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Abstract

We propose an unsupervised adaptation framework, Self-TAught Recognizer
(STAR), which leverages unlabeled data to enhance the robustness of automatic
speech recognition (ASR) systems in diverse target domains, such as noise and
accents. STAR is developed for prevalent speech foundation models based on
Transformer-related architecture with auto-regressive decoding (e.g., Whisper,
Canary; SeamlessM4T). Specifically, we propose a novel indicator that empiri-
cally integrates step-wise information during decoding to assess the token-level
quality of pseudo labels without ground truth, thereby guiding model updates for
effective unsupervised adaptation. Experimental results show that STAR achieves
an average of 13.5% relative reduction in word error rate across 14 target do-
mains, and it sometimes even approaches the upper-bound performance of su-
pervised adaptation. Meanwhile, we observe that STAR prevents the adapted
model from the catastrophic forgetting problem without recalling source-domain
data. Furthermore, STAR exhibits high data efficiency that only requires less
than one-hour unlabeled data, and seamless generality to alternative large speech
models in recognition and translation tasks. Our code is publicly available at:
https://github.com/YUCHEN005/STAR-Adapt.

1 Introduction

Human speech, characterized by its inherent acoustic nuances [70] and variability across speakers [27],
is further complicated by the diverse and unpredictable environments. These factors contribute to
significant domain distinctions in the speech signal, with differences in accent, speaking style, and
background noise (visualized in Appendix B). Consequently, this diversity poses significant challenges
in the field of automatic speech recognition (ASR), especially under diverse conditions [51].

In recent years, advancements in ASR technology [30, 84, 12, 73] have been boosted, primarily
by the use of deep neural models and supervised learning with high-quality datasets. In particular,
end-to-end ASR models pre-trained on industry-scale datasets have been made publicly available
to the research community, such as OpenAI Whisper [73], Meta SeamlessM4T [4] and NVIDIA
Canary [71]. Considering the high diversity of speech domains, even a well-trained ASR foundation
model usually performs less satisfactorily when encountering a domain shift problem [49, 83, 85].
This performance degradation stems from a critical dilemma: collecting and labelling sufficient
training data in the target domain is immensely time-consuming and labour-intensive, thus hindering
the domain adaptation process of ASR models. Some existing efforts [32, 44] focus on leveraging
labelled source domain and unlabeled target domain data to enhance the ASR performance, as shown
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Figure 1: Illustration of unsupervised domain adaptation (UDA) and source-free UDA frameworks.
(i) UDA problem. (ii) Source-free UDA by self-training. STAR works by selecting high-quality
pseudo labels and guiding the ASR foundation model’s adaptation at the token level.

in Fig. 1 (i). This solution is generally known as unsupervised domain adaptation (UDA) [24, 32, 44]
and has been widely explored in both machine learning and speech processing communities.

In the context of the UDA problem in ASR, the human “self-directed” ability [39, 17] when encoun-
tering an unfamiliar speech domain is first illustrated. Despite the unawareness of the ground truth
labels of our heard speech, individuals can learn speech-to-text mapping from their self-directed
transcriptions, particularly when they have high confidence (see Fig. 8). This learning mechanism
has a parallel in machine learning, known as “self-training” [75, 90, 41], which typically involves
two stages. First, a pre-trained model generates the pseudo labels on target-domain data. Then, these
data with pseudo labels, along with the associated confidence levels, are used to adapt the model.

Meanwhile, unlike approaches in existing ASR literature, which often require the source data (data
used to pre-train the ASR model in source domains) to achieve UDA [63, 15, 5], humans, as the gold
standard of speech communication, can address UDA issues in ASR without requiring any source
data. Considering the exhibited generality of the speech foundation models with Transformer-related
architectures based on the attention mechanism, it is the opportune moment to centre the attention
mechanism on addressing the source-free UDA problem within the realm of ASR. Specifically, we
study to adapt the pre-trained Whisper model using a small amount of unlabeled data from the target
domain to become a domain-specific speech recognizer in different scenarios without using any
source data, based on the process analogous to the human speech recognition as shown in Fig. 1 (ii).
We hereby highlight the significant potential value that research on source-free UDA contributes to
general ASR applications [3]: (i) It circumvents the extensive computational resources by adapting
the ASR models without using any source data. (ii) It can considerably improve ASR performance in
the target domain using only a small amount of speech samples without ground-truth labels.

In this work, we propose a source-free UDA approach called Self-TAught Recognizer (STAR),
which aims to enhance the performance of speech foundation models in specific target domains
with unlabeled data. Based on the typical self-training scheme [92], STAR delves deeply into a
general issue: Given the absence of ground-truth labels, how do we assess the quality of pseudo labels
for guiding self-training? Unlike humans who can intuitively gauge their confidence in listening,
the decoding “confidence scores” from attention-based ASR models are typically approximated
by the pseudo posterior probabilities from softmax function [53] , which may be unreliable due
to the well-known over-confident issue of softmax [37]. Traditionally with HMM-based ASR, the
confidence scores can be estimated based on lattice and confusion network data structures [18, 61, 91],
which, however, are difficult to obtain effectively in the end-to-end ASR framework.

In pursuit of a better quality indicator, we explore the self-attention matrix obtained during auto-
regressive decoding, as it is not only grounded on speech input but also focuses on linguistic
acceptability [36]. Specifically, we find the aggregated attention weights can be a more reliable
indicator for measuring the quality of ASR-decoded tokens than the confidence scores. However,
such an attentive score suffers from numerical instability, as recent findings [82, 62] from linguistic
perspectives, it is normal for equally correct words (e.g., prepositions and nouns) to receive different
semantic roles in a text sentence. This leads to the sub-optimality of using attentive scores alone
to guide the fine-tuning process. We first substantiate these observations experimentally and then,
in our STAR method, propose a novel integration approach based on their distinct characteristics,
resulting in a both stable and reliable STAR indicator. Finally, it is employed to guide the subsequent
finetuning process in a re-weighting manner, making a specific form of instructive adaptation.
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Our experiments evaluate the proposed STAR in various practical scenarios, including background
noise, speaker accents, and specific scenarios (e.g., interviews and talks). Comprehensive results
show the significant gains from STAR that enhances Whisper by an average of 13.5% relative word
error rate (WER) reduction across 14 target domains. On some corpora, unsupervised STAR even
approaches the upper bound of supervised adaptation using real labels. We also surprisingly observe
that with informed finetuning, STAR prevents the adapted models from the common catastrophic
forgetting problem without recalling source-domain data. Furthermore, we demonstrate that STAR
enjoys: (i) remarkable data efficiency: it requires less than one hour of unlabeled data to adapt
Whisper to its best performance on target domains; (ii) seamless generality: it is applicable to many
prevalent speech foundation models and can be easily extended to the speech translation task.

In general, our contributions are summarized as follows:

• We direct our focus on source-free UDA in ASR with as one setting closed to real-world
applications, where only a pre-trained speech foundation model and unlabeled speech
samples are required to adapt to specific target domains.

• We present a score-based self-training approach called STAR that includes a novel indicator
to evaluate the pseudo-label quality and achieve informed finetuning, which significantly
enhances the domain-specific capabilities of speech foundation models across a wide range
of target domains, including noise, accent, and specific scenarios.

• Intensive experiments demonstrate that STAR effectively avoids the common catastrophic
forgetting problem in adaptation. Our further analysis of data efficiency and generality shows
its potential for real-world applications, such as incremental updates for voice assistant.

2 Related Work

Unsupervised Domain Adaptation in ASR. Since acquiring the ground truth speech transcriptions
is often prohibitively expensive in the target domain, many existing efforts bootstrap from available
out-of-domain data to build an improved target domain model [79, 59, 93]. Besides directly simu-
lating the target domain speech [31, 7], adversarial learning is frequently utilized to learn invariant
representations to mitigate domain shifts [33, 23], which is also applied for front-end speech en-
hancement [64]. Meanwhile, teacher-student learning provides an alternative solution for efficient
adaptation [50, 65]. These methods are also semi-supervised [86], since labels from the source
domain are available. More recently, self-supervised pre-trained models (e.g. wav2vec2 [2]) have
been used for pseudo-labelling to achieve unsupervised adaptation [44, 38].

Source-free Unsupervised Domain Adaptation. Given the potential presence of sensitive infor-
mation in the source data [78], there is a high demand for source-free UDA methods that transfer a
pre-trained source model to the unlabeled target domain without any source data [47, 66, 16]. As a
long-discussed machine learning issue, the mainstream solutions include self-supervised knowledge
distillation [57], contrastive learning [35], hidden structure mining [89], and uncertainty-guided adap-
tation [20]. Considering the inherent uncertainty in ASR decoding, we focus on the latter category
and briefly review some representative indicators of uncertainty. Recently, there are some works [9]
suggesting measuring uncertainty by the predicted variance from Monte Carlo Dropout [42], utilizing
aleatoric uncertainty by encouraging intra-domain consistency [48], performing pseudo-labeling
denoising using soft label correction [87], and introducing self-entropy descent mechanism to find a
threshold for pseudo-labeling [54]. It is worth noting that, confidence estimation for ASR systems can
be dated back for decades, starting by using lattices and confusion networks [18, 61] for HMM-based
systems. Improved confidence estimation can be achieved by model-based approaches, such as condi-
tional random fields [76], recurrent neural networks [40, 74] and graph neural networks [52]. More
recent efforts [60, 77] focus on predicting uncertainty for auto-regressive decoding of attention-based
models, however, they have not been applied in the source-free UDA.

