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Abstract

The Strong Lottery Ticket Hypothesis (SLTH) demonstrates the existence of
high-performing subnetworks within a randomly initialized model, discoverable
through pruning a convolutional neural network (CNN) without any weight train-
ing. A recent study, called Untrained GNNs Tickets (UGT), expanded SLTH
from CNNs to shallow graph neural networks (GNNs). However, discrepancies
persist when comparing baseline models with learned dense weights. Addi-
tionally, there remains an unexplored area in applying SLTH to deeper GNNSs,
which, despite delivering improved accuracy with additional layers, suffer from
excessive memory requirements. To address these challenges, this work utilizes
Multicoated Supermasks (M-Sup), a scalar pruning mask method, and imple-
ments it in GNNs by proposing a strategy for setting its pruning thresholds
adaptively. In the context of deep GNNss, this research uncovers the existence
of untrained recurrent networks, which exhibit performance on par with their
trained feed-forward counterparts. This paper also introduces the Multi-Stage
Folding and Unshared Masks methods to expand the search space in terms of
both architecture and parameters. Through the evaluation of various datasets,
including the Open Graph Benchmark (OGB), this work establishes a triple-win
scenario for SLTH-based GNNs: by achieving high sparsity, competitive perfor-
mance, and high memory efficiency with up to 98.7% reduction, it demonstrates
suitability for energy-efficient graph processing.

1 Introduction

Graph Neural Networks (GNNs) [1-5] have emerged as powerful models for graph-based learning
tasks. Within this field, both shallow GNNs [1-3] and deep GNNs [4, 5] hold significant presence,
each characterized by their distinct layers and intricate structural complexities. Their success
is attributed to the synergistic combination of the neighborhood aggregation scheme and weight
sharing. The neighborhood aggregation scheme effectively captures local graph structures and inter-
dependencies, while weight sharing enables GNNSs to generalize across nodes, extracting meaningful
features from large-scale graphs. Unfortunately, computational overheads increase rapidly when
fitting GNNss to large-scale graphs.

To decrease the computational burden, studies [6-9] have utilized the Lottery Ticket Hypothesis
(LTH) [10, 11] to identify graph lottery tickets, sparse subnetworks extracted from dense GNNs
that can perform comparably to the original models. Among them, [6—8] simultaneously simplify
the input graph and prune GNNs’ weights. These approaches belong to the Weak Lottery Ticket
Hypothesis (WLTH) [12—17], as they require weight re-training. On the other hand, the Untrained
GNNs Tickets (UGT) study [9] focuses on pruning GNNs’ weights and does not require any sub-
sequent weight training, adhering to the Strong Lottery Ticket Hypothesis (SLTH) [18-22]. This
paper primarily focuses on SLTH due to its potential as a hardware-friendly algorithm for GNNs.
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For one thing, SLTH allows transforming entire GNN computations into Sparse Matrix-Matrix
Multiplication (SpMM), potentially paving the way for a paradigm shift that eradicates the need for
GNN’s hybrid architectures [23, 24], which utilizes General Matrix-Matrix Multiplication (GeMM)
and SpMM engines. For another, SLTH can be leveraged for an efficient SLTH inference hardware
implementation [25], where random weights are generated on the fly instead of stored in memories.
Nevertheless, the application of SLTH in GNNs introduces two challenges:

1. For shallow GNNs such as GCN, GAT, and GIN, UGT [9] provides better accuracy than Edge-
Popup [11]. When observing the sparsity value of the weights varies from 0% to nearly 100%,
we find discrepancies persist when compared to baseline models trained using dense weights.
There is still a question for research: Is it possible to devise a better SLTH that maintains
high accuracy for shallow GNNs?

2. Concerning deep GNNs, UGT explores the implementation of SLTH on GCN, GAT, and GIN
by directly increasing the number of layers. However, a limitation is that these enlarged models
do not match the accuracy level of two-layer models. Concurrently, ResGCNs [4, 5] exhibit
improved accuracy with increased layer depth but need more memory consumption. Although
[7] explored WLTH on ResGCN+ [5], the SLTH has never been explored for them. Here are two
questions: First, is applying SLTH to deep GNNs feasible? Second, can we further enhance
model efficiency by reducing the size without compromising the high accuracy?

Inspired by recent works emerging around the SLTH, including multicoated supermasks (M-Sup) [22]
and folding methods [26, 27], this work exploits the SLTH on GNNs by implementing M-Sup on
GNNs and analyzes their effects. Furthermore, it adopts the folding method to optimize deep GNNs
such as ResGCNSs. The contributions of this paper are summarized as follows:

1. This research identifies a significant performance improvement in GNNs using M-Sup, i.e., with
solely using randomly initialized weights. By identifying high-performing subnetworks in their
random initial states, this work can surpass the performance of single-coated supermask (S-Sup),
e.g., UGT, and the accuracy of the dense-weight training baseline. Contrary to the WLTH, this
process does not need weight learning.

2. Based on M-Sup, the research analyzes the weight score distribution of GNN models and
proposes an adaptive strategy to determine pruning thresholds for different score distributions.
Experiments show its advantage in terms of accuracy.

3. This paper is the first time to demonstrate the existence of untrained recurrent graph subnet-
works within deep GNNs, exhibiting comparable performance to their trained feed-forward
counterparts. Furthermore, this study introduces the Multi-stage folding (MSF) and Unshared
Mask methods designed for a broader search space within the domains of network structure
and weight scores. By capitalizing on the signed Kaiming Constant (SC) initialization without
weight training, ResGCN+ and DyResGEN models [5] achieve memory reductions of 72% and
98.7%, respectively, while maintaining an accuracy comparable to the baseline models.

