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ABSTRACT

Deterministic flow models, such as rectified flows, offer a general framework for
learning a deterministic transport map between two distributions, realized as the
vector field for an ordinary differential equation (ODE). However, they are sensitive
to model estimation and discretization errors and do not permit different samples
conditioned on an intermediate state, limiting their application. We present a
general method to turn the underlying ODE of such flow models into a family of
stochastic differential equations (SDEs) that have the same marginal distributions.
This method permits us to derive families of stochastic samplers, for fixed (e.g.,
previously trained) deterministic flow models, that continuously span the spectrum
of deterministic and stochastic sampling, given access to the flow field and the score
function. Our method provides additional degrees of freedom that help alleviate
the issues with the deterministic samplers and empirically outperforms them. We
empirically demonstrate advantages of our method on a toy Gaussian setup and on
the large scale ImageNet generation task. Further, our family of stochastic samplers
provide an additional knob for controlling the diversity of generation, which we
qualitatively demonstrate in our experiments.

1 INTRODUCTION

Deterministic flow models, including Rectified Flow (Liu et al., 2022), Flow Matching (Lipman et al.,
2022; Tong et al., 2023), Stochastic Interpolants (Albergo & Vanden-Eijnden, 2022; Albergo et al.,
2023), and probability flow ODE (Song et al., 2020) learn a reversible deterministic transport between
two end distributions p0(x0) and p1(x1). Diffusion models require one of the distributions to be a
Gaussian distribution, though generalizations exist (Yoon et al., 2024). In contrast, Rectified Flows,
Stochastic Interpolants, and Flow Matching offer a general framework for learning deterministic
transports, without this restriction. While deterministic transport enables efficient deterministic
sampling, e.g. by the rectification procedure suggested by Liu et al. (2022), stochastic sampling
may be desirable for: (1) robustness to estimation errors in the learned flow model, (2) ability to
produce random samples conditioned on an intermediate state xt, t ∈ [0, 1], and (3) robustness to
discretization error resulting from discrete step sampling from a continuous time model. We present
a new theorem (Theorem 1) that provides a recipe to create an infinite family of parameterized
stochastic samplers, given access to the flow field and the score function for the marginal distributions.
Our result provides a general and unified view, while including a few existing proposals (e.g. in
Huang et al. (2021); Berner et al. (2022)) as special cases.

The deterministic transport specifies a deterministic mapping between the samples from the two
distributions and is realized as a learned vector field corresponding to an ordinary differential equation
(ODE). However, if one distribution is chosen to be a Gaussian, these Flow models can be viewed
as reparameterizations of other deterministic models that also choose a Gaussian as one of the
distributions e.g. probability flow ODEs arising from Gaussian diffusion models. We refer to such
models as Gaussian flow models. Transport map learning algorithms such as Gaussian flows are
practical to train and enable applications like generative modeling (Ramesh et al., 2022; Lu et al.,
2022; Saharia et al., 2022; Esser et al., 2024), stylization (Isola et al., 2017; Meng et al., 2022),
and image restoration (Delbracio & Milanfar, 2023; Rombach et al., 2022; Lugmayr et al., 2022;
Kawar et al., 2022), to name a few. However, corresponding deterministic sampler has limitations
that we empricially demonstrate on a toy Gaussian task, where it exhibits a bias and consistently
underestimates the variance of the target distribution, as seen in Figure 2. To enable stochastic
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Figure 1: Stochastic sampling improves diversity at all classifier-free guidance levels. We visu-
alize samples from a rectified flow model at four classifier-free guidance levels λ (Section 3.3) and at
four stochasticity scales α for NonSingular (Table 1). Three samples are shown for each configuration
where the sampling starts at the same draw from p1(x1). When α = 0, the sampler is deterministic
and samples are the same (therefore we show only one). When λ = 0, there is no classifier-free
guidance. Note the increased diversity as α increases. More examples in Figure 12.

sampling from such deterministic models, we provide a special case of our general result to turn the
underlying ODE of Gaussian flow models into a family of stochastic differential equations (SDEs) that
have the same marginal distributions. Our stochastic samplers allow trading the bias of deterministic
sampler for increased variance in the estimated mean and variance parameters (Figure 4). Since, our
method requires access to the score function for the marginal distributions, we impute it directly
from the given flow model, alleviating the need for learning it separately. This method permits us to
derive families of stochastic samplers, for fixed (e.g., previously trained) deterministic Gaussian flow
models, that allow flexible and time dependent injection of stochasticity during sampling, enabling
both deterministic and stochastic sampling. This additional degree of freedom allows exploration of
stochastic samplers that can help alleviate the issues with the deterministic samplers and outperform
them. We demonstrate this empirically on a toy Gaussian setup, as well as on the large scale
ImageNet generation task. The stochastic samplers also provide an additional knob for controlling
the diversity of generation as we qualitatively demonstrate in our experiments, and are compatible
with classifier-free guidance (Ho & Salimans, 2022), as can be seen in Figures 1 and 12.

Our key contributions are: (1) Specification of a flexible family of SDEs (Theorem 1) that have
the same marginal distributions as a given SDE or a flow model, enabling exploration of sampling
schemes for a given fixed model, (2) Derivation of new as well as existing special cases directly from
Theorem 1 (Corollary 1.1 and Corollary 1.2) demonstrating generality of Theorem 1, (3) Study of a
set of SDE families corresponding to Gaussian flow models, derived using Theorem 1, on both a toy
as well as a large scale ImageNet setup, demonstrating flexible stochastic sampling and controllable
diversity in generation, without requiring retraining (Table 1, Figures 1 and 12).

2 BACKGROUND

Notation. Throughout this work we use small Latin letters t, x, y etc. to represent scalar and vector
variables, f, g etc. to represent functions, Greek letters α, β etc. to represent (hyper-)parameters, and
capital letters G to represent matrices. With a slight abuse of notation we use lower case letters x to
represent both the random variable and a particular value x ∼ p(x). Whenever unambiguous, we
suppress the dependence of state xt on time t as x ≡ xt, and dependence of functions on state xt and
time t as f ≡ f(xt, t) to simplify notation.

We briefly discuss rectified flow and continuous time diffusion models. Refer to Liu et al. (2022);
Song et al. (2020) for details.