Summary. Given the large amount of data used to pre-train the speech foundation models, it is
difficult to define the scope of its source domain and keep the source data for re-training. Therefore
we believe it is necessary to directly adapt speech foundation models to target domains for UDA for
speech tasks. The proposed STAR method aims to assess the quality of pseudo labels produced by
the auto-regressive decoding process, which leads to an instructive and effective self-training process.
Since STAR can remove the need for keeping and retraining with source data and considerably reduce
the performance difference between using ground truth and pseudo labels for adaptation with target
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domain data samples, it has the potential to fulfil the goal of source-free UDA for the ASR task and
achieve user-friendly deployment for real-world speech-based artificial intelligence products.

3 Methodology

3.1 Problem Setup

ASR Formulation. An end-to-end ASR system relies on a neural model f to recognize the input
speech x ∈ RT into the corresponding text transcription y ∈ RL, where T and L denote the lengths of
the input waveform and output text sequences respectively. During training, the model f is optimized
by teacher-forcing [46] with cross-entropy loss:

LASR(x, y) =

L∑
l=1

− logPθ(yl|yl−1, · · · , y1, x), (1)

where y1:L denotes the tokens in ground-truth labels y, and θ denotes the trainable parameters in f .

UDA Setting. Given a source ASR model f (s) trained on labelled source domain data {X (s),Y(s)} ∈
D(s), domain adaption in ASR aims to transfer the learned knowledge and obtain a model f (t) that
performs well on target domain D(t), i.e., f (t) : X (t) → Y(t). UDA is required if ground-truth labels
Y(t) are not available. Source-free UDA [19, 55] posts a more challenging but practical scenario,
where the source data {X (s),Y(s)} used to pre-train the ASR is no longer available in adaptation.
That is, only speech inputs X (t) is available when adapting the source model f (s) to the target domain
D(t). Self-training Strategy. In source-free UDA, since a source model itself typically generates
pseudo-labels, some previous works [80] have referred to this learning approach as semi-supervised
learning. To distinguish it from unsupervised domain adaptation, in this paper, we refer to the
approach for addressing source-free UDA as self-training, consistent with the terminology used in
studies [92]. Specifically, we adopt the pipeline of pseudo-labeling and informed finetuning. First,
N (t) unlabeled speech segments X (t) = {x(t)

i }N(t)

i=1 are fed into source model f (s) to generate the
pseudo labels corresponding to each of them, which are denoted as Ŷ(t) = {ŷ(t)i }N(t)

i=1 . Then, the
paired dataset with the speech inputs and their newly-generated pseudo labels {X (t), Ŷ(t)} are used
to finetune the source model to the target domain based on the self-training loss LST:

LST(X (t), Ŷ(t)) =

N(t)∑
i=1

LASR(x
(t)
i , ŷ

(t)
i ), (2)

where the ASR loss LASR follows the definition in Eq. (1).

Summary. Since self-generated pseudo labels [63] do not introduce extra supervised information
to the ASR source model, simply repeating this process is unlikely to yield performance improve-
ments [75]. However, if high-quality pseudo labels are selected as domain-specific exemplars to
inform the speech foundation model, it would then update in a direction beneficial to the target
domain performance. Therefore, we propose a critical research question: How can we assess the
quality of pseudo labels using an indicator that can also guide the model’s update? The subsequent
content of this section will delve into a detailed discussion from both token and utterance levels.

3.2 Token-level Assessment and Re-weighting

The auto-regressive decoding in ASR can provide step-wise information on predicted tokens, which
can be used for token-level uncertainty assessment [60, 77]. More importantly, this information can
guide the subsequent training process: assigning different weights to each token when calculating the
CE loss in Eq.(2), namely informed finetuning.

Why is confidence not a good indicator? The confidence score denotes the highest value among
the posterior probability predicted by a neural model. In auto-regressive decoding, the l-th step of
token confidence score Cl can be denoted as:

Cl = max P(ŷl|ŷl−1:1, x, θ
∗). (3)

4



th
os

e
wh

o
wo

rk fo
r

th
e

re
d

an
d

bl
ue

bo
ar

d wi
ll

te
ll

yo
u

th
at

th
er

e
ha

s
no

t
be

en a
su

bs
ta

nt
ia

l
lo

ss of
ho

us
in

g
th

is
ye

ar .
<e

os
>Pseudo

label:

[1.0, 1.2, 1.0, 1.1, 1.2,  0.5, 0.2, 0.2, 0.5, 1.1, 1.2,  1.2, 1.1, 1.2, 1.2,  1.2, 1.2, 1.2, 1.2, 1.2, 1.1, 1.2, 0.2, 1.1, 1.0, 1.2 ]

[1.4, 1.9, 2.1, 1.8, 1.2,  0.4, 0.3, 0.4, 1.3, 1.8, 1.2,  1.0, 1.4, 1.3, 1.3,  1.0, 0.9, 1.0, 0.8, 0.8, 0.9, 0.8, 0.4, 0.3, 0.3, 0.04]

Figure 2: (Left): An example of pseudo label, ground-truth transcription, confidence scores, attention
matrix and attentive scores. (Right-Up): Confusion matrix of confidence and attentive scores, where
the y-axis denotes the pseudo token is correct or wrong, and the x-axis denotes the corresponding
score is high or low (with 1 as the threshold, more analysis is in Fig. 6), so that the diagonal values
indicate the score’s reliability in assessing the quality of pseudo-label. (Right-Down): Variance of
the two scores of correct and wrong pseudo tokens.

By preserving the C for each token during pseudo-labeling, we can perform informed finetuning with
a re-weighting loss as follows:

L̃ASR(x, ŷ) =

L∑
l=1

− logPθ(ŷl|ŷl−1:1, x) · Cl. (4)

However, a substantial body of existing research [81] indicates that confidence does not accurately
reflect predictive accuracy, especially in auto-regressive decoding [60]. In Eq. (4), the prediction of
the current token is influenced by previously predicted tokens ŷl−1:1, which can easily lead to error
accumulation and propagation. We further inspect this claim in Whisper by empirical observation.
As shown in Fig. 2 (Right-Up), we employ a confusion matrix to visualize the relationship between
confidence score and pseudo-label quality, which shows that 52% of correct tokens are assigned low
confidence and 60% of wrong tokens are assigned high confidence (more discussion is in Appendix C).
Therefore, confidence cannot be a reliable pseudo-label quality indicator alone, like discussed in [21].

Is attentive score a better indicator? We explore if the self-attention matrix W obtained during
auto-regressive decoding can reflect the pseudo-label quality. Unlike Cl defined in Eq. (3), W has
a direct association with X and linguistic acceptability [72], which means that it might be less
influenced by the variability of speech input (see example in Fig. 2).

Empirical Observation. Starting from the fourth row and fourth column (first 3 tokens are fixed
prompts: “⟨|en|⟩⟨|transcribe|⟩⟨|notimestamps|⟩”), for the correctly decoded tokens (black), the
attention weights are concentrated on the diagonal and partially fall on other pseudo tokens. However,
for wrongly decoded tokens (red), the attention weights almost all fall on the second column that
corresponds to the task prompt token “⟨|transcribe|⟩” (highlighted in red boxes). To quantify this
finding into a numerical metric, we defined an “aggregate pattern" indicator called attentive score,
which is highlighted in the orange box in Fig. 2 and formulated as:

Al =

l∑
j=4

Wl,j +

L∑
i=l+1

Wi,l, (5)

where Al indicates the global semantic correlations between pseudo token ŷl with all tokens {ŷl}Ll=4
(first 3 tokens are task prompt). Specifically, we add the second term to also consider the attention
weights with respect to future tokens, in order to capture the comprehensive global context to better
assess the role of current token (see Table 7 for ablation study). We compare the values of attentive
score Al and confidence score Cl for this sentence in Fig. 2 (Left). As marked by black boxes, Cl
provides unreliable assessments for both ‘board’ (correct but low Cl) and ‘year . ⟨|eos|⟩’(wrong
but high Cl). In comparison, Al can accurately reflect the correctness of these tokens. To avoid
randomness, we analyze CHiME-4 test-real and plot a confusion matrix in Fig. 2 (Right-Up). It is
evident that, compared to Cl, our Al more reliably assesses the quality of predicted tokens.
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Despite reliability, Al exhibits less numerical stability, e.g., “for” and “housing” are both correct
tokens but their Al are distinct (1.8 vs. 0.8). The underlying reason is that their roles in the global
context as prepositions and nouns are indeed different [82, 62]. However, when we try to use this Al

to guide the ASR loss re-weighting like Eq.(4), these labels are expected to be assigned comparable
weights as they are equally correct. We verify this finding with the variance of Al and Cl in Fig. 2
(Right-Down). For both correct and wrong tokens, Al exhibits higher variance, indicating it may not
be suitable to guide the finetuning in a re-weighting manner directly.

STAR Indicator: Reliable and Stable. To integrate the advantages of Cf and Af , we introduce a
new indicator that balances reliability and stability. Specifically, in cases where Cf and Af exhibit
conflicting values toward a pseudo token, we would select Af as an indicator that shows higher
reliability. It can be mathematically formulated as:

Sconf
l = [σ(A2

l /Cl − λ) + σ(C2
l /Al − λ)] ∗ Al, (6)

where σ denotes the sigmoid function σ(x) = 1/(1 + e−x), and here it simulates the step function
to capture the cases of conflicting scores. Our definition of conflict is A2

l /Cl larger than a hyper-
parameter threshold λ. This criterion can be decoupled into two terms, Al and Al/Cl, which means a
large attentive score as well as a large gap between attentive and confidence scores1. Similarly, C2

l /Al

is another case of conflicting scores, and we add them up to simulate the logical “OR” operation.

On the other hand, if Af and Cf present consistent assessment towards a pseudo token, Cf would be
used to scale Af using its stability. Specifically, we design a soft interpolation strategy inspired by
focal loss [56] to integrate them:

Scons
l = [σ(λ−A2

l /Cl) ∗ σ(λ− C2
l /Al)] ∗ Al ∗ e(Cl−Al)/τ . (7)

Similarly, we also use Sigmoid function to simulate the non-conflicting cases, where we multiply
the two terms to denote logical “AND”. Inspired by the smoothing technique in focal loss [56], we
propose to leverage the gap between two scores for scaling Al ∗ e(Cl−Al)/τ , where τ is temperature.