2 Related Work
2.1 Graph Neural Networks

GNNs have demonstrated state-of-the-art performance on graph-structure tasks [1-3, 28-30]. After
GCN [1] proposed a two-layer GNN for node classification, more GNNs such as GAT [2], GIN [3],
GraphSage [28], PNA [29], and DiffPool [30] were put forward. Given an undirected graph G =
{V, &}, where V is a set of nodes and & is a set of edges, there are || nodes, and each node has
a feature vector z; € R, where I is the number of a node feature. The adjacency matrix is
A € RIV*VI and node features are X € RIVI*F | A typical 2-layer GNN can be defined as

G® (121, X, W) = softmax (/10 </1XW(O)) W(l)) , €))

where W () and W () are learnable weights for two layers, A=D" 2 (A+1) D~ 2 is the normal-

ized adJacency matrix, and D is the degree matrix of A. In addition, softmax is the softmax function,
and o (+) is an activation function.



Despite GNNs having seen rapid and substantial progress, most prior studies still employ shallow
structures. Unlike CNNs, GNNs suffer from vanishing gradient and over-smoothing [31] when going
deeper. Inspired by the benefit of training deep CNN-based networks [32, 33], ResGCN variants [4, 5]
were developed by adopting residual connections and dilated convolutions to GCNs. They solve the
degradation problem and outperform traditional shallow GNNs. Moreover, the development of deep
GNNss has also benefited from techniques like dropping DropEdge [34] and DropNode [35], as well
as normalization methods [36, 37].

2.2 Weak and Strong Lottery Ticket Hypothesis

A breakthrough paper [10] revealed Lottery Ticket Hypothesis (LTH), which showed that an over-
parameterized neural network contains a subnetwork that can be trained in isolation to match the
original models. Similar studies have quickly developed into two groups: Weak Lottery Ticket
Hypothesis (WLTH) and Strong Lottery Ticket Hypothesis (SLTH). For WLTH, the subnetworks
need iterative training, pruning, and resetting the remaining weights to their original value. After
LTH has shown its potential capability, other studies focused on the early training stage [12] or even
before training [13—17]. Not limited to CNNs, GLT [6] was the first study to generalize WLTH to
GNNs. Later, DGLT [7] explored transferring a random ticket to a graph lottery ticket. GLT [8]
proposed a new auxiliary loss function to guide pruning better when the graph sparsity is high. On
the other hand, the SLTH [18] revealed that an overparameterized network has high-performing
subnetworks at a randomly initialized state, only needing pruning to be discovered. After that, a
series of papers [19-22] added theoretical proof to the theory on CNNs. For the GNN field, distinct
from [6-8], UGT [9] achieved competitive accuracy without any model weight training.

2.3 Hidden-Fold Network

The folding method can convert deep feed-forward networks into shallow recurrent models, which
is applied in ResNets [32]. A range of studies [26, 38, 39] showed that ResNets can be closely
approximated as unrolled shallow recursive neural networks, attributing the benefits of additional
layers to recursive iterations. In particular, [39] demonstrated that the accuracy is only marginally
impacted when folding ResNet into a 4-layer model. Building on this concept of folded networks,
[27] pioneered the exploration of SLTH in folded residual networks. This approach was subsequently
enhanced by [26] without causing a significant loss. A blend of SLTH with folded networks is called
Hidden-Fold Network (HFN)[26, 27].

3 Multicoated and Folded GNNs
3.1 Single-coated Supermask (S-Sup) in strong GNN tickets

UGT [9] utilizes Edge-Popup [11] method by applying S-Sup to acquire strong tickets from a GNN.
Givena g (A, X, W) , UGT formulates the weight matrix of layer [ as follows

wO =wh onSY),HESD) e {0,1}, @)

where © signifies the Hadamard product operator, Wr(?iz1 q denotes random tensors for weights, H is

the binary supermask generation function, and S() is the underlying score for a specific layer. Each
element h(s,,) in H(S®) is defined as

L, [Suv| > Sthreshold
h(s _ s [Suv| Z resho (3)
( uﬂ) {0 7|Suv| < Sthreshold ’

where the s, is the score corresponding to a weight value in WO e RIV*VI and S¢nreshold 1S @
threshold. The s¢p eshold 18 based on a predetermined sparsity value k£%. This value aids in pruning
the smallest k% of the scores |s,,| € SU.

3.2 M-Sup with adaptive threshold for GNNs

Building on the prior work [22], which applies M-Sup to ResNet, this study expands M-Sup to GNNs
without requiring weight training. After applying one supermask with multiple coats, the weight
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Figure 1: A GNN with the M-Sup method: (a) shows how to apply M-Sup to a GNN. Weights are
randomly initialized to 6, where J is the standard deviation of the Kaiming normal distribution. (b)
illustrates weight score distributions of GNN models. 256-2-GCN has 256 hidden neurons and two
layers used on Cora, and 386-4-GCN has 386 hidden neurons and four layers used on OGBN-Arxiv.
Sty Sty St, are the thresholds with the Linear method.
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K is a set of sparsity values, corresponding to N coats, where k1 < ko < ... < ky. Here, the latter
coat is more sparse than the previous one. Each value k,, in the set K is determined by threshold s;, ,

which results in pruning k,, % of S) based on |s,,| < s;, . This process is illustrated in Figure 1.

Adaptive threshold. This study proposes an adaptive method to define K for M-Sup. [22] proposed
Linear and Uniform methods to set the sparsity K. The Linear method defines s;, = s¢, + 305 X "T’l,
where s;, is the threshold score corresponding to sparsity k;, and o refers to the standard deviation
of the normalized weight scores. The Uniform method directly defines k,, = k1 4+ (100% — k1) x "5+
In a practical implementation, the Linear method proved less effective. As depicted in Figure 1b,
the weight score distribution for a 385-4-GCN model is suitable for the Linear method, with three
effective values s;, < 1.0, but for a 256-2-GCN model, the weight score distribution becomes
multimodal, presenting a challenge. In this specific case, both s;, and s;, equate to 1.0, making the

respective coats ineffective. The situation will further deteriorate if UGT’s linear decay schedule [9]
is applied, where sparsity list are IC; = IC- ﬁ;{tl“i‘*"}“‘, and /3 is an empirical hyperparamete. These
otal epochs
meaningless coats disrupt training by pruning partial weights since they do not begin at 100% in the

training phase, leading to potential problems in the model’s performance.

