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LEARNING GRAPH NORMALIZATION FOR
GRAPH NEURAL NETWORKS

ABSTRACT

Graph Neural Networks (GNNs) have emerged as a useful paradigm to process
graph-structured data. Usually, GNNs are stacked to multiple layers and the
node representations in each layer are computed through propagating and aggre-
gating the neighboring node features with respect to the graph. To effectively
train a GNN with multiple layers, some normalization techniques are necessary.
Though the existing normalization techniques have been shown to accelerate train-
ing GNNs, the structure information on the graph is ignored yet. In this paper,
we propose two graph-aware normalization methods to effectively train GNNs.
Then, by taking into account that normalization methods for GNNs are highly
task-relevant and it is hard to know in advance which normalization method is the
best, we propose to learn attentive graph normalization by optimizing a weighted
combination of multiple graph normalization methods at different scales. By op-
timizing the combination weights, we can automatically select the best or the
best combination of multiple normalization methods for a specific task. We con-
duct extensive experiments on benchmark datasets for different tasks and confirm
that the graph-aware normalization methods lead to promising results and that the
learned weights suggest the more appropriate normalization methods for specific
task.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown great popularity due to their efficiency in learning on
graphs for various application areas, such as natural language processing (Yao et al., 2019; Zhang
et al., 2018), computer vision (Li et al., 2020; Cheng et al., 2020), point cloud (Shi & Rajkumar,
2020), drug discovery (Lim et al., 2019), citation networks (Kipf & Welling, 2016), and social
networks (Chen et al., 2018). A graph consists of nodes and edges, where nodes represent individual
objects and edges represent relationships among those objects. In the GNN framework, the node or
edge representations are alternately updated by propagating information along the edges of a graph
via non-linear transformation and aggregation functions (Wu et al., 2020; Zhang et al., 2018). GNN
captures long-range node dependencies via stacking multiple message-passing layers, allowing the
information to propagate over multiple-hops (Xu et al., 2018).

In essence, GNN is a new kind of neural networks which exploits neural network operations over
graph structure. Among the numerous kinds of GNNs (Bruna et al., 2014; Defferrard et al., 2016;
Maron et al., 2019; Xu et al., 2019), message-passing GNNs (Scarselli et al., 2009; Li et al., 2016;
Kipf & Welling, 2016; Velickovic et al., 2018; Bresson & Laurent, 2017) have been the most widely
used due to their ability to leverage the basic building blocks of deep learning such as batching,
normalization and residual connections. To update the feature representation of a node, many ap-
proaches are designed. For example, Graph ConvNet (GCN) (Kipf & Welling, 2016) employs an av-
eraging operation over the neighborhood node with the same weight value for each of its neighbors;
GraphSage (Hamilton et al., 2017) samples a fixed-size neighborhood of each node and performs
mean aggregator or LSTM-based aggregator over the neighbors; Graph Attention Network (GAT)
(Velickovic et al., 2018) incorporates an attention mechanism into the propagation step, which up-
dates the feature representation of each code via a weighted sum of adjacent node representations;
MoNet (Monti et al., 2017) designs a Gaussian kernel with learnable parameters to assign different
weights to neighbors; GatedGCN (Bresson & Laurent, 2017) explicitly introduces edge features at
each layer and updates edge features by considering the feature representations of these two con-
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Figure 1: Illustration for normalization methods on graph. Node features are normalized at four
levels: (a) Node-wise; (b) Adjacency-wise; (c) Graph-wise; and (d) Batch-wise. Similarly the four
normalization methods can be extended to normalize edge features as shown in (e), (f), (g), and (h).
nected nodes of the edge and has achieved state-of-art results on several datasets (Dwivedi et al.,
2020). More detailed overview about GNNs are provided in Appendix A.

It is well known that one of the critical ingredients to effectively train deep neural networks is
normalization technique, e.g., Batch Normalization (BN) (Ioffe & Szegedy, 2015) is widely used
to accelerate the deep neural networks training. Other than BN, several normalization methods
have been developed from different perspectives, e.g., Layer Normalization (LN) (Ba et al., 2016)
and Group Normalization (Wu & He, 2018) which operate along the channel dimension, Instance
Normalization (Ulyanov et al., 2016) which performs a BN-like normalization for each sample,
Switchable Normalization (Luo et al., 2019) which utilizes three distinct scopes—including channel,
layer, and minibatch—to compute the first order and second order statistics. Each normalization
method has its advantages and is suitable for some particular tasks. For instance, BN has achieved
perfect performance in computer vision whereas LN outperforms BN in natural language processing
(Vaswani et al., 2017).

As an analogue, in Dwivedi et al. (2020), BN is utilized for each graph propagation layer during
training GNNs. In Zhao & Akoglu (2020), a novel normalization layer, denoted as PAIRNORM,
is introduced to mitigate the over-smoothing problem and prevent all node representations from ho-
mogenization by differentiating the distances between different node pairs. Although these methods
mentioned above have been demonstrated being useful in training GNNs, the local structure and
global structure of the graph are ignored in these existing methods. Moreover, in previous work,
only one of the mentioned normalization methods is selected and it is used for all normalization
layers. This may limit the potential performance improvement of the normalization method and it is
also hard to decide which normalization method is suitable to a specific task.