2.1 RECTIFIED FLOW

Let x0 ∼ p0(x0) ∈ Rd be the draws from the data distribution p0 that we are interested in learning
and sampling from. Let x1 ∼ p1(x1) ∈ Rd be an easy to sample source distribution. Loosely, the key
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idea behind the diffusion and flow family of models is to learn a mapping that either stochastically
or deterministically transforms a sample from p1, in an iterative manner, to produce a sample from
p0. Let ν(x0, x1) be an arbitrary coupling distribution for the two random variables x0, x1 such
that p0(x0) =

∫
ν(x0, x1)dx1, p1(x1) =

∫
ν(x0, x1)dx0. A simple choice is the product of the

two: ν(x0, x1) ≡ p0(x0)p1(x1). To construct a rectified flow first an interpolation between the two
variables is defined as xt ≡ h(x0, x1, t) that is differentiable w.r.t. time. The default interpolation
proposed and studied in Liu et al. (2022) is:

xt = (1− t)x0 + tx1, t ∈ [0, 1]. (1)
With the above, rectified flow learns a vector field v(xt, t) by minimizing the following objective:

v(x, t) = arg min
v′

E(x0,x1)∼ν

[∫ 1

0

∥∥∥∥dxtdt − v′(xt, t)
∥∥∥∥2 dt

]
. (2)

The solution to the above optimization problem is v(x, t) ≡ E[x1 − x0|x, t] and is referred to as
1-Rectified flow. Since v(x, t) is not available in closed-form in general, v is typically parameterized
with parameters θ and optimization in Equation (2) is performed w.r.t. θ. In the rest of the paper, we
drop this dependence on the parameters in notation as we assume a model v(x, t) to be given. Note
that a closed-form expression is available when p0, p1 are Gaussian (see Appendix F). We use this
expression for the toy setup in our experiments. For example, the biased deterministic sampler in
Figure 2 is using the ground truth flow field. Once the flow v(xt, t) is estimated, samples from p0(x0)
can be produced by drawing a sample from p1(x1) and simulating the flow backward in time, using:

dx = v(x, t)dt (3)

2.2 SCORE BASED DIFFUSION WITH STOCHASTIC DIFFERENTIAL EQUATIONS

The general idea in this family of methods is to specify a forward stochastic process that slowly
transforms the data density p0(x0) into an easy to sample source density p1(x1). Song et al. (2020)
specified such a process using an Itô SDE of the following form:

dx = f(x, t)dt+G(x, t)dWt (4)

where f(x, t) : Rd× [0, 1]→ Rd is the drift coefficient, G(x, t) : Rd× [0, 1]→ Rd×Rd is state and
time dependent diffusion coefficient and Wt is the Wiener process. Choosing1 G ≡ g(t) : [0, 1]→ R
and using results from Anderson (1982), a reverse time SDE can be specified that has the same
marginals as Equation (4):

dx = [f(x, t)− g2(t)∇x ln pt(x)]dt+ g(t)dW̃t (5)

where W̃t is a standard Wiener process with time running backwards. Note that the time reversal
requires access to the score function ∇x ln pt(x). Score matching (Vincent, 2011) can be used to
learn an estimate for the score for all t (Song et al., 2020), which can then be used to simulate reverse
time dynamics starting with a sample from p1(x1) to produce a sample from p0(x0) at t = 0. A
forward deterministic process can also be derived from the above that has the same marginal densities
pt(x):

dx =

[
f(x, t)− 1

2
g2(t)∇x ln pt(x)

]
dt (6)

The above ODE is also referred to as the probability flow ODE. Samples can be generated using the
above ODE in a similar fashion as rectified flow, by simulating the ODE backwards in time.

3 DERIVING STOCHASTIC SAMPLERS

Method intuition. Probability flow ODEs (Song et al., 2020), proposed in the context of diffusion
models, provide a deterministic sampling method for diffusion models. These ODEs have the same
marginal distribution pt(x) at all t as the original SDE from which they are derived. Here, we take
the reverse path: we start from an ODE (corresponding to the Gaussian flow model) and deduce the
family of SDEs that have the same marginal distributions at all t as the original ODE. Before we
introduce the general result, we will show a naive approach that gives an SDE with a problematic
singularity, motivating the need for the generalization.

1Song et al. (2020) provide general results for G(x, t) which we omit here for brevity.
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Figure 2: Discretization of deterministic flow leads to bias. Comparison of samplers from Table 1
on the two Gaussian toy problem (Appendix G). Deterministic underestimates the variance parameter,
but the stochastic samplers avoid that issue, in exchange for variance in the parameter estimation.
Singular’s variance diverges if we start from t = 1, so instead we start the sampler at t = 1− 10−3,
which allows it to eventually converge by t = 0.

3.1 A SINGULAR SDE CORRESPONDING TO GAUSSIAN FLOW

For Gaussian flow, p1(x1) ≡ N(x1;µ1, σ
2
1I) is assumed to be Gaussian. With interpolation xt =

(1− t)x0 + tx1, the perturbation kernel p(xt|x0) = N(xt; (1− t)x0 + tµ1, t
2σ2

1I) is also Gaussian.

Note that since x0, x1 are independent, we can directly infer the first and second moments µt,Σt for
the marginals pt(x) as µt = (1− t)µ0 + tµ1 and Σt = (1− t)2Σ0 + t2σ2

1I . With these constraints
and choosing µ1 ≡ 0, σ1 ≡ 1, we can solve for drift and diffusion coefficients that yield the same
marginal distributions:

f(x, t) = − x

1− t
g(t) =

√
2t

1− t
(7)

See Appendix A for the details and a more general expression for arbitrary µ1, σ1. The coefficients
f(x, t), g(t) are singular at the boundary t = 1 of the interval. Consequently, simulation methods
such as Euler-Maruyama, that need f(x, t), g(t) to be Lipschitz are not guaranteed to work at the
boundary (see Figure 2 and Section 4.1). We refer to this SDE as the Singular SDE. An empirical
trick that is often used in such cases is to assume p1−ε(x1−ε) ≈ p1(x1), ε� 1. However, this can
lead to unpredictable behavior and we show how to avoid it in the following section.

3.2 SET OF SDES THAT SHARE THE SAME MARGINAL DISTRIBUTION pt(x)

First we state our general result with the diffusion coefficient G(x, t) a function of both the state x
and time t, and then state simpler forms more directly applicable to models used in practice.
Theorem 1. Let pt(x) be the probability density of the solutions of the SDE in Equation (4) evolving
as ∂pt

∂t . Then, the probability density of solutions of the following set of SDEs, indexed by G̃, γt, also
evolves as ∂pt

∂t .

dx = f̄(x, t)dt+ Ḡ(x, t)dWt (8)

where

f̄ = f − 1

2

(
∇ · [(1− γt)GGT − G̃G̃T ] + [(1− γt)GGT − G̃G̃T ] · ∇ ln pt

)
(9)

Ḡ = [γtGG
T + G̃G̃T ]

1
2 (10)

and G̃ ≡ G̃(x, t), γt ≥ 0 are arbitrary functions such that the solutions of Equation (8) exist and are
unique.

Proof of Theorem 1 is given in Appendix C and follows from manipulations of Fokker-Planck-
Kolmogorov (FPK) equations corresponding to Equation (8).