Therefore, for the Linear threshold, an adaptive determination for s;  corresponding to k,, € K is
proposed as follows:

30 . .
i, = {5t1 + % x (n—1), (b} , Linear (w/ pre-training) 5)
The method works as follows: when provided with a pre-trained single-coat model, it utilizes the
Linear method to calculate s, , but only if s;, is smaller than c. o is an empirical hyperparameter
with a value of 0.9996. Otherwise, it is defined as ¢, which means the coat is invalid. If no pre-trained
models are available, the method uses a uniform approach to directly calculate k,,.

3.3 Folded GNN

Hidden-Folded GNN. Based on typical deep GNNs such as ResGCNs [4, 5], this work folds residual
blocks into a single recurrent block. This transformation is represented in Figure 2. This study reuses
a general graph convolution operation F [4] with learnable parameters, including weights. Based on
the folding structure, this paper also implements S-Sup and M-Sup. The corresponding formulas are
as follows:

GW = F (GO, W) 4 g©®
: WED — =@ — O g Z H(S©O, k).

G = F (gU-1, W=D 4 gi- et
(6)

Furthermore, the multi-folding stages (MFS) and Unshared Masks methods are proposed to explore
optimized hidden-folded GNNs. The former expands multi-folding stages from the model architecture
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Figure 2: Folded GNN: a ResGNN can be folded into a recursive structure like a 1-stage or an n-stage
MSF. Shared masks have a set for each stage and are reused as often as the number of iterations for
one stage. Unshared masks are used only once, with individual masks for each iteration.

Algorithm 1 Initialization and Inference about Folded GNN

1: Inmput: [-layer , m-stages , iterations r = %, sparsity list K = kq, ..., kn
#If enable SSE, m = 1; otherwise, m > 1 for MSE.

2: Output: Features of the last layer: G

3: if Enable Unshared Masks then

4:  Create [ sets of scores: S = {S(@ M) ... sU-U}

5: else

6:  Create m sets of scores: S = {S(O), S, ~,S(m’1)}

7: end if

8: fori =0tol —1do

9:  Calculate the index of a reused layer: j = i//r

10:  if Enable Unshared Masks then

1 W = WI‘(;I)ld O Dk, ex H(SD, kn)

12:  else ) 4

13: W(l) = Wrajmd © Zk,LEIC H(S(])7 kn)

14:  endif _ _ _
15:  Calculate the output of the current layer: G*! = F; (g ), W(l))
16: end for

17: Return G

perspective and the latter from the weight scores perspective. They are outlined in Algorithm 1 and
can be implemented individually or combined - e.g., MSF structures can be used in conjunction
with unshared masks. The pseudocode for applying SLTH with the proposed methods is provided in
Appendix E.

MSF method. In this approach, continuous stages are folded into multi-stage m, producing m graph
mappings denoted as {Fy, F1,...,Fm—1}. Given an I-layer and m-stages, each graph mapping
block is utilized % times. If [ is not a multiple of m, the integral division part of the blocks is reused,
and the remainder part of the blocks is left unfolded. When m = 1, it is single-stage folding (SSF).

Shared and Unshared Supermasks. In contrast to shared supermasks, unshared supermasks are
individually applied to each iteration. SSF structures with shared supermasks, a set of supermasks
anelc H (S k,), is shared across each iteration. In the unshared approach, [ sets of scores
are created, denoted as Y, o H(S©@ kn) -3, H(SUY, ky,), which are then deployed
individually in each iteration.



4 Experiments and Discussions

This section describes experiments using various GNN architectures and datasets to assess the
effectiveness of the proposed methods.

GNN Architectures. For shallow GNNs, this study utilizes GCN [1], GAT [2], and GIN [3]. For
deep GNNs, ResGCNss [5] are used, including a 7-layer DyResGEN and a 28-layer ResGCN+.

Datasets. The experiments uses three widely used graph datasets, Cora, Citeseer, and PubMed [1],
and the large-scale graph dataset OGBN-Arxiv [40] for node-level tasks (metric: Accuracy%).
Additionally, the research adopts OGBG-Molhiv and OGBG-Molbace [40] for graph-level tasks
(metric: ROC-AUC%). Node-level tasks involve predicting properties or characteristics at the
individual node level within a graph. Graph-level tasks focus on predictions about the graph structure.

Experimental settings. During training, this study employs two weight initialization methods as [11]:
Signed Kaiming Constant (SC) and Kaiming Normal (KN). Both methods utilize a scaling factor of

1/(1 — k1), defined according to the sparsity parameter k. Kaiming Uniform (KU) initialization is
applied to weight scores. Through the experiments, SC performs better than KN in the S-Sup method,
consistent with results reported in [22]. Detailed findings are in Appendix B. Since the SC is well-
suited to a specialized SLTH inference accelerator [25], we prefer using the SC method. For graph-
level tasks, the weights of an embedding list, denoted by {W; € RV >M ... W, € RN»xM1
are also initialized with the SC method. We set the weight scores as a vector in R*** rather than
the same size of weights. It is applied to the look-up table’s final output row by row, resulting in
a memory-efficient compression. For sparsity scheduling, the experiments adopt a linear decay
schedule as UGT [9]. Further implementation details are provided in Appendix A.

Model Compression Scheme. This article discusses the memory sizes of models, taking into
account a particular compression method tailored for specialized hardware. Weights and biases
are considered to occupy 32 bits each. However, it is not required to store the weights if they
are initialized in an SC manner, as they can be generated on the fly from the original seed using
a random number generator. Additionally, this seed can be replaced with a hash of other model
parameters [25], eliminating the need to store it. As a result, the memory requirement for models
employing supermask training consists solely of the supermask’s size, equating to one bit per weight

for the S-Sup and (1 + ZN_l k) bits per weight averagely for M-Sup with N coats, in addition to

n=1
the affine normalization parameters, bias and other things that a model may use.

4.1 M-Sup finds better graph lottery tickets than S-Sup

This subsection evaluates shallow and deep GNNs in node- and graph-level tasks. As the weight
sparsity varies, the findings show the distinct advantage of M-Sup over S-Sup while achieving
comparable accuracy as the baseline models, which use dense-weight learning (DWL).

