

000 QUADMIX: QUALITY-DIVERSITY BALANCED DATA 001 SELECTION FOR EFFICIENT LLM PRETRAINING 002

003 **Anonymous authors**

004 Paper under double-blind review

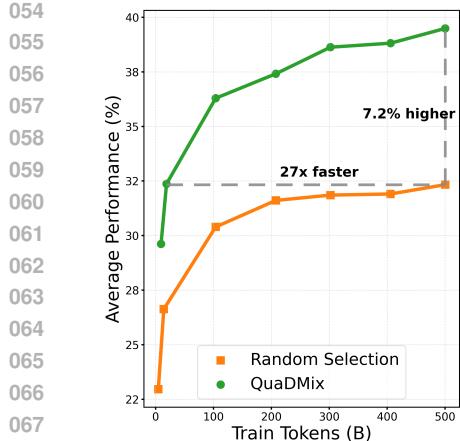
005 ABSTRACT

006 Quality and diversity are two critical metrics for the training data of large lan-
007 guage models (LLMs), positively impacting performance. Existing studies often
008 optimize these metrics separately, typically by first applying quality filtering and
009 then adjusting data proportions. However, these approaches overlook the inher-
010 ent trade-off between quality and diversity, necessitating their joint consideration.
011 Given a fixed training quota, it's essential to evaluate both the quality of each data
012 point and its complementary effect on the overall dataset. In this paper, we in-
013 troduce a unified data selection framework called QuaDMix, which automatically
014 optimizes the data distribution for LLM pretraining while balancing both quality
015 and diversity. Specifically, we first propose multiple criteria to measure data qual-
016 ity and employ domain classification to distinguish data points, thereby measuring
017 overall diversity. QuaDMix then employs a unified parameterized data sampling
018 function that determines the sampling probability of each data point based on these
019 quality and diversity related labels. To accelerate the search for the optimal pa-
020 rameters involved in the QuaDMix framework, we conduct simulated experiments
021 on smaller models and use LightGBM for parameters searching, inspired by the
022 RegMix method. Our experiments across diverse models and datasets demonstrate
023 that QuaDMix achieves an average performance improvement of 7.2% across mul-
024 tiple benchmarks. These results outperform the independent strategies for quality
025 and diversity, highlighting the necessity and the framework's ability to balance
026 data quality and diversity.

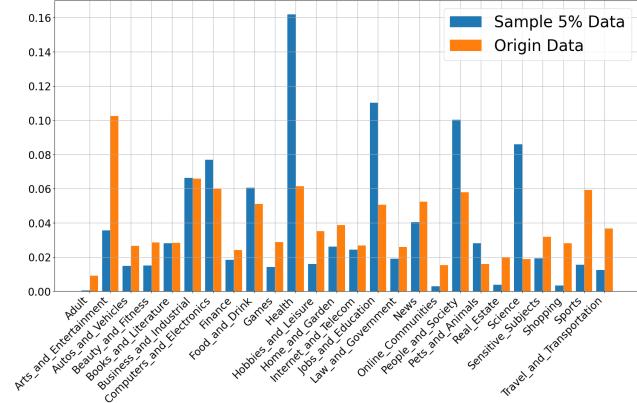
027 1 INTRODUCTION

028 The efficiency and preference of pretraining large language models are significantly influenced by
029 the characteristics of the training corpus (Brown et al., 2020; Chowdhery et al., 2023; Longpre et al.,
030 2024). There is evidence from existing research suggesting that the model performance can be im-
031 proved through the curation of high-quality data (Wettig et al., 2024; Xie et al., 2023b; Sachdeva
032 et al., 2024), the application of data deduplication and diversification strategies (Abbas et al., 2023;
033 Tirumala et al., 2023), and the careful balancing of data distribution across various domains and
034 topics (Liu et al., 2024; Xie et al., 2023a). Nevertheless, identifying optimal configuration of
035 combining those factors remains an open challenge, due to complex interplay between data quality and
036 diversity, which has yet to be fully understood.

037 There remains two major challenges to identify the optimal data selection strategy. Firstly, the
038 definition of quality and diversity is ambiguous. Previous research has proposed various definitions
039 of quality criteria, including factors such as regular expression (Penedo et al., 2023; Wenzek et al.,
040 2020), educational value (Penedo et al., 2024), similarity to instruction tuning data (Li et al., 2024),
041 etc, each emphasizing only a specific aspect of the data. On the other hand, approaches like (Liu
042 et al., 2024; Abbas et al., 2023) optimize the data mixtures for more effective training, indicating that
043 a better diversity is not necessarily uniform distribution. Secondly, there exists interplay between
044 data quality and diversity. The choice of quality criteria affects the distribution of selected data as
045 illustrated in Figure 1b, due to inherent biases in different criteria. Meanwhile, changing of data
046 mixtures influences the data quality, as the quality level differs across different domains. Also, since
047 the high quality data is limited, the trade-off between better quality or diversity is inevitable, which
048 is not feasible by optimizing only for data quality or diversity. How to jointly optimize the data
049 distribution together with the selection of quality criteria remains another unsolved issue.



(a) Comparison between QuaDMix and random selection on average performance of 9 downstream tasks of 530M model trained from scratch.



(b) The distribution change of data selected with Fineweb-edu Classifier. With the top5% documents selected, the ratio of certain domains including Health, Jobs and Education, increases for a large margin compared with original data.

To address these challenges, we propose a unified data selection framework, QuaDMix, which simultaneously manages data quality and diversity. Firstly, we apply several quality scorers and domain classification on each document in the training corpus, to measure the data quality and diversity. Then a parameterized function is designed to determine the sampling frequency for each document based on those quality and domain labels. Specifically, an aggregated quality score is first computed by weighted averaging the quality scores, where the weights are controlled by adjustable parameters. Then a parameterized sampling function takes the aggregated quality score as input and calculate the sampling frequency, where data with higher quality is assigned with more frequency and the parameters affect how the frequency decreases as the quality diminishes. Here we take the assumption that training samples with higher quality worth sampled for more times. We assign independent parameters for data across different domains to control the diversity via parameters. To find the optimal parameters among the numerous parameter space, we employ a two-step approach inspired by (Liu et al., 2024). First, we train a set of small models on datasets sampled using QuaDMix with various parameter configurations, as an approximation for the performance of larger models. Next, we train a regression model to fit the performance results from this limited set of small models. This regression model is then used to predict the performance for unseen parameter configurations, providing an efficient way to explore the parameter space without exhaustive large-scale training.

To validate the effectiveness of QuaDMix, we train 3000 models with 1M parameters for 1B tokens, each using data sampled from RefinedWeb (Penedo et al., 2023) with various QuaDMix parameters. The optimal parameter configuration is then determined by searching the input space of a trained LightGBM regressor(Ke et al., 2017). We then evaluate different pretraining data selection methods on models with 530M parameters. The optimal configuration identified by QuaDMix achieves superior performance on an aggregated benchmark. Our results also reveal the following insights: (1) Different quality criteria exhibit trade-offs across downstream tasks, but appropriately merging these criteria yields consistent improvements across tasks by leveraging complementary information. (2) The optimal data mixture varies under different quality criteria, indicating the importance of jointly optimizing both the quality and diversity. (3) The target of regression model can guide the preference for specific downstream tasks, enabling task-focused data selection.

2 RELATED WORK

2.1 PRETRAINING DATA SELECTION

Data quality, diversity, and coverage are critical factors for ensuring the efficiency and generalizability of large language models (Cheng et al., 2024; Touvron et al., 2023; Chowdhery et al., 2023).

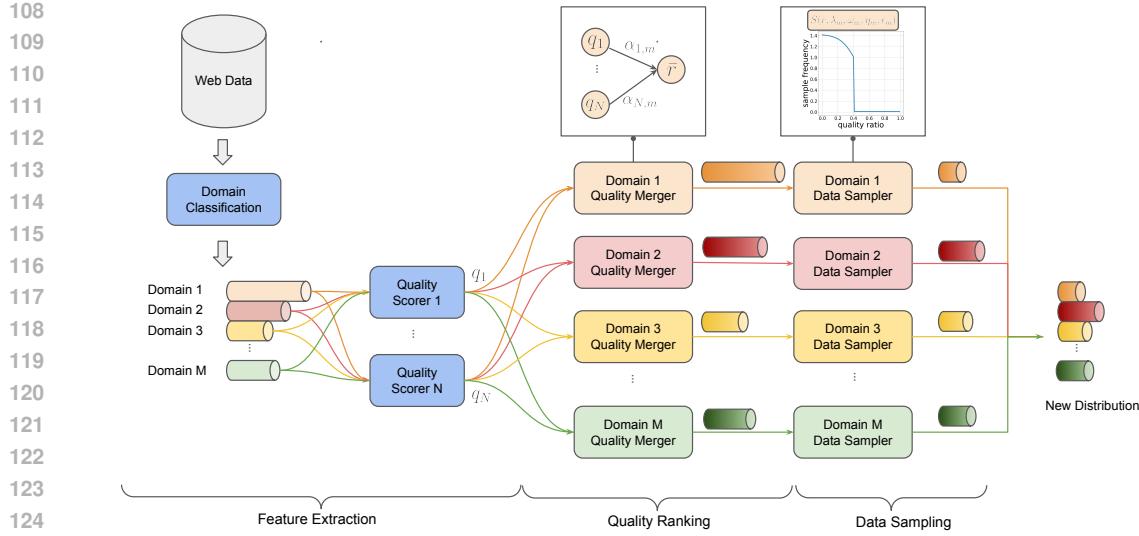


Figure 2: The overall design of QuaDMix. First we extract the data features using classifier and quality scores (QS). Then we calculate quality rank for each domain with the merging parameters. Finally the sampling functions controlled by sampling parameters are applied to generate the final output data.