During the subsequent informed finetuning stage, we combine the two indicators above to guide the
training process in a re-weighting manner, and Eq.(4) should be re-written as:

L̃ASR(x, ŷ) =

L∑
l=1

− logPθ(ŷl|ŷl−1:1, x) ∗ Sl; where Sl = Sconf
l + Scons

l . (8)

As a result, the STAR scores are both reliable and stable as shown in Fig. 5, which serves as a better
quality indicator to guide the informed finetuning (see Algorithm 1 in Appendix for details).

3.3 Utterance-level Filtering

The utterance-level filtering aims to remove those predicted utterances with low overall quality since
they are probably harmful for subsequent adaptation. We now introduce several existing approaches
to assess the utterance-level quality of pseudo labels, which are often used for uncertainty estimation.
Notably, high uncertainty usually implicates low quality for the generated sequence.

Monte Carlo Sampling [42] conduct multiple times of stochastic forward decoding with activated
dropout to get a list of predictions [9]. Then the list with a large variance is considered to have high
uncertainty and should be removed from subsequent training. However, this method does not apply
to Whisper as it does not use dropout in training. As an alternative, we introduce a similar method for
assessing utterance-level uncertainty. Specifically, given an input speech x, we first implement one
forward decoding and set the result ŷ as the base transcription. Then, we randomly disturb the model
weights of Whisper with Gaussian noise, and repeat the forward decoding for K times, resulting
in a list of pseudo transcriptions {ŷk}Kk=1. Thereafter, we calculate the edit distance (ED) between
pseudo transcription ŷk and the base transcription ŷ, which indicates the impact of disturbance on
Whisper decoding. Then, the model’s robustness in transcribing speech x can be calculated as:

U(x, ŷ) =
1

K

K∑
k=1

ED(ŷ, ŷk). (9)

1To avoid special cases like two tiny scores where one is many times of another (e.g., 0.01, 0.001).
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Table 1: Main WER (%) results of the proposed STAR adaptation and baselines in various ASR
domains. “Whisper (frozen)” denotes the zero-shot performance without adaptation. “Whisper
(self-train.)” is the vanilla self-training scheme consisting of pseudo-labeling and finetuning. Based
on that, “UTTfilter" adds utterance-level filtering explained in §3.3, and “TOKreweight" performs
two token-level re-weighting explained in §3.2. “Whisper (real label)” is supervised learning with
real (ground truth) labels and can be viewed as the upper-bound performance of source-free UDA.

Testing Scenario Whisper Whisper
UTTfilter

TOKreweight STAR Whisper
(frozen) (self-train.) Cl Al (ours) (real label)

Background Noise

CHiME-4

test-real 6.8 6.9 6.4 6.5 6.2 6.0−11.8% 5.2
test-simu 9.9 10.1 9.7 9.8 9.5 9.4−5.1% 8.7
dev-real 4.6 4.5 4.3 4.3 4.1 3.9−15.2% 3.2
dev-simu 7.0 7.0 6.6 6.7 6.6 6.4−8.6% 5.9

LS-FreeSound
babble 40.2 37.6 35.0 33.5 31.3 30.2−24.9% 27.2
airport 15.6 15.5 15.2 15.3 15.0 14.8−5.1% 14.5

car 2.9 3.0 2.8 2.8 2.6 2.5−13.8% 2.4

RATS radio 46.9 47.2 46.0 45.5 44.9 44.6−4.9% 38.6
Speaker Accents

CommonVoice

African 6.0 5.8 5.5 5.4 5.0 4.8−20.0% 4.6
Australian 5.8 5.7 5.6 5.5 5.2 5.1−12.1% 4.3

Indian 6.6 6.5 6.3 6.4 6.1 6.0−9.1% 5.7
Singaporean 6.5 6.2 5.8 5.8 5.4 5.1−21.5% 4.9

Specific Scenarios
TED-LIUM 3 TED talks 5.2 4.9 4.7 4.8 4.3 4.1−21.2% 3.6
SwitchBoard telephone 13.3 13.0 12.7 12.3 11.9 11.7−12.0% 9.9

LRS2 BBC talks 8.5 8.3 7.6 7.9 7.4 7.0−17.6% 5.6
ATIS airline info. 3.6 3.5 3.3 3.3 3.2 2.9−19.4% 2.0

CORAAL interview 21.5 21.3 20.8 20.7 20.4 20.1−6.5% 17.9

Table 2: WER (%) results regarding catastrophic forgetting. “Frozen” denotes Whisper zero-shot
without adaptation. “Self-train” denotes the self-training baseline. “STAR” model is adapted to
CHiME-4 using STAR; then evaluated on other domains. More results are in Table 11.

Model LS-FreeSound RATS CommonVoice TED-3 SWBD ATISbabble airport car af au in sg

Frozen 40.2 15.6 2.9 46.9 6.0 5.8 6.6 6.5 5.2 13.3 3.6

Self-train. 38.2 16.6 2.9 47.3 6.4 5.9 6.7 6.3 5.3 13.7 3.4
STAR 33.3 15.7 2.8 46.1 6.1 5.8 6.7 5.6 5.0 13.5 2.9

After obtaining k pseudo labels, we can examine their diversity to further assess the model’s un-
certainty. If there are many repetitions in the list, it indicates that the model is more confident in
transcribing speech x. Therefore, we utilize a scaling factor l that is equal to the utterance amount
after de-duplication. The final utterance-level quality is combined by the numeric multiplication of
l and U(x, ŷ), which is then used to rank the Nt pseudo data samples, and top α% samples are re-
moved due to large data uncertainty. Additionally, we also implement a beam search decoding and a
consensus decoding [61] baselines as alternative utterance-level filtering approaches for comparison,
where more experimental results and discussions are presented in Appendix D.

4 Experimental Setup

4.1 ASR Domains

We introduce STAR in various ASR domains to verify its general effectiveness, including noisy
speech, accented speech, and specific scenarios. First, for noisy speech we use the CHiME-4 [83],
LibriSpeech-FreeSound [69], and RATS [26] datasets, which covers a wide range of noise types
including bus, cafe, pedestrian area, street junctions, babble, car, airport, and the challenging radio
communication noises. Second, we select four typical accents from the CommonVoice [1] dataset,
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Table 3: Case study of an accented speech in CV-in (ID: “en_19795319”). The wrong tokens are
highlighted in red. Variance indicates the stability of different scores. “NCE” denotes normalized
cross-entropy, where a higher value indicates better measure quality (more results are in Fig. 5).

Metric Content Variance NCE Score

Ground-truth they are organised by scientific themes. - -

Pseudo label they are organised by scientific teams. - -
C1:L [0.81, 0.88, 0.98, 1.21, 1.13, 1.17, 0.82] 0.023 −0.671
A1:L [1.47, 1.49, 0.95, 1.20, 0.79, 0.43, 0.67] 0.101 0.146

S1:L (ours) [1.39, 1.40, 0.91, 1.14, 1.03, 0.41, 0.73] 0.058 0.322

Table 4: WER (%) results of STAR with differ-
ent speech foundation models on CHiME-4 test-real.
More models / datasets are evaluated in Table 9 and 6.

Model Baseline Self-train. STAR Real

Whisper-V3-1.5B 6.8 6.9 6.0−11.8% 5.2
Whisper-Med-0.8B 8.9 8.8 8.0−10.1% 7.1
OWSM-V3.1-1.0B 8.4 8.1 7.5−10.7% 6.5

Canary-1.0B 8.2 8.0 7.2−12.2% 6.4
Parakeet-TDT-1.1B 8.0 7.8 7.0−12.5% 6.2

Table 5: BLEU results of STAR on speech
translation task with FLEURS [14] test sets.

X → En Baseline Self-train. STAR Real

Ar 21.9 22.1 23.3+1.4 24.5
De 33.7 34.0 35.9+2.2 36.5
Es 23.9 24.1 24.8+0.9 26.4
Fa 16.6 16.3 17.6+1.0 19.0
Hi 22.4 22.5 23.4+1.0 24.4
Zh 16.3 16.3 17.1+0.8 17.9

including African, Australian, Indian, and Singaporean accents. Finally, we also evaluate our approach
under some specific scenarios, including BBC talks (LRS2 [13]), TED talks (TED-LIUM 3 [29]),
telephone conversation (SwitchBoard [25]), interview conversation (CORAAL [43]), and airline
information consultation (ATIS [28]). More details about the datasets are presented in Appendix F.

4.2 Configurations

We use the Whisper-Large-V3 model for main experiments, which contains 1.5 billion parameters
trained on 680k-hour web-scale data. It is fine-tuned using Adam optimizer [45] with an initial
learning rate of 1e−5 for 2 epochs. The batch size is set to 1 with 16 gradient accumulation steps. For
hyper-parameters, the threshold λ is set to 2 and the temperature τ is 10. In addition, the percentile α
of utterance-level filtering is 20, which shows consistent effectiveness across different datasets.

5 Results and Analysis
5.1 Effectiveness of STAR

To examine the effectiveness of STAR, we conduct comparative experiments across various domains
and report the WER results in Table 1.

Main Results. From noise adaptation results on CHiME-4, LS-FreeSound, and RATS, we observe
that: (i) STAR enhances Whisper in all noise scenarios, reducing the WER up to 24.9% relatively.
Specifically, on the challenging RATS dataset with pseudo labels of a 46.9% WER, our STAR can
still produce a 4.9% relative improvement. (ii) For some domains, e.g., “airport” and “car”, STAR
can even approach the upper-bound performance by supervised learning. This demonstrates that
even with unlabeled data only, our method can effectively adapt Whisper to specific target domains.
From results on other domains, we observe that: (i) STAR consistently improves the accented ASR to
approach the supervised upper bound. (ii) Whisper does not perform well in some colloquial scenarios
(SwitchBoard and CORAAL) as the spoken language tends to be informal and less grammatically
correct, which leads to poor-quality pseudo labels and then influences our adaptation performance.