Shallow GNNs in node- and graph-level tasks. For node-level tasks, we adopt 2-layer GNNs on
Cora, Citeseer, and PubMed datasets, and 4-layer GNNs with affine batch normalization (BN) on
OGBN-Arxiv. For graph-level tasks, we use a 3-layer GCN with embedding lists on OGBG-Molhiv
and OGBG-Molbace.

Figure 3 (a) shows the difference in accuracy between using an adaptive Linear threshold (o« = 0.9996)
and a non-adaptive Linear threshold (ac = 1.0). Experiments show the adaptive Linear threshold is
better when sparsity > 80%, because some ineffective coats appear in a non-adaptive Linear threshold.
Other GNNs’ experiment results are provided in Appendix C. The adaptive Linear threshold is used
in the following experiments.

The performance of GCN, GAT, and GIN on node-level tasks is illustrated in Figure 4. When sparsity
is near 0%, M-Sup outperforms S-Sup’s accuracy. As the sparsity increases from 0% to 20%, although
the S-Sup approach sees a sharp accuracy increase, it still trails behind M-Sup. M-Sup maintains
consistent accuracy without apparent drops, even with high sparsity (80 ~ 90%). S-Sup models
show better accuracy in the 20%-75% sparsity range than other ranges, occasionally even achieving
comparable accuracy as DWL models. Based on these GNN models, Figure 3 (b) visualizes the
node representations learned by M-Sup and S-Sup. The projection of node representations learned
by M-Sup maintains a distinguishable effect. Moreover, the phenomenon persists when fixing the
layer and adjusting the number of hidden neurons, especially at lower sparsity values. The results are



detailed in Appendix D. GCN’s performance on graph-level tasks is shown in Figure 5 (a) and (b).
M-Sup outperforms S-Sup and can achieve accuracy comparable to a dense-weight learning model.
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Figure 3: Advantages of adaptive Linear threshold and M-Sup methods: (a) shows the difference in
accuracy between adaptive Linear threshold and no-adaptive Linear threshold for 3 GNN models on
Citeseer. (b) shows the T-Distributed Stochastic Neighbor Embedding (TSNE) visualization of node
representations learned by S-Sup and M-Sup (sparsity is 15%).
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Figure 4: The accuracy of GCN, GAT, and GIN with various sparsity values on four datasets:
experiments use 2-layer GNNs of width 256 for the Cora, Citeseer, and Pubmed datasets. For the
OGBN-Arxiv datasets, a 4-layer GNN with a width of 386 is used, and affine BN is applied. The
head of GAT is 1 for the following experiments.

Deep GNNs in node- and graph-level tasks. We evaluate the method on deep GNNs on both node-
and graph-level tasks. Specifically, we employ a 28-layer ResGCN+ for the OGBN-Arxiv dataset
and a 7-layer DyResGEN for the OGBG-Molhiv dataset. The numbers of coats N = {3, 5} with the
Linear threshold. As shown in Figure 5 (c) and (d), M-Sup N = {3, 5} surpasses the performance of
S-Sup. However, the difference in accuracy between N = 3 and N = 5 is not apparent.

In addition, comparing the Uniform threshold and Linear threshold, Figure 4 shows no apparent
difference on Cora, Citeseer, and Pubmen. On OGBN-Arxiv with GAT, the Linear threshold outper-
forms, but the Uniform threshold is better with GCN and GIN. The superior approach potentially
depends on the neural networks and datasets being used.

4.2 Deep GNNs are folded with SLTH

This subsection explores applying folding methods, including MSF and unshared masks, to deep
GNNSs. Our results demonstrate that folding methods in combination with SLTH can attain accuracy
comparable to the original feed-forward counterparts while enhancing memory efficiency.
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Figure 5: Accuracy of GNN models across various sparsity values with M-Sup (N = {3,5}) and
S-Sup (N = 1, UGT [9]): (a) and (b) depict shallow GNNs utilizing a 3-layer GCN with a width of
448. (c) and (d) are about deep GNNs, where (c) shows a 7-layer DyResGEN on OGBG-Molhiv, and
(d) focuses on a 28-layer ResGCN+ applied to OGBN-Arxiv.
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Figure 6: Comparison of accuracy and memory reduction between deep GNNs and DWL models:
The figure illustrates using M-Sup (/N = 3, 5, 7) and S-Sup (N = 1) for ResGCN+ and DyResGEN.
SSF-DWL represents folding the original model into a single stage with dense-weight learning. The
number of hidden neurons are 128 for ResGCN+ and 256 for DyResGEN.

Single-stage folding method with shared masks shows comparable accuracy and high memory
efficiency. This study evaluates the single-stage folding (SSF) method with shared masks on deep
GNNs and compares their accuracy and memory reduction with the baseline dense-weight leaning
(DWL) models. As depicted in Figure 6, M-Sup consistently outperforms S-Sup regarding accuracy
across all folded models. In M-Sup, ResGCN+ models employing SSF-Shared achieve competitive
accuracy on OGBN-Arxiv, with more than 97% memory reduction. DyResGEN models using
SSF-Shared surpass baseline models in accuracy on OGBG-Molhiv, with a 98% memory reduction.

Unshared masks outperform shared masks with both MSF and SSF methods. Likewise, the MSF
method outperforms SSF with both shared and unshared masks. Furthermore, to evaluate the
effectiveness of the unshared and MSF, this work applies them to deep GNNSs. Specifically, unshared
masks are utilized in ResGCN+ and DyResGEN, while MSF is applied to the 28-layer ResGCN+,
which is suitable to be folded into four stages (S = 4). In the case of the ResGCN+, experiments are
segmented into four groups, each characterized by different {folding, sharing} configurations. Within
each group, one of the settings remains constant while the other is altered, accommodating both
S-Sup and M-Sup (N = 3, Linear). For DyResGEN, experiments are segmented into two groups,
which have distinct {sharing} configurations. A comparative analysis reveals that the unshared mask
method outperforms the shared mask method in SSF and MSF, as illustrated in Figure 7.a, Figure 7.b
and Figure 7.e. Likewise, in contrast to the SSF method, the MSF method outperforms in shared and
unshared mask configurations, as depicted in Figure 7.c and Figure 7.d.