To improve data quality, rule-based filtering techniques are commonly employed (Laurençon et al., 2022; Weber et al., 2024; Penedo et al., 2023; Raffel et al., 2020). These methods use handcrafted heuristics, such as removing terminal marks, detecting sentence repetitions, and enforcing length constraints, to exclude low-quality data. While these rules effectively filter out noisy data from the training corpus, they fail to capture semantic-level information, which is crucial for more refined data selection. Alternative approaches aim to address this limitation. For instance, (Wenzek et al., 2020; Marion et al., 2023; Thrush et al., 2024) use model perplexity as a measure of data quality, while (Lin et al., 2025) apply token-level selection by re-weighting the loss across tokens. (Xie et al., 2023b) utilize n-gram features to quantify data importance and sample accordingly. Discriminator-based methods (Brown et al., 2020; Du et al., 2022; Gao et al., 2020; Soldaini et al., 2024; Li et al., 2024) select data by comparing it to predefined high-quality datasets, such as Wikipedia or instruction-tuning datasets. However, how much these predefined datasets represent for high-quality relies on empirical judgement. More recently, approaches like (Gunasekar et al., 2023; Sachdeva et al., 2024; Wettig et al., 2024; Penedo et al., 2024) leverage large language models (e.g., GPT-4) to evaluate and filter data based on designed prompts that emphasize various dimensions of value, offering a more nuanced way to define and curate high-quality data.

To optimize data distribution, various methods leverage clustering and representativeness to achieve deduplication and diversification. For example, (Abbas et al., 2023; Shao et al., 2024; Tirumala et al., 2023) employ data clustering techniques to identify and select representative data points, ensuring both diversity and efficiency in the training corpus. Other approaches estimate optimal data mixtures through iterative modeling. (Xie et al., 2023a) first train a small reference model and subsequently optimize the worst-case loss across domains by training a proxy model to identify the optimal data mixture. Similarly, (Bai et al., 2024; Yu et al., 2024; Fan et al., 2024; Gu et al., 2024) calculate influence scores by tracking first-order gradients on an evaluation set, thereby identifying the most valuable data for training. Additionally, (Liu et al., 2024; Ye et al., 2024) simulate the performance of different data mixtures by training a series of proxy models, enabling the prediction of large-model performance with low compute cost.

2.2 SCALING LAWS

Neural Scaling Laws have been shown to effectively predict performance across varying training budgets, model sizes, and dataset scales in LLM pretraining (Kaplan et al., 2020; Rae et al., 2022). However, in practical scenarios where dataset size is limited, or data mixtures vary, scaling laws

162 exhibit significant variations (Hoffmann et al., 2022). Several studies have extended scaling laws
 163 to account for these complexities. (Muennighoff et al., 2023; Hernandez et al., 2022) explore the
 164 impact of data repetition levels on scaling behaviors, while (Ge et al., 2024) investigate scaling
 165 dynamics under different domain proportions and dataset sizes. To optimize data compositions,
 166 (Liu et al., 2024) propose a regression model for predicting optimal mixtures, and (Kang et al.,
 167 2024) further analyze optimal compositions across varying scales. Additionally, (Que et al., 2024)
 168 focus on identifying the best data mixtures for the continued pretraining stage, providing insights
 169 into refining pretraining strategies under diverse constraints.

171 3 METHODOLOGY

173 Our approach can be illustrated in 4 parts: 1) We propose the QuaDMix framework, which utilizes
 174 a unified parameterized function to govern the data sampling process. 2) We conduct small-scale
 175 experiments to explore how different parameter settings within QuaDMix affect the performance
 176 of LLM. 3) We train a regression model to capture these effects, using it to identify the optimal
 177 parameters. 4) With the optimal parameter settings, we sample large-scale data and train a large
 178 language model.

179 3.1 DESIGN OF QUADMIX

181 We design QuaDMix as a sampling algorithm that simultaneously accounts for data quality and
 182 diversity, as shown in Figure 2. Given a pretraining dataset X , we define a sampling function
 183 $S(x, q_x, d_x; \theta)$, which determines the expected sampling times of each data point x based on its
 184 data feature q_x and d_x . Here q_x represents the quality score vector, which includes multiple quality
 185 criteria, and d_x denotes the domain to which x belongs. $\theta = (\alpha, \beta)$ are the merging and sampleing
 186 parameters to be optimized. The output of this function is fractional value, e.g. $a.b$, meaning the
 187 document will be sampled for a times plus another random sampling with probability b .

188 **Feature Extraction** To measure a sample’s contribution to diversity and its quality, we propose
 189 using domain classification and N quality scorers to label the pretraining data. Specifically, we use
 190 a domain classifier to divide the dataset into M domains, where x will be assigned a domain label
 191 d_x . Then we use N quality scorers to compute the quality vector $q_x = (q_{1,x}, \dots, q_{N,x})$, and for each
 192 $q_{n,x}$, a smaller value indicates a better quality on that dimension. For the sake of simplicity, we omit
 193 x in the subscript in the following discussion.

194 **Quality Ranking** We first define a merging function that integrates the scores from various quality
 195 filters, aiming to incorporate complementary information provided by different criteria. Assuming
 196 there are N criteria, for any individual example x belonging to domain m , the merged quality score
 197 is calculated by

$$198 \quad \bar{q} = \sum_{n=1}^N \sigma(q_n) \alpha_{n,m}, \quad (1)$$

200 where α_m are the merging parameters for domain m . We utilize separate merging parameters
 201 to balance the quality criteria across different domains, as the criteria exhibit varying preferences
 202 depending on the domain. σ is a normalization function to align the scales of quality criteria.

205 We then sort the data based on the merged quality score. The sorting is operated separately in each
 206 domain. The merged quality rank \bar{r} is calculated by computing the percentile of the data within that
 207 domain. That is

$$208 \quad \bar{r} = \frac{|\{x|d_x = m, \bar{q}_x \leq \bar{q}\}|}{|\{x|d_x = m\}|}. \quad (2)$$

210 Here we calculate the size of the set by adding up the number of tokens for all sample within the
 211 set. For a given example in domain m with $\bar{r} = 0.05$, this means that 95% of the tokens in that
 212 domain have a worse quality compared to this example. (Note that we use smaller quality scores to
 213 represent higher quality.)

214 **Quality Sampling** Next, we define the sampling function. We take the assumption that higher-
 215 quality data should be sampled more frequently in the final dataset. This assumption is supported by

216 evidence (Penedo et al., 2024), which demonstrates that applying a higher quality threshold improves
 217 downstream performance. For any example in domain m with merged quality rank \bar{r} , the value of
 218 the sampling function is determined by
 219

$$220 \quad 221 \quad S(\bar{r}) = \begin{cases} \frac{2}{1+e^{-\lambda_m(\omega_m-\bar{r})}}^{\eta_m} + \epsilon_m, & \bar{r} \leq \omega_m \\ \epsilon_m, & \bar{r} > \omega_m \end{cases} \quad 222 \quad (3)$$

223 We denote $\beta_m = (\lambda_m, \omega_m, \eta_m, \epsilon_m)$ as the sampling parameters for domain m . We use a format
 224 of sigmoid to ensure the sampling value is monotonically decreasing as the quality rank goes up
 225 (worse quality) and λ_m is used to adjust how fast it decreases. ω_m controls the quality percentile
 226 threshold, determining the minimum quality level we aim to retain. η_m is a scaling parameter that
 227 adjusts the sampling values, while ϵ_m introduces randomness to incorporate data from all quality
 228 ranges. By applying different sampling parameters across domains, we achieve flexible control over
 229 domain proportions.

230 In summary, by integrating (1),(2), and (3), we define the sampling function for individual domain
 231 m , with the parameters structured as $\theta_m = (\alpha_m, \beta_m)$. The total number of parameters is $(N +$
 232 $4) \times M$, where N represents the number of used quality criteria and M denotes the total number of
 233 distinct domains.