Analysis of Catastrophic Forgetting. Table 2 analyzes the potential forgetting issue of our method
by evaluating the CHiME-4-finetuned model on other datasets. Surprisingly, contrary to the common
catastrophic forgetting issue that commonly happens in traditional source-free ASR adaptation, our
STAR approach can even improve the performance in other domains. We speculate that under the
self-training scheme, the pseudo label is generated by the model itself, so that it may avoid the model
from over-fitting to samples with vastly different data distributions [10]. Furthermore, compared to
vanilla self-training, STAR can better highlight the high-quality pseudo tokens for informed finetuning,
which may help improve the model’s general ASR ability. More detailed analysis are in §E.
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Figure 3: WER (%) results with different numbers of unlabeled training samples. The minimum
required data amount (in hours) to obtain the best performance is highlighted in the star mark.

Analysis of Indicators. Table 1 also presents the performance of different indicators in the informed
finetuning. First, we observe that the utterance-level filtering yields some effects by removing bad
training samples. Then, for token-level re-weighting, the two pseudo-label quality indicators both
improve the performance, where the attentive score performs better due to higher reliability. Our
proposed STAR indicator achieves the best result by integrating the strengths of both scores. We also
use a case in Table 3 to illustrate, where exists a wrong pseudo token “teams”. The confidence score
fails to reflect this error while the attentive score succeeds, but the latter suffers from less numerical
stability (i.e., large variance). By integrating their strengths, our STAR score achieves both reliability
and stability in assessing the pseudo-label’s quality. In addition, we also calculate the NCE metric to
show the better quality of our proposed STAR and attentive scores than traditional confidence scores.

5.2 Generality of STAR

Generalization to Different Speech Foundation Models. To further evaluate the generalization abil-
ity of our approach, we extend STAR to different foundation models, including OWSM, Canary and
Parakeet-TDT that take top places in the HuggingFace ASR leader-board 2. Consistent performance
gains (i.e., over 10% relative WER reduction) on these models has verified the excellent generality of
STAR. In addition, it also works well on relatively small models like Whisper-Medium.en-0.8B.

Generalization to Speech Translation (ST) Task. Apart from ASR, we also investigate another
widely studied speech task, the ST task, to further verify the generality of STAR adaptation. As
shown in Table 5, results on various FLEURS X→En tracks illustrate an average of over 1.2 BLEU
improvements (2.2 BLEU for De→En). It shows the good potential of our STAR adaptation on other
sequence-to-sequence tasks besides ASR, which could lead to more extensions for future work.

5.3 Ablation Study

In this section, we conduct ablation studies to analyze STAR from perspectives of data (Fig. 3), model
(Table 9), and finetuning approaches (Table 10), which provide a constructive reference for deploying
ASR foundation models in practical scenarios using STAR. More analysis are in Appendix E.

Data Efficiency. We explore the requirement of unlabeled data amount (Nt′) for STAR adaptation.
Fig. 3 shows the WER results on four datasets with different numbers of training utterances. Surpris-
ingly, only 200 to 500 sentences (less than 1-hour unlabeled speech data) are required to achieve the
optimal effects, which cost around 0.8-hour training time on single NVIDIA-A100-40GB GPU. This
remarkable data efficiency significantly saves the labours in real-world applications: not only is there
no need for manual labelling, but the collection of unlabeled data also requires less than one hour.

Model Size. Table 9 reports the performance on CHiME-4 test-real that applies STAR to the Whisper
family with different model sizes. Results show that our STAR adaptation works well on difference
scales of foundation models. Specifically, the promising performance gains on light model (base.en)
implicates the potential of STAR in practical resource-constrained conditions, such as mobile devices.

Finetuning Approach. Considering that adapting speech foundation models with a small amount
of data might risk over-fitting, we explore the impact of different finetuning approaches in Table 10.
We observe that both regular finetuning (full, encoder-only, decoder-only) and efficient finetuning
methods (LoRA) yield similar effectiveness, which provides flexible choices under different settings.

2https://huggingface.co/spaces/hf-audio/open_asr_leaderboard
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6 Conclusion

We propose STAR, a source-free UDA method that effectively adapts the speech foundation models to
various target domains with unlabeled data. Specifically, STAR introduces a novel indicator to assess
the pseudo-label quality and then instructively guide the finetuning of the model. Our experiments
verify STAR’s efficacy on ASR tasks across a wide range of target domains including noise, accent,
and specific scenarios, and it even approaches the upper-bound performance of supervised adaptation
on some corpora. Furthermore, we observe that STAR can avoid the catastrophic forgetting problem
that is often suffered by models adapted without recalling source-domain data. Furthermore, STAR
only requires less than one hour of unlabeled data to achieve an average of 13.5% relative WER
reduction across 14 domains, and it also shows seamless generality to speech translation tasks. This
enables us to deploy speech systems in real-world scenarios rapidly and conveniently.

Acknowledgement

This research is supported by the National Research Foundation, Singapore, under its AI Singapore
Programme grant number AISG2-100E-2022-102. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore. The computational work for this article was partially
performed on resources of the National Supercomputing Centre, Singapore (https://www.nscc.sg).

References
[1] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer,

Reuben Morais, Lindsay Saunders, Francis M Tyers, and Gregor Weber. Common voice: A
massively-multilingual speech corpus. arXiv preprint arXiv:1912.06670, 2019.

[2] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0:
A framework for self-supervised learning of speech representations. Advances in Neural
Information Processing Systems, 33:12449–12460, 2020.

[3] Janet M Baker, Li Deng, James Glass, Sanjeev Khudanpur, Chin-Hui Lee, Nelson Morgan, and
Douglas O’Shaughnessy. Developments and directions in speech recognition and understanding,
Part 1 [DSP Education]. IEEE Signal Processing Magazine, 26(3):75–80, 2009.

[4] Loïc Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning Dong, Mark Dup-
penthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim, et al. Seamless:
Multilingual expressive and streaming speech translation. arXiv preprint arXiv:2312.05187,
2023.

[5] Peter Bell, Joachim Fainberg, Ondrej Klejch, Jinyu Li, Steve Renals, and Pawel Swietojanski.
Adaptation algorithms for neural network-based speech recognition: An overview. IEEE Open
Journal of Signal Processing, 2:33–66, 2020.

[6] David Chan, Austin Myers, Sudheendra Vijayanarasimhan, David Ross, and John Canny. Ic3:
Image captioning by committee consensus. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 8975–9003, 2023.

[7] Chen Chen, Nana Hou, Yuchen Hu, Shashank Shirol, and Eng Siong Chng. Noise-robust speech
recognition with 10 minutes unparalleled in-domain data. In Proc. ICSSP, pages 4298–4302,
2022.

[8] Chen Chen, Yuchen Hu, Chao-Han Huck Yang, Sabato Marco Siniscalchi, Pin-Yu Chen, and
Ensiong Chng. Hyporadise: An open baseline for generative speech recognition with large
language models. In Thirty-seventh Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023.

[9] Cheng Chen, Quande Liu, Yueming Jin, Qi Dou, and Pheng-Ann Heng. Source-free domain
adaptive fundus image segmentation with denoised pseudo-labeling. In Proc. MICCAI, pages
225–235, 2021.

10



[10] Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. Recall
and learn: Fine-tuning deep pretrained language models with less forgetting. arXiv preprint
arXiv:2004.12651, 2020.

[11] Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li,
Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-
training for full stack speech processing. IEEE Journal of Selected Topics in Signal Processing,
16(6):1505–1518, 2022.

[12] Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen, Zhifeng
Chen, Anjuli Kannan, Ron J Weiss, Kanishka Rao, Ekaterina Gonina, et al. State-of-the-art
speech recognition with sequence-to-sequence models. In Proc. ICASSP, pages 4774–4778,
2018.

[13] Joon Son Chung, Andrew Senior, Oriol Vinyals, and Andrew Zisserman. Lip reading sentences
in the wild. In Proc. CVPR, pages 3444–3453, 2017.

[14] Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason
Riesa, Clara Rivera, and Ankur Bapna. Fleurs: Few-shot learning evaluation of universal
representations of speech. In Proc. SLT, pages 798–805, 2023.

[15] Jun Deng, Zixing Zhang, Florian Eyben, and Björn Schuller. Autoencoder-based unsupervised
domain adaptation for speech emotion recognition. IEEE Signal Processing Letters, 21(9):1068–
1072, 2014.

[16] Ning Ding, Yixing Xu, Yehui Tang, Chao Xu, Yunhe Wang, and Dacheng Tao. Source-free
domain adaptation via distribution estimation. In Proc. CVPR, pages 7212–7222, 2022.

[17] Fengning Du. Student perspectives of self-directed language learning: Implications for teaching
and research. International Journal for the Scholarship of Teaching and Learning, 7(2):24,
2013.

[18] Gunnar Evermann and Phil Woodland. Posterior probability decoding, confidence estimation
and system combination. In Proc. STW, pages 78–81, Baltimore, 2000.

[19] Yuqi Fang, Pew-Thian Yap, Weili Lin, Hongtu Zhu, and Mingxia Liu. Source-free unsupervised
domain adaptation: A survey. Neural Networks, page 106230, 2024.

[20] Francois Fleuret et al. Uncertainty reduction for model adaptation in semantic segmentation. In
Proc. CVPR, pages 9613–9623, 2021.