Although unshared masks and MSF enhance accuracy, they result in an increase in both memory and
parameters. This creates a trade-off which will be discussed in the following subsection.

4.3 Trade off between the parameter count, memory size, and accuracy

Optimized GNN models show high memory efficiency with competitive performance. When consid-
ering the MSF and unshared mask methods, scores are increased compared to the SSF and shared
mask methods. Although the model size increases in MSF and unshared mask methods, the additional
parameters are only single-bit, and the accuracy is improved. This subsection explores this trade-off
by evaluating optimized GNNs on OGBs.



ResGCN+ on OGBN-Arxiv DyResGEN on OGBG-Molhiv

70 == 781 o=,

3 N ! \\1
< 65 e
I+ <74
< 60 9
o
g HE
Fss 5 5 55 70
"I‘ —e— SSF-Shared (N=1) —— MSF-Shared (N=1, S=4) —— Shared-SSF (N=1) \ —— Unshared-SSF (N=1) 2 —»— SSF-Shared (N=1)
g- —e— SSF-Unshared (N=1) —— MSF-Unshared (N=1, S=4) —e— Shared-MSF (N=1, S=4) 501 —*— Unshared-MSF (N=1, S=4) 681 —e— SSF-Unshared (N=1)
F= 501 —»— SsSF-Shared (N=3) 501 —s— MsF-Shared (N=3, 5=4) 507 o Shared-SSF (N=3) —e— Unshared-SSF (N=3) 66 —e— SSF-Shared (N=3)

SSF-Unshared (N=3) MSF-Unshared (N=3, S=4) Shared-MSF (N=3, S=4) 45 Unshared-MSF (N=3, S=4) SSF-Unsahred (N=3)

100 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0 25 50 75
Weight Sparsity (%)
& ) ®) © (@ ©

Figure 7: 28-layer ResGCN+ and 7-layer DyResGEN with different folding methods on the OGBN-
Arxiv and OGBG-Molhiv datasets: (a)-(d) ResGCN+. and (e) DyResGEN. (a) SSF, Shared and
Unshared masks; (b) MSF, Shared and Unshared masks; (¢) Shared Mask, SSF and MSF; (d)
Unshared Mask, SSF and MSF; (e) SSF, Shared and Unshared masks.

Figure 8 compares the accuracy, memory size, and parameter count of various models across different
datasets. For DyResGEN in OGBG-Molhiv, SSF-Shared models are the most parameter-efficient and
memory-efficient. Compared to a 7-layer DyResGEN, these models achieve a parameter and memory
reduction, with 79.9% fewer parameters and 98.7% less memory, while maintaining comparable
accuracy. Conversely, SSF-Unshared models require more parameters and memory but can achieve
slightly better accuracy. The optimized 3-layer GCN on OGBG-Molhive also achieves comparable
accuracy to the baseline model with a 95.8% memory reduction. For ResGCN+ on OGBG-Arixv, this
study investigates two hidden neurons, 128 and 256, and utilizes M-Sup with N-values of 1, 3,5,7
with SSF and MSF (stage = 4) structures. Supermasks are applied in both shared and unshared
manners. Among them, the SSF-Shared-128 models with S-Sup achieve a 77.9% reduction in
parameters and a 97.9% reduction in memory, albeit with an accuracy 2.8% lower than the 28-Layer
ResGCN model. In contrast, SSF-Unshared-256 and MSF-Unshared-256 models with S-Sup attain
a 72% memory reduction while maintaining accuracy comparable to the 28-Layer ResGCN model.
Exact performance is also shown in Appendix H. Within this space, various choices emerge, offering
multiple candidates for balancing trade-offs between memory, parameters, and performance.
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Figure 8: Comparison of the optimized GNN models with different methods on OGBs: optimized
ResGCN+ models include {128,256} hidden neurons, S-Sup (N = 1, UGT), M-Sup (N = {3,5,7},
Linear threshold), shared and unshared masks. ResGCN+ DWL are baseline models with dense-
weight training; their depths contain {2,3,5,7,10, 14,20, 28}. Optimized DyResGEN models
contain S-Sup (N = 1, UGT), M-Sup (N = {3,5}, Linear method), shared and unshared masks.
DyResGEN baseline model uses {1, 5, 7} layers with dense-weight training. Optimized GCN model
with three layers contains S-Sup (N = 1, UGT), M-Sup (N = 3, Linear method), and shared masks.

5 Conclusion

To enhance the performance of GNNs based on strong lottery tickets, we first applied multicoated
supermasks to GNNs with adaptive thresholds. This approach surpasses the previous SLTH method,
named UGT. We further reveal the existence of untrained recurrent subnetworks within deep GNNs.
By employing Multi-stage Folding and Unshared Mask methods, we explore a larger search space
for deep GNNs, achieving significant memory reduction while maintaining an accuracy comparable
to the baseline models. These findings are supported by experiments on widely-used GNN models,
encompassing diverse datasets, including the Open Graph Benchmark (OGB). This work contributes
to energy-efficient graph processing.
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A Implementation details

In this paper, experiments about shallow GNNs, including 2 and 4-layer GCN, GAT, and GIN, are
conducted on 1 TESLA V100 GPU (32GB). Experiments about deep GNNs, including 28-layer
ResGCN+ and 7-layer DyResGEN, are implemented on 1 NVIDIA RTX A6000 (48GB). Five
independent repeated runs are implemented in all the results reported in this paper, except 28-layer
ResGCN+, which uses three repeated runs. The average value and standard deviation of accuracy
are based on these independent runs. We follow [1, 4, 5, 9] to train dense GNN models as baselines.
For training GNNs with SLTH, the hyper-parameter configurations are summarized in Table 1 and
Table 2.