235 3.2 PROXY MODEL EXPERIMENTS

236 We first sample a set of values for each parameter defined above, subsequently generating corre-
 237 sponding datasets using the QuaDMix sampling function. Following this, a series of small proxy
 238 models are trained on each dataset and evaluated on the validation set to compute the validation loss.

239 **Parameter Sampling** The parameter space requires careful design to encompass valuable regions,
 240 while avoiding extreme conditions. We sample from the parameter space as following:

243 Algorithm 1 Parameter Sampling for QuaDMix

244 **Ensure:** θ

245 **Require:** N, M

246 Sample $(a_1, \dots, a_N) \sim U(0, 1)$

$$247 \quad \tilde{a}_n = \frac{a_n}{\sum_i a_i}$$

248 **for** $m = 1$ **to** M **do**

249 Sample $(b_{1,m}, \dots, b_{N,m}) \sim U(0, 1)$

$$250 \quad \tilde{b}_{n,m} = \frac{\tilde{a}_n b_{n,m}}{\sum_i \tilde{a}_i b_{i,m}}$$

251 $\alpha_m = (\tilde{b}_{n,m}), n = 1, \dots, N$

252 Sample $(\lambda_m, \omega_m, \eta_m, \epsilon_m) \sim U(0, 1)$

$$253 \quad \tilde{\lambda}_m = 10^3 \lambda_m, \quad \tilde{\omega}_m = 0.1 \omega_m$$

$$254 \quad \tilde{\eta}_m = \eta_m, \quad \tilde{\epsilon}_m = \epsilon_m / 1000$$

$$255 \quad \beta_m = (\tilde{\lambda}_m, \tilde{\omega}_m, \tilde{\eta}_m, \tilde{\epsilon}_m)$$

$$256 \quad \theta_m = (\alpha_m, \beta_m)$$

257 **end for**

$$258 \quad \theta = (\theta_1, \dots, \theta_M)$$

259
 260 In the algorithm above, we introduce a global weight for each quality criteria, with the final weight
 261 computed by multiplying the global weight by the domain-specific weight. Without this global
 262 weight, the expected average weight across domains for each quality criterion would always be $1/N$,
 263 which fails to account for the scenario where one quality criterion may suppress another overall. For
 264 β_m , we rescale them accordingly to ensure domain proportions and quality thresholds remain within
 265 a reasonable range. Using this process, we generate 3,000 sets of parameters θ_i and then sample
 266 with QuaDMix from our training data, producing 3,000 proxy datasets, denoting as D_i .
 267

268 **Proxy Model Training** Next we train the proxy models on each proxy datasets from scratch.

$$269 \quad f_i^* = \arg \min_f L(f, D_i)$$

270 After training, we evaluate the proxy models by calculating the loss on the target evaluation datasets.
 271

$$272 \quad L_i = L(f_i^*, D_{eval})$$

274 **3.3 PARAMETER OPTIMIZING**
 275

276 **Regression Model Fitting** The next step is to determine the correlation between the sampled QuaD-
 277 Mix parameters and model performance. We formulate this as a regression problem, as proposed
 278 in (Liu et al., 2024), with the goal of learning a function that predicts the target value based on the
 279 input features. Specifically, we optimize a regressor R with

$$281 \quad R^* = \arg \min_R \sum_i \|R(\theta_i) - L_i\|^2$$

284 We evaluate different types of regressors and select LightGBM (Ke et al., 2017), which ensembles
 285 multiple decision trees, to predict the target value.

286 **Optimal Parameter Estimation** Once the regressor is trained, we search the input space to find
 287 the optimal parameters that minimize the predicted loss. Rather than performing a random search
 288 across the entire space, we sample 100,000 data points using the algorithm outlined in Section 3.2
 289 to mitigate the influence of outliers on the regressor. To further reduce the variance in the regression
 290 predictions, we sort the data points based on their predicted target values and calculate the average
 291 of the top 10 data points to determine the final output.

293 **3.4 LARGE-SCALE MODEL EXPERIMENTS**
 294

295 We then use the optimal parameters to generate large-scale datasets for training large-scale models.
 296 In practice, since sorting the quality scores across the entire dataset is computationally expensive,
 297 we estimate the quality percentile by randomly selecting a subset of 10,000 documents. Within this
 298 subset, we calculate the mapping between the quality percentile and quality score, and then apply
 299 this mapping to the entire dataset.

301 **4 EXPERIMENTS ON REGRESSION MODEL**
 302

303 **4.1 EXPERIMENT SETUP**
 304

305 **Datasets** We conduct our experiment on RefinedWeb (Penedo et al., 2023). It is an English large-
 306 scale dataset for the pretraining of large language models and consists of over 570B(billion) tokens.
 307 For the small proxy datasets, we sample it from a subset of RefinedWeb, each containing 1B tokens.

308 **Feature Extraction** We generate the necessary data features including data quality and domain
 309 index with 3 individual quality filters, AskLLM (Sachdeva et al., 2024), Fineweb-Edu (Penedo et al.,
 310 2024), DCLM (Li et al., 2024) and 1 domain classifier (Jennings et al.), which classifies the data into
 311 26 different domains with a Deberta V3 (He et al., 2023) architecture. The detail of the classifier is
 312 reported in Appendix A

313 **Training and evaluation** For the proxy models, we train them on the proxy datasets for 1B tokens.
 314 More information about proxy models are in Appendix B.

316 To construct the validation datasets, we sample from the instruction-formatted dataset OpenHermes
 317 2.5 (Teknium, 2023). As demonstrated in (Li et al., 2024), this dataset is used to train a robust quality
 318 filter. To improve efficiency, we sampled 10k samples from it to form a validation subset, named
 319 openhermes-10k. Additionally, we test on the training data from the downstream tasks including
 320 HellaSwag, ARC-E, ARC-C, MMLU, and TriviaQA to demonstrate the model’s ability to optimize
 321 for specific downstream tasks by altering the target evaluation datasets.

322 For the regression model, we split the data into 2800/200 for training and validation. We use Mean
 323 Absolute Error (MAE) as the evaluation metric, which calculates the average absolute differences
 between predicted and actual values.

324 4.2 RESULTS
325326 We use LightGBM as the regression model, and train it with 2800 proxy model’s results, and there
327 is a strong correlation between the predicted loss and real loss on the 200 validation set, the pearson
328 correlation is 95.45%. Indicating the LightGBM is able to predict the proxy model performance
329 based on the inout parameters.330
331 5 EXPERIMENTS ON LANGUAGE MODEL
332333 In this section we compare different methods of data selection and mixture with QuaDMix by training
334 language models from scratch and evaluating on various downstream tasks.
335336
337 5.1 EXPERIMENT SETUP338
339 **Training and evaluation** We train the language model with 530M parameters from scratch for
340 500B tokens. And we also conduct experiments on 1.2B model with 30B tokens and 7B model with
341 150B tokens to further validate the effectiveness of QuaDMix. We train modekl with transformer
342 architecture (Vaswani et al., 2017), see the details in Appendix B and Appendix D.343 Then we evaluate the model performance using lm-eval-harness (Gao et al., 2023). We choose
344 9 downstream tasks, including 3 commonsense reasoning tasks (PIQA (Bisk et al., 2019), Hel-
345 laSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018)), 3 reading comprehension
346 tasks (ARC-E/C (Clark et al., 2018), Triviaqa (Joshi et al., 2017)), 1 math problem solving task
347 (SVAMP (Patel et al., 2021)) and 2 knowledge intensive tasks (MMLU (Hendrycks et al., 2021),
348 NQ-open (Kwiatkowski et al., 2019; Lee et al., 2019)). For each benchmark, we used normalized
349 accuracy as the evaluation metric. Some modifications on the testing logic are applied for numerical
350 stability, the details are shown in Appendix C.351
352 5.2 DATA SELECTION METHODS353 We use the following methods as comparative experiments with our QuaDMix:
354355

- **Random Selection:** Documents are randomly selected from the whole dataset.
- **Fineweb-edu Classifier:** Documents are scored with Fineweb-edu Classifier (Penedo et al., 2024)
356 with top-k selection
- **AskLLM:** Documents are scored with the probability of generating "Yes" from a prompted large
359 language model (Sachdeva et al., 2024). The top-k documents are selected.
- **DCLM:** Documents are scored with fasttext based classifier (Li et al., 2024) with top-k selection.
- **Criteria Mix:** Following (Wettig et al., 2024), the selected data from the above three filters are
363 merged, with duplicated documents removed.

364
365
366 Table 1: QuaDMix outperforms the methods focusing only on data quality or data mixture. With
367 benchmark training set as the target, the results further boost.368
369

Methods	Selected Token	Reading Comprehension	Commonsense Reasoning	Knowledge	Math	Average
Random Selection	500B	32.9	51.6	17.4	2.8	32.3
DSIR	72B	34.9	49.2	17.5	6.9	32.7
RegMix	500B	35.5	52.4	17.7	3.5	33.6
Fineweb-edu	30B	41.4	55.5	20.1	6.0	37.4
AskLLM	30B	38.9	54.2	19.0	2.3	35.5
DCLM	30B	41.2	53.1	19.8	8.2	36.7
Criteria Mix	74B	40.1	53.7	20.0	3.1	36.0
QuaDMix-OH	30B	44.0	55.7	21.0	10.2	39.0
QuaDMix-BMK	30B	44.8	55.7	21.3	11.5	39.5

378 • **DSIR**: Documents are sampled based on the importance calculated with the N-gram features (Xie
 379 et al., 2023b).

380 • **RegMix**: Following (Liu et al., 2024), we conduct 512 1M porxy experiments and randomly select
 381 data using the optimized data mixtures.

383 And we conduct QuaDMix experiments base on two different evaluation sets:

384 • **QuaDMix-OH**: Documents are sampled with the proposed QuaDMix, where Openhermes is used
 385 as the validation set for the proxy experiments

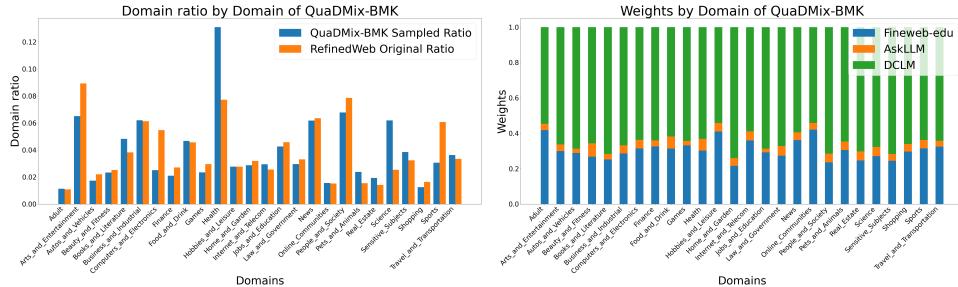
387 • **QuaDMix-BMK**: Documents are sampled with the proposed QuaDMix, where the training set of
 388 5 downstream tasks (HellaSwag, ARC-E, ARC-C, MMLU, TriviaQA) are used as the validation set
 389 to generate the optimal QuaDMix parameters. See appendix G for the details.

390 5.3 RESULTS

392 The results are summerized in Table 1. We can see that QuaDMix outperforms the methods focusing
 393 only on data quality or data mixture on all the benchmarks, proving the necessity of jointly consid-
 394 ering quality and diversity. It also shows that the proxy model experiments can well indicate the
 395 performance on large scale model. With loss of the benchmark training set as the target when train-
 396 ing the regression model, the results further boost. This prove the ability of QuaDMix of optimizing
 397 for specific downstream tasks by choosing evaluation datasets in proxy experiments which are more
 398 related to the downstream tasks. The detailed experiment results are shown in Appendix E.

399 Figure 1a indicats QuaDMix is computaionally efficient, QuaDMix achieves the same average per-
 400 formance as the Random Selection baseline at 500B tokens with only about 18B tokens, which is
 401 a 27 times faster. Furthermore, QuaDMix surpasses the Random Selection baseline by 7.2% in
 402 average performance at 500B token.

403 **Analysis of optimal QuaDMix parameters** We show the optimal data mixtures and merging pa-
 404 rameters of quality filters from QuadMix-BMK in Figure 3. We see that the Health and Science
 405 domain are upsampled for large margin, while Sports and Computers downsampled, indicating that
 406 the downstream tasks we choose have preference for specific domains. The right figure shows that
 407 the DCLM quality filter contributes most to the merged quality score, while AskLLM only occupies
 408 a small weight among the three filters.



410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 Figure 3: The visualization of optimal parameters from QuaDMix-BMK.

6 ABLATIONS

425 **Quality Merging Benefits Selection** To prove the necessity of quality score merging, we select
 426 different combinations of quality filters by manually setting the weight of certain filters to 0 when
 427 finding the optimal QuaDMix parameters. As shown in Table 2, merging with all three quality filters
 428 shows the best performance. Although using one quality filter can be optimal for one specific task,
 429 for example DCLM-only for MATH, the merging process reduces intrinsic bias within the quality
 430 filters and outperforms in general ability, which is essential for language model pretraining.

431 **More Tokens not always good** We also experiment with selecting more tokens by loosing the
 432 sampling parameter ω in QuaDMix. In that way we introduce more diversed tokens but lower

432 Table 2: QuaDMix-OH with different settings on quality filters (AskLLM (A), Fineweb-edu (F),
 433 DCLM (D)) and selected tokens.

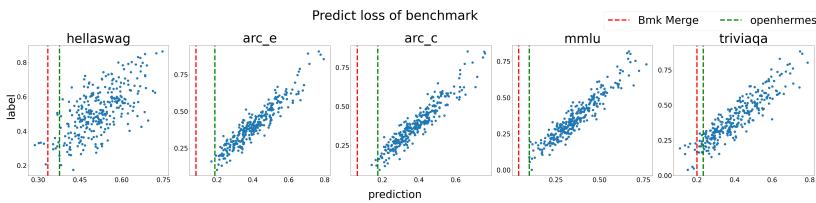
A	F	D	Selected Token	Reading Comprehension	Commonsense Reasoning	Knowledge	Math	Average
✓			30B	38.9	53.5	18.6	2.9	35.2
	✓		30B	41.4	55.5	20.1	6.0	37.4
		✓	30B	41.3	53.4	19.7	12.2	37.3
✓	✓		30B	41.9	55.6	20.0	5.1	37.5
✓		✓	30B	41.8	54.6	19.8	9.1	37.5
✓	✓	✓	30B	43.5	55.6	20.8	9.6	38.7
✓	✓	✓	90B	40.7	55.2	19.5	4.6	36.8
✓	✓	✓	180B	37.8	53.9	18.9	2.8	35.1
✓	✓	✓	30B	44.0	55.7	21.0	10.2	39.0

446 Table 3: QuaDMix-OH vs QuaDMix-BMK on 5 downstream tasks. The trend mostly agree with the
 447 prediction loss on proxy model except for HellaSwag.

Method	HellaSwag	ARC-C	ARC-E	MMLU	TriviaQA
QuaDMix-OH	56.5	39.2	71.1	34.1	21.6
QuaDMix-BMK	56.1	40.2	71.3	34.4	22.8

453 quality into the training. The results in Table 2 show that selecting 30B tokens, i.e. documents
 454 with top5% quality yields the best result, meaning that curing data quality contributes more than
 455 increasing the number of unique tokens within this range.

456 **Proxy Ability of Small Models** How well the prediction loss on proxy models forecasts the
 457 performance on large-scale models is the key factor of QuaDMix. To study this, we train 5 separate
 458 regression models, each using the loss on training set of one benchmark as the target. The results on
 459 the validation set are shown as blue points in Figure 4. We notice that HellaSwag has larger variance
 460 than others, which indicates there may be more influencing factors related with HellaSwag, making
 461 the loss on it harder to predict. Then we predict the loss for optimal parameters from QuaDMix-OH
 462 and QuaDMix-BMK using each regression model as shown in Figure 4. It is reasonable to see the
 463 loss of QuaDMix-BMK surpasses QuaDMix-OH on all tasks since QuaDMix-BMK utilizes bench-
 464 mark training set as optimizing target. Finally we report the performance of large model in Table
 465 3. Except for HellaSwag, QuaDMix-BMK outperforms QuaDMix-OH on other tasks, which agrees
 466 with the trend on prediction loss. The inconsistent conclusion on HellaSwag is because the predict
 467 loss has larger variance as mentioned above, making the proxy ability lower than other tasks. How
 468 to further increase the proxy ability is one of the future direction to explore.



476 Figure 4: The prediction loss of QuaDMix-BMK surpasses QuaDMix-OH on all 5 downstream
 477 tasks.

480 7 CONCLUSION

482 In this paper, we propose a novel data selection method QuaDMix that jointly optimizes the data
 483 quality and diversity for language model pretraining. We design a parameterized space that controls
 484 both the data quality and diversity, and conduct proxy experiments to find the correlation between
 485 the parameter and model performance. The training data generated with optimal parameters are
 486 proved to outperform others on various downstream tasks.

486 8 ETHICS STATEMENT
487488 Our research is based on the publicly available and extensively filtered RefinedWeb dataset. We do
489 not foresee any direct negative societal impacts stemming from our methodology or the resulting
490 models.
491492 9 REPRODUCIBILITY STATEMENT
493494 Our experiments are based on the open-source RefinedWeb dataset. All experimental settings, model
495 architectures, hyperparameters, and implementation details have been thoroughly described in the
496 main body and the appendix to ensure that other researchers can independently reproduce our results
497 based on this information.
498

499 500 REFERENCES

501 Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S. Morcos. Semdedup: Data-
502 efficient learning at web-scale through semantic deduplication, 2023. URL <https://arxiv.org/abs/2303.09540>.
503504 Tianyi Bai, Ling Yang, Zhen Hao Wong, Jiahui Peng, Xinlin Zhuang, Chi Zhang, Lijun Wu, Jiantao
505 Qiu, Wentao Zhang, Binhang Yuan, and Conghui He. Multi-agent collaborative data selection for
506 efficient llm pretraining, 2024. URL <https://arxiv.org/abs/2410.08102>.
507508 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
509 physical commonsense in natural language. In *AAAI Conference on Artificial Intelligence*, 2019.
510 URL <https://api.semanticscholar.org/CorpusID:208290939>.
511512 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, and et al. Language mod-
513 els are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
514 H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 1877–1901,
515 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfc4967418bfb8ac142f64a-Paper.pdf.
516517 Daixuan Cheng, Yuxian Gu, Shaohan Huang, Junyu Bi, Minlie Huang, and Furu Wei. Instruc-
518 tion pre-training: Language models are supervised multitask learners. In Yaser Al-Onaizan,
519 Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical
520 Methods in Natural Language Processing*, pp. 2529–2550, Miami, Florida, USA, November
521 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.148. URL
522 <https://aclanthology.org/2024.emnlp-main.148>.
523524 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, and et al.
525 Palm: Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24
526 (240):1–113, 2023. URL <http://jmlr.org/papers/v24/22-1144.html>.
527528 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
529 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
530 2018. URL <https://arxiv.org/abs/1803.05457>.
531532 Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alex Smola, and Vladimir Vap-
533 nik. Support vector regression machines. In M.C. Mozer, M. Jordan, and T. Petsche
534 (eds.), *Advances in Neural Information Processing Systems*, volume 9. MIT Press,
535 1996. URL https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf.
536537 Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
538 Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma,
539 Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellar, Kevin Robinson, Kathleen
Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen,
and Claire Cui. GLaM: Efficient scaling of language models with mixture-of-experts. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
540

540 (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of
 541 *Proceedings of Machine Learning Research*, pp. 5547–5569. PMLR, 17–23 Jul 2022. URL
 542 <https://proceedings.mlr.press/v162/du22c.html>.

543

544 Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization
 545 estimation, 2024. URL <https://arxiv.org/abs/2310.15393>.

546

547 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 548 Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
 549 An 800gb dataset of diverse text for language modeling, 2020. URL <https://arxiv.org/abs/2101.00027>.

550

551 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 552 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
 553 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
 554 tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
 555 for few-shot language model evaluation, 12 2023. URL <https://zenodo.org/records/10256836>.

556

557 Ce Ge, Zhijian Ma, Daoyuan Chen, Yaliang Li, and Bolin Ding. Bimix: Bivariate data mixing law
 558 for language model pretraining, 2024. URL <https://arxiv.org/abs/2405.14908>.

559

560 Yuxian Gu, Li Dong, Hongning Wang, Yaru Hao, Qingxiu Dong, Furu Wei, and Minlie Huang. Data
 561 selection via optimal control for language models, 2024. URL <https://arxiv.org/abs/2410.07064>.

562

563 Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
 564 Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
 565 Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
 566 Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL <https://arxiv.org/abs/2306.11644>.

567

568

569 Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Light-
 570 eval: A lightweight framework for llm evaluation, 2023. URL <https://github.com/huggingface/lighteval>.

571

572

573 Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
 574 pre-training with gradient-disentangled embedding sharing, 2023. URL <https://arxiv.org/abs/2111.09543>.

575

576

577 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 578 Jacob Steinhardt. Measuring massive multitask language understanding. In *ICLR*. Open-
 579 Review.net, 2021. URL <http://dblp.uni-trier.de/db/conf/iclr/iclr2021.html#HendrycksBBZMSS21>.

580

581 Danny Hernandez, Tom Brown, Tom Conerly, Nova DasSarma, Dawn Drain, Sheer El-Showk,
 582 Nelson Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan Hume, Scott Johnston, Ben Mann,
 583 Chris Olah, Catherine Olsson, Dario Amodei, Nicholas Joseph, Jared Kaplan, and Sam McCan-
 584 dlish. Scaling laws and interpretability of learning from repeated data, 2022. URL <https://arxiv.org/abs/2205.10487>.

585

586

587 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 588 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas
 589 Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Au-
 590 relia Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Lau-
 591 rent Sifre. An empirical analysis of compute-optimal large language model training. In
 592 S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in
 593 Neural Information Processing Systems*, volume 35, pp. 30016–30030. Curran Associates, Inc.,
 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf.

594 Joseph Jennings, Mostafa Patwary, Sandeep Subramanian, Shrimai Prabhumoye, Ayush Dattagupta,
 595 Vibhu Jawa, Jiwei Liu, Ryan Wolf, Sarah Yurick, and Varun Singh. NeMo-Curator: a toolkit for
 596 data curation. URL <https://github.com/NVIDIA/NeMo-Curator>.

597

598 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
 599 supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
 600 (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
 601 (Volume 1: Long Papers)*, pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
 602 putational Linguistics. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147/>.

603

604 Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient
 605 text classification. In *Proceedings of the 15th Conference of the European Chapter of the As-
 606 sociation for Computational Linguistics: Volume 2, Short Papers*, pp. 427–431. Association for
 607 Computational Linguistics, April 2017.

608

609 Feiyang Kang, Yifan Sun, Bingbing Wen, Si Chen, Dawn Song, Rafid Mahmood, and Ruoxi Jia.
 610 Autoscale: Automatic prediction of compute-optimal data composition for training llms, 2024.
 611 URL <https://arxiv.org/abs/2407.20177>.

612

613 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 614 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 615 models, 2020. URL <https://arxiv.org/abs/2001.08361>.

616

617 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
 618 Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In I. Guyon,
 619 U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
 620 *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 621 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

622

623 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 624 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 625 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 626 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the
 627 Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 628 <https://aclanthology.org/Q19-1026/>.

629

630 Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral,
 631 Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu
 632 Nguyen, Jörg Frohberg, Mario Šaško, , and et al. The bigscience roots corpus: A 1.6tb composite
 633 multilingual dataset. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
 634 (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 31809–31826. Curran
 635 Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/ce9e92e3de2372a4b93353eb7f3dc0bd-Paper-Datasets_and_Benchmarks.pdf.

636

637 Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised
 638 open domain question answering. In *Proceedings of the 57th Annual Meeting of the Asso-
 639 ciation for Computational Linguistics*, pp. 6086–6096, Florence, Italy, July 2019. Association for
 640 Computational Linguistics. doi: 10.18653/v1/P19-1612. URL <https://www.aclweb.org/anthology/P19-1612>.

641

642 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
 643 Guha, Sedrick Keh, and et al. Datacomp-lm: In search of the next generation of training sets for
 644 language models, 2024. URL <https://arxiv.org/abs/2406.11794>.

645

646 Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
 647 Yang, Jian Jiao, Nan Duan, and Weizhu Chen. Rho-1: Not all tokens are what you need, 2025.
 648 URL <https://arxiv.org/abs/2404.07965>.

648 Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing
 649 Jiang, and Min Lin. Regmix: Data mixture as regression for language model pre-training, 2024.
 650 URL <https://arxiv.org/abs/2407.01492>.
 651

652 Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
 653 Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide
 654 to training data: Measuring the effects of data age, domain coverage, quality, & toxicity. In
 655 Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of
 656 the North American Chapter of the Association for Computational Linguistics: Human Lan-
 657 guage Technologies (Volume 1: Long Papers)*, pp. 3245–3276, Mexico City, Mexico, June
 658 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.179. URL
 659 <https://aclanthology.org/2024.naacl-long.179>.
 660

661 Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker. When
 662 less is more: Investigating data pruning for pretraining llms at scale, 2023. URL <https://arxiv.org/abs/2309.04564>.
 663

664 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 665 electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang,
 666 Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empir-
 667 ical Methods in Natural Language Processing*, pp. 2381–2391, Brussels, Belgium, October-
 668 November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL
 669 <https://aclanthology.org/D18-1260/>.
 670

671 Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Piki-
 672 tus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language mod-
 673 els. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in
 674 Neural Information Processing Systems*, volume 36, pp. 50358–50376. Curran Associates, Inc.,
 675 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/9d89448b63ce1e2e8dc7af72c984c196-Paper-Conference.pdf.
 676

677 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are NLP models really able to solve sim-
 678 ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
 679 Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
 680 (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association
 681 for Computational Linguistics: Human Language Technologies*, pp. 2080–2094, Online, June
 682 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
 683 <https://aclanthology.org/2021.naacl-main.168/>.
 684

685 Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobaidli,
 686 Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refined-
 687 web dataset for falcon llm: Outperforming curated corpora with web data only. In A. Oh,
 688 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural
 689 Information Processing Systems*, volume 36, pp. 79155–79172. Curran Associates, Inc., 2023.
 690 URL https://proceedings.neurips.cc/paper_files/paper/2023/file/fa3ed726cc5073b9c31e3e49a807789c-Paper-Datasets_and_Benchmarks.pdf.
 691

692 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 693 Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
 694 finest text data at scale, 2024. URL <https://arxiv.org/abs/2406.17557>.
 695

696 Haoran Que, Jiaheng Liu, Ge Zhang, Chenchen Zhang, Xingwei Qu, Yinghao Ma, Feiyu Duan,
 697 Zhiqi Bai, Jiakai Wang, Yuanxing Zhang, Xu Tan, Jie Fu, Wenbo Su, Jiamang Wang, Lin Qu,
 698 and Bo Zheng. D-cpt law: Domain-specific continual pre-training scaling law for large language
 699 models, 2024. URL <https://arxiv.org/abs/2406.01375>.
 700

701 Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
 702 John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hen-
 703 nigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne
 704 Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri,

702 and et al. Scaling language models: Methods, analysis & insights from training gopher, 2022.
 703 URL <https://arxiv.org/abs/2112.11446>.
 704

705 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 706 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
 707 text transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020. URL <http://jmlr.org/papers/v21/20-074.html>.
 708

709 Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H. Chi,
 710 James Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient llms,
 711 2024. URL <https://arxiv.org/abs/2402.09668>.
 712

713 Yunfan Shao, Linyang Li, Zhaoye Fei, Hang Yan, Dahua Lin, and Xipeng Qiu. Balanced data
 714 sampling for language model training with clustering, 2024. URL <https://arxiv.org/abs/2402.14526>.
 715

716 Noam Shazeer. Glu variants improve transformer, 2020. URL <https://arxiv.org/abs/2002.05202>.
 717

718 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Author,
 719 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha,
 720 Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, and et al. Dolma: an open corpus of three
 721 trillion tokens for language model pretraining research. In *Proceedings of the 62nd Annual Meet-
 722 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15725–15788,
 723 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 724 2024.acl-long.840. URL <https://aclanthology.org/2024.acl-long.840/>.
 725

726 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
 727 Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
 728 ISSN 0925-2312. doi: <https://doi.org/10.1016/j.neucom.2023.127063>. URL <https://www.sciencedirect.com/science/article/pii/S0925231223011864>.
 729

730 Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assis-
 731 tants. In *huggingface*, 2023. URL <https://huggingface.co/datasets/teknium/OpenHermes-2.5>.
 732

733 Tristan Thrush, Christopher Potts, and Tatsunori Hashimoto. Improving pretraining data using per-
 734 plexity correlations, 2024. URL <https://arxiv.org/abs/2409.05816>.
 735

736 Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari S. Morcos. D4: Improving llm pre-
 737 training via document de-duplication and diversification, 2023. URL <https://arxiv.org/abs/2308.12284>.
 738

739 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 740 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 741 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 742 language models, 2023. URL <https://arxiv.org/abs/2302.13971>.
 743

744 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 745 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 746 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
 747 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 748 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.
 749

750 Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
 751 Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Chal-
 752 lamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and
 753 Ce Zhang. Redpajama: an open dataset for training large language models, 2024. URL
 754 <https://arxiv.org/abs/2411.12372>.
 755

756 Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán,
 757 Armand Joulin, and Edouard Grave. CCNet: Extracting high quality monolingual datasets from
 758 web crawl data. In *Proceedings of the Twelfth Language Resources and Evaluation Conference*,
 759 pp. 4003–4012, Marseille, France, May 2020. European Language Resources Association. ISBN
 760 979-10-95546-34-4. URL <https://aclanthology.org/2020.lrec-1.494/>.

761 Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality
 762 data for training language models, 2024. URL <https://arxiv.org/abs/2402.09739>.

763

764 Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu,
 765 Percy S Liang, Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing
 766 data mixtures speeds up language model pretraining. In A. Oh, T. Naumann,
 767 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural In-*
 768 *formation Processing Systems*, volume 36, pp. 69798–69818. Curran Associates, Inc.,
 769 2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/dcba6be91359358c2355cd920da3fcbd-Paper-Conference.pdf.

770

771 Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data se-
 772 lection for language models via importance resampling. In A. Oh, T. Naumann,
 773 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural In-*
 774 *formation Processing Systems*, volume 36, pp. 34201–34227. Curran Associates, Inc.,
 775 2023b. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/6b9aa8f418bde2840d5f4ab7a02f663b-Paper-Conference.pdf.

776

777 Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou, Jun Zhan, and Xipeng Qiu. Data mixing laws:
 778 Optimizing data mixtures by predicting language modeling performance, 2024. URL <https://arxiv.org/abs/2403.16952>.

779

780 Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient pre-
 781 training with data influence models, 2024. URL <https://arxiv.org/abs/2406.06046>.

782

783 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
 784 machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Márquez
 785 (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*,
 786 pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
 787 18653/v1/P19-1472. URL <https://aclanthology.org/P19-1472/>.

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A CRITERIA AND DOMAIN CLASSIFIER
811

812 We use three quality criteria in QuaDMix, namely AskLLM, Fineweb-Edu, and DCLM. And one
813 domain classifier to identify which domain each datapoint belongs to. The spearman correlation
814 between three criteria is as illustrated in Figure 5. The three criteria have pool correlation that
815 indicating they focus on different aspects of the documents.

816 **AskLLM** (Sachdeva et al., 2024) is based on Llama-2-7B, with the prompt shown in Figure 6, it
817 gives every document a score $P(\text{"yes"} | \text{prompt})$.

818 **Fineweb-Edu** (Penedo et al., 2024) uses the prompt shown in figure 7, and DeBERTa-v3-small to
819 give the document a score. It scores a document from its educational value.

820 **DCLM** (Li et al., 2024) is a fastText model (Joulin et al., 2017) trained with instruction-formatted
821 data from Openhermes 2.5(Teknium, 2023) and r/ExplainLikeImFive(ELI5) as the positive data and
822 random data from Common Crawl as negative data.

823 **Domain Classifier** (Jennings et al.) is based on DeBERTa-V3-Base with 512 token context length,
824 it classifies documents into one of 26 domains. The 26 domains are illustrated in Figure 8.

825 B MODEL STRUCTURE & TRAINING DETAILS
826

827 We use 3000 proxy-model with 1M parameter and train the large-scale model with 530M parameter.
828 We use transformer architecture (Vaswani et al., 2017), SwiGLU (Shazeer, 2020) as the activation
829 function and RoPE embeddings (Su et al., 2024). We use a tokenizer with 136k vocabulary. The
830 detailed model structure are illustrated in table 4.

831 We train all the model with 2048 as the max sequence length, we use a cosine decay scheduler and
832 the initial learning rate is shown in table 4, the warm up ratio is set 0.5%. We use AdamW optimizer
833 with $\beta_1 = 0.9$, $\beta_2 = 0.95$, weight-decay= 0.1. We train 1M proxy model for 1B tokens and 530M
834 model for 1T tokens, the performance reported for 530M model is its corresponding results at 500B
835 token for time efficiency. And we train 1.2B model for 30B tokens and 6.5B model for 150B tokens.

836 C EVALUATION
837

838 We choose 9 downstream tasks, including 3 commonsense reasoning tasks (PIQA (Bisk et al., 2019),
839 HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018)), 3 reading comprehension
840 tasks (ARC-E/C (Clark et al., 2018), TriviaQA (Joshi et al., 2017)), 1 math problem solving task
841 (SVAMP (Patel et al., 2021)) and 2 knowledge intensive tasks (MMLU (Hendrycks et al., 2021),
842 NQ-open (Kwiatkowski et al., 2019; Lee et al., 2019)) as the evaluation sets. We use lm-eval-
843 harness to evaluate the model performance on all above benchmarks except MMLU. And we evaluate
844 performance of MMLU using LightEval library (Habib et al., 2023).

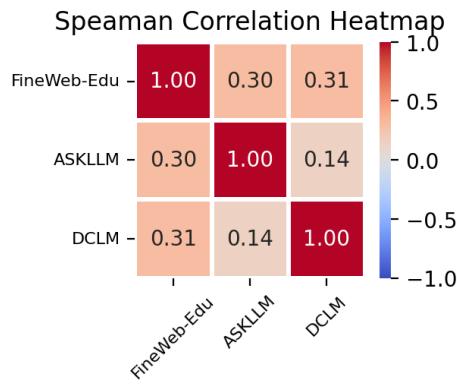


Figure 5: The spearman correlation between three criteria.

```

864
865
866
867
868     #####
869     This is a pretraining .... datapoint.
870
871     #####
872     Does the previous paragraph demarcated within #### and #### contain informative signal for pre-
873     training a large-language model? An informative datapoint should be well-formatted, contain
874     some usable knowledge of the world, and strictly NOT have any harmful, racist, sexist, etc.
875     content.
876
877     OPTIONS:
878
879     - yes
880
881     - no
882
883

```

Figure 6: The Prompt of ASKLLM.

D COST ANALYSIS

The time cost for each model of different size is illustrated in table 6. Thought using three criteria and one domain classifier cost extra GPU time, the results have a wide range of applications in terms of quality analysis beyond this work, We do not include these costs in our calculation. For the 3000 proxy models, 3000 H-100 GPU hours were spent, it's about half of the cost of training a 7B model for 150B token. Considering the improvements QuaDMix can bring, we believe it is worthwhile.

E DETAILED EXPERIMENT RESULTS

We show the full experiment results on 530M model in table 7, note that the performance of 530M models reported in this paper is its corresponding results at 500B token for time efficiency thought the training scheduler was set 1T token. We also conducted experiments with other scale models to further verify the effectiveness of QuaDMix, which is illustrated in table 8.

F PROXY ABILITY OF SMALL MODELS

We use Openhermes 2.5 as the evaluation set for proxy models, for efficiency, we sampled 10k samples from it, named Openhermes-10k. And train a regression model taking the QuaDMix parameters as input and the corresponding normalized evaluation loss as output. And the 3000 experiments are split into 2800 and 200 for training and evaluation. We tested on three regression models: LightGBM, SVR (Drucker et al., 1996) with Linear kernel and SVR with RBF kernel. As illustrated in

Table 4: Structure of models used in QuaDMix.

Hyperparameter	1M	530M	1.2B	7.7B
Hidden states dimention	192	1536	2048	4096
MLP dimention	768	2816	5540	14336
Number of Layers	3	24	24	32
Number of Heads	3	16	16	32
Initial Learning Rate	0.005	0.0008	0.0005	0.000036
Batch Size	128	1024	1024	4096

Table 5: Summary of Downstream Evaluation Tasks

Downstream Task	Category	Metric	Shots	Baseline
PIQA	Commonsense Reasoning	acc_norm	5	0.50
HellaSwag	Commonsense Reasoning	acc_norm	10	0.25
OpenBookQA	Commonsense Reasoning	acc_norm	10	0.25
ARC-Easy	Reading Comprehension	acc_norm	25	0.25
ARC-Challenge	Reading Comprehension	acc_norm	25	0.25
TriviaQA	Reading Comprehension	exact_match	5	0.00
SVAMP	Math Problem Solving	exact_match	5	0.00
MMLU(lighteval)	Knowledge Intensive	acc_norm	5	0.25
NQ-open	Knowledge Intensive	exact_match	5	0.00

Fineweb-Edu Prompt

Below is an extract from a web page. Evaluate whether the page has a high educational value and could be useful in an educational setting for teaching from primary school to grade school levels using the additive 5-point scoring system described below. Points are accumulated based on the satisfaction of each criterion:

- Add 1 point if the extract provides some basic information relevant to educational topics, even if it includes some irrelevant or non-academic content like advertisements and promotional material.
- Add another point if the extract addresses certain elements pertinent to education but does not align closely with educational standards. It might mix educational content with non-educational material, offering a superficial overview of potentially useful topics, or presenting information in a disorganized manner and incoherent writing style.
- Award a third point if the extract is appropriate for educational use and introduces key concepts relevant to school curricula. It is coherent though it may not be comprehensive or could include some extraneous information. It may resemble an introductory section of a textbook or a basic tutorial that is suitable for learning but has notable limitations like treating concepts that are too complex for grade school students.
- Grant a fourth point if the extract is highly relevant and beneficial for educational purposes for a level not higher than grade school, exhibiting a clear and consistent writing style. It could be similar to a chapter from a textbook or a tutorial, offering substantial educational content, including exercises and solutions, with minimal irrelevant information, and the concepts aren't too advanced for grade school students. The content is coherent, focused, and valuable for structured learning.
- Bestow a fifth point if the extract is outstanding in its educational value, perfectly suited for teaching either at primary school or grade school. It follows detailed reasoning, the writing style is easy to follow and offers profound and thorough insights into the subject matter, devoid of any non-educational or complex content.

The extract: <EXAMPLE>.

After examining the extract:

- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: "Educational score: <total points>"

Figure 7: The Prompt of Fineweb-Edu.

figure 9, the left figure indicates that as the training data increases, the Mean Average Error (MAE) of the regression models on the validation set continues to decrease, and it can be observed that the performance of LightGBM is consistently the best. The right figure shows strong correlation between the predicted loss and the real model loss on the validation set, providing the evidence that there exists statistical pattern between the QuaDMix parameters and the model performance.

We test the evaluation loss of proxy models on various downstream tasks, their pearson correlations between loss and predicted loss of lightGBM on validation set are illustrated in table 9. There is a

Domains			
• Adult	• Arts_and_Entertainment	• Autos_and_Vehicles	• Beauty_and_Fitness
• Books_and_Literature	• Business_and_Industrial	• Computers_and_Electronics	• Finance
• Food_and_Drink	• Games	• Health	• Hobbies_and_Leisure
• Home_and_Garden	• Internet_and_Telecom	• Jobs_and_Education	• Law_and_Government
• News	• Online_Communities	• People_and_Society	• Pets_and_Animals
• Real_Estate	• Science	• Sensitive_Subjects	• Shopping
• Sports	• Travel_and_Transportation		

Figure 8: The 26 domains of Domain Classifier.

Table 6: Training cost for different model configurations.

Model Size	Token	H-100 GPU Hours
1M	1B	~1
530M	500B	~2300
1.2B	30B	~220
7.7B	150B	~5900

significant spearmanr correlation between ground truth and the predicted loss by lightGBM on the validation set for vast majority of benchmarks, except for a few benchmarks such as HellaSwag or Xnli. We believe this is because some factors other than the QuaDMix parameters can also affect performance on these benchmarks. And this will be left for our future work.

G TARGETED OPTIMIZATION

To further verify QuaDMix’s ability to optimize for specific dnowstream tasks, we test the evaluation loss of proxy models on various dnowstream tasks. For each benchmark, we have 3000 evaluation loss from proxy models, we treat it as a 3000-dimentional vector thus we can calculate the correlation between benchmarks. We show the spearmanr correlation between all the benchmarks in figure 10.

Benchmark Merge We choose 5 benchmarks: HellaSwag, ARC-E, ARC-C, MMLU, TriviaQA and train a lightGBM for each benchmark. We aim to find a set of QuaDMix parameters so that the pre-train model perform as well as possible on these 5 benchmarks simultaneously. Specifically, we find a set of weights α for different benchmarks and a set of QuaDMix parameters so that the α weighted sum of the losses predicted by LightGBM under the QuaDMix parameters for the 5 benchmarks is minimized. As illustrated in table 7, the QuaDMix-BMK outperforms QuaDMix-OH on almost all above 5 benchmarks except HellaSwag, the QuaDMix-BMK’s lagging behind on HellaSwag

Table 7: Performance comparison of different methods across various benchmarks of 530M model.

Method	PIQA	HellaSwag	OpenBookQA	ARC-E	ARC-C	Triviaqa	SVAMP	MMLU	NQ-open
Random Selection	70.9	51.1	32.7	57.2	27.9	13.6	2.8	29.4	5.4
DSIR	70.9	45.9	30.8	60.9	30.2	13.6	6.9	30.1	4.8
RegMix	71.4	52.1	33.6	62.6	31.1	12.7	3.5	30.1	5.3
Fineweb-edu	73.7	54.8	34.4	70.8	38.2	18.1	10.7	34.2	6.9
ASKLMM	73.2	54.2	35.1	64.8	32.2	19.7	2.3	30.9	7.1
DCLM	71.2	51.7	36.3	68.5	35.7	19.4	8.2	32.4	7.2
Criteria Mix	72.6	54.0	34.5	67.2	34.2	18.9	3.1	32.5	7.4
QuaDMix-OH	73.2	56.5	37.3	71.1	39.2	21.6	10.2	34.1	7.9
QuaDMix-BMK	74.1	56.1	36.9	71.3	40.2	22.8	11.5	34.4	8.1

1026
1027
10281029 Table 8: Performance comparison of different model size across various benchmarks.
1030

Method	Model-size	PIQA	HellaSwag	OpenBookQA	ARC-E	ARC-C	Triviaqa	SVAMP	MMLU	NQ-open	Avg
Random Selection	1.2B	71.82	50.93	31.40	57.70	27.90	12.61	3.90	29.73	5.29	32.36
QuaDMix-OH	1.2B	74.05	57.20	38.00	71.09	39.76	21.43	7.80	34.75	7.73	39.09
Random Selection	7B	73.18	53.69	31.80	59.68	29.27	16.13	1.60	30.60	5.54	33.50
QuaDMix-OH	7B	75.73	59.14	38.80	71.17	40.61	24.41	5.60	35.62	8.39	39.94

1034

1035

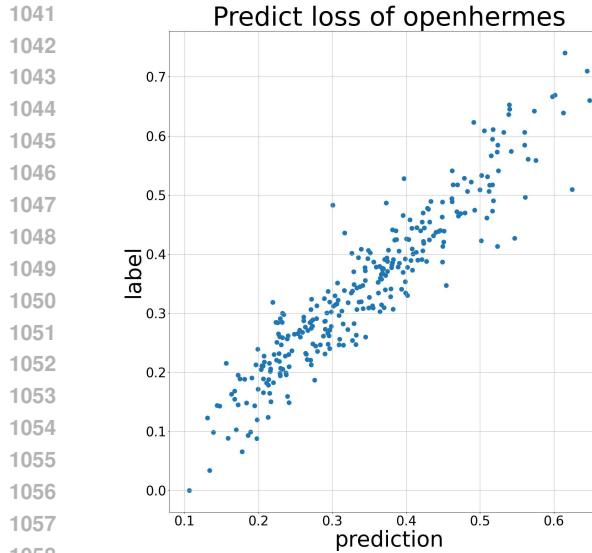
1036

1037

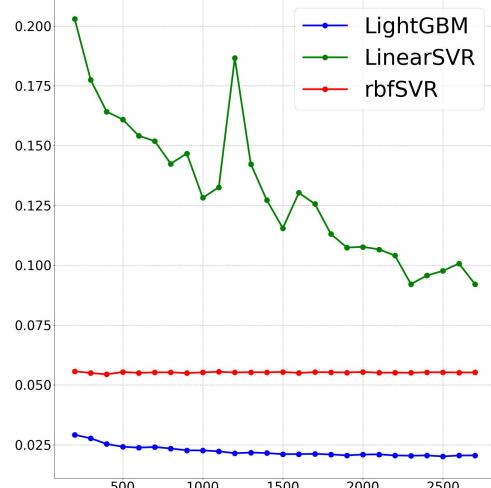
1038

1039

1040



Training Size vs MAE

1059 Figure 9: Left: The prediction model loss vs real model loss. Right: The regression model performance (MAE) vs training size.
1060
1061

1062

1063

1064

1065

1066

1067

1068

1069

Table 9: Pearson correlation across different benchmarks.

Benchmark	Pearson	Benchmark	Pearson	Benchmark	Pearson
ARC-C	0.9451	XCOPA-EN	0.8972	PIQA	0.9460
ARC-E	0.9430	Social-I-QA	0.9040	MathQA	0.8965
MMLU	0.9452	MuSR	0.9036	OpenHermes	0.9545
TriviaQA	0.9251	CommonsenseQA	0.8882	GSM8K	0.7055
BoolQ	0.9128	XWinograd	0.8732	Minerva (Algebra)	0.9549
NQ-Open	0.8654	XNLI-EN	0.7514	APE210K	0.8921
XStoryCloze	0.9014	HellaSwag	0.6605	OpenBookQA	0.9045

1077

1078

1079

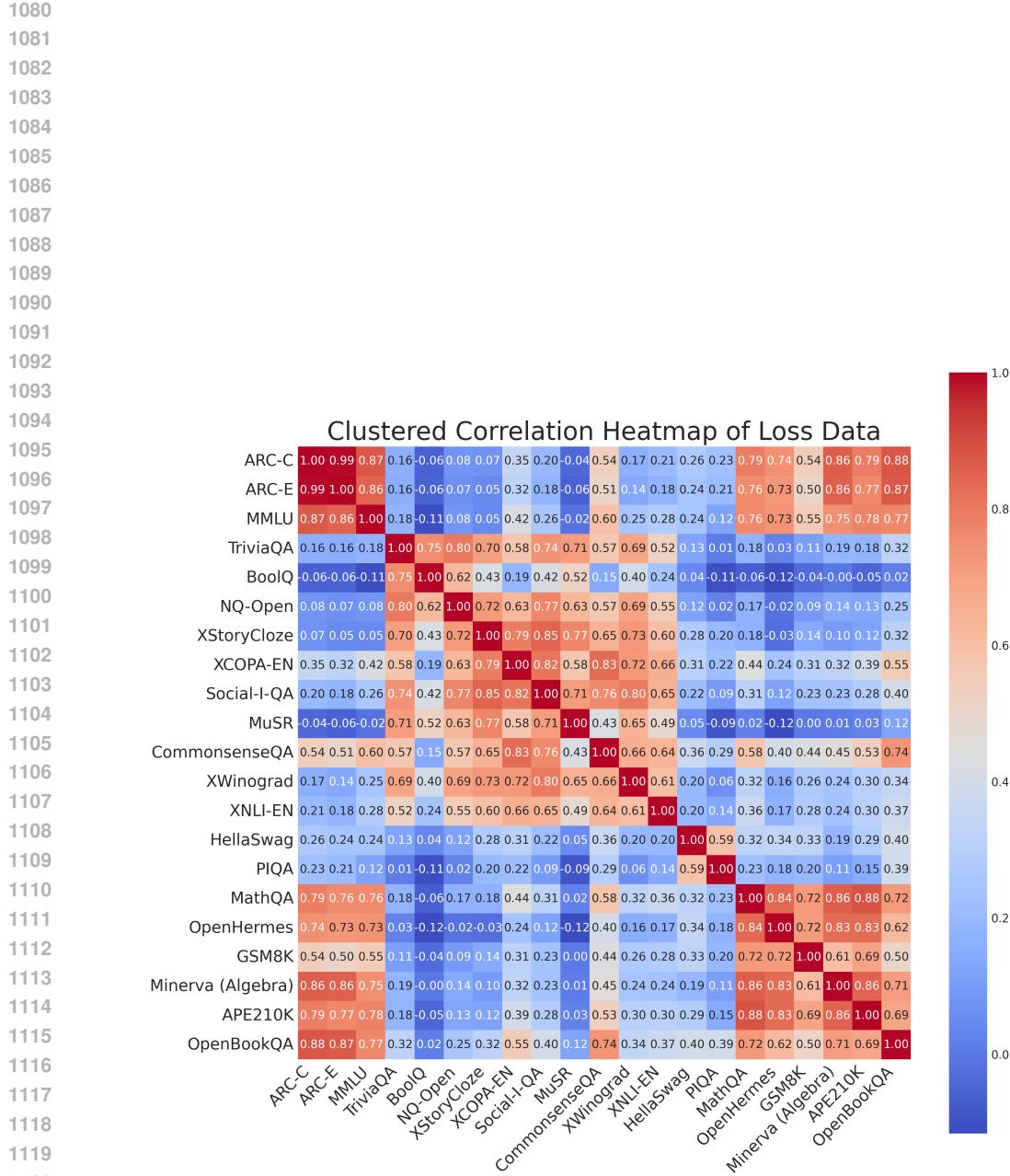


Figure 10: The spearmanr correlation between benchmarks.



Figure 11: The spearmanr correlation between enckmarks.

may be due to the LightGBM of this benchmark having poorer predictive ability compared to other benchmarks, see Appendix F.

Cluster Merge As shown in figure 10, there is a clear clustering phenomenon among different benchmarks, where the same set of QuaDMix parameters model performs similarly on benchmarks within the same cluster. We believe this is because benchmarks in the same cluster require similar abilities, such as mathematical ability, logical reasoning ability, and reading comprehension ability. Therefore, we further optimize the Benchmark Merge method to enable QuaDMix to simultaneously optimize multiple abilities.

We first use fuzzy C-means to cluster all benchmarks into N clusters. Fuzzy c-means is a soft clustering method that allows each datapoint belongs to all cluster and represents the "fuzziness" of each data point's membership in each cluster by assigning a membership degree between 0 and 1. As illustrated in figure 11, we show the cluster results of $N = 3$ in 21 benchmarks. Then we normalize the weights in a cluster, so we can get a weighted score for each cluster with a set of QuaDMix parameters. And we finally find a optimal weights of cluster and a set of QuaDMix parameters that minimize the weighted cluster loss.

We also observed that when using Openhermes as the only validation set, the mathematics related benchmarks' performance have also improved like MathQA, GSM8K, etc. They are all in the same cluster from 11, indicating that different benchmarks may require similar abilities, and Cluster Merge gives it a way to targeted optimize the model performance based on the abilities required by the benchmarks.

We show the lightGBM predict loss for each method in figure 12, when using 5 benchmarks (HellaSwag, ARC-E, ARC-C, MMLU, TriviaQA) as evaluation set with Benchmark Merge, it has a great improvement in target benchmarks. As for the cluster merge method, we observed a highly competitive result across all benchmarks, validating the feasibility of our Cluster Merge for optimize model performance based on abilities rather than benchmarks.

H LIMITATIONS

We note several limitations of our work. There exist improvement space for the design of parameter space of QuaDMix. For example the parameters of sampling function may generate similar functions under different parameters, which will cause redundancy and introduce uncertainty into the regression model. Secondly, the searching in the parameter space for optimal parameters is inefficient. We use random guessing in a space with 200 more dimensions, for certain the current optimal parameter is a local minimum and how to effectively search in the parameter space remains unclear. Finally, the proxy ability of small models is crucial, what is the systematic way to improve it is an important yet less explored topic. However, QuaDMix provides a useful solution for jointly optimize for data quality and diversity, and it worth continually exploring on the limitations mentioned above.