Theorem 1 implies that given the same initial density p0(x), evolution according to both Equation (4)
and Equation (8) will have the same marginal densities pt(x) for all times t. Further, Equation (8) can
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be simulated backward in time using the result from Anderson (1982), again with the same marginal
densities pt(x). Consequently, Equation (4) can be simulated forward or backward in time using
any member of the family specified by Equation (8). Note that setting γt = 1, G̃ = 0 recovers the
original SDE in Equation (4), while setting γt = 0, G̃ = 0 recovers the general probability flow ODE
from Song et al. (2020, eq. 37). Additionally, G̃ is particularly useful for deterministic flow models,
further discussed in Corollary 1.2. Theorem 1 gives a recipe for developing particular samplers, such
as those in the remainder of this section, some of which have appeared in the literature. A priori,
Theorem 1 cannot determine which concrete sampler will be best for a given application, but since
the samplers do not require any training to use, it is possible to postpone the choice of sampler to an
empirical analysis at test time.

The flexibility afforded by Equation (8) is particularly useful (1) in the presence of singularities in
the drift and diffusion coefficients f and G respectively of Equation (4), (2) in the presence of errors
resulting from finite discretization, and (3) for flexible specification of the diffusion coefficient in
generative applications. Our experimental evaluations primarily focus on these aspects of Theorem 1.

A direct consequence of Theorem 1, by defining G̃ ≡ 0, G ≡ g(t)I , is the following corollary
applicable to commonly used generative diffusion models with additive noise:
Corollary 1.1. For the SDE in Equation (4) with G ≡ g(t)I , a subset of SDEs prescribed by
Theorem 1 and indexed by γt is:

dx =

[
f(x, t)− (1− γ(t))g2(t)

2
∇x ln pt(x)

]
dt+

√
γ(t)g(t)dWt (11)

Proof in Appendix D. Note that choosing γt = 0 results in the probability flow ODE specified in
Equation (6). Intuitively, the members in the family differ in terms of the amount of noise injected
as a function of time. γt = 0 yields a purely deterministic simulation; γt > 0 yields a variety of
stochastic simulations. Further, similar special cases discussed in Huang et al. (2021) and Berner
et al. (2022) also directly follow from Theorem 1 as well.

Some properties of Corollary 1.1:

1. γ(t) can be chosen at sampling time and doesn’t affect the training of the score function.
2. With γ(t) = γ̂2(t)g−2(t), where γ̂(t) is an arbitrary function (satisfying constraints of Theorem 1),

we can choose an arbitrary diffusion term at sampling time. For example, choosing γt = γ2/g2(t)
leads to a constant diffusion coefficient.

3. For the SDE specified by Equation (7), we can choose γ(t) = (1− t)γ̂2(t)g−2(t) to get rid of the
singularity in the diffusion term.

Note that Theorem 1 can be used whenever we have access to the score function ∇x ln pt. Next, we
first construct a specialized solution based on Theorem 1 for deterministic flow models that enables
flexible control of both drift and diffusion coefficients, and apply it to the special case of deterministic
Gaussian flows where the score function can be imputed from the velocity field (Section 3.3). Recall
that deterministic flows specify a transport via the ODE dx = v(x, t)dt. This ODE can be viewed as
an SDE where the diffusion term has been set to zero. Choosing G ≡ 0, G̃ ≡ g̃(t)I in Theorem 1
gives Corollary 1.2, which enables deriving stochastic samplers for Gaussian flow models:
Corollary 1.2. For the ODE in Equation (3), a subset of SDEs prescribed by Theorem 1 and indexed
by g̃(t) is

dx =

[
v(x, t) +

g̃2(t)

2
∇x ln pt(x)

]
dt+ g̃(t)dWt (12)

Proof in Appendix E. Corollary 1.2 enables flexible specification of a time dependent diffusion
coefficient g̃(t), allowing the introduction of stochasticity in the simulation of otherwise deterministic
models, purely at sampling time. Note that Equation (12) requires access to the score function
∇x ln pt(x) for the marginal distributions pt(x). In Section 3.3, we describe how the score function
can be imputed from the learned flow model v(x, t) for the special case of Gaussian flow models. It
can be verified that the particular choice of f and g in Equation (7) satisfy Equation (12) by using the
expression for the score from Equation (13).
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Table 1: Examples of SDEs that have the same marginal distribution pt(x) as a given Gaussian
flow specified by v ≡ v(x, t). α ≥ 0 is a scale parameter that varies the magnitude of the diffusion
coefficient g. Each of these behaves differently when discretized and simulated (Figure 2 and
Appendix J.2). These and infinitely many more can be constructed using the scheme in Equation (12).

Name g̃(t) f̃(x, t) Description

Deterministic 0 v Base flow model
Constant α v + α2

2 ∇x ln pt Constant g, singular f
Singular α

√
t/(1− t) v + α2

2
t

1−t∇x ln pt Singular g, f
NonSingular α

√
t, v + α2

2 t∇x ln pt Non-singular g, f
ZeroEnds α

√
t(1− t), v + α2

2 t(1− t)∇x ln pt Non-singular g, f, g(0) = g(1) = 0

While infinitely many choices are available for g̃, we consider a few interesting ones listed in the
Table 1, constructed by choosing integer powers of t and 1− t and introducing a scaling coefficient
α, for experimental evaluations. Note that the only degree of freedom in Table 1 is the choice of
g̃(t), which determines f̃(x, t), given the flow field v(x, t) and the score ∇x ln pt(x). The f(x, t)
is singular in Constant because the score ∇x ln pt(xt), as computed in Equation (13), has t in the
denominator, making f(x, t) singular at t = 0. The choice in NonSingular precisely eliminates this
singularity. Figure 2 compares these choices in a toy setup; Section 4 has comparisons on ImageNet.

3.3 SCORE FUNCTION AND CLASSIFIER FREE GUIDANCE FOR A GAUSSIAN FLOW MODEL

Recall that Theorem 1 requires access to the score function. For Gaussian flows, the score function
can be inferred from the velocity field itself, alleviating the need to learn it separately. This result
is known (see e.g. Zheng et al. (2023) in the context of flow matching) and we present it here
in our setting. For Gaussian flows, with p1(x1) ≡ N(x1;µ1, σ

2
1I) and interpolation specified in

Equation (1), the score can be computed as:

∇x ln pt(x) =
−(1− t)v(x, t) + µ1 − x

tσ2
1

(13)

where v(x, t) = E[x1− x0|x, t] is the estimated flow. Proof is provided in Appendix B. Note that the
score function can also be estimated given E[x0|x, t] or E[x1|x, t]. In summary, the expression follows
directly from using results from Denoising Score Matching (Vincent, 2011) and the Gaussianity of
p1(x1). Similar expressions can be derived for other interpolations that are linear in x0, x1. With
access to the score function and linearity of Equation (13) in v we can define classifier free guided (Ho
& Salimans, 2022) Gaussian flow as:

vcfg(x, t, c) = (1 + λ)v(x, t, c)− λ(v(x, t, c = ∅) (14)

where c indicates extra conditioning information as in classifier free guidance, ∅ indicates no
conditioning and λ specifies the relative strength of the guidance. λ = 0 reduces to class conditional
sampling, while λ > 0 puts a larger weight on the conditioning, biasing the sample towards the
modes of the conditional distribution. Using classifier-free guidance with a stochastic sampler will,
of course, give diversity that isn’t possible with a deterministic sampler, as can be seen in Figure 1.
Note that Xie et al. (2024); Dao et al. (2023); Zheng et al. (2023) also consider related definitions in
the context of flow matching.