[21] Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco Guzmán, Mark
Fishel, Nikolaos Aletras, Vishrav Chaudhary, and Lucia Specia. Unsupervised quality estimation
for neural machine translation. Transactions of the Association for Computational Linguistics,
8:539–555, 2020.

[22] Frederic Font, Gerard Roma, and Xavier Serra. Freesound technical demo. In Proc. ACM MM,
pages 411–412, 2013.

[23] Carlos Franzreb and Tim Polzehl. Domain adversarial training for German accented speech
recognition. In Proc. DAGA, pages 1413–1416, 2023.

[24] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.
In Proc. ICML, pages 1180–1189, 2015.

[25] John J Godfrey, Edward C Holliman, and Jane McDaniel. SwitchBoard: Telephone speech
corpus for research and development. In Proc. ICASSP, pages 517–520, 1992.

[26] David Graff, Kevin Walker, Stephanie M Strassel, Xiaoyi Ma, Karen Jones, and Ann Sawyer.
The RATS collection: Supporting HLT research with degraded audio data. In Proc. LREC,
pages 1970–1977, 2014.

[27] John Hansen and Taufiq Hasan. Speaker recognition by machines and humans: A tutorial review.
IEEE Signal Processing Magazine, 32(6):74–99, 2015.

11



[28] Charles T. Hemphill, John J. Godfrey, and George R. Doddington. The ATIS spoken language
systems pilot corpus. In Proc. WSNL, Hidden Valley, 1990.

[29] François Hernandez, Vincent Nguyen, Sahar Ghannay, Natalia Tomashenko, and Yannick
Esteve. TED-LIUM 3: Twice as much data and corpus repartition for experiments on speaker
adaptation. In Proc. SPECOM, pages 198–208, 2018.

[30] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[31] Ehsan Hosseini-Asl, Yingbo Zhou, Caiming Xiong, and Richard Socher. A multi-discriminator
CycleGAN for unsupervised non-parallel speech domain adaptation. In Proc. Interspeech,
pages 3758–3762, 2018.

[32] Wei-Ning Hsu, Yu Zhang, and James Glass. Unsupervised domain adaptation for robust speech
recognition via variational autoencoder-based data augmentation. In Proc. ASRU, pages 16–23,
2017.

[33] Hu Hu, Xuesong Yang, Zeynab Raeesy, Jinxi Guo, Gokce Keskin, Harish Arsikere, Ariya
Rastrow, Andreas Stolcke, and Roland Maas. reDAT: Accent-invariant representation for end-
to-end asr by domain adversarial training with relabeling. In Proc. ICASSP, pages 6408–6412,
2021.

[34] Yuchen Hu, Chen Chen, Chao-Han Huck Yang, Ruizhe Li, Chao Zhang, Pin-Yu Chen, and
EnSiong Chng. Large language models are efficient learners of noise-robust speech recognition.
arXiv preprint arXiv:2401.10446, 2024.

[35] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. Model adaptation: Historical
contrastive learning for unsupervised domain adaptation without source data. Advances in
Neural Information Processing Systems, 34:3635–3649, 2021.

[36] Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin,
Weiming Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large
language models via over-trust penalty and retrospection-allocation. In Proc. CVPR, 2024.

[37] Shuangping Huang, Yu Luo, Zhenzhou Zhuang, Jin-Gang Yu, Mengchao He, and Yongpan
Wang. Context-aware selective label smoothing for calibrating sequence recognition model. In
Proc. ACM MM, pages 4591–4599, 2021.

[38] Dongseong Hwang, Ananya Misra, Zhouyuan Huo, Nikhil Siddhartha, Shefali Garg, David
Qiu, Khe Chai Sim, Trevor Strohman, Françoise Beaufays, and Yanzhang He. Large-scale ASR
domain adaptation using self-and semi-supervised learning. In Proc. ICASSP, pages 6627–6631,
2022.

[39] Renaud Jardri, Delphine Pins, Maxime Bubrovszky, Pascal Despretz, Jean-Pierre Pruvo, Marc
Steinling, and Pierre Thomas. Self awareness and speech processing: An fMRI study. NeuroIm-
age, 35(4):1645–1653, 2007.

[40] Kaustubh Kalgaonkar, Chaojun Liu, Yifan Gong, and Kaisheng Yao. Estimating confidence
scores on asr results using recurrent neural networks. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4999–5003. IEEE, 2015.

[41] Uday Kamath, John Liu, James Whitaker, Uday Kamath, John Liu, and James Whitaker.
Transfer learning: Scenarios, self-taught learning, and multitask learning. Deep Learning for
NLP and Speech Recognition, pages 463–493, 2019.

[42] Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning for
computer vision? Advances in Neural Information Processing systems, 30:1–11, 2017.

[43] Tyler Kendall and Charlie Farrington. The corpus of regional African American language.
version 2021.07. eugene, or: The online resources for african american language project, 2021.

12



[44] Sameer Khurana, Niko Moritz, Takaaki Hori, and Jonathan Le Roux. Unsupervised domain
adaptation for speech recognition via uncertainty driven self-training. In Proc. ICASSP, pages
6553–6557, 2021.

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc.
ICLR, pages 1–13, 2015.

[46] John F. Kolen and Stefan C. Kremer. A field guide to dynamical recurrent networks. John Wiley
& Sons, 2001.

[47] Jogendra Nath Kundu, Naveen Venkat, R Venkatesh Babu, et al. Universal source-free domain
adaptation. In Proc. CVPR, pages 4544–4553, 2020.

[48] JoonHo Lee and Gyemin Lee. Feature alignment by uncertainty and self-training for source-free
unsupervised domain adaptation. Neural Networks, 161:682–692, 2023.

[49] Jinyu Li, Li Deng, Yifan Gong, and Reinhold Haeb-Umbach. An overview of noise-robust
automatic speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 22(4):745–777, 2014.

[50] Jinyu Li, Michael L Seltzer, Xi Wang, Rui Zhao, and Yifan Gong. Large-scale domain adaptation
via teacher-student learning. Interspeech 2017, 2017.

[51] Qi Li, Jinsong Zheng, Qiru Zhou, and Chin-Hui Lee. Robust, real-time endpoint detector
with energy normalization for asr in adverse environments. In Proc. ICASSP, volume 1, pages
233–236, 2001.

[52] Qiujia Li, PM Ness, Anton Ragni, and Mark JF Gales. Bi-directional lattice recurrent neural
networks for confidence estimation. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 6755–6759. IEEE, 2019.

[53] Qiujia Li, David Qiu, Yu Zhang, Bo Li, Yanzhang He, Phil Woodland, Liangliang Cao, and
Trevor Strohman. Confidence estimation for attention-based sequence-to-sequence models for
speech recognition. In Proc. ICASSP, pages 6388–6392, 2021.

[54] Xianfeng Li, Weijie Chen, Di Xie, Shicai Yang, Peng Yuan, Shiliang Pu, and Yueting Zhuang.
A free lunch for unsupervised domain adaptive object detection without source data. In Proc.
AAAI, volume 35, pages 8474–8481, 2021.

[55] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? Source
hypothesis transfer for unsupervised domain adaptation. In Proc. ICML, pages 6028–6039,
2020.

[56] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proc. ICCV, pages 2980–2988, 2017.

[57] Xinyu Liu and Yixuan Yuan. A source-free domain adaptive polyp detection framework with
style diversification flow. IEEE Transactions on Medical Imaging, 41(7):1897–1908, 2022.

[58] Yi Luan, Daisuke Saito, Yosuke Kashiwagi, Nobuaki Minematsu, and Keikichi Hirose. Semi-
supervised noise dictionary adaptation for exemplar-based noise robust speech recognition. In
Proc. ICASSP, pages 1745–1748, 2014.

[59] Han Ma, Qiaoling Zhang, Roubing Tang, Lu Zhang, and Yubo Jia. Robust speech recognition
using teacher-student learning domain adaptation. IEICE Transactions on Information and
Systems, 105(12):2112–2118, 2022.

[60] Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction.
In Proc. ICLR, pages 1–31, 2021.

[61] Lidia Mangu, Eric Brill, and Andreas Stolcke. Finding consensus in speech recognition: word
error minimization and other applications of confusion networks. Computer Speech & Language,
14(4):373–400, 2000.

13



[62] David Mareček, Hande Celikkanat, Miikka Silfverberg, Vinit Ravishankar, and Jörg Tiedemann.
Are multilingual neural machine translation models better at capturing linguistic features? The
Prague Bulletin of Mathematical Linguistics, pages 143–162, 2020.

[63] Zhong Meng, Zhuo Chen, Vadim Mazalov, Jinyu Li, and Yifan Gong. Unsupervised adaptation
with domain separation networks for robust speech recognition. In Proc. ASRU, pages 214–221,
2017.

[64] Zhong Meng, Jinyu Li, Yifan Gong, et al. Adversarial feature-mapping for speech enhancement.
In Proc. Interspeech, pages 3259–3263, 2018.

[65] Zhong Meng, Jinyu Li, Yong Zhao, and Yifan Gong. Conditional teacher-student learning. In
Proc. ICASSP, pages 6445–6449, 2019.

[66] Gaurav Kumar Nayak, Konda Reddy Mopuri, Saksham Jain, and Anirban Chakraborty. Mining
data impressions from deep models as substitute for the unavailable training data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(11):8465–8481, 2021.

[67] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An ASR
corpus based on public domain audio books. In Proc. ICASSP, pages 5206–5210, 2015.

[68] Yifan Peng, Jinchuan Tian, William Chen, Siddhant Arora, Brian Yan, Yui Sudo, Muhammad
Shakeel, Kwanghee Choi, Jiatong Shi, Xuankai Chang, et al. OWSM v3.1: Better and faster
open whisper-style speech models based on e-branchformer. arXiv preprint arXiv:2401.16658,
2024.