Graph data contains rich structural information. By considering the structure information in the
graph, in this paper, we propose two graph-aware normalization methods at different scales: a)
adjacency-wise normalization, and b) graph-wise normalization. Unlike BN and LN, the adjacency-
wise normalization takes into account the local structure in the graph whereas the graph-wise nor-
malization takes into account the global structure in the graph. On other hand, while multiple nor-
malization methods are available for training GNNs and it is still hard to know in advance which
normalization method is the most suitable to a specific task. To tackle with this deficiency, we further
propose to learn attentive graph normalization by optimizing a weighted combination of multiple
normalization methods. By optimizing the combination weights, we can select the best or the best
combination of multiple normalization methods for training GNNs at a specific task automatically.

The contributions of the paper are highlighted as follows.

• We propose two graph-aware normalization methods: adjacency-wise normalization and graph-
wise normalization. To the best of our knowledge, it is for the first time that the graph-aware
normalization method is proposed for training GNNs.

• We present to learn attentive graph normalization by optimizing a weighted combination of differ-
ent normalization methods. By learning the combination weights, we can automatically select the
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best normalization method or the best combination of multiple normalization methods for training
GNNs at a specific task.

• We conduct extensive experiments on benchmark datasets for different tasks and confirm that
the graph-aware normalization methods leads to promising results and that the learned weights
suggest the more appropriate normalization methods for specific task.

2 GRAPH-AWARE NORMALIZATION AT DIFFERENT SCALES

Suppose that we haveN graphs G1,G2, ...,GN in a mini-batch. Let Gk = (Vk, Ek) be the k-th graph,
where Vk is the set of nodes and Ek is the set of edges. We use vk,i to denote the i-th node of graph
Gk and use ek,i,j to denote the edge between nodes vk,i and vk,j of graph Gk. Moreover, we use
hvk,i

∈ Rd to represent the feature of node vk,i and hjvk,i
to represent the j-th element of hvk,i

. We
use N (vk,i) to represent the neighbors of node vk,i (including node vk,i itself).

For clarity, we formulate the normalization methods for training GNNs from different scales, as
illustrated in Figure 1 (a)-(d), including node-wise normalization, adjacency-wise normalization,
graph-wise normalization and batch-wise normalization.

Node-wise Normalization. Node-wise normalization on graph, denoted as GNn, considers to nor-
malize the feature vector hvk,i

of each node vk,i and compute the first and the second statistics over
the d entries of the feature vector hvk,i

as follows:

ĥ(n)
vk,i

=
hvk,i

− µ(n)
k,i 1

σ
(n)
k,i

, µ
(n)
k,i =

1

d

d∑
j=1

hjvk,i
, σ

(n)
k,i =

√√√√1

d

d∑
j=1

(hjvk,i − µ
(n)
k,i )2, (1)

where µ(n)
k,i and σ(n)

k,i are the mean and the standard deviation along the feature dimension for node
vk,i, and 1 ∈ Rd represents a d-dimension vector of all 1. Note that node-wise normalization is
equivalent to applying LN to each node of the graph to reduce the “covariate shift” problem1.

Adjacency-wise Normalization. Each node in a graph has its neighbors. However, node-wise nor-
malization performs normalization on each node individually and ignores the local structure in the
graph. Here, we propose to take into account the adjacency structure in the graph and normalize the
node features of the adjacent neighbors. We term it as adjacency-wise normalization on graph, de-
noted as GNa. For each node vk,i in graph Gk, we consider its adjacent nodesN (vk,i), as illustrated
in Figure 1 (b). Specifically, the adjacency-wise normalization for node vk,i is defined as follows:

ĥ(a)
vk,i

=
hvk,i

− µ(a)
k,i1

σ
(a)
k,i

, (2)

µ
(a)
k,i =

1

|N (vk,i)| × d
∑

j′∈N (vk,i)

d∑
j=1

hj
vk,j′

, (3)

σ
(a)
k,i =

√√√√ 1

|N (vk,i)| × d
∑

j′∈N (vk,i)

d∑
j=1

(hjvk,j′ − µ
(a)
k,i )

2, (4)

where µ(a)
k,i and σ(a)

k,i are the first order and second order statistics over the adjacent nodes.2

Graph-wise Normalization. Note that nodes belonging to graph Gk naturally form a group. In
order to preserve the global structure of a graph, we propose to normalize the node feature based on
the first and the second order statistics computed over graph Gk. Specifically, we define a graph-wise

1The node-wise normalization method in Equation (1) can also be used to normalize the feature at each
edge, as illustrated in Figure 1 (e).