4 EXPERIMENTS

Our method allows us to identify a family of SDEs that correspond to a given deterministic Gaussian
flow model, enabling construction of stochastic samplers with flexible diffusion coefficients. In our
experiments we compare various samplers derived from the corresponding SDEs in Table 1, using
Euler-Maruyama, for a given Gaussian flow model without any additional training.
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Figure 3: Stochasticity is most helpful at coarser discretizations. We visualize the effect of
coarseness of discretization by sampling for 100 and 500 sampling steps. See Figure 2 for the same
plots at 50 steps, which shows more extreme bias in variance for Deterministic and Singular.
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Figure 4: Stochasticity helps mitigate bias. We plot the error in mean and error in variance for
NonSingular for a set of diffusion coefficient scales α ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5}. Estimates for
variance at t = 0 improve as α increases, leading to a drop in KL divergence from the true distribution.
However, with very high α values intermediate marginals develop a bias.

4.1 COMPARISON ON ESTIMATING MARGINAL STATISTICS FOR A TWO GAUSSIAN TOY
PROBLEM

We start by considering a toy problem where both p0 and p1 are Gaussian. See Appendix G for
details of the experimental setup and Appendix I for a JAX (Bradbury et al., 2018) implementation of
NonSingular.

Discretization of deterministic flow leads to bias. In Figure 2, with 50 sampling steps, we observe
that the estimate for the mean is fairly accurate for all samplers for the entirety of the interval t ∈ [0, 1].
However, the samplers differ in their behavior for variance. Deterministic exhibits a noticeable bias
and underestimates the variance (with zero variance in its estimate), with the worst estimate at t = 0.
Stochastic samplers provide noticeably better estimates at t = 0, but with increased variance.

Stochasticity is most helpful at coarser discretizations. In Figure 3 we study the effect of the
number of discretization steps on the different samplers (also see Figure 2 for 50 steps). While mean
estimates are accurate for all methods, Deterministic gets increasingly biased for variance estimates
as the number of sampling steps is decreased. Stochastic samplers perform consistently well at
various discretization levels for t = 0, with significantly better estimates for fewer sampling steps.
Note that Singular has very large bias as well as variance closer to t = 1; those improve with finer
discretization. Since Constant also has a singularity, but only in the drift term f , we conclude that the
instability is primarily due to the singularity in Singular’s diffusion term.
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Table 2: Stochasticity can improve FID. Comparison of various samplers at their best α values with
300 sampling steps for ImageNet image generation task at two resolutions.

64× 64 128× 128

Sampler FID α FID α

Deterministic 3.07± 0.01 0.0 5.19± 0.02 0.0
Singular 3.07± 0.01 0.08 5.13± 0.04 0.14
Constant g 2.97± 0.04 0.08 5.17± 0.05 0.1
NonSingular 2.95± 0.01 0.56 4.93± 0.06 0.42
ZeroEnds 2.95± 0.01 0.54 5.03± 0.01 0.52

Stochasticity helps mitigate bias. In Figure 4 we study the effect of diffusion coefficient scale
α on the NonSingular sampler at 100 sampling steps. Finite discretization introduces a bias in the
deterministic sampler (when α = 0), where the variance is consistently underestimated and is worst
at t = 0. Increased stochasticity with increasing diffusion coefficient scale (α > 0) helps mitigate
this bias at the cost of increased variance. This can be seen in the figure with larger α values yielding
better estimate of the variance, although with larger variance in the estimate.

4.2 COMPARISON OF SDES FOR RECTIFIED FLOWS ON IMAGENET GENERATION

We compare the behavior of various SDEs on the sampling quality for large scale image generation
using the ImageNet (2012) dataset (Deng et al., 2009; Russakovsky et al., 2015). We train rectified
flow models at two different image resolutions (64× 64 and 128× 128) and compare their sample
quality using the Frechet Inception Distance (FID) metric (Heusel et al., 2017) for class conditional
samples. See Appendix H for setup details. The results show that small but statistically significant
differences exist between samplers even for metrics like FID, but the optimal sampler is likely to be
application and model specific.

Stochasticity can improve FID. In Table 2 we report the best FID using each SDE in Table 1 for
two image resolutions using 300 sampling steps, along with the corresponding diffusion term scale
α and one standard deviation confidence interval. Two key observations stand out: (1) stochastic
samplers tend to produce better FIDs, and (2) the two non-singular samplers have much better
FIDs than Deterministic or Singular. Note that observation (1) has also been made previously for
probability flow ODEs (Song et al., 2020). The addition of a parameter α to control the strength of the
stochasticity while keeping the marginal distribution pt unchanged (Theorem 1), permits principled
post-training optimization of the metrics like FID.

Non-singular samplers work well over a broad range of α. In Figures 5 and 7 we show how the
FID varies with α for each sampler for two different image resolution models. NonSingular and
ZeroEnds attain better FID in general and are better behaved over a much larger range of the diffusion
coefficient scale α at both resolutions. These samplers both have small diffusion coefficients g(t)
close to t = 0; their performance indicates that noise near t = 0 is particularly harmful. The low
variance of ZeroEnds in comparison to NonSingular indicates that a large diffusion coefficient near
t = 1 tends to introduce variance in the final FID.

Stochasticity makes FID robust to discretization. In Figure 6 we compare the effect of the num-
ber of sampling steps on FID for various samplers at two image resolutions. We set α2 proportional to
the number of sampling steps with the maximum value provided by Table 2. Again the non-singular
samplers perform better than Deterministic at all discretization levels.

Stochastic sampling improves diversity at all classifier-free guidance levels. In Figures 1 and 12
we show samples from NonSingular using classifier-free guidance (Section 3.3), varying both α and
λ, the guidance weight. In all cases, we can see that diversity increases with α, and class typicality
increases with λ.
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Figure 5: Non-singular samplers work well over a broad range of α. Plots of FID for each
sampler as the diffusion coefficient scale α is increased. Note that at α = 0 all samplers coincide.
See Figure 7 for a larger range of FIDs.
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Figure 6: Stochasticity makes FID robust to discretization. We compare the effect of number of
sampling steps on FID. Deterministic is always worse than the non-singular samplers.