Table 1: Hyperparameters for Shallow GNNs with SLTH

Dataset Cora | Citeser | Pubmed | OGBN-Arxiv | OGBG-Molhiv | OGBG-Molbace
GNN GCN, GAT, GIN GCN

Depth 2 2 2 4 3 3
Epochs 400 400 400 400 200 200
Learning Rate 0.01 0.01 0.01 0.01 0.04 0.015
#Hidden neurons 256 256 256 386 448 448
Optimizer Adam | Adam Adam Adam Adam Adam
Weight decay 0.0 0.0 0.0 0.0 0.0 0.0

Batch size - - - - 512 64

Table 2: Hyperparameters for Deep GNNs with SLTH

Dataset OGBN-Arxiv OGBG-Molhiv
GNN ResGCN+ DyResGEN
Depth SSF, MSF (stage = 4) SSF
Epochs 500 300
Learning Rate 0.01 0.016
#Hidden neurons 128, 256 256
Optimizer Adam Adam
Weight decay 0.001 0.0
Batch size - 512

For the train-val-test split of the datasets, we follow [9] by using 140 (Cora), 120 (Citeseer), and 60
(PubMed) labeled data for training, 500 nodes for validation and 1,000 nodes for testing. We follow
[40] for splitting OGBN-Arxiv dataset. For OGBG-Molhiv, we use 32,901 graphs for training, 4,113
for validation, and 4,113 for testing. For OGBG-Molbace, we use 1,210 graphs for training, 151 for
validation, and 152 for testing.

Compared with other pruning methods such as GLT [8] and HGS [7], our proposal does not need to
do the fine-tuning or retraining of weights post-pruning, which reduces training time. Specifically,
the HGS demands an extra 200 epochs for fine-tuning a shallow GCN on datasets including Cora,
Citeseer, and Pubmed after its regular training of 500 epochs.

B Initilization methods for weights

Figure 9 shows the accuracy of GCN, GAT, and GIN on four datasets with different initialization
methods. As the figure shows, Singed Kaiming Constant (SC) outperforms Kaiming Normal (KN)
when GNNs are applied with S-Sup, and the SC is slightly better than KN when GNNs are used with
M-Sup.

C The adaptive Linear threshold and non-adaptive Linear threshold

Experiments evaluate GCN, GAT, and GIN on Cora, Citeseer, and Pubmed datasets with the adaptive
Linear threshold (o = 0.9996) and the non-adaptive Linear threshold (o = 1.0). In Figure 10, results
show when the sparsity becomes high, the adaptive Linear threshold outperforms.
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Figure 9: The accuracy of GCN, GAT, and GIN on Cora, Citeseer, Pubmed, and OGBN-Arxiv
datasets with SC and KN initialization methods: the models are 256-2-GNN for Cora, Citeseer, and
Pubmed, and 386-4-GNN for OGBN-Arxiv with affine batch normalization.
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Figure 10: The accuracy of GCN, GAT, and GIN on Cora, Citeseer, Pubmed, and OGBN-Arxiv
datasets with different Linear thresholds: the red line is for the adaptive threshold, and the blue line is
for the non-adaptive threshold.

D Increasing hidden neurons with S-Sup and M-Sup

Experiments evaluate GCN, GAT, and GIN on Cora, Citeseer, and Pubmed datasets with different
hidden neurons. The results are shown in Figure 11. As the number of hidden neurons increases, the
accuracy improves. In addition, the M-Sup method still outperforms better than S-Sup.

E Pseudocode for Training

The pseudocode about training weight scores is shown in Algorithm 2.
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Figure 11: The accuracy of GCN, GAT, and GIN on Cora, Citeseer, and Pubmed datasets with
different hidden neurons: experiments set different hidden dimension sizes in 2-layer structures, and
the sparsity value is 10%.

Algorithm 2 Multicoated and Folded GNN with SLTH

1: Input: a GNN G (121, X, Wrand), learning rate )\, hyperparameters for M-Sup and Folding
networks: sparsity list = {kq, ..., ky } with scores S, m-stages, flagnisr, flagshared-
2: Output: G (21, X, Weand © Y e H(S, k)), Yy

3: Randomly initialize weights W, .4 and Supermasks S based on m-stages, flagyisy, flagshared
as Algorithm 1.

4: for Iter. t = 1to T do

5:  #Get the current sparsity list based on the current epoch, Linear decay schedule as UGT [9]

6. ift < 0.57 then

7.

8

Ki=K- %
: else
9: ICt:IC

10:  end if
11:  #Use the global threshold value based on current K;, and generate the binary masks for weights

122 W= Weand ® Zke,ct H(S, k)

13:  #Update scores S

14: S:S—)\VSE(Q (A7X7 WrandGZke)CtH(S’k)>)
15: end for

16: Return G (A, X, Wreand © Y _pexc H (S, k)), Y

F Small and large sparsity levels for shallow and deep GNNs

To explore the effectiveness in regions of small and large sparsity levels for GNNs, we sampled 1%,
3%, 5%, 7%, and 9% data points at the low sparsity level and 91%, 93%, 95%, 97%, and 99% at the
high sparsity level. The Table 3 shows shallow and deep GNNs’ performance with M-Sup and S-Sup
methods. Moreover, single-stage folding (SSF), multi-stage folding (MSF), Shared supermasks,
and Unshared supermasks are also explored. We found that the S-Sup method shows a noticeable
accuracy deviation at low sparsity levels compared to the dense weight learning model. For instance,
ResGCN+ (SSF, Shared) using the S-Sup method has an accuracy gap of roughly 16%. In contrast,
the M-Sup method improves accuracy by 13% when sparsity is close to 1%. Utilizing the MSF
method with both S-Sup and M-Sup methods increases accuracy, with improvements ranging from
1% to 4% for ResGCN+. At high sparsity levels (above 90%), the M-Sup and S-Sup methods see
marked reductions in accuracy.