2For the edge ek,i,j , as Figure 1 (f), the adjacent edgesN (ek,i) can be considered in a similar way.
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normalization on graph, denoted as GNg, for node vk,i as follows:
ĥ(g)
vk,i

= (hvk,i
− µ(g)

k )Λ−1k , (5)

µ
(g)
k =

1

|Gk|
∑

vk,i∈Gk

hvk,i
, (6)

where µ(g)
k and Λk are the first order and the second order statistics in graph Gk in which Λk is a

diagonal matrix with diagonal entry Λjj
k is defined as

Λjj
k =

√√√√ 1

|Gk|
∑

vk,i∈Gk

(hjvk,i − µ
(g),j
k )2. (7)

If the task has only a single graph, then graph-wise normalization is similar to BN. However, unlike
in BN, graph-wise normalization does not use a smoothing average updater.3

Batch-wise Normalization. To keep training stable, BN is one of the most critical components.
For a mini-batch, there are N graphs. We compute the mean and standard deviation across over the
graphs of a mini-batch, then each node feature hvk,i

is normalized as follows:
ĥ(b)
vk,i

= (hvk,i
− µ(b))Λ−1, (8)

µ(b) =
1

T

N∑
k=1

|Gk|∑
i=1

hvk,i
, (9)

where T =
∑N

k=1 |Gk| means the total number of the nodes in the N graphs and Λ is a diagonal
matrix to keep the standard deviation of the note features over N graphs in which the diagonal entry
Λjj is defined

Λjj =

√√√√ 1

T

N∑
k=1

|Gk|∑
i=1

(hjvk,i − µ(b),j)2. (10)

Note that batch-wise normalization on graph, named as GNb, is effectively BN (Ioffe & Szegedy,
2015), which performs normalization over all nodes of the N graphs in a mini-batch.

The normalization methods applying to node features hvk,i
can also be extended to edge features

hek,i,j
where hek,i,j

denotes the feature of edge ei,j in graph Gk, as illustrated in Figure 1 (e)-(h).

Remark. The properties of the four normalization methods are summarized as follows.

• Node-wise normalization only considers to normalize the feature of each node individually but
ignores the adjacency structure and the whole graph structures. It is equivalent to LN (Ba et al.,
2016) in operation.

• Adjacency-wise normalization takes the adjacent nodes into account, whereas graph-wise nor-
malization takes into account the features of all nodes in a graph.

• Batch-wise normalization is the same as the standard batch normalization (Ioffe & Szegedy,
2015). If the task only involves a single graph, then the batch-wise normalization is similar to
the graph normalization except that momentum average used in batch-wise normalization is not
used in the graph-wise normalization.

3 LEARNING ATTENTIVE GRAPH NORMALIZATION

Although we have defined several normalization methods for the graph-structured data, different
tasks prefer to different normalization methods and for a specific task, it is hard to decide which
normalization method should be used. Moreover, one normalization approach is utilized in all nor-
malization layers of a GNN. This will sacrifice the performance of a GNN.

To remedy these issues, we propose to learn attentive graph normalization for training GNNs by
optimizing a weighted combination of the normalization methods. Specifically, we combine the
node feature ĥvk,i

under different normalization methods as follows:
ĥvk,i

= γ(α(n) � ĥ(n)
vk,i

+α(a) � ĥ(a)
vk,i

+α(g) � ĥ(g)
vk,i

+α(b) � ĥ(b)
vk,i

) + β, (11)

3For the edges Ek of graph Gk (Figure 1 (g)), we can also define the same normalization.
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where α(n),α(a),α(g) and α(b) ∈ Rd are trainable gate parameters with the same dimension as
hvk,i

,γ ∈ R and β ∈ Rd are the trainable scale and shift parameters, respectively.

Note that we attempt to use the learned α(n),α(a),α(g) and α(b) indicate the contribution of the
corresponding normalized feature to ĥvk,i

. Thus, we impose normalization constraints on each di-
mension of α(n),α(a),α(g) and α(b) that α(u)

j ∈ [0, 1] where u ∈ {n, a, g, b} and j = 1, · · · , d,

and
∑

u∈{n,a,g,b} α
(u)
j = 1 where j = 1, · · · , d. In this way, if a normalization method is better

for a specific task, the learned corresponding weights will be higher than others. Thus, we term
the learned attentive graph normalization method in Equation (11) as Automatic Graph Normaliza-
tion (AGN). In AGN, multiple normalization methods collaborate and compete with each others to
improve the performance of GNNs.

Different normalization methods are suitable for different tasks. In AGN, the attention weights
α(n),α(a),α(g) and α(b) are optimized for a specific task and thus the best-performing normaliza-
tion method will have a set of significant weights. Therefore AGN can serve as an effective strategy
to select one of the best-performing normalization method or the best combination of multiple nor-
malization methods for a specific task.

4 EXPERIMENTS

We evaluate GNn, GNa, GNg, GNb, and AGN under three GNN frameworks, including Graph Con-
volution Network (GCN) , Graph Attention Network (GAT) and GatedGCN. We also assess the
performance of GNNs without normalization layer named as “No Norm”. The benchmark datasets
consist of three types of tasks including node classification, link prediction, and graph classifica-
tion/regression. We use all seven datasets from Dwivedi et al. (2020), which are PATTERN, CLUS-
TER, SROIE, TSP, COLLAB, MNIST, CIFAR10, and ZINC. In addition, we apply GatedGCN for
key information extraction problem and evaluate the effect of different normalization methods on
SROIE (Huang et al., 2019), which is used for extracting key information from receipt in ICDAR
2019 Challenge (task 3). The detailed statistics of the datasets are presented in Appendix C.1.

The implementations of GCN, GAT and GatedGCN are from GNN benchmarking framwork4. The
hyper-parameters and optimizers of the models and the details of the experimental settings are kept
the same as in (Dwivedi et al., 2020). We run experiments on CLUSTER and PATTERN datasets
with GNNS of depth of layers L = {4, 16}, respectively. For the other datasets, we fix the number
of GCN layers to L = 4.

4.1 NODE CLASSIFICATION

For datasets CLUSTER and PATTREN, the average node-level accuracy which is weighted with
respect to the class sizes is used to evaluate the performance of all models. For each model, we
conduct 4 trials with different seeds {41, 95, 35, 12} to compute the average accuracy and the
results are shown in Table 1.

As can be read, graph-wise normalization (GNg) outperforms batch-wise normalization (GNb) obvi-
ously in most situations. For instance, when the depth of GNNs is 4, GatedGCN with GNg achieves
9% improvement over GNb on CLUSTER. Batch-wise normalization computes the statistics over a
batch data and ignores the differences between different graphs. Different from GNb, GNg performs
normalization only for each graph. Thus, GNg can learn the dedicated information of each graph
and normalize the feature of each graph into a reasonable range. As we known, the performance of
the adjacency-wise normalization (GNa) is similar with that of the node-wise normalization (GNn).
Compared with GNn, GNa consider the neighbors of each node and gets higher accuracies. AGN
gets comparable results for different GNNs and the results of AGN are close to the best results in
most cases due to its flexibility and adaptability. AGN can adaptively learn the optimal combination
of the normalization methods which better adapt to the node classification task.

Moreover, we apply node classification to key information extraction on SROIE which consists of
626 receipts for training and 347 receipts for testing. Each image is annotated with text bounding

4https://github.com/graphdeeplearning/benchmarking-gnns
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Dataset CLUSTER PATTERN

Network GCN GAT GatedGCN GCN GAT GatedGCN
Train
(Acc)

Test
(Acc)

Train
(Acc)

Test
(Acc)

Train
(Acc)

Test
(Acc)

Train
(Acc)

Test
(Acc)

Train
(Acc)

Test
(Acc)

Train
(Acc)

Test
(Acc)

L
ay

er
=4

No Norm 54.3±1.9 54.2±1.9 59.7±0.4 59.0±0.3 58.0±2.8 57.4±2.6 61.9±0.2 61.4±0.1 81.8±0.7 81.0±0.8 82.5±3.2 82.5±3.4
GNn 57.2±0.1 57.0±0.1 59.6±0.2 59.0±0.2 61.1±0.9 60.5±0.7 64.9±0.1 64.0±0.1 79.5±0.3 78.7±0.4 82.7±2.7 82.6±2.8
GNa 58.9±0.6 58.7±0.6 68.5±0.5 67.9±0.5 63.5±0.9 63.0±0.9 66.5±1.4 65.3±1.2 82.0±0.4 81.1±0.4 84.3±0.0 84.5±0.0
GNg 68.7±0.3 67.0±0.1 69.5±0.1 68.1±0.1 70.6±0.1 69.3±0.0 80.2±0.1 77.3±0.1 83.6±0.1 79.2±0.2 85.1±0.0 85.1±0.0
GNb 55.1±1.8 54.3±1.5 59.3±0.4 58.6±0.3 61.4±0.2 60.3±0.1 64.8±0.2 63.8±0.1 78.3±1.2 76.3±1.0 84.5±0.1 84.5±0.1
AGN 68.3±0.3 67.4±0.2 68.9±0.2 68.2±0.2 69.8±0.3 69.3±0.1 79.0±0.4 76.5±0.4 81.7±0.7 79.2±0.7 85.3±0.3 85.2±0.2

L
ay

er
=1

6

No Norm 85.3±0.5 72.4±0.1 63.6±2.5 63.4±2.3 80.6±1.3 71.2±0.4 82.8±0.4 82.9±0.4 73.4±0.4 69.7±0.2 85.6±0.0 85.7±0.0
GNn 63.6±7.0 63.2±6.9 83.8±0.5 72.2±0.4 84.6±0.8 73.8±0.2 76.7±0.8 71.4±0.3 87.7±0.7 81.8±0.5 85.6±0.0 85.8±0.0
GNa 66.7±1.5 66.0±1.5 85.6±0.6 73.2±0.2 84.7±0.6 74.1±0.3 74.9±1.7 70.7±0.7 84.8±0.3 82.8±0.5 85.6±0.0 85.8±0.0
GNg 87.2±0.4 72.5±0.2 91.9±0.3 73.4±0.1 90.9±0.5 74.5±0.1 98.9±0.1 76.3±0.2 92.8±0.1 81.2±0.2 86.7±0.2 85.3±0.1
GNb 67.6±3.7 65.1±2.6 83.9±0.6 72.2±0.3 88.2±1.0 73.7±0.3 79.0±1.6 72.0±0.3 91.9±0.6 80.2±0.2 86.1±0.2 85.7±0.1
AGN 85.8±0.4 73.8±0.2 87.3±2.1 72.6±0.6 88.6±0.4 75.8±0.2 93.6±1.9 77.8±0.3 95.6±0.5 79.2±0.4 87.3±0.3 85.7±0.1

Table 1: Results on CLUSTER and PATTERN. Red: the best model,Violet: good models.
boxes (bbox) and the transcript of each text bbox. There are four entities to extract (i.e., Company,
Date, Address and Total) from a receipt, as shown in Appendix C.2. For a receipt image, each text
bounding box is label with five classes (i.e., Total, Date, Address, Company and Other). Then, the
key information extraction is treated as node classification and we treat each text bounding box in
a receipt image as a node. Feature representation for each node will be supplied by Appendix C.2.
“Company” and “Address” usually consist of multiple text bounding boxes (nodes). The entity is
recorded as “extracted successful” if and only if all nodes of each entity are classified correctly.
In this experiment, we use GatedGCN. We compute the mean accuracy for each text field and the
average accuracy for each receipt and show the results in Table 2.

Text Field No Norm GNn GNa GNg GNb AGN
Total 87.5 91.9 74.5 96.8 94.8 94.5
Date 96.5 98.0 95.9 98.8 97.4 97.4

Address 91.6 92.0 80.0 94.5 93.9 93.6
Company 92.2 93.3 87.8 94.5 93.0 94.8
Average 92.0 94.0 84.6 96.2 94.8 95.1

Table 2: Performance (accuracy) comparison of different normalization approaches.

We can observe that GNg achieves the best performance among all compared normalization meth-
ods. In the receipt, there are many nodes with only numeric texts. It is hard to differentiate the
“Total” field from other nodes with numeric text. GNg performs well in this field and outperforms
the second best by 2.0%. We believe that the graph-wise normalization can make the “Total” field
stand out from the other bounding boxes with numeric text by aggregating the relevant anchor point
information from its neighbors and removing the mean number information. Similarly, graph-wise
normalization can promote extracting information for the other three key fields. It is interesting that
the graph of each receipt is special with neighboring nodes that usually belong to different classes.
Thus, the performance of adjacency-wise normalization is worse than node-wise normalization.

4.2 LINK PREDICTION

Link prediction is to predict whether there is a link between two nodes vi and vj in a graph. Two node
features of vi and vj , at both ends of edge ei,j , are concatenated to make a prediction. Experimental
results are shown in Table 3. All the five normalization methods achieve similar performance on
dataset TSP. Compared with others, the results of AGN are very stable. For each GNN, the result of
AGN is comparable with the best result.

Dataset COLAB contains only a graph with 235,868 nodes. Due to out-of-memory problem, we do
not report the results of GNa and AGN. Compared with GNNs with normalization layer, the results
of GNNs without normalization layer (No Norm) seriously degenerates. GNg performs better than
GNb. GatedGCN with GNg achieves the best result.

4.3 GRAPH CLASSIFICATION AND GRAPH REGRESSION

Graph classification is to assign one label to each graph. We conduce experiments on CIFAR10 and
MNIST. Average class accuracy is reported in Table 4. ZINC is a dataset for graph regression. The
mean absolute error (MAE) between the predicted value and the ground truth is calculated for each
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Network GCN GAT GatedGCN

Dataset TSP
Train (F1) Test (F1) Train (F1) Test (F1) Train (F1) Test (F1)

No Norm 0.628±0.001 0.627±0.001 0.677±0.002 0.675±0.002 0.805±0.005 0.804±0.005
GNn 0.635±0.001 0.634±0.001 0.663±0.008 0.662±0.008 0.810±0.003 0.808±0.003
GNa 0.633±0.004 0.631±0.004 0.678±0.003 0.676±0.003 0.805±0.005 0.803±0.004
GNg 0.630±0.001 0.629±0.001 0.669±0.003 0.668±0.001 0.890±0.001 0.806±0.001
GNb 0.633±0.001 0.632±0.001 0.673±0.004 0.671±0.004 0.791±0.002 0.789±0.002
AGN 0.635±0.001 0.633±0.001 0.673±0.001 0.671±0.001 0.804±0.001 0.802±0.001

Dataset COLAB
Train (Hits) Test (Hits) Train (Hits) Test (Hits) Train (Hits) Test (Hits)

No Norm 73.02±7.03 38.32±4.13 64.19±4.02 32.69±4.48 38.55±8.13 22.60±3.40
GNn 81.81±7.40 45.75±4.14 95.93±0.54 51.76±0.68 91.72±3.40 51.55±1.44
GNg 93.67±0.71 52.27±1.28 97.11±0.65 51.36±1.15 97.50±2.52 52.71±0.36
GNb 91.88±0.04 51.16±0.10 97.11±0.43 51.54±0.90 95.31±3.56 51.87±0.41

Table 3: Link prediction results on the TSP and COLAB. Red: the best model,Violet: good models.
group. Average MAE also is reported in Table 4. We can see that GNb outperforms others in most
cases. GNg does not work well on graph classification and regression. Furthermore, GNg affects the
performance of AGN. In AGN, the normalized features of GNn, GNa, GNg, and GNb are integrated
and automatically paid more attention to GNb due to its outstanding performance. Therefore, the
performance of AGN is comparable with GNb.