Qualitative comparisons. For qualitative comparisons, we visualize a few samples at various
diffusion coefficient scales using different SDEs in Figures 9 to 11. All samples in a column are
generated by starting at the same draw x1 ∼ p1(x1); different columns start from different draws.
Noise scale α gets progressively larger as we move down the rows. For Constant, we observe that
samples get increasingly noisy with increasing α indicating accumulating errors with increasing scale.
The samples from NonSingular look better, as expected from Figure 5. Lastly, samples from Singular
change much more rapidly in comparison to the other samplers, indicating that the singularities in the
SDE coefficients increase the effect of noise.

5 RELATED WORK

Transport learning methods learn a mapping between two distributions, where the learned model can
transform a sample from one distribution into a sample from the other one. Typically, one of the
distributions is easy to sample (such as a Gaussian) and the other one is the data distribution that one
is interested in modeling. The learned mapping can either be deterministic or stochastic. A thorough
overview of related areas can be found in Yang et al. (2024).

Deterministic transport. Deterministic transport methods implement a change of variable, either
explicitly or approximately, that can be used to uniquely map a sample from one distribution to
the other. The normalizing flow family (Rezende & Mohamed, 2015; Dinh et al., 2017; Kingma &
Dhariwal, 2018) of methods construct an explicit invertible model that realizes this map either in one
step or a finite number of discrete steps. Neural ODEs (Chen et al., 2018; Grathwohl et al., 2019)
generalize from discrete steps to a continuous time mapping by inferring and learning the gradient
field for all times. However, Neural ODEs are difficult to train due to the need for simulating the
ODEs as part of the training. Rectified flows, flow matching, and iterative denoising methods (Liu
et al., 2022; Lipman et al., 2022; Tong et al., 2023; Heitz et al., 2023; Delbracio & Milanfar, 2023)
either implicitly or explicitly specify a continuous mapping and learn a model to approximate the
continuous time mapping. Similarly, probability flow ODEs (Song et al., 2020) learned by diffusion
models (Sohl-Dickstein et al., 2015) approximate an implicitly defined continuous mapping. Our
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work is useful for flexible sampling from such pre-trained continuous time deterministic Gaussian
flows, or more generally where the score function for all the marginal distributions is either provided
or can be deduced from the learned flow model.

Stochastic transport. Stochastic transport methods learn a stochastic mapping, where a sample
from one distribution gets stochastically mapped to a sample from the other. Gaussian diffusion mod-
els are a salient example of such discrete Sohl-Dickstein et al. (2015); Ho et al. (2020) or continuous
time Song et al. (2020); Kingma et al. (2021) mappings where one of the distributions is constrained
to be Gaussian. Several generalizations have been proposed that extend from Gaussian to more
general families of distributions Yoon et al. (2024). The stochastic interpolants framework (Albergo
& Vanden-Eijnden, 2022; Albergo et al., 2023; Ma et al., 2024) further generalizes to a larger family
of distributions by introducing a random latent variable allowing efficient estimation of the score
function at all times. Our work is directly applicable to models learned with such methods where the
score function is accessible and can be used to construct and explore a large family of samplers. The
convergence rates of diffusion models have been studied in Chen et al. (2023); Benton et al. (2023)
with respect to the number of data samples and dimensionality. However, since our method does not
require retraining, it does not affect these properties of the original training algorithms.

Schrödinger bridge and optimal transport. These methods consider a more general problem of
learning transport maps with additional constraints. k-Rectified flows Liu et al. (2022) provide an
iterative procedure for tackling deterministic optimal transports for a family of costs, while the more
general Schrödinger bridge problem, viewed as an entropy regularized optimal transport, is an active
area of research Shi et al. (2024); Liu et al. (2023). Our work is complementary to these methods as
we focus on flexible sampling, given the access to the score function for the marginal distributions.

6 CONCLUSION

We introduced a general method to identify a family of SDEs that have the same marginal distribution
as a particular SDE, including the special case where the diffusion coefficient of the given SDE is zero.
This special case corresponds to flow models which naively only support deterministic sampling. Our
method enables flexible construction of stochastic samplers for such deterministic models where the
diffusion coefficient can be chosen at sampling time from an infinitely large set of possibilities in an
application and evaluation metric dependent way. Our method requires explicit access to the score
function, in absence of which it is limited to a subset of flow models where the score function can be
derived from the given flow model. However, this set includes currently popular rectified flow and
diffusion models where one of the distributions is Gaussian.

ETHICS STATEMENT

As a general technique for improving sampling from flow models at inference time, this work has
minimal ethical implications beyond those common to most machine learning research. It is possible
that malevolent actors could generate more convincing samples from existing models using this work,
but it does not provide a fundamentally new capability to an attacker, so we consider the ethical risk
to be low.

REPRODUCIBILITY STATEMENT

We provide proof of Theorem 1, Corollary 1.1, and Corollary 1.2 in Appendix C, Appendix D,
and Appendix E, respectively. We provide example code for one of our samplers in Figure 8;
others are straightforward to reproduce using it as an example and following Table 1. α is the main
hyperparameter of interest; we specify it in Table 2 for each sampler on the large scale ImageNet
experiment.
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A DERIVATION OF SINGULAR SDE

We consider the following SDE with additive noise; i.e., the diffusion coefficient g is only a function
of time.

dx = f(x, t)dt+ g(t)dWt (15)

The perturbation kernel p(xt|x0) corresponding to rectified flow is Gaussian, with p(xt|x0) =
N(xt; (1 − t)x0 + tµ1, t

2σ2
1I). Since the perturbation kernel is Gaussian, following Song et al.

(2020), we assume that the drift term is affine; i.e. f(x, t) ≡ f(t)x. Further since X0, X1 are
independent, we can directly infer the first and second moments µt,Σt for the marginals pt(x) as
µt = (1− t)µ0 + tµ1 and Σt = (1− t)2Σ0 + t2σ2

1I .

From Eq (5.50) of Särkkä & Solin (2019) we have

dµt
dt

= Ept(x)[f(t)x] (16)

= f(t)µt (17)

where µt is the mean at time t. Rearranging and integrating both sides:

ln
µt
µ0

=

∫ t

0

f(s)ds (18)

ln
(1− t)µ0 + tµ1

µ0
=

∫ t

0

f(s)ds Substituting µt = (1− t)µ0 + tµ1 (19)

µ1 − µ0

(1− t)µ0 + tµ1
= f(t) Differentiating both sides w.r.t. t (20)

(21)

Substituting µ1 = 0, we get as in Equation (7):

f(x, t) = − x

1− t
(22)

Similarly, from Eq. (5.51) of Särkkä & Solin (2019):

dΣt
dt

= Ept(x)
[
f(x, t)(x− µt)T + (x− µt)f(x, t)T +G(x, t)QG(x, t)T

]
(23)

Substituting Q ≡ I (we are assuming isotropic dispersion), G(x, t) ≡ g(t)I (symmetric, time-
dependent diffusion coefficient), and f(x, t) from Equation (22):

dΣt
dt

= Ept(x)
[
− x

1− t
(x− µt)T − (x− µt)

xT

1− t
+ g2(t)I

]
(24)