[69] Archiki Prasad, Preethi Jyothi, and Rajbabu Velmurugan. An investigation of end-to-end models
for robust speech recognition. In Proc. ICASSP, pages 6893–6897, 2021.

[70] Graham Pullin and Shannon Hennig. 17 ways to say yes: Toward nuanced tone of voice in
AAC and speech technology. Augmentative and Alternative Communication, 31(2):170–180,
2015.

[71] Krishna C. Puvvada, Piotr Zelasko, He Huang, Oleksii Hrinchuk, Nithin Rao Koluguri,
Somshubra Majumdar, Elena Rastorgueva, Kunal Dhawan, Zhehuai Chen, Vitaly Larukhin,
Jagadeesh Balam, and Boris Ginsburg. New standard for speech recognition and translation
from the nvidia nemo canary model. 2024.

[72] Randolph Quirk and Jan Svartvik. Investigating linguistic acceptability. 2019.

[73] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya
Sutskever. Robust speech recognition via large-scale weak supervision. In International
Conference on Machine Learning, pages 28492–28518. PMLR, 2023.

[74] Anton Ragni, Qiujia Li, Mark J.F. Gales, and Yongqiang Wang. Confidence estimation and
deletion prediction using bidirectional recurrent neural networks. In Proc. SLT, pages 204–211,
2018.

[75] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught
learning: Transfer learning from unlabeled data. In Proc. ICML, pages 759–766, 2007.

[76] Matthew Stephen Seigel, Phil Woodland, et al. Combining information sources for confidence
estimation with CRF models. In Proc. Interspeech, pages 905–908, 2011.

[77] Yuxin Shi and Yuhong Sheng. Uncertain quantile autoregressive model. Communications in
Statistics-Simulation and Computation, pages 1–21, 2023.

[78] Serban Stan and Mohammad Rostami. Domain adaptation for the segmentation of confidential
medical images. arXiv preprint arXiv:2101.00522, 2021.

[79] Sining Sun, Binbin Zhang, Lei Xie, and Yanning Zhang. An unsupervised deep domain
adaptation approach for robust speech recognition. NeuroComputing, 257:79–87, 2017.

14



[80] Samuel Thomas, Michael L. Seltzer, Kenneth Church, and Hynek Hermansky. Deep neural
network features and semi-supervised training for low resource speech recognition. In Proc.
ICASSP, pages 6704–6708, 2013.

[81] Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll, and
Thomas Schön. Evaluating model calibration in classification. In Proc. ICAIS, pages 3459–3467,
2019.

[82] Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 63–76, 2019.

[83] Emmanuel Vincent, Shinji Watanabe, Jon Barker, and Ricard Marxer. The 4th chime speech sep-
aration and recognition challenge. URL: http://spandh. dcs. shef. ac. uk/chime_challenge/(last
accessed on 1 August, 2018), 2016.

[84] Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R Hershey, and Tomoki Hayashi. Hybrid
ctc/attention architecture for end-to-end speech recognition. IEEE Journal of Selected Topics in
Signal Processing, 11(8):1240–1253, 2017.

[85] Shinji Watanabe, Michael Mandel, Jon Barker, Emmanuel Vincent, Ashish Arora, Xuankai
Chang, Sanjeev Khudanpur, Vimal Manohar, Daniel Povey, Desh Raj, et al. Chime-6 challenge:
Tackling multispeaker speech recognition for unsegmented recordings. In CHiME 2020-6th
International Workshop on Speech Processing in Everyday Environments, 2020.

[86] Shannon Wotherspoon, William Hartmann, Matthew Snover, and Owen Kimball. Improved
data selection for domain adaptation in ASR. In Proc. ICASSP, pages 7018–7022, 2021.

[87] Zhe Xu, Donghuan Lu, Yixin Wang, Jie Luo, Dong Wei, Yefeng Zheng, and Raymond Kai-yu
Tong. Denoising for relaxing: Unsupervised domain adaptive fundus image segmentation
without source data. In Proc. MICCAI, pages 214–224, 2022.

[88] Chao-Han Huck Yang, Yile Gu, Yi-Chieh Liu, Shalini Ghosh, Ivan Bulyko, and Andreas Stolcke.
Generative speech recognition error correction with large language models and task-activating
prompting. In 2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU),
pages 1–8. IEEE, 2023.

[89] Shiqi Yang, Joost van de Weijer, Luis Herranz, Shangling Jui, et al. Exploiting the intrinsic
neighborhood structure for source-free domain adaptation. Advances in Neural Information
Processing Systems, 34:29393–29405, 2021.

[90] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In
Proc. ACL, pages 189–196, 1995.

[91] Kai Yu, Mark Gales, Lan Wang, and Phil Woodland. Unsupervised training and directed manual
transcription for LVCSR. Speech Communication, 52(7-8):652–663, 2010.

[92] Shuai Zhang, Meng Wang, Sijia Liu Liu, Pin-Yu Chen Chen, and Jinjun Xiong. How does
unlabeled data improve generalization in self-training? a one-hidden-layer theoretical analysis.
In the Tenth International Conference on Learning Representations (ICLR), 2022.

[93] Han Zhu, Gaofeng Cheng, Jindong Wang, Wenxin Hou, Pengyuan Zhang, and Yonghong Yan.
Boosting cross-domain speech recognition with self-supervision. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 32:471–485, 2023.

A Additional Discussions on the Design of the STAR Framework

Question 1: Is the proposed STAR method limited to the Whisper model only?

STAR is a general source-free UDA method that can be compatible with any attention-based speech
foundation model. To validate this, we also use several other models in our experiments, including
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OWSM-V3.1-1.0B [68]3, Canary-1.0B4, Parakeet-TDT-1.1B5, and SeamlessM4T-V2-2.3B [4]6.
Table 4 verify the effective generalization ability of our STAR adaptation method on various state-of-
the-art ASR foundation models 7. Furthermore, we also employ the speech translation foundation
model SeamlessM4T to verify our generality. Table 6 presents the WER results on CHiME-4 test sets
with SeamlessM4T, where the STAR adaptation achieves significant improvements over zero-shot
and self-training baselines, which even approaches the supervised upper bound. We observed that
although the performance of SeamlessM4T-Large-V2 is slightly worse than Whisper Large-V3 on
ASR task, STAR can still achieve up to a 30.7% WER reduction that improves its noise robustness.

Table 6: WER (%) results of STAR with latest speech foundation model, SeamlessM4T-Large-V2 [4],
on CHiME-4 test sets.

Test Set Baseline Self-train. STAR (ours) Real label

test-real 12.3 11.5 9.1−26.0% 8.7
test-simu 15.2 15.0 13.2−13.2% 13.0
dev-real 8.8 8.3 6.1−30.7% 5.8
dev-simu 11.4 11.0 9.2−19.3% 9.0

Question 2: Can STAR be applied to smaller or streaming ASR models like WavLM, RNN-T?

STAR requires large speech models to possess universal robustness across various domains to fulfill
their role as a reliable pseudo-labeler, where domain-specific ASR models like WavLM and RNN-T
may not work well. To illustrate, the WavLM-Conformer ASR baseline [11] achieves the state-of-
the-art result on the LibriSpeech test-clean dataset (with a WER of only 1.8%). However, when
facing domain shifts, such as the CHiME-4 noisy dataset, its zero-shot performance drops to 14.4%,
and it exceeds 20% on the CommonVoice accented dataset. Under these circumstances, it is nearly
impossible to use only unlabeled data to adapt this model to the Whisper’s zero-shot performance
(5 7% WER). Therefore, we argue that adding such baselines is not of much reference value. As more
general-purpose speech foundation models are released, we prefer to focus our research on studying
their decoding behaviors to adapt them more efficiently and conveniently to specific task domains.
Table 4 and 6 provide more results on CHiME-4 dataset with more speech foundation models (i.e.,
OWSM, Canary, Parakeet, SeamlessM4T) to show the good generality of STAR.

Question 3: Is the proposed STAR method limited to the ASR task?

Our proposed STAR approach is compatible with any tasks using attention-based encoder-decoder
architecture with auto-regressive decoding, the most prevalent framework in many areas not limited
to speech and language. Therefore, we believe this work provides useful insights to researchers
from other communities who use similar model architectures and need to assess the quality of auto-
regressive decoders, such as speech translation, audio/image captioning. Table 5 presents the strong
results of STAR on speech translation task, which verifies its task generality. However, since this work
focuses on ASR task, we would like to leave the evaluation on more tasks to future work. In addition,
recent research on LLMs [36] also focuses on the unsmooth self-attention matrix like Fig. 2, where
they successfully alleviate the LLMs’ hallucination problem in auto-regressive decoding through this
observation. This evidence indicates the potential impact of our method on other communities.

Question 4: What is the difference between STAR with the existing self-training method in ASR?

We summarize the vital difference in the following two points:

• Prior works focus on adapting from one source domain to a single target domain (e.g., clean
to noisy [58]), whereas STAR leverages the universality of Whisper to explore one-to-many
domain adaptation. Although the domain mismatch issue in the latter approach is less severe
than in the former, we argue that the baseline performance of the latter is significantly better
than that of the former, making improvements more challenging to achieve.

3https://huggingface.co/espnet/owsm_v3.1_ebf
4https://huggingface.co/nvidia/canary-1b
5https://huggingface.co/nvidia/parakeet-tdt-1.1b
6https://huggingface.co/facebook/seamless-m4t-v2-large
7https://huggingface.co/spaces/hf-audio/open_asr_leaderboard
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• Although both of them are auto-regressive processes, the decoding of speech foundation
models exhibits partially distinct characteristics compared with vanilla ASR decoders in
previous works, such as over-confidence phenomena [37]. Therefore, STAR adopts an
empirical indicator of quality derived from the decoding features of speech foundation
models, which can more effectively guide the subsequent finetuning process.