Network GCN GAT GatedGCN
Train (Acc) Test (Acc) Train (Acc) Test (Acc) Train (Acc) Test (Acc)

Dataset MNIST
No Norm 93.62±0.72 90.10±0.25 100.00±0.00 95.39±0.16 100.00±0.00 96.61±0.09

GNn 96.63±0.91 90.53±0.22 100.00±0.00 95.66±0.14 100.00±0.00 97.23±0.12
GNa 95.65±0.75 89.68±0.20 100.00±0.00 95.41±0.22 100.00±0.00 96.87±0.21
GNg 96.90±0.52 86.18±0.30 100.00±0.00 94.74±0.13 100.00±0.00 96.17±0.16
GNb 97.16±1.06 90.51±0.22 99.99±0.00 95.77±0.19 100.00±0.00 97.47±0.11
AGN 97.34±0.66 90.46±0.17 100.00±0.00 95.75±0.22 100.00±0.00 97.41±0.17

Dataset CIFAR10
No Norm 65.87±1.68 54.56±0.53 88.80±1.31 62.13±0.31 82.81±1.15 63.44±0.22

GNn 73.64±1.42 55.77±0.31 87.67±0.81 63.04±0.60 90.14±2.05 67.86±0.65
GNa 71.48±1.27 54.83±0.32 86.80±0.70 62.72±0.26 90.85±0.32 67.21±0.44
GNg 71.75±2.48 46.41±0.29 89.20±0.41 54.44±0.28 81.29±6.37 52.69±3.28
GNb 69.34±2.47 55.14±0.26 89.56±1.41 64.54±0.24 95.75±0.12 67.83±0.68
AGN 80.33±3.10 54.73±0.68 94.48±1.58 62.98±0.47 98.80±0.28 66.84±0.16

Train (MAE) Test (MAE) Train (MAE) Test (MAE) Train (MAE) Test (MAE)
Dataset ZINC
No Norm 0.368±0.022 0.472±0.005 0.270±0.029 0.490±0.001 0.292±0.003 0.456±0.004

GNn 0.349±0.019 0.455±0.007 0.295±0.014 0.456±0.001 0.260±0.021 0.428±0.005
GNa 0.351±0.013 0.458±0.003 0.291±0.013 0.458±0.001 0.274±0.023 0.437±0.001
GNg 0.263±0.033 0.547±0.029 0.228±0.010 0.519±0.001 0.216±0.019 0.507±0.003
GNb 0.346±0.019 0.465±0.009 0.308±0.028 0.480±0.003 0.280±0.013 0.431±0.007
AGN 0.357±0.017 0.486±0.007 0.298±0.018 0.483±0.005 0.275±0.011 0.458±0.003

Table 4: Results on MNIST, CIFAR10 and ZINC. Red: the best model,Violet: good models.

4.4 ANALYSIS AND FURTHER INVESTIGATIONS

The above experimental results indicate that GNg outperforms batch normalization on most node
classification tasks. For each single normalization method, it performs very well on some datasets,
while its performance may decrease sharply on other datasets. Meanwhile, our proposed AGN which
integrates several normalization methods into a unified optimization framework achieves competi-
tive results compared with the best single normalization method on various datasets.

Behaviours of Learned Weights in AGN. To gain more insight into AGN, we conduct a set of
experiments to analyze the effect of each normalization method on different datasets. Note that
AGN combines the results of several normalization methods and {α(u)}u∈n,a,g,b in Equation (11)
indicate the importance of the corresponding normalization methods, respectively. We initialize the
weights {α(u)}u∈n,a,g,b in each layer with the equal values, i.e., α(m)

j = 0.25 for j = 1, · · · , d and
m ∈ {n, a, g, b}. In the training phase, the value of each component of {α(u)}u∈n,a,g,b changes
between 0 and 1. On each dataset, we investigate the learned optimal weights on average at different
layers of GatedGCN. Particularly, We collect the learned weights of each normalization method in
each layer and calculate the averaged weights of each normalization method over all of the d entries
of α(u). We show the learned weights on average in Figure 2. As can be observed, the learned
weights of each normalization method on average not only change for different dataset but also
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CLUSTER (Acc) PATTERN (Acc) SROIE (Acc) TSP (F1) MNIST (Acc) CIFAR10 (Acc) ZINC (MAE)
GNn − − − 80.83 97.23 67.86 0.4283
GNa 63.02 84.53 − − − − −
GNg 69.31 85.07 96.2 80.61 − − −
GNb − − 94.8 − 97.47 67.83 0.4311
Combined 69.16 84.64 95.4 81.11 97.52 67.88 0.4371

Table 5: Performance of different normalization methods on seven benchmark datasets. For each
dataset, we give the performance of the best two normalization methods and a new normalization
method which is combined the two best-performing normalization methods as Equation (11).
vary for different layers. This implies that different layers prefer to different normalization method
in order to yield good performance. We can also observe that the weights on GNg are larger than
others on node classification tasks and GNb is more important on others. Our proposed AGN has
the ability to automatically choose the suitable normalization method for a specific task.

Evaluation on Selected Normalization Methods via AGN. To further evaluate the performance
of the selected normalization methods, we select the two best-performing normalization methods,
combine them into a new normalization method as in Equation (11), and conduct experiments on
each dataset. The experimental results are listed in Table 5. We can read that the combined nor-
malization method obtains the comparable results with the best normalization method. Therefore
these results show that the learnt weights indicate whether the corresponding normalization method
is suitable for the current task.
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Figure 2: Learnt weight distributions of normalization methods along with layers on different tasks.

Training Loss and Test Accuracy Curves vs. Iteration Steps. To show the effect of different
normalization methods, we draw the curves of training loss and test result with respect to the iteration
steps in Figures 4 and 5 in Appendix C.3. We see that when a proper normalization method is used,
the training loss converges faster and better test accuracy can be obtained.