=
2

1− t
Ept(x)

[
−xxT + µtµ

T
t

]
+ g2(t)I (25)

= − 2Σt
1− t

+ g2(t)I (26)

=⇒ dΣt
dt

+
2Σt
1− t

= g2(t)I (27)

Above is an inhomogenous differential equation. The integrating factor I(t) can be calculated as:

I(t) = exp

(∫ t

0

2

1− s
ds

)
=

1

(1− t)2
(28)

Multiplying both sides of Equation (27), we can write:

d

dt

[
Σt

(1− t)2

]
=

g2(t)I

(1− t)2
(29)
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Integrating both sides: [
Σs

(1− s)2

]t
0

=

∫ t

0

g2(s)I

(1− s)2
ds (30)

Σt
(1− t)2

− Σ0 =

∫ t

0

g2(s)I

(1− s)2
ds (31)

Substituting Σt = (1− t)2Σ0 + t2σ2
1I:

(1− t)2Σ0 + t2σ2
1I

(1− t)2
− Σ2

0 =

∫ t

0

g2(s)I

(1− s)2
ds (32)

Differentiating both sides w.r.t. t and simplifying yields:

g2(t) =
2tσ2

1

1− t
(33)

Substituting σ1 = 1 to the result in Equation (7):

g(t) =

√
2t

1− t
(34)

B SCORE FUNCTION FROM RECTIFIED FLOW

Given a base data distribution p(x) and a conditional noising distribution pσ(x̃|x), Denoising score
matching Vincent (2011) learns the score for the marginal pσ(x̃) by optimizing:

∇x̃ ln pσ(x̃) = arg min
ψ

Epσ(x0,x̃)

[
1

2

∥∥∥∥ψ(x̃)− ∂ ln pσ(x̃|x0)

∂x̃

∥∥∥∥2
]

(35)

where pσ(x0, x̃) ≡ p(x)pσ(x̃|x0). The solution to the above optimization problem can be written as:

∇x̃ ln pσ(x̃) = Epσ(x0|x̃)
∂ ln pσ(x̃|x0)

∂x̃
(36)

Mapping the above to rectified flow with σ ≡ t, x̃ ≡ xt we get:

∇xt ln pt(xt) = Ept(x0|xt)
∂ ln pt(xt|x0)

∂xt
(37)

Next if:

pt(xt|x0) = N(xt;µ(x0, t), σ
2(x0, t)I) (38)

∂ ln pt(xt|x0)

∂xt
=

∂

∂xt

−||xt − µ(x0, t)||2

2σ(x0, t)2
(39)

=
−(xt − µ(x0, t))

σ(x0, t)2
(40)

Now:

∇xt ln pt(xt) = Ept(x0|xt)
−(xt − µ(x0, t))

σ(x0, t)2
(41)

Next, assume the covariance σ(x0, t) doesn’t depend on x0 – i.e., σ(x0, t) ≡ σ(t) – and the mean
µ(x0, t) is linear in x0. Then:

Ept(x0|xt)
−(xt − µ(x0, t))

σ(x0, t)2
= Ept(x0|xt)

−(xt − µ(x0, t))

σ(t)2
(42)

=
−(xt − µ(E[x0|xt], t))

σ(t)2
(43)
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B.1 GAUSSIAN RECTIFIED FLOW

Consider the special case where xt = (1− t)x0 + tx1, x1 ∼ N(x1;µ1, σ
2
1I). We have pt(xt|x0) =

N((1− t)x0 + tµ1, t
2σ2

1). Using the result from Equation (43) we get:

∇xt ln pt(xt) =
−(xt − µ(E[x0|xt], t))

σ(t)2
(44)

From this, we can write:

x1 =
xt − (1− t)x0

t
(45)

E[x1 − x0|xt] = E
[
xt − (1− t)x0

t
− x0

∣∣∣∣xt] (46)

= E
[
xt − (1− t)x0 − tx0

t
|xt
]

(47)

= E
[
xt − x0

t
|xt
]

(48)

=
xt − E[x0|xt]

t
(49)

E[x0|xt] = xt − tE[x1 − x0|xt] (50)

∇xt ln pt(xt) =
µ(E[x0|xt], t)− xt

σ(t)2
(51)

=
(1− t)E[x0|xt] + tµ1 − xt

t2σ2
1

(52)

=
(1− t)(xt − tE[x1 − x0|xt]) + tµ1 − xt

t2σ2
1

(53)

=
−(1− t)tE[x1 − x0|xt] + tµ1 − txt

t2σ2
1

(54)

=
−(1− t)E[x1 − x0|xt] + µ1 − xt

tσ2
1

(55)

B.2 GENERAL RECTIFIED FLOW

First recall the change of variables formula for a density p(x) with y = g(x) where g is invertible
and g−1 is differentiable:

p(y) = p(g−1(y))

∣∣∣∣∣det

[
∂g−1(z)

∂z

]
z=y

∣∣∣∣∣ (56)

Now, with x0 ∼ p1(x0) and x1 ∼ p1(x1) and x0, x1 ∈ Rd, let xt = g(x1;x0) be a function that is
invertible in first argument and whose inverse g−1(xt;x0) is differentiable w.r.t. the first argument.
Note that for simple rectified flows, xt = (1− t)x0 + tx1 satisfies these conditions.

We can now express the conditional density p(xt|x0) as:

p(xt|x0) = p1(g−1(xt;x0))
∣∣∣det

[
∇zg−1(z;x0)

]
z=xt

∣∣∣ (57)

The score for the conditional density can then be calculated as
∂ ln pt(xt|x0)

∂xt
= ∇z ln p1(z)|z=g−1(xt;x0) +∇xt ln

∣∣∣det
[
∇zg−1(z;x0)

]
z=xt

∣∣∣ (58)

and the score for the marginal density as:

∇xt ln pt(xt) = Ept(x0|xt)
∂ ln pt(xt|x0)

∂xt
(59)

= Ept(x0|xt)

[
∇z ln p1(z)|z=g−1(xt;x0) +∇xt ln

∣∣∣det
[
∇zg−1(z;x0)

]
z=xt

∣∣∣] (60)
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For the specific case of Rectified flows, define g(x1;x) = (1− t)x+ tx1. Then:

xt = g(x1;x0) (61)

g−1(xt;x0) =
xt − (1− t)x0

t
Inverse is w.r.t. first argument (62)

∂g−1(xt;x0)

∂xt
=

1

t
I (63)

det
1

t
I =

1

td
I is d× d (64)

pt(xt|x0) =
1

td
p1

(
xt − (1− t)x0

t

)
(65)

Substituting into Equation (60):

∇xt ln pt(xt) = Ept(x0|xt)

[
1

t
∇z ln p1(z)|z=g−1(xt;x0)

]
(66)

It can be verified that with the choice of p1(x1) ≡ N(µ1, σ
2
1I), we recover Equation (55).

C PROOF OF THEOREM 1

Theorem 1. Let pt(x) be the probability density of the solutions of the SDE in Equation (4) evolving
as ∂pt

∂t . Then, the probability density of solutions of the following set of SDEs, indexed by G̃, γt, also
evolves as ∂pt

∂t .

dx = f̄(x, t)dt+ Ḡ(x, t)dWt (8)

where

f̄ = f − 1

2

(
∇ · [(1− γt)GGT − G̃G̃T ] + [(1− γt)GGT − G̃G̃T ] · ∇ ln pt

)
(9)

Ḡ = [γtGG
T + G̃G̃T ]

1
2 (10)

and G̃ ≡ G̃(x, t), γt ≥ 0 are arbitrary functions such that the solutions of Equation (8) exist and are
unique.

Proof. The evolution of the marginal probability density pt(x) is then described by the Fokker-
Planck-Kolmogorov (FPK) equation (Särkkä & Solin, 2019) as:

∂pt
∂t

= −
d∑
i=1

∂

∂xi
[f̄pt] +

1

2

d∑
i=1

d∑
j=1

∂2

∂xixj

[
d∑
k=1

ḠikḠjkpt

]
(67)

We write the above more succinctly as:

∂pt
∂t

= −∇ · [f̄pt] +
1

2
∇ ·
[
ḠḠT pt

]
· ∇T (68)

Where ∇· is the divergence operator. Next for an arbitrary R ≡ R(x, t) consider the following
identity:[

RRT pt
]
· ∇T = ∇ ·

[
RRT pt

]
RRT is symmetric (69)

=
[
∇ ·RRT

]
pt +RRT · ∇pt (70)

=
[
∇ ·RRT

]
pt +RRT · pt∇ ln pt (71)

=
(
∇ ·RRT +RRT · ∇ ln pt

)
pt (72)
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Expanding out f̄pt by substituting for f̄ :

f̄pt =

[
f − 1

2

(
∇ · [(1− γt)GGT − G̃G̃T ] + [(1− γt)GGT − G̃G̃T ] · ∇ ln pt

)]
pt (73)

= fpt −
1− γt

2

(
∇ ·GGT +GGT · ∇ ln pt

)
pt

+
1

2

(
∇ · G̃G̃T + G̃G̃T · ∇ ln pt

)
pt

(74)

Using Equation (72) and rewriting:

f̄pt = fpt −
1− γt

2
[GGT pt] · ∇T +

1

2
[G̃G̃T pt] · ∇T (75)

Next we revisit Equation (68), and substitute for f̄pt and Ḡ with ḠḠT = γtGG
T + G̃G̃T :

∂pt
∂t

= −∇ · [fpt −
1− γt

2
[GGT pt] · ∇T +

1

2
[G̃G̃T pt] · ∇T ]

+
1

2
∇ ·
[
(γtGG

T + G̃G̃T )pt

]
· ∇T

(76)

= −∇ · [fpt] +
1− γt

2
∇ · [GGT pt] · ∇T −

1

2
∇ · [G̃G̃T pt] · ∇T

+
γt
2
∇ ·
[
GGT pt

]
· ∇T +

1

2
∇ ·
[
G̃G̃T pt

]
· ∇T

(77)

With cancellations, we arrive at:

∂pt
∂t

= −∇ · [fpt] +
1

2
∇ · [GGT pt] · ∇T (78)

which is the FPK equation describing the time evolution of the marginal probability density pt(x) of
the solutions of the SDE in Equation (4).

D PROOF OF COROLLARY 1.1

Corollary 1.1. For the SDE in Equation (4) with G ≡ g(t)I , a subset of SDEs prescribed by
Theorem 1 and indexed by γt is:

dx =

[
f(x, t)− (1− γ(t))g2(t)

2
∇x ln pt(x)

]
dt+

√
γ(t)g(t)dWt (11)

Proof. Starting with Theorem 1, let’s define G̃ ≡ 0 and G ≡ g(t)I , where g(t) is a scalar valued
function. These choices lead to following

Ḡ = [γt(g(t)I)2]
1
2 =
√
γtg(t)I (79)

f̄ = f − 1

2

(
∇ · [(1− γt)g2(t)I] + [(1− γt)g2(t)I] · ∇ ln pt

)
(80)

= f − 1

2

(
[(1− γt)g2(t)I] · ∇ ln pt

)
(81)

= f − (1− γt)g2(t)

2
∇ ln pt (82)

Note that Equation (81) follows from∇ · [(1− γt)g2(t)I] = 0 since neither γt nor g(t) are functions
of x.
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E PROOF OF COROLLARY 1.2

Corollary 1.2. For the ODE in Equation (3), a subset of SDEs prescribed by Theorem 1 and indexed
by g̃(t) is

dx =

[
v(x, t) +

g̃2(t)

2
∇x ln pt(x)

]
dt+ g̃(t)dWt (12)

Proof. First note that f ≡ v(x, t) by definition from equation (3) in the paper. Now, again starting
with Theorem 1, let’s define G̃ ≡ g̃(t)I and G ≡ 0, where g̃(t) is a scalar valued function. These
choices lead to following

Ḡ = [(g̃(t)I)2]
1
2 = g̃(t)I (83)

f̄ = v(x, t)− 1

2

(
∇ · [−g̃2(t)I] + [−g̃2(t)I] · ∇ ln pt

)
(84)

= v(x, t) +
1

2

(
[g̃2(t)I] · ∇ ln pt

)
(85)

= v(x, t) +
g̃2(t)

2
∇ ln pt (86)

Note that Equation (85) follows from∇ · [−g̃2(t)I] = 0 since g̃(t) is not a function of x.

F CLOSED FORM RECTIFIED FLOW EXPRESSION FOR THE TWO GAUSSIAN
CASE

Our empirical studies use a two Gaussian toy problem setup. We state the closed form expression for
the rectified flow for this case. Consider x0 ∼ N(µ0, σ

2
0I), x1 ∼ N(µ1, σ

2
1I):

xt = αtx0 + βtx1, αt > 0, α0 = 1, α1 = 0, βt > 0, β0 = 0, β1 = 1 (87)

The marginal density pt(xt) is also Gaussian:

pt(xt) = N(xt;αtµ0 + βtµ1, α
2
tσ

2
0 + β2

t σ
2
1) (88)

We have:

v(x, t) = E[x1 − x0|xt] ≡ Ep(x0,x1|xt)[x1 − x0] (89)

Using the following:

p(x0, x1|xt) =
p(xt|x0, x1)p(x0, x1)

p(xt)
=
p(xt|x0, x1)p0(x0)p1(x1)

p(xt)
(90)

p(xt|x0, x1) = δ(xt − (1− t)x0 − tx1) (91)

and elementary properties of Gaussian and Dirac delta distributions, it can be verified that:

v(x, t) =
(ktµ1 − xt)αtσ2

0 + (xt − ktµ0)βtσ
2
1

α2
tσ

2
0 + β2

t σ
2
1

(92)

where kt = αt + βt.