G More datasets for DeepGNNs

In addition to OGBN-Arxiv and OGBG-Molhiv, we assessed our proposed methods on three more
datasets: Cora, Pubmed, and OGBG-Molbace. Five independent repeated runs are implemented. The
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Table 3: Accuracy (%) of models in low (< 10%) and high (> 90%) sparsity levels

Models Weight Sparsity(%) 1 3 5 7 9 91 93 95 97 99
ResGCN+, OGBN-Arxiv S-Sup 55.89 | 56.80 | 55.85 | 57.87 | 58.27 | 61.87 | 58.13 | 57.47 | 52.91 | 47.11
SSF, Shared M-Sup 67.38 | 67.34 | 66.64 | 66.57 | 66.83 | 62.32 | 61.22 | 57.81 | 56.65 | 43.82
ResGCN+, OGBN-Arxiv S-Sup 58.26 | 57.61 | 59.57 | 59.19 | 60.81 | 63.22 | 61.93 | 62.17 | 57.71 | 51.52
MSF(4), Shared M-Sup 69.54 ] 68.62 | 67.73 | 68.75 | 67.88 | 64.30 | 62.30 | 61.13 | 57.64 | 52.24
DyResGEN, OGBG-Molhiv S-Sup 74.41 | 71.15 | 72.70 | 73.27 | 71.90 | 74.10 | 75.51 | 72.39 | 72.22 | 70.58
SSF, Shared M-Sup 7823 | T7.19 | 77.16 | 76.64 | 77122 | 77.24 | 75.68 | 75.19 | 73.41 | 70.93
DyResGEN, OGBG-Molhiv S-Sup 73.10 | 72.47 | 71.36 | 72.57 | 73.26 | 77.26 | 76.51 | 74.36 | 75.48 | 74.05
SSF, Unshared M-Sup 79.23 7826 | 78.71 | 7590 | 7779 | 76.77 | 75.33 | 76.86 | 76.49 | 74.32
3-Layer GCN, OGBG-Molhiv, S-Sup 71.76 | 70.47 | 69.01 | 69.20 | 69.64 | 75.43 | 75.20 | 74.90 | 74.54 | 70.86
Shared M-Sup 74.76 | 76.66 | 74.05 | 75.81 | 7498 | 75.69 | 75.90 | 75.14 | 7434 | 72.74
3-Layer GCN, OGBG-Molbace, S-Sup 76.24 | 75.80 | 75.28 | 75.79 | 74.70 | 77.40 | 77.34 | 75.44 | 76.08 | 73.60
Shared M-Sup 7833 | 7878 | 77.85 | 78.51 | 80.52 | 79.17 | 78.15 | 79.86 | 73.07 | 71.76

Note: Here are the accuracy of dense-weight learning models. ResGCN+ on OGBN-Arxiv: 71.92+0.16%,
DyResGEN on OGBG-Molhiv: 78.58+1.17%, 3-layer GCN on OGBN-Molhiv: 77.4£1.24%, 3-layer GCN on
OGBG-Molbace: 78.3+1.59%.

OGBG-Molbace dataset is about a graph-level task, and the Cora and Pubmed datasets are about
node-level tasks. We investigated proposed deepGNN techniques, including M-Sup, Single-Stage
Folding (SSF), Multi-Stage Folding (MSF), and both shared and unshared supermasks.

Figures 12 (a) and (b) compare Shared and Unshared supermasks for the Cora and Pubmed datasets,
respectively. The results suggest that using Unshared supermasks can enhance accuracy. Figures
12 (c) and (d) contrast SSF with MSF for the same datasets, indicating a performance boost when
employing MSF. Lastly, Figure 12 (e) compares S-Sup and M-Sup on the OGBG-Molbace dataset,
revealing better performance of M-Sup over S-Sup.

ResGCN+ on Cora ResGCN+ on Pubmed o ResGCN+ on Cora ResGCN+ on Pubmed DyResGEN on OGBG-Molbace

—e— Shared_SSF_S-Sup —— Shared_MSF_M-5up (N=3, 5=4) © —»— Unshared_SSF_S-Sup o] | —e— Unshared_SsF_M-Sup (N=3) s0 —— Shared_SSF_S-Sup
—e— Unshared_SSF_S-Sup —e— Unshared_MSF_M-Sup (N=3, 5=4) —e— Unshared_MSF_S-Sup (5=4) —— Unshared_MSF_M-Sup (N=3, 5=4) —e— Shared_SSF_M-5up (N=3)
@ w10 © @ 0 4w @ & 10

|
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Figure 12: The accuracy of ResGCN+ and DyResGEN on Cora, Pubmed, and OGBG-Molbace
datasets: (a) ResGCN+ on Cora with shared and unshared supermasks. (b) ResGCN+ on Pubmed
with shared and unshared supermasks. (¢) ResGCN+ on Cora dataset with SSF and MSF methods.
(d) ResGCN+ on Pubmed with SSF and MSF methods. (e) DyResGEN on OGBG-Molbace with
S-Sup and M-Sup methods.

H Exact performance about optimized SLT-GNN models

The Table 4 presents the performance of both shallow and deep GNNs across various datasets. For
GNNs employing SLT, M-Sup consistently surpasses S-Sup in accuracy. This is particularly noticeable
for shallow GNNs, which achieve accuracy levels similar to DWL models. When integrated with
unshared supermasks and the multi-stage folding (MSF) technique, the deep GNNs can also rival the
accuracy of DWL models. In terms of memory size, our optimized models boast significant memory
reductions. For instance, MSF-Unshared-256 achieves a 72% memory reduction while retaining
comparable accuracy. The folding method also contributes to parameter reductions, with the SSF-
Shared DyResGEN model achieving a 77.9% reduction. For inference MACs (multiply—accumulate
operations), we focus on the linear layer components as they are optimized using SLT. The reduction
in MACs corresponds to the sparsity level: for example, GIN can be reduced by 90% and ResGCN+
by 40%.