5 CONCLUSIONS

We formulated four normalization methods for training GNNs at different scales: node-wise nor-
malization, adjacency-wise normalization, graph-wise normalization, and batch-wise normalization.
Particularly, the adjacency-wise normalization and graph-wise normalization are graph-aware nor-
malization methods, which are designed with respect to the local and the global structure of the
graph, respectively. Moreover, we proposed a novel optimization framework, called Automatic
Graph Normalization, to learn attentive graph normalization by optimizing an attentively weighted
combination of multiple graph normalization methods. We conducted extensive experiments on
seven benchmark datasets at different tasks and confirmed that the graph-aware normalization meth-
ods and the automatically learned graph normalization method lead to promising results and that the
learned optimal weights suggest more appropriate normalization methods for specific tasks.
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Bengio. Graph attention networks. ArXiv, abs/1710.10903, 2018.

Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ArXiv, abs/1810.00826, 2019.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 7370–7377,
2019.

Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: Algo-
rithms, applications and open challenges. In International Conference on Computational Social
Networks, pp. 79–91. Springer, 2018.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. ArXiv,
abs/1909.12223, 2020.

A GRAPH NEURAL NETWORKS

Graph neural networks (Kipf & Welling, 2016; Velickovic et al., 2018) are effective in learning
graph representations. For node v, GNNs update its representation by utilizing itself and its adjacent
neighbors. To capture high-order structure information of the graph, GNNs learn a new feature rep-
resentation of each node over multiple layers. In a layer of GNNs, each node v sends a “message”-
its feature representation, to the nodes in N (v); and then the feature representation of v is updated
according to all collected information from the neighborhood N (v). Mathematically, at the `-th
layer, we have

h`+1
v = ψ`+1(C{h`

v,M{φ`+1(h`
u)|u ∈ N (v)}}) (12)
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where h`
u denote the feature vector at the `-th layer of node u ∈ N (v), ψ and φ are learnable

functions,M is the aggregation function for nodes inN (v), and C is utilized to combine the feature
of node v and its neighbors. Especially, the initial node representation h0

v = xv represents the
original input feature vector of node v.

Graph ConvNets(Kipf & Welling, 2016) treats each neighbor node u equally to update the represen-
tation of a node v as:

h`+1
v = ReLU(

1

degv

∑
u∈N (v)

W `h`
u), (13)

where W ∈ Rd×d, degv is the in-degree of node v. One graph convolutional layer only considers
immediate neighbors. To use neighbors within k hops, in practice, multiple GCN layers are stacked.
All neighbors contribute equally in the information passing of GCN. One key issue of the GCN is an
over-smoothing problem, which can be partially eased by residual shortcut across layers. Another
effective approach is to use spatial GNNs, such as GAT (Velickovic et al., 2018) and GatedGCN
(Bresson & Laurent, 2017).

GAT (Velickovic et al., 2018) learns to assign different weight to adjacent nodes by adopting atten-
tion mechanism. In GAT, the feature representation of v can be updated by:

h`+1
v = σ(

∑
u∈N (v)

a`u,vW
`h`

u), (14)

where a`u,v measures the contribution of node u’s feature to node v defined as follows:

a`u,v =
exp(g(αT [W `h`

u||W `h`
v]))∑

k∈N (v) exp(g(αT [W `h`
k||W `h`

v]))
, (15)

where g(·) is a LeaklyReLU activation function, α is a weight vector and || is the concatenation
operation. Similar to Vaswani et al. (2017), to expand GAT’s expressive capability and stabilize
the learning process, multi-head attention is employed in GAT. GAT has achieved an impressive
improvement over GCN on node classification tasks. However, as the number of graph convolutional
layers increases, nodes representations will converge to the same value. Unfortunately, the over-
smoothing problem still exists.

To mitigate the over-smoothing problem, GatedGCN (Bresson & Laurent, 2017) integrates gated
mechanism (Hochreiter & Schmidhuber, 1997), batch normalization (Ioffe & Szegedy, 2015), and
residual connections (He et al., 2016) into the network design. Unlike GCNs, which treats all edges
equally, GatedGCN uses an edge gated mechanism to give different weights to different nodes. Thus,
for node v, the formulation for updating the feature representation is:

h`+1
v = h`

v + ReLU(BN(W `h`
v +

∑
u∈N (v)

e`vu � U `h`
u)), (16)

where W `, U ` ∈ Rd×d, � is the Hadamard product, and the edge gates e`v,u are defined as:

e`v,u =
σ(ê`v,u)∑

u′∈N (v) σ(ê`v,u′) + c
,

ê`v,u = ê`−1v,u + ReLU(BN(A`h`−1
v +B`h`−1

u + C`ê`−1v,u )),

(17)

where σ(·) is a sigmoid function, c is a small fixed constant, A`, B`, C` ∈ Rd×d. Different from
traditional GNNs, GatedGCN explicitly considers edge feature êv,u at each layer.

B NORMALIZATION METHODS

B.1 BATCH NORMALIZATION

Batch normalization (BN) (Ioffe & Szegedy, 2015) has become one of the critical components
in training a deep neural network, which normalizes the features by using the first order and the
second order statistics computed within a mini-batch. BN can reduce the internal covariate shift
problem and accelerate the training process. We briefly introduce the formulation of BN. Firstly,
H = {h1,h2, ...,hm} ∈ Rd×m is denoted as the input of a normalization layer, where m is the
batch size and hi represents a sample. Then, µ(m) ∈ Rd and σ(m) ∈ Rd denote the mean vector and
the variance vector of the m sample in H, respectively. BN normalizes each dimension of features
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using µ(m) and σ(m) as:
ĥ = γ(h− µ(m))./σ(m) + β,

µ(m) =
1

m

m∑
j=1

hj , σ
(m)
i =

√√√√ 1

m

m∑
j=1

(hij − µ(m)
i )2,

µ = αµ+ (1− α)µ(m), σ2 = ασ2 + (1− α)(σ(m))2,

(18)

where ./means element-wise division, γ and β are trainable scale and shift parameters, respectively.
In Equation (18),µ andσ denote the running mean vector and the variance vector to approximate the
mean vector and the variance vector of the dataset. During testing, they are used for normalization.

B.2 LAYER NORMALIZATION

Layer Normalization (LN) (Ba et al., 2016) is widely adopted in Natural Language Processing, spe-
cially Transformer (Vaswani et al., 2017) incorporates LN as a standard normalization scheme. BN
computes a mean and a variance over a mini-batch and the stability of training is highly dependent
on these two statistics. Shen et al. (2020) has showed that transformer with BN leads to poor perfor-
mance because of the large fluctuations of batch statistics throughout training. Layer normalization
computes the mean and variance along the feature dimension for each training case. Different from
BN, for each sample hj ∈ Rd, LN computes mean µ(L)

j and variance σ(L)
j across the feature dimen-

sion. The normalization equations of LN are as follows:

ĥj = γ �
hj − µ(L)

j 1

σ
(L)
j

+ β,

µ
(L)
j =

1

d

d∑
i=1

hij , σ
(L)
j =

√√√√1

d

d∑
i=1

(hij − µ(L)
j )2,

(19)

where ĥj ∈ Rd is the normalized feature vector, 1 ∈ Rd is a d dimension vector of 1’s, γ ∈ Rd and
β ∈ Rd are scale and shift parameters of dimension d.

Overall, there are many normalization approaches (Ulyanov et al., 2016; Wu & He, 2018; Shen
et al., 2020; Dimitriou & Arandjelovic, 2020). Shen et al. (2020) has indicated that BN is suitable
for computer vision tasks, while LN achieves better results on NLP. For a normalization approach,
its performance may vary a lot in different tasks. Thus, it is very important to investigate the perfor-
mance of normalization approaches in GNNs.

C DATASETS AND EXPERIMENTAL DETAILS

C.1 DATASET STATISTICS

Table C.1 summarizes the statistics of the datasets used for our experiments.

C.2 SROIE

For a receipt, each text bounding box (bbox) is viewed as a node of a graph. The positions and the
attributes of the bounding box, and the corresponding text are used as the node feature. To describe
the relationships among all the text bounding boxes on a receipt, we consider the distance between
two nodes vi and vj . If the distance between two nodes is less than a threshold θ, we connect vi
and vj by an edge ei,j . Since that the relative positions of two text bounding boxes are important
for node classification, we encode the relative coordinates of vi and vj to represent the edge eij . In
this way, such an information extraction task from a receipt can be treated as a node classification
task on a graph. Our goal is to label each node (i.e., text bounding box) with five different classes:
“Company”, “Date”, “Address”, “Total” and “Other”. Since that GatedGCN explicitly exploits edge
features and has achieved state-of-the-art performance on various tasks, we use GatedGCN with 8
GCN layers for this task.
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Dataset Graphs Nodes Total
Nodes

Edges Total
Edges

Avg
Edges

Task Classes

PATTERN 14K 44-188 166,449 752-14,864 85,099,952 51.1 N.C. 2
CLUSTER 12K 41-190 140,643 488-10,820 51,620,680 36.7 N.C. 6
SROIE 971 18-153 52,183 70-2,031 420,903 8.1 N.C. 5

TSP 12K 50-499 3,309,140 1,250-
12,475

82,728,500 25 E.C. 2

COLLAB 1 235,868 235,868 2,358,104 2,358,104 10 E.C. 2

MNIST 70K 40-75 4,939,668 320-600 39,517,344 8 G.C. 10
CIFAR10 60K 85-150 7,058,005 680-1,200 56,464,040 8 G.C. 10
ZINC 12K 9-37 277,864 16-84 597,970 2.1 G.R. -

Table 6: Summary statistics of datasets used in our experiments. The 7th column (AvgEdges) rep-
resents the average number of edges per node in a graph. N.C., E.C., G.C., G.R. mean node classi-
fication, edge classification, graph classification and graph regression independently.

Company

Address

Total

Date

Company

Address

Date

Total

Company

Address

Date

Total

Figure 3: Sample images of the SROIE dataset. Four entities are highlighted in different colors.
“Company”, “Address”, “Date”, and “Total” are marked with Red, Blue, Yellow, and Purple indi-
vidually. The “Company” and the “Address” entities usually consist of several text lines.

C.3 TRAINING AND TEST CURVES FOR NODE-WISE, ADJACENCY-WISE, GRAPH-WISE,
BATCH-WISE NORMALIZATION AND AUTO GRAPH NORMALIZATION.
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Figure 4: Training loss and test result of GatedGCN on CLUSTER, PATTERN and TSP vs. the
number of steps, with different normalization methods.
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