.
The model is trained for 400 epochs on all datasets and 800 epochs on Computers, Photos, and arxiv.
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Test accuracy for each feature percentage is reported based on the epoch with the highest validation
accuracy: within each T interval, we identify the epoch that achieves the best validation accuracy
and use its corresponding test accuracy. This procedure is applied consistently across all feature
selection methods. The architecture and optimizer settings follow the configuration described in
Section D.2.

E CHOICE OF NUMBER OF FEATURE PERMUTATIONS

Let {x̃(k)}Kk=1 denote K ∈ N independent permutations of the vector x ∈ RN , where x̃i = xπ(k)(i)

for every i ∈ [N ] for i.i.d. π(k) ∈ Π. We seek to sample a large enough K such that the empirical
expected value 1

K

∑K
k=1 x̃

(k) approximates the true expected value E[x̃(k)] = µ1 for any k ∈
[K], where µ := 1

N 1⊤x. This will indicate that the empirical distribution of feature permutations
approximates the true distribution. To this end, we consider the following result.

Proposition 1 For the vector x ∈ RN , we define {x̃(k)}Kk=1 such that x̃i = xπ(k)(i) for every k ∈
[K] and i ∈ [N ], where π(k) ∈ Π denote i.i.d. permutations of [N ]. Then, with xmax := maxi |xi|,
we have that

P

[∥∥∥∥∥ 1

K

K∑
k=1

x̃(k) − E[x̃(k)]

∥∥∥∥∥
2

2

≤ t
√
K − 1

2K

]
≥ 1− 2 exp

{
− Kt2

4N2(x2max − µ2)2

}
. (15)

Thus, we may choose K in Algorithm 1 such that our feature permutations are similar enough to the
true distribution of random feature permutations, where we determine a satisfactory similarity via
choice of t. The proof of Proposition 1 is as follows.

Proof of Proposition 1. First, given that E[x̃(k)] = µ1, we have that∥∥∥∥∥ 1

K

K∑
k=1

x̃(k) − E[x̃(k)]

∥∥∥∥∥
2

2

=

N∑
i=1

(
1

K

K∑
k=1

(x̃
(k)
i − µ)

)2

=
1

K2

N∑
i=1

K∑
k=1

K∑
ℓ=1

(x̃
(k)
i − µ)(x̃

(ℓ)
i − µ)

=
1

K2

K∑
k=1

K∑
ℓ=1

(x̃(k) − µ1)⊤(x̃(ℓ) − µ1).

Since π(k) are independently sampled uniformly at random from Π, for each k, ℓ ∈ [K] such that
k ̸= ℓ, there exists some permutation ρ(j) ∈ Π such that (x̃(k) − µ1)⊤(x̃(ℓ) − µ1) = (x −
µ1)⊤(x̂(j) − µ1), where x̂(j) denotes the permutation of x by ρ(j) for every j ∈ [J ] with J :=
K(K − 1)/2. Thus, our next step is to apply Hoeffding’s inequality. To this end, first observe
that the j-th inner product (x− µ1)⊤(x̂(j) − µ1) denotes an independent random variable bounded
between −N |x2max − µ2| and N |x2max − µ2|. Then, for any t0 > 0, Hoeffding’s inequality states
that

P

[∣∣∣∣∣
J∑

j=1

(x− µ1)⊤(x̂(j) − µ1)

∣∣∣∣∣ > t0

]
≤ 2 exp

{
− t20

2JN2(x2max − µ2)2

}
.

Recalling that J = K(K−1)
2 , we then let t = t0

√
K−1
J for

P

[∥∥∥∥∥ 1

K

K∑
k=1

x̃(k) − µ1

∥∥∥∥∥
2

2

> t

√
K − 1

2K

]
≤ 2 exp

{
− Kt2

4N2(x2max − µ2)2

}
,

as desired. ■
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F ADDITIONAL PLOTS ON ADAPTIVE NODE FEATURE SELECTION

We present additional plots analogous to those in Figure 2 measuring the accuracy of GNNs trained
using either all features available in a dataset versus using our adaptive Algorithm 1. We compare
our approach using our proposed permutation-based node feature importance scores, and we also
evaluate using TFI and MI as importance metrics to rank feature relevance in Algorithm 1. Fig-
ure 5 presents results for the datasets with homophilic labels Cora, CiteSeer, and PubMed; Figure 6
the datasets with heterophilic labels Cornell, Texas, and Wisconsin; and Figure 7 the larger-scale
datasets Photo, Computers, and ArXiv. To further verify our results, we repeat our experiments
on homophilic datasets Cora, CiteSeer, and PubMed using their official dataset splits into training,
validation, and testing in Figure 8.

G ADDITIONAL PLOTS ON FEATURE IMPORTANCE ANALYSIS

This section includes Figure 9, which contains additional plots analogous to Figure 3c. For each
feature, we measure the average last checkpoint of Algorithm 1 in which a feature is kept before be-
ing dropped for all datasets. In addition, Figure 10 plots the average last checkpoint for each feature
rank, that is, the most frequent last checkpoint assigned to each feature, analogous to Figure 3d. We
also include additional plots analogous to Figure 11 for all datasets.

Finally, we plot in Figure 12 the feature importance for synthetic graph data measured by NPT,
TFI, MI, and PT, which is analogous to NPT but uses an MLP instead of a GNN to compute
feature importance. More specifically, we generate five independent trials of graphs of N = 500
nodes and M = 50 features. We assign nodes to one of C = 2 classes. We vary the relationships
between features, labels, and graph structure as follows.