Question 5: What is the scope of efficacy when applying STAR adaptation?

As shown in Table 1, STAR can improve the performance with zero-shot WER ranging from 2.9%
(car) to 46.9% (radio). However, we observe that the WER improvement in RATS mainly stems
from the adjustment of some prepositions and articles, which may not improve the comprehensibility
of recognition results fundamentally. Therefore, collecting labeled data for supervised learning is
inevitable when the scenarios are quite challenging.

Question 6: Can STAR be involved in adapting test data?

We observe that some works perform unsupervised domain adaptation using unlabeled test data.
However, STAR only accesses test data once, and the unlabeled target domain data is drawn from
the training set of corresponding corpus. We argue this setting more closely aligns with practical
scenarios: developers cannot access the test set during the adaptation process. However, they can
conveniently collect small amount (see data efficiency in Fig. 3) of unlabeled target-domain speech
for adaptation, and then deploy the adapted model in testing environments.

Question 7: What about the broader impacts of this work?

This work supports rapid and convenient deployment of ASR applications in real-world scenarios,
which poses positive societal impact. During training process, we only use publicly available data and
pre-trained models, so that our work will not pose explicit negative impact. One thing worth noting is
that, our algorithm shows good generality and thus might cause abuse in some special occasions (e.g.,
confidential), we will release code carefully under strict licenses and rules to avoid negative impact.

Question 8: What about the limitations of this work?

Our approach is designed specifically for Transformer-based speech foundation models, so that it
may not handle the cases beyond the foundation models, e.g., the unseen languages, unseen tasks,
extremely adverse conditions, etc.

B Visualization of Speech Domains Distinction

Fig. 4 visualizes the spectrograms of parallel clean and noisy speech samples. We can observe clear
speech patterns in the clean spectrogram (i), while they are significantly contaminated by noise in
the noisy spectrograms (ii) and (iii). Specifically, the babble noise corrupts speech signals more
than airport noise, where speech patterns are almost completely removed. The reason is babble
noise contains human speech and thus of sample type as an original speech signal, resulting in more
significant corruption. These two kinds of noisy speech are reported in Table 1. Overall, the domains
of clean and noisy speech are quite distinct from the perspective of pattern recognition.

(i) Clean (ii) Airport 0dB (iii) Babble 0dB

Figure 4: Spectrograms of parallel clean and noisy speech samples, where we select two noise types
for visualization, i.e., airport station and babble (used in our experiments). The speech samples are
selected from the LS-FreeSound test set, and the sample ID is “1089-134686-0003”.
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C More Discussions of Pseudo-label Quality Indicators

Fig. 5 presents more investigations of the quality indicators. First, from the confusion matrix we
can observe the higher reliability of the attentive score over the confidence score, which has been
discussed in Section 5.1, and our proposed STAR score maintains the high reliability of the attentive
score by sophisticated integration. Then, from the variance statistics we can observe that the attentive
score suffers from less numerical stability, while our proposed STAR score benefits from the high
stability of the confidence score. As a result, the STAR score provides a both reliable and stable
indicator of the quality of the pseudo label. Furthermore, we note that after STAR adaptation, the
Whisper model can produce higher-quality pseudo labels, which not only verifies its effectiveness but
also explains its potential for iterative adaptation (see Section E).
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Figure 5: Confusion matrix, variance and normalized cross-entropy (NCE) of confidence score
(orange), attentive score (blue), and our STAR score (green), in terms of the Whisper baseline and
our STAR-adapted model. For the confusion matrix, the y-axis denotes the correctness of pseudo
tokens, i.e., correct and wrong, and the x-axis denotes whether the corresponding score is high or low.
Since all scores are normalized via divided by mean value, we set 1 as the threshold to separate them
into large and small groups, where more thresholds are analyzed in Fig. 6. NCE is a statistical metric
to measure the quality of confidence measure, where higher value indicates better measurement.

D More Discussion on Utterance-level filtering

Beam search decoding is a widely used strategy in sequence-to-sequence decoding, which expands
the search space to obtain an N-best hypotheses list. Recent research on speech foundation models
shows that N-best results contain rich information [8, 88], where the diversity can reflect the final
WER performance [34, 6]. Specifically, we utilize the beam search decoding as a replacement
for Gaussian disturbance and obtain an N-best hypotheses list for diversity calculation. The best
hypotheses and beam size N are respectively viewed as base transcription ŷ and K, and the quality
of utterance U is calculated in the same manner as Eq.(9). Furthermore, we also introduce an earlier
method from conventional ASR, consensus decoding [61], as an alternative to investigate the role of
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Figure 6: Confusion matrix of confidence score and attentive score in terms of different thresholds
for separating large and small groups.

Table 7: Ablation study on employing different
pseudo tokens to calculate the attentive score in
Eq. 5 using CHiME-4 test-real data.

Metric History tokens Future tokens Both

NCE 0.42 0.37 0.46
WER (%) 6.4 6.5 6.2 Figure 7: Confusion matrix of attentive score

calculated using different pseudo tokens.

utterance-level filtering approach, where the utterance quality is estimated similar to the beam search
decoding.

Table 8 presents the ablation study of utterance-level filtering strategy. First, we compare the K-
hypotheses by Gaussian disturbance with the N -best hypotheses by beam search decoding and
consensus decoding, where we observe that the former performs a little better than the latter two.
Therefore, we employ Gaussian disturbance for utterance-level filtering in the main experiments.
Finally, we investigate the role of utterance-level filtering in the entire STAR adaptation, where the
results demonstrate its contribution in the final performance gains (second last column).

Table 8: Ablation study of utterance-level filtering in terms of Gaussian disturbance, beam search
decoding, and consensus decoding [61].

Testing Scenario Whisper Whisper UTTfilter STAR (ours) Real label(frozen) (self-training) Gaussian Beam Consensus w/o UTT w/ UTT

CHiME-4

test-real 6.8 6.9 6.4 6.6 6.6 6.2 6.0−11.8% 5.2
test-simu 9.9 10.1 9.7 9.8 9.7 9.7 9.4−5.1% 8.7
dev-real 4.6 4.5 4.3 4.3 4.4 4.0 3.9−15.2% 3.2
dev-simu 7.0 7.0 6.6 6.7 6.7 6.6 6.4−8.6% 5.9

E Additional Ablation Study

Following Section 5.3, here we would like to present more details about the ablation study on model
size and finetuning approaches. In addition, we also observe that our STAR method can further
improve the performance with multiple-round iterative adaptation.

Model Size. Table 9 reports the performance on CHiME-4 test-real that applies STAR to the Whisper
family with different model sizes. We can observe consistent and significant improvements on
different scales of Whisper models. Specifically, although the light model (base.en) exhibits poor
noise robustness, our STAR can bring 45.4% relative improvement. It indicates the potential value of
STAR adaptation in practical resource-constrained conditions, such as mobile devices.

Finetuning Approach. Considering that training large speech models with a small amount of
data might risk over-fitting, we explore the impact of different tuning approaches for the informed
finetuning process in this experiment. From Table 10, we observe that (i) freezing part of parameters
can not improve the performance of STAR adaptation. However, finetuning the decoder only is the
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Table 9: WER (%) results of different model
sizes on CHiME-4 test-real set. “# Param.” is
the number of model parameters. “Real” denotes
Whisper with real label finetuning.

Model Size # Param. Baseline STAR Real

large-v3
1,550 M

6.8 6.0−11.8% 5.2
large-v2 7.7 6.9−10.4% 6.0

large 7.5 7.0−6.7% 6.8

medium.en 769 M 8.9 8.0−10.1% 7.1
small.en 244 M 12.7 10.6−16.5% 9.0
base.en 74 M 32.4 17.7−45.4% 16.1

Table 10: WER (%) results of different finetuning
methods on CHiME-4 test-real. * is the number
of trainable parameters. “Full” is full finetuning,
“Enc/Dec-only” is encoder/decoder-only finetune.

Approach # Param.* Baseline STAR Real

Regular Finetuning
Full 1550 M

6.8
6.0−11.8% 5.2

Enc-only 635 M 6.3−7.4% 5.0
Dec-only 907 M 6.1−10.3% 4.4

Parameter-Efficient Finetuning
LoRA 16 M

6.8
6.0−11.8% 5.1

Reprogram. 0.4 M 6.7−1.5% 6.7

optimal strategy for supervised adaptation. (ii) Using less trainable parameters, LoRA tuning shows
commendable results with full finetuning. Nevertheless, LoRA introduces further hyper-parameters
(e.g., rank) and we found it is sensitive to the learning rate. Considering it slightly decreases the
inference efficiency, LoRA tuning is recommended only in situations with limited training resources.

Analysis of Catastrophic Forgetting. Following Table 2, we present more results regarding the
forgetting issue on Whisper-Medium.en-0.8B and SeamlessM4T-V2-2.3B in Table 11. We observe
that our STAR can prevent the catastrophic forgetting problem on different-scale speech foundation
models. As for the potential reasons, we analyze from three points. First, we observe that the vanilla
self-training scheme can also well mitigate the forgetting problem. We can gain some inspiration
from previous work [10] for analysis. Since the pseudo label is generated by the model itself, it may
not force the model heavily to over-fit any external data distributions, so that self-training does not
degrade the out-of-domain performance. On the other hand, current prevalent foundation models are
usually trained by multi-task learning, where not all model capacities are used for ASR. Therefore,
specific self-training for ASR task may help mitigate the forgetting problem within ASR though
with different domains. Furthermore, compared to vanilla self-training, our STAR shows even better
performance. The core contribution of STAR is the novel quality indicator that can better highlight
the high-quality pseudo tokens for informed finetuning. Considering ASR tasks in different domains,
the high-quality pseudo tokens usually correspond to speech frames that are relatively high-quality
and easy to recognize. Therefore, highlighting the weights of such pseudo tokens may avoid bringing
in low-quality knowledge that may conflict with the existing knowledge embedded in the parameters
of the pre-trained speech foundation models, and thus prevent the catastrophic forgetting problem.
More study is expected for a deeper understanding of the mechanism behind it. Considering the focus
of this work as well as the space limit, we would like to leave this study to future work.