I Discussion the differences between proposed methods and other
quantization methods

Considering we only use un-quantized DWL models and S-Sup models as baselines, we further discuss
the differences between our methods and quantization techniques. Quantization techniques can be
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Table 4: Exact performance about optimized SLT-GNN models

Models Configurations Top-1 Test Acc. / ROC AUC (%) | Memory Size (MB) | Params (Mils) | MACs (Bils)
28-layer DWL 71.92+0.16 1.8737 0.4912 717
Unfolded-Shared-128 (S-Sup, sparsity=60%) 69.28+0.11 (J 2.64) 0.0846 0.4874 287
Unfolded-Shared-128 (M-Sup, N=5, sparsity=50%) 70.52+0.12 (] 1.40) 0.1329 0.8929 359
ResGCN+ on OGBN-Arxiv SSF-Shared-128 (M-Sup, N=5, sparsity=30%) 68.89+0.22 (] 3.03) 0.0378 0.0946 502
MSF-Shared-128 (M-Sup, N=5, sparsity=10%) 69.73£0.25 (] 2.19) 0.0546 0.5200 646
(for MACs: full batches) SSF-Unshared-256 (M-Sup, N=5, sparsity=30%) 71.62£0.21 (V) 0.5678 4.3187 502
MSF-Unshared-256 (M-Sup, N=5, sparsity=40%) T1.9720.21 (V) 0.5174 3.8960 430
7-layer DWL 78.58+1.17 2.0293 0.532 3.590
§ - Unfolded (S-Sup) 77.20£1.04 (] 1.38) 0.0693 0.4703 1.795
DyResGEN on Molhiv SSF-Shared (N=3, sparsity=60%) T83621.06 (/) 0.0259 0.1066 1436
(for MACs: batch = 10 graphs) SSF-Unshared (N=3, sparsity=60%) 78.3620.66 (V') 0.0964 0.6984 1.436
3-layer DWL 80.8+0.71 1.4060 0.3686 0.998
Shallow GCN on Cora S-Sup (sparsity=55%) 78.520.64 (] 2.30) 0.0439 0.3686 0.449
(for MACs: full batches) M-Sup (sparsity=55%) 82.1£0.59 (v)) 0.0737 0.6185 0.449
3-layer DWL 81.1+0.34 1.4080 0.3692 0.999
Shallow GAT on Cora S-Sup (sparsity=30%) 75.6+0.41 (] 5.50) 0.0440 0.3692 0.699
(for MACs: full batches) M-Sup (sparsity=30%) 81.7%0.55 (V) 0.0913 0.7654 0.699
3-layer DWL 77.9+0.72 1.4131 0.3815 1.176
Shallow GIN on Cora S-Sup (sparsity=90%) 78.0+0.75 (V) 0.0455 0.3815 0.118
(for MACs: full batches) M-Sup (sparsity=90%) 79.12£0.62 (V) 0.0500 0.4197 0.118

Table 5: Comparison of different quantization methods.

Models Methods Acc. on Cora (%) | Acc. on CiteSeer (%) | Acc. on Pubmed (%) Memory Reduction
Vanilla 83.1 722 78.8 -
e D T QAT [41] 81.9(1 12 71.2(1 1.0 78.3(10.5)
GAT (8 heads, 2 layers) |\ 5eoree Guant [42] 82.7E 11.4; 71.6E ().6; 78.6E¢ 0.2) 75% with 8-bit Activation& Weight
GCoD [43] 82.6(1 0.5) 71.8(1 0.4) 78.8
Vanilla 78.6 67.5 785
i QAT [41] 75.6(] 3.0 63.0(] 4.5 71.5(1 1.0
GIN (3 layers) Degree-Quant [42] 7(8.7 - 6(7.5 ) T1( 0.45 75% with 8-bit Activation& Weight
GCoD [43] 784(1 0.2) 6387 783(10.2)
Vanilla 8I.1 70.3 78.8 -
GAT (1 head, 2 layers) S-Sup 75.6 (1 5.50) 671(13.2) 75.8(13.0) 96.8% on Cora, 91.9% on Citeseer, 98.9% on Pubmed
M-Sup 81.7 (V) 703 (V) 78.4(10.4) 93.5% on Cora, 83.3% on Citeseer, 97.7% on Pubmed
Vanilla 719 68.5 75.6 -
GIN (2 layers) S-Sup 78.0 68.4(1 0.1) 757 96.7% on Cora, 91.8% on Citeseer, 98.1% on Pubmed
M-Sup 79.1(V) 69.4 (V) T76.4(V) 96.4% on Cora, 91.1% on Citeseer, 98.0% on Pubmed

characterized by the choices between asymmetric and symmetric quantization for clipping range,
as well as the decision to use static or dynamic scaling values during iterations. We select typical
studies in the field of quantization in GNNs, including QAT [41], Degree-Quant [42], and GCoD [43].
The Table 5 presents two typical shallow GNNs under different quantization methods. Note that for
quantization, both weights and activations are quantized into 8-bit fixed points. Compared with these
techniques, our method distinguishes them in three perspectives:

1. Our approach integrates both quantization and pruning, with an exclusive emphasis on weights.
Rather than designing for hardware’s fixed-point processing elements like other quantization
methods, we focus on exploring the intrinsic behavior of GNNs, particularly under the strong
lottery ticket hypothesis.

2. Our strategy is bit efficient, employing 2 bits for M-Sup (3 supermasks) and 1 bit for S-Sup (a
single supermask). This efficiency translates to notable memory savings compared with 8-bit
quantization methods. Using bit-serial multipliers [44], our method necessitates only two cycles
for multiplication, while an 8-bit approach requires eight cycles. This leads to an empirical
improvement in inference time by a factor of four.

3. Regarding accuracy, our method (M-Sup) achieves the comparable accuracy of the FP32 dense-
weight learning models in most cases, while for quantization methods, there is still an accuracy
gap lower than dense-weight learning models. In the worst-case scenario, QAT on CiteSeer
displayed a 4.5% drop.

J Complexity analysis of our proposal and other pruning methods

GNN pruning can be performed on both the adjacency matrix and the weight matrix, such as ULTH-
GNN [6] and DGLT [7]. In this work, we focus on the weight matrix as well as UGT [9]. The
inference time complexity for these methods is given by O(||Aqu||o X F +||mw, @ Wl|o x |V] x F?),
where || Aqi1]|o denotes the number of edges, F’ represents the dimension of the feature, |V| is the
number of nodes, and ||m., ® W||o signifies the remaining neurons with supermasks. However, our
method could also be extended to pruning adjacency matrices like ULTH-GNN [6] and DGLT [7]. A
comparative analysis of our proposal with UGT [9] is presented in Figure 13, where inference MACs
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Figure 13: Performance over inference MACs of GCN, GAT, and GIN on Cora.

are about optimized linear layers. Notably, Our method demonstrates better performance under the
same inference MACs.
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