• Graph structure A ↔ labels y: When the graph and labels are independent (A ⊥⊥ y), we
generate an Erdos-Renyi graph with edge probability 0.1. Otherwise, when (A⊥̸⊥ y), we sample
the graph from a stochastic block-model whose communities correspond to classes, where within-
class edges are sampled with probability 0.1 and across-class edges with 0.05.

• Graph structure A ↔ node features X: When the graph and features are independent (A ⊥
⊥ X), we sample node features as Gaussian white noise X0 ∼ N (0, σI) for σ = 3. Otherwise,
when A ⊥̸⊥ X, we obtain the eigendecomposition of A = VΛV⊤ and generate bandlimited
graph signals as X0 = V:,BW for W ∼ N (0, σI), where B denotes the indices of graph
frequencies in diag(Λ) that are below λmax = 0.5|maxi Λii|.

• Labels y ↔ node features X: When the graph and labels are independent (y ⊥⊥ X), we further
process node features by sampling B0 ∼ N (0, I) for B0 ∈ RC×5. We normalize the columns of
B0 to sum to zero and rescale for B = 5diag−1(|B0|1)B0, where |B0| denotes the element-wise
absolute value of entries of B0. Finally, we update relevant entries of X as X:,m = [X0]:,m +
[YB]:,m for m ∈ [5]. Otherwise, when y ⊥̸⊥ X, we simply let X = X0.

H ADDITIONAL PLOTS ON MODEL PERFORMANCE ANALYSIS

We include additional plots in Figure 13 on hyperparameter tuning for Cora, CiteSeer, and PubMed,
which correspond to Figure 4a,b. In particular, we fix r = 0.5 and vary K ∈ {5, 10, 15, 20} in the
top row, whereas for the bottom row, we fix K = 10 and vary r ∈ {0.25, 0.5, 0.75}.
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Figure 5: Node classification accuracy for homophilic datasets Cora, CiteSeer, and PubMed. (a,d,g)
Validation accuracy for full, NPT, TFI, and MI. (b,e,h) Test accuracy for full, NPT, TFI, and MI.
(c,f,i) Accuracy difference for full, NPT, TFI, and MI.
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Figure 6: Node classification accuracy for heterophilic datasets Cornell, Texas, and Wisconsin.
(a,d,g) Validation accuracy for full, NPT, TFI, and MI. (b,e,h) Test accuracy for full, NPT, TFI, and
MI. (c,f,i) Accuracy difference for full, NPT, TFI, and MI.
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Figure 7: Node classification accuracy for larger-scale datasets Photo, Computers, and ArXiv.
(a,d,g) Validation accuracy for full, NPT, TFI, and MI. (b,e,h) Test accuracy for full, NPT, TFI, and
MI. (c,f,i) Accuracy difference for full, NPT, TFI, and MI.
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Figure 8: Node classification accuracy for homophilic datasets Cora, CiteSeer, and PubMed. Train,
validation, and test node subsets are selected via canonical splits. (a,d,g) Validation accuracy for
full, NPT, TFI, and MI. (b,e,h) Test accuracy for full, NPT, TFI, and MI. (c,f,i) Accuracy difference
for full, NPT, TFI, and MI.
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Figure 9: Last checkpoint kept per feature for various datasets. Plots (a) through (i) are presented
in the following order: (a) Cora, (b) CiteSeer, (c) PubMed, (d) Photo, (e) Computers, (f) ArXiv, (g)
Cornell, (h) Texas, (i) Wisconsin.
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Figure 10: Last checkpoint kept per feature ranking for various datasets. Feature ranking for each
feature corresponds to the most common last checkpoint the feature is kept before being dropped
across independent trials. Each entry of a heatmap denotes the average last checkpoint across all
features in the same ranking. Plots (a) through (i) are presented in the following order: (a) Cora, (b)
CiteSeer, (c) PubMed, (d) Photo, (e) Computers, (f) ArXiv, (g) Cornell, (h) Texas, (i) Wisconsin.
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Figure 11: Plot of normalized importance scores per baseline versus normalized NPT scores. Plots
(a) through (i) are presented in the following order: (a) Cora, (b) CiteSeer, (c) PubMed, (d) Photo,
(e) Computers, (f) ArXiv, (g) Cornell, (h) Texas, (i) Wisconsin.
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Figure 12: Feature importance scores for NPT, PT (permutation testing via MLP), TFI, and MI for
synthetic datasets. Analogous to δm for NPT scores, δMLP

m denotes PT scores. (a) Graph, labels,
and features are all independent. (b) Labels and features are correlated, but both are independent
of graph. (c) Graph and features are correlated, but both are independent of labels. (d) Features
are correlated with graph and labels, but labels and graph are independent. (e) Graph and labels are
correlated, but both are independent of features. (f) Labels are correlated with graph and features,
but graph and features are independent. (g) Graph is correlated with labels and features, but labels
and features are independent. (h) Graph, labels, and features are all pairwise correlated.
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Figure 13: Hyperparameter tuning by comparing GCN performance across various dropping rates
r and shuffling instances K for Cora, CiteSeer, and PubMed. The top row corresponds to fixing
K = 10 while varying r ∈ {0.25, 0.5, 0.75}, and the bottom row denotes fixing r = 0.5 while
varying K ∈ {5, 10, 15, 20}.
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