Iterability of STAR. As a self-training approach, STAR is iterable by repeating the process of
pseudo-labeling and informed finetuning. Table 12 reports the WER results with different numbers of
iterations using different model sizes and test sets. In most test sets, multiple iterations of STAR result
in further performance improvements. This indicates that while learning from pseudo labels, errors
also accumulate, thereby limiting the upper-bound of self-training. Additionally, the enhancement of
iteration is relatively larger in smaller models, e.g., 0.7% further WER reduction on Whisper-base.

F Dataset Domain Details

For dataset selection, our goal is to cover common scenarios of ASR tasks, which can be grouped
into three categories, i.e., background noise, speaker accents, and specific scenarios. Consequently,
we collect and employ the following datasets with evident domain characteristics to evaluate our
proposed approach. In addition, considering our proposed STAR adaptation is built on self-attention
matrix that focuses on global contextual correspondence, we filter out short utterances (i.e., with less
than 5 tokens) in some datasets for better and more efficient evaluation.

All the data used in this paper are publicly available and under the following licenses: the Creative
Commons BY-NC-ND 3.0 License, Creative Commons BY-NC-ND 4.0 License, Creative Commons
BY NC-SA 4.0 License, Creative Commons Attribution 4.0 International License, Creative Commons
(CC0) License, the LDC User Agreement for Non-Members, the TED Terms of Use, the YouTube’s
Terms of Service, and the BBC’s Terms of Use.
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Table 11: WER (%) results regarding catastrophic forgetting with SeamlessM4T-V2 and Whisper-
Medium.en as foundation models. “Frozen” denotes zero-shot performance, “Self-train.” denotes the
self-training baseline. “STAR” denotes that the model is adapted to CHiME-4 dataset using STAR
and then evaluated on other domains. This study is an extension of Table 2.

Model LS-FreeSound RATS CommonVoice TED-3 SWBD ATISbabble airport car af au in sg

SeamlessM4T-V2-2.3B
Frozen 54.0 30.1 5.1 92.7 1.8 1.7 0.8 1.1 16.3 25.9 4.3

Self-train. 52.6 30.5 5.4 92.5 2.1 2.2 1.6 1.8 15.5 26.5 4.3
STAR 44.3 28.5 5.1 88.1 1.8 1.7 1.6 1.6 10.7 21.4 3.5

Whisper-Medium.en-0.8B
Frozen 38.0 22.0 4.4 58.1 8.0 6.4 8.5 7.4 11.5 14.0 5.6

Self-train. 37.8 21.0 4.5 57.7 8.2 6.3 8.6 7.4 9.8 14.4 5.9
STAR 36.1 19.8 3.8 53.4 7.8 6.0 8.0 7.1 6.4 11.6 4.3

Whisper-Small.en-0.2B
Frozen 56.1 32.0 8.1 69.3 8.8 7.4 9.7 8.7 17.4 23.5 6.7

Self-train. 55.3 31.0 7.2 68.3 8.9 7.8 10.1 9.2 15.4 20.2 6.1
STAR 50.7 27.4 4.6 63.0 8.9 7.7 10.1 9.6 7.0 13.8 4.5

Whisper-Base.en-0.07B
Frozen 73.7 62.7 17.0 97.4 12.1 11.7 18.0 28.0 42.6 34.2 7.8

Self-train. 69.6 58.8 14.5 96.8 12.5 11.4 17.8 25.4 37.7 28.8 7.0
STAR 62.0 46.8 7.9 94.0 12.6 10.9 17.4 16.5 27.2 17.6 4.9

Table 12: WER (%) results of iterative STAR using different sizes of the Whisper ASR models. “#
Iterations” denotes the number of iterations of pseudo-labeling and STAR adaptation.

Model Test set # Iterations Real
0 1 2 3 4 5 label

large-v3

test-real

6.8 6.0 5.9 5.7 5.7 5.7 5.2
medium.en 8.9 8.0 7.9 7.9 7.8 7.8 7.1

small.en 12.7 10.6 10.3 10.3 10.3 10.3 9.0
base.en 34.4 17.7 17.2 17.2 17.0 17.0 16.1

large-v3

test-simu 9.9 9.4 9.3 9.0 8.9 8.9 8.7
dev-real 4.6 3.9 3.9 3.8 3.8 3.8 3.2
dev-simu 7.0 6.4 6.4 6.4 6.3 6.3 5.9

af 6.0 4.8 4.8 4.7 4.7 4.7 4.6
au 5.8 5.1 5.0 4.6 4.5 4.5 4.3
in 6.6 6.0 5.8 5.8 5.8 5.8 5.7
sg 6.5 5.1 5.1 5.1 5.1 5.1 4.9

F.1 Background Noise

CHiME-4 [83]: CHiME-4 is a popular dataset for far-field noisy speech recognition. It includes real
and simulated noisy recordings in four noisy environments, i.e., bus, cafe, pedestrian area, and street
junction. We use its tr05-real split (9,600 utterances) as the target-domain unlabeled training data, as
well as the test-real (1,320 utterances), test-simu (1,320 utterances), dev-real (1,640 utterances) and
dev-simu(1,640 utterances) splits for testing.

LibriSpeech-FreeSound [69]: LibriSpeech-FreeSound is a simulated noisy speech dataset for robust
speech recognition, which mixes the clean speech data from LibriSpeech train-clean-100 split [67]
and noise data from FreeSound dataset [22] at SNRs of 0, 5, 10, 15, 20, and 25 dB to simulate the
noisy speech data. We randomly select 5,000 long utterances (i.e., with more than 5 tokens) from
them as the target-domain unlabeled training data. For test set, they select 118 clean speech samples
from LibriSpeech test-clean split and mix them with FreeSound noise at SNRs of 0, 5, 10, 15, and 20
dB, where we select three noise types (i.e., babble, airport, car) at 0 dB for main experiments.
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RATS [26]: The Robust Automatic Transcription of Speech (RATS) dataset contains radio-
communication speech in the ultra high-frequency data category that is extremely noisy and chal-
lenging for ASR tasks. Its training data contains 43,112 noisy speech utterances, where we filter out
the low-quality samples and randomly select 5,000 long samples as training set. Its test set contains
7,591 utterances, where we randomly select 1,000 long samples for higher evaluation efficiency.

F.2 Speaker Accents

CommonVoice [1]: CommonVoice 5.1 is a freely available dataset for speech recognition. It
contains speech recordings from diverse speakers in over 60 languages. In this work, we employ the
English speech data in four different accents, including African, Australian, Indian, and Singaporean.
Specifically, we randomly select 7,885 long samples from its train-en split with accent labels, where
the training set contains 7,485 samples (1,902/2,000/2,000/1,583 for each accent) and the test set
contains 400 samples (100 for each accent). In our experiments, the model is finetuned on the entire
training set and then evaluated on each accent individually.

F.3 Specific Scenarios

TED-LIUM 3 [29]: TED-LIUM 3 is a dataset of speech recorded from TED Talks in multiple
languages. It contains a diverse range of background noise, speaker accents, speech topics, etc. To
better evaluate our method, we randomly select 6,000 long samples from its train split for our main
experiments, where the training set contains 5,000 samples and the test set contains 1,000 samples.

SwitchBoard [25]: The SwitchBoard corpus is a telephone speech dataset collected from conver-
sations between pairs of speakers. It focuses on North American English and involves over 2.4k
conversations from approximately 200 speakers. We randomly select 5,000 long samples from its
train split as the training data, and use its eval2000 split as the test data.

LRS2 [13]: Lip Reading Sentences 2 (LRS2) is a large-scale publicly available labeled audio-visual
dataset, which consists of 224 hours of video clips from BBC programs. We randomly select 6,000
long samples from its train split for our main experiments, where the training set contains 5,000
samples and the test set contains 1,000 samples.

ATIS [28]: Airline Travel Information System (ATIS) is a dataset comprising spoken queries for
air travel information, such as flight times, prices, and availability. It contains 3,964 samples in the
training set and 809 samples in the test set, which are recorded from over 500 speakers.

CORAAL [43]: The Corpus of Regional African American Language (CORAAL) is the first
public corpus of AAL data. It includes audio recordings along with the time-aligned orthographic
transcription from over 150 sociolinguistic interviews. We randomly select 2,950 long samples as the
training set and 500 samples as the test set.

Figure 8: Self-training process of humans. “✓" denotes the self-generated transcription with high
subjective confidence that will thus be selected for subsequent learning.

G Algorithm of STAR Adaptation
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Algorithm 1 Self-Taught Recognizer (STAR) adaptation.

Input: pre-trained speech foundation model f (s), target-domain unlabeled data X (t) = {x(t)
i }N(t)

i=1 .

Output: Target domain ASR model f (t).
Generate pseudo label {ŷ(t)i }N(t)

i=1 from X (t) using f (s).
repeat

for i = 1 to N (t) do
Collect confidence score {Cl}Ll=1 using Eq. (3).
Calculate attentive score {Al}Ll=1 using Eq. (5).
Calculate STAR indicator Sl using Eq. (8).
Finetune f (s) with {x(t)

i , ŷ
(t)
i } and Sl using Eq. (8)

end for
until ASR model f is converged.
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paper’s contributions and scope?

Answer: [Yes]
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Guidelines:
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our work does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3 and 4, Appendix F and G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the code in supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 3 and 4, Appendix F and G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [No]

Justification: Our experimental results are stable and do not need such statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4 and 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and conformed with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Section F.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have well documented the introduced assets in supplemental material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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