G TOY GAUSSIAN EXPERIMENT DETAILS

In the experiments in Section 4.1 we study how various SDEs in Table 1 behave on a toy problem
where both p0 ≡ N(−1, 0.3) and p1 ≡ N(0, 1.0) are Gaussian. In this case the marginal distributions
pt for Gaussian flow are Gaussian with pt = N(µt, σ

2
t ) and the true statistics µt, σ2

t can be easily
computed. In addition, the rectified flow v(x, t) is available in closed form (see Appendix F). The
SDEs are simulated backwards in time from t = 1 with draws from p1 using Equation (5). The drift f̃
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Figure 7: Non-singular samplers work well over a broad range of α. The same plots as Figure 5,
but showing a larger range of FIDs. Note that the Singular sampler is highly non-monotonic as a
function of α.

and diffusion g̃ terms are calculated using Table 1 by setting α = 1 and using the closed form v(x, t)
from Equation (92). We simulate 10 trials of 10000 trajectories using Euler-Maruyama discretization
with varying number of steps. Estimates for mean µt and variance σ2

t at each timestep for various
SDEs are calculated, along with their standard deviation across trials. Error, calculated as estimate -
truth, is then plotted in Figures 2 to 4 for both the mean and the variance estimates along with the
KL-Divergence from the true marginal distribution.

H IMAGENET EXPERIMENT TRAINING/EVALUATION DETAILS

We train two base Rectified flow models to yield v(x, t) at two resolutions of 64 × 64 and 128 ×
128, on the entire ImageNet training dataset containing roughly 1.2 million images. Our model is
based on the architecture described in Hoogeboom et al. (2023). The model is structured such that the
lower feature map resolution is 16 × 16. Therefore, for 64 × 64 resolution two downsamplings are
performed, while for 128 × 128 three downsamplings are performed. The model is trained with SGD
using adamw (Kingma & Ba, 2014; Loshchilov & Hutter, 2017) with β1 = 0.9, β2 = 0.99, ε = 10−12

for 1000 epochs. We use center crop and left-right flips as the only augmentations. An exponential
moving average, with a decay of 0.9999, of parameters is used for evaluation. FIDs are reported over
the training dataset with reference statistics computed with center crop but without any augmentation,
but with class conditioning. Samplers were evaluated for all α ∈ {0.0, 0.02, 0.04, . . . , 1.0}.
The 64× 64 model trained for 500 epochs in 4 days, 8 hours on 8× 8 Google Cloud TPUs v3. The
128× 128 model trained for 500 epochs in 4 days, 20 hours on 8× 8 Google Cloud TPUs v3.

I EXAMPLE IMPLEMENTATION

See Figure 8 for an example implementation of the NonSingular sampler.

J ADDITIONAL EXPERIMENTAL RESULTS

J.1 FID VS α

In Figure 7 we show a larger range FID for various samplers compared in Figure 5. We observe that
the Singular sampler tends to perform well only at low scales with an intriguing behavior for higher
scales where the FID starts to improve again after worsening significantly.

J.2 EFFECT OF DIFFUSION COEFFICIENT MAGNITUDE ON SAMPLES

We qualitatively visualize the effect of diffusion coefficient magnitude for the three SDEs discussed
in the main paper. Figure 9 visualizes samples for the constant diffusion term SDE as a function
increasing coefficient magnitude. Each column is a different sample starting with the same random
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Figure 8: NonSingular Sampler written in JAX.

1 def non_singular_sampler(
2 rng, num_samples, model, params, labels, g_scale, num_steps=1000,
3 batch_size=10, image_size=64, num_channels=3, num_classes=1000,
4 n=1, m=0):
5 """Draw samples from the model."""
6 p_1_samples = []
7 p_0_samples = []
8 t = jnp.linspace(1., 0., num_steps+1)
9 t_ones = jnp.ones([batch_size, 1, 1])

10

11 # Sampler loop body
12 def body_fn(i, z):
13 z, labels, rng = z
14 tb = t[i] * t_ones
15 z_hat = model.apply({’params’: params}, z, (1 - tb), labels)
16 v = -z_hat
17 b = g_scale
18 g = b * jnp.power(tb, n / 2) * jnp.power(1 - tb, m / 2)
19 s_u = -((1-tb) * v + z)
20 fr = (v - jnp.square(b) * jnp.power(tb, n-1
21 * jnp.power(1-tb, m) * s_u / 2)
22 rng, key = jax.random.split(rng)
23 dt = t[i+1] - t[i]
24 dbt = (jnp.sqrt(jnp.abs(dt))
25 * jax.random.normal(key, shape=z.shape))
26 z = z + fr * dt + g * dbt
27 return z, labels, rng
28

29 max_steps = num_samples // batch_size
30 for _ in range(max_steps):
31 # Sample from p_1
32 rng, key = jax.random.split(rng)
33 z = sample_from_prior(
34 key, shape=[batch_size, image_size, image_size, num_channels])
35 p_1_samples.append(z)
36

37 # Run the sampler
38 rng, key = jax.random.split(rng)
39 init_val = (z, labels, key)
40 z, _, _ = jax.lax.fori_loop(
41 lower=0, upper=num_steps, body_fun=body_fn, init_val=init_val)
42 p_0_samples.append(z)
43

44 p_1_samples = jnp.concatenate(p_1_samples, axis=0)
45 p_0_samples = jnp.concatenate(p_0_samples, axis=0)
46 return p_1_samples, p_0_samples

draw from p1(x1). Each row corresponds to a different magnitude for the diffusion coefficient g(t).
Figures 10 and 11 visualize samples with a similar scheme for the non-singular and singular SDE.

J.3 CLASSIFIER-FREE GUIDANCE SAMPLES

Figure 12 shows additional samples using classifier-free guidance with NonSingular at different
values of α and λ, as in Figure 1.
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Figure 9: Constant samples with increasing scaling α. Each row displays samples at a particular
g-scale, from 0 increasing to 1 in the increments of 0.1 from top to bottom. Sampling for each
columns starts off with the same initial noise image and conditioning class.
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Figure 10: NonSingular samples with increasing scaling α. Each row displays samples at a
particular g-scale, from 0 increasing to 1 in the increments of 0.1 from top to bottom. Sampling for
each columns starts off with the same initial noise image and conditioning class.
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Figure 11: Singular samples with increasing scaling α. Each row displays samples at a particular
g-scale, from 0 increasing to 1 in the increments of 0.1 from top to bottom. Sampling for each
columns starts off with the same initial noise image and conditioning class.
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Figure 12: Stochastic sampling improves diversity at all classifier-free guidance levels. Addi-
tional results as in Figure 1, described in Section 4.2.
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