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ABSTRACT

Quality and diversity are two critical metrics for the training data of large lan-
guage models (LLMs), positively impacting performance. Existing studies often
optimize these metrics separately, typically by first applying quality filtering and
then adjusting data proportions. However, these approaches overlook the inher-
ent trade-off between quality and diversity, necessitating their joint consideration.
Given a fixed training quota, it’s essential to evaluate both the quality of each data
point and its complementary effect on the overall dataset. In this paper, we in-
troduce a unified data selection framework called QuaDMix, which automatically
optimizes the data distribution for LLM pretraining while balancing both quality
and diversity. Specifically, we first propose multiple criteria to measure data qual-
ity and employ domain classification to distinguish data points, thereby measuring
overall diversity. QuaDMix then employs a unified parameterized data sampling
function that determines the sampling probability of each data point based on these
quality and diversity related labels. To accelerate the search for the optimal pa-
rameters involved in the QuaDMix framework, we conduct simulated experiments
on smaller models and use LightGBM for parameters searching, inspired by the
RegMix method. Our experiments across diverse models and datasets demonstrate
that QuaDMix achieves an average performance improvement of 7.2% across mul-
tiple benchmarks. These results outperform the independent strategies for quality
and diversity, highlighting the necessity and the framework’s ability to balance
data quality and diversity.

1 INTRODUCTION

The efficiency and preference of pretraining large language models are significantly influenced by
the characteristics of the training corpus (Brown et al., 2020; Chowdhery et al., 2023; Longpre et al.,
2024). There is evidence from existing research suggesting that the model performance can be im-
proved through the curation of high-quality data (Wettig et al., 2024; Xie et al., 2023b; Sachdeva
et al., 2024), the application of data deduplication and diversification strategies (Abbas et al., 2023;
Tirumala et al., 2023), and the careful balancing of data distribution across various domains and
topics (Liu et al., 2024; Xie et al., 2023a). Nevertheless, identifying optimal configuration of com-
bining those factors remains an open challenge, due to complex interplay between data quality and
diversity, which has yet to be fully understood.

There remains two major challenges to identify the optimal data selection strategy. Firstly, the
definition of quality and diversity is ambiguous. Previous research has proposed various definitions
of quality criteria, including factors such as regular expression (Penedo et al., 2023; Wenzek et al.,
2020), educational value (Penedo et al., 2024), similarity to instruction tuning data (Li et al., 2024),
etc, each emphasizing only a specific aspect of the data. On the other hand, approaches like (Liu
et al., 2024; Abbas et al., 2023) optimize the data mixtures for more effective training, indicating that
a better diversity is not necessarily uniform distribution. Secondly, there exists interplay between
data quality and diversity. The choice of quality criteria affects the distribution of selected data as
illustrated in Figure 1b, due to inherent biases in different criteria. Meanwhile, changing of data
mixtures influences the data quality, as the quality level differs across different domains. Also, since
the high quality data is limited, the trade-off between better quality or diversity is inevitable, which
is not feasible by optimizing only for data quality or diversity. How to jointly optimize the data
distribution together with the selection of quality criteria remains another unsolved issue.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Comparison between QuaDMix
and random selection on average per-
formance of 9 dnowstream tasks of
530M model trained from scratch.

(b) The distribution change of data selected with Fineweb-edu
Classifier. With the top5% documents selected, the ratio of cer-
tain domains including Health, Jobs and Education, increases for a
large margin compared with original data.

To address these challenges, we propose a unified data selection framework, QuaDMix, which simul-
taneously manages data quality and diversity. Firstly, we apply several quality scorers and domain
classification on each document in the training corpus, to measure the data quality and diversity.
Then a parameterized function is designed to determine the sampling frequency for each document
based on those quality and domain labels. Specifically, an aggregated quality score is first computed
by weighted averaging the quality scores, where the weights are controlled by adjustable parameters.
Then a parameterized sampling function takes the aggregated quality score as input and calculate
the sampling frequency, where data with higher quality is assigned with more frequency and the
parameters affect how the frequency decreases as the quality diminishes. Here we take the assump-
tion that training samples with higher quality worth sampled for more times. We assign independent
parameters for data across different domains to control the diversity via parameters. To find the
optimal parameters among the numerous parameter space, we employ a two-step approach inspired
by (Liu et al., 2024). First, we train a set of small models on datasets sampled using QuaDMix with
various parameter configurations, as an approximation for the performance of larger models. Next,
we train a regression model to fit the performance results from this limited set of small models.
This regression model is then used to predict the performance for unseen parameter configurations,
providing an efficient way to explore the parameter space without exhaustive large-scale training.

To validate the effectiveness of QuaDMix, we train 3000 models with 1M parameters for 1B tokens,
each using data sampled from RefinedWeb (Penedo et al., 2023) with various QuaDMix parameters.
The optimal parameter configuration is then determined by searching the input space of a trained
LightGBM regressor(Ke et al., 2017). We then evaluate different pretraining data selection meth-
ods on models with 530M parameters. The optimal configuration identified by QuaDMix achieves
superior performance on an aggregated benchmark. Our results also reveal the following insights:
(1) Different quality criteria exhibit trade-offs across downstream tasks, but appropriately merging
these criteria yields consistent improvements across tasks by leveraging complementary informa-
tion. (2) The optimal data mixture varies under different quality criteria, indicating the importance
of jointly optimizing both the quality and diversity. (3) The target of regression model can guide the
preference for specific downstream tasks, enabling task-focused data selection.

2 RELATED WORK

2.1 PRETRAINING DATA SELECTION

Data quality, diversity, and coverage are critical factors for ensuring the efficiency and generalizabil-
ity of large language models (Cheng et al., 2024; Touvron et al., 2023; Chowdhery et al., 2023).
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Figure 2: The overall design of QuaDMix. First we extract the data features using classifier and
quality scores (QS). Then we calculate quality rank for each domain with the merging parameters.
Finally the sampling functions controlled by sampling parameters are applied to generate the final
output data.

To improve data quality, rule-based filtering techniques are commonly employed (Laurençon et al.,
2022; Weber et al., 2024; Penedo et al., 2023; Raffel et al., 2020). These methods use handcrafted
heuristics, such as removing terminal marks, detecting sentence repetitions, and enforcing length
constraints, to exclude low-quality data. While these rules effectively filter out noisy data from the
training corpus, they fail to capture semantic-level information, which is crucial for more refined data
selection. Alternative approaches aim to address this limitation. For instance, (Wenzek et al., 2020;
Marion et al., 2023; Thrush et al., 2024) use model perplexity as a measure of data quality, while (Lin
et al., 2025) apply token-level selection by re-weighting the loss across tokens. (Xie et al., 2023b)
utilize n-gram features to quantify data importance and sample accordingly. Discriminator-based
methods (Brown et al., 2020; Du et al., 2022; Gao et al., 2020; Soldaini et al., 2024; Li et al., 2024)
select data by comparing it to predefined high-quality datasets, such as Wikipedia or instruction-
tuning datasets. However, how much these predefined datasets represent for high-quality relies on
empirical judgement. More recently, approaches like (Gunasekar et al., 2023; Sachdeva et al., 2024;
Wettig et al., 2024; Penedo et al., 2024) leverage large language models (e.g., GPT-4) to evaluate
and filter data based on designed prompts that emphasize various dimensions of value, offering a
more nuanced way to define and curate high-quality data.

To optimize data distribution, various methods leverage clustering and representativeness to achieve
deduplication and diversification. For example, (Abbas et al., 2023; Shao et al., 2024; Tirumala
et al., 2023) employ data clustering techniques to identify and select representative data points,
ensuring both diversity and efficiency in the training corpus. Other approaches estimate optimal
data mixtures through iterative modeling. (Xie et al., 2023a) first train a small reference model and
subsequently optimize the worst-case loss across domains by training a proxy model to identify the
optimal data mixture. Similarly, (Bai et al., 2024; Yu et al., 2024; Fan et al., 2024; Gu et al., 2024)
calculate influence scores by tracking first-order gradients on an evaluation set, thereby identifying
the most valuable data for training. Additionally, (Liu et al., 2024; Ye et al., 2024) simulate the
performance of different data mixtures by training a series of proxy models, enabling the prediction
of large-model performance with low compute cost.

2.2 SCALING LAWS

Neural Scaling Laws have been shown to effectively predict performance across varying training
budgets, model sizes, and dataset scales in LLM pretraining (Kaplan et al., 2020; Rae et al., 2022).
However, in practical scenarios where dataset size is limited, or data mixtures vary, scaling laws
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exhibit significant variations (Hoffmann et al., 2022). Several studies have extended scaling laws
to account for these complexities. (Muennighoff et al., 2023; Hernandez et al., 2022) explore the
impact of data repetition levels on scaling behaviors, while (Ge et al., 2024) investigate scaling
dynamics under different domain proportions and dataset sizes. To optimize data compositions,
(Liu et al., 2024) propose a regression model for predicting optimal mixtures, and (Kang et al.,
2024) further analyze optimal compositions across varying scales. Additionally, (Que et al., 2024)
focus on identifying the best data mixtures for the continued pretraining stage, providing insights
into refining pretraining strategies under diverse constraints.

3 METHODOLOGY

Our approach can be illustrated in 4 parts: 1) We propose the QuaDMix framework, which utilizes
a unified parameterized function to govern the data sampling process. 2) We conduct small-scale
experiments to explore how different parameter settings within QuaDMix affect the performance
of LLM. 3) We train a regression model to capture these effects, using it to identify the optimal
parameters. 4) With the optimal parameter settings, we sample large-scale data and train a large
language model.

3.1 DESIGN OF QUADMIX

We design QuaDMix as a sampling algorithm that simultaneously accounts for data quality and
diversity, as shown in Figure 2. Given a pretraining dataset X , we define a sampling function
S(x, qx, dx;θ), which determines the expected sampling times of each data point x based on its
data feature qx and dx. Here qx represents the quality score vector, which includes multiple quality
criteria, and dx denotes the domain to which x belongs. θ = (α, β) are the merging and sampleing
parameters to be optimized. The output of this function is fractional value, e.g. a.b, meaning the
document will be sampled for a times plus another random sampling with probability b.
Feature Extraction To measure a sample’s contribution to diversity and its quality, we propose
using domain classification and N quality scorers to label the pretraining data. Specifically, we use
a domain classifier to divide the dataset into M domains, where x will be assigned a domain label
dx. Then we use N quality scorers to compute the quality vector qx = (q1,x, ..., qN,x), and for each
qn,x, a smaller value indicates a better quality on that dimension. For the sake of simplicity, we omit
x in the subscript in the following discussion.

Quality Ranking We first define a merging function that integrates the scores from various quality
filters, aiming to incorporate complementary information provided by different criteria. Assuming
there are N criteria, for any individual example x belonging to domain m, the merged quality score
is calculated by

q̄ =

N∑
n=1

σ(qn)αn,m, (1)

where αm are the merging parameters for domain m. We utilize separate merging parameters
to balance the quality criteria across different domains, as the criteria exhibit varying preferences
depending on the domain. σ is a normalization function to align the scales of quality criteria.

We then sort the data based on the merged quality score. The sorting is operated separately in each
domain. The merged quality rank r̄ is calculated by computing the percentile of the data within that
domain. That is

r̄ =
|{x|dx = m, q̄x <= q̄}|

|{x|dx = m}|
. (2)

Here we calculate the size of the set by adding up the number of tokens for all sample within the
set. For a given example in domain m with r̄ = 0.05, this means that 95% of the tokens in that
domain have a worse quality compared to this example. (Note that we use smaller quality scores to
represent higher quality.)

Quality Sampling Next, we define the sampling function. We take the assumption that higher-
quality data should be sampled more frequently in the final dataset. This assumption is supported by
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evidence (Penedo et al., 2024), which demonstrates that applying a higher quality threshold improves
downstream performance. For any example in domain m with merged quality rank r̄, the value of
the sampling function is determined by

S(r̄) =

{
( 2
1+e−λm(ωm−r̄) )

ηm + ϵm, r̄ <= ωm

ϵm, r̄ > ωm
(3)

We denote βm = (λm, ωm, ηm, ϵm) as the sampling parameters for domain m. We use a format
of sigmoid to ensure the sampling value is monotonically decreasing as the quality rank goes up
(worse quality) and λm is used to adjust how fast it decreases. ωm controls the quality percentile
threshold, determining the minimum quality level we aim to retain. ηm is a scaling parameter that
adjusts the sampling values, while ϵm introduces randomness to incorporate data from all quality
ranges. By applying different sampling parameters across domains, we achieve flexible control over
domain proportions.

In summary, by integrating (1),(2), and (3), we define the sampling function for individual domain
m, with the parameters structured as θm = (αm,βm). The total number of parameters is (N +
4)×M , where N represents the number of used quality criteria and M denotes the total number of
distinct domains.

3.2 PROXY MODEL EXPERIMENTS

We first sample a set of values for each parameter defined above, subsequently generating corre-
sponding datasets using the QuaDMix sampling function. Following this, a series of small proxy
models are trained on each dataset and evaluated on the validation set to compute the validation loss.
Parameter Sampling The parameter space requires careful design to encompass valuable regions,
while avoiding extreme conditions. We sample from the parameter space as following:

Algorithm 1 Parameter Sampling for QuaDMix

Ensure: θ
Require: N,M

Sample (a1, ..., aN ) ∼ U(0, 1)
ãn = an∑

i ai

for m = 1 to M do
Sample (b1,m, ..., bN,m) ∼ U(0, 1)

b̃n,m =
ãnbn,m∑
i ãibi,m

αm = (b̃n,m), n = 1, ..., N
Sample (λm, ωm, ηm, ϵm) ∼ U(0, 1)

λ̃m = 103λm , ω̃m = 0.1ωm

η̃m = ηm, ϵ̃m = ϵm/1000

βm = (λ̃m, ω̃m, η̃m, ϵ̃m)
θm = (αm,βm)

end for
θ = (θ1, ...,θM )

In the algorithm above, we introduce a global weight for each quality criteria, with the final weight
computed by multiplying the global weight by the domain-specific weight. Without this global
weight, the expected average weight across domains for each quality criterion would always be 1/N ,
which fails to account for the scenario where one quality criterion may suppress another overall. For
βm, we rescale them accordingly to ensure domain proportions and quality thresholds remain within
a reasonable range. Using this process, we generate 3,000 sets of parameters θi and then sample
with QuaDMix from our training data, producing 3,000 proxy datasets, denoting as Di.

Proxy Model Training Next we train the proxy models on each proxy datasets from scratch.

f∗
i = argmin

f
L(f,Di)

5
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After training, we evaluate the proxy models by calculating the loss on the target evaluation datasets.

Li = L(f∗
i , Deval)

3.3 PARAMETER OPTIMIZING

Regression Model Fitting The next step is to determine the correlation between the sampled QuaD-
Mix parameters and model performance. We formulate this as a regression problem, as proposed
in (Liu et al., 2024), with the goal of learning a function that predicts the target value based on the
input features. Specifically, we optimize a regressor R with

R∗ = argmin
R

∑
i

||R(θi)− Li||2

We evaluate different types of regressors and select LightGBM (Ke et al., 2017), which ensembles
multiple decision trees, to predict the target value.

Optimal Parameter Estimation Once the regressor is trained, we search the input space to find
the optimal parameters that minimize the predicted loss. Rather than performing a random search
across the entire space, we sample 100,000 data points using the algorithm outlined in Section 3.2
to mitigate the influence of outliers on the regressor. To further reduce the variance in the regression
predictions, we sort the data points based on their predicted target values and calculate the average
of the top 10 data points to determine the final output.

3.4 LARGE-SCALE MODEL EXPERIMENTS

We then use the optimal parameters to generate large-scale datasets for training large-scale models.
In practice, since sorting the quality scores across the entire dataset is computationally expensive,
we estimate the quality percentile by randomly selecting a subset of 10,000 documents. Within this
subset, we calculate the mapping between the quality percentile and quality score, and then apply
this mapping to the entire dataset.

4 EXPERIMENTS ON REGRESSION MODEL

4.1 EXPERIMENT SETUP

Datasets We conduct our experiment on RefinedWeb (Penedo et al., 2023). It is an English large-
scale dataset for the pretraining of large language models and consists of over 570B(billion) tokens.
For the small proxy datasets, we sample it from a subset of RefinedWeb, each containing 1B tokens.

Feature Extraction We generate the necessary data features including data quality and domain
index with 3 individual quality filters, AskLLM (Sachdeva et al., 2024), Fineweb-Edu (Penedo et al.,
2024), DCLM (Li et al., 2024) and 1 domain classifier (Jennings et al.), which classifies the data into
26 different domains with a Deberta V3 (He et al., 2023) architecture. The detail of the classifier is
reported in Appendix A

Training and evaluation For the proxy models, we train them on the proxy datasets for 1B tokens.
More information about proxy models are in Appendix B.

To construct the validation datasets, we sample from the instruction-formatted dataset OpenHermes
2.5 (Teknium, 2023). As demonstrated in (Li et al., 2024), this dataset is used to train a robust quality
filter. To improve efficiency, we sampled 10k samples from it to form a validation subset, named
openhermes-10k. Additionally, we test on the training data from the downstream tasks including
HellaSwag, ARC-E, ARC-C, MMLU, and TriviaQA to demonstrate the model’s ability to optimize
for specific downstream tasks by altering the target evaluation datasets.

For the regression model, we split the data into 2800/200 for training and validation. We use Mean
Absolute Error (MAE) as the evaluation metric, which calculates the average absolute differences
between predicted and actual values.
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4.2 RESULTS

We use LightGBM as the regression model, and train it with 2800 proxy model’s results, and there
is a strong correlation between the predicted loss and real loss on the 200 validation set, the pearson
correlation is 95.45%. Indicating the LightGBM is able to predict the proxy model performance
based on the inout parameters.

5 EXPERIMENTS ON LANGUAGE MODEL

In this section we compare different methods of data selection and mixture with QuaDMix by train-
ing language models from scratch and evaluating on various downstream tasks.

5.1 EXPERIMENT SETUP

Training and evaluation We train the language model with 530M parameters from scratch for
500B tokens. And we also conduct experiments on 1.2B model with 30B tokens and 7B model with
150B tokens to further validate the effectiveness of QuaDMix. We train modekl with transformer
architecture (Vaswani et al., 2017), see the details in Appendix B and Appendix D.

Then we evaluate the model performance using lm-eval-harness (Gao et al., 2023). We choose
9 downstream tasks, including 3 commonsense reasoning tasks (PIQA (Bisk et al., 2019), Hel-
laSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018)), 3 reading comprehension
tasks (ARC-E/C (Clark et al., 2018), Triviaqa (Joshi et al., 2017)), 1 math problem solving task
(SVAMP (Patel et al., 2021)) and 2 knowledge intensive tasks (MMLU (Hendrycks et al., 2021),
NQ-open (Kwiatkowski et al., 2019; Lee et al., 2019)). For each benchmark, we used normalized
accuracy as the evaluation metric. Some modifications on the testing logic are applied for numerical
stability, the details are shown in Appendix C.

5.2 DATA SELECTION METHODS

We use the following methods as comparative experiments with our QuaDMix:

• Random Selection: Documents are randomly selected from the whole dataset.

• Fineweb-edu Classifier: Documents are scored with Fineweb-edu Classifier (Penedo et al., 2024)
with top-k selection

• AskLLM: Documents are scored with the probability of generating ”Yes” from a prompted large
language model (Sachdeva et al., 2024). The top-k documents are selected.

• DCLM: Documents are scored with fasttext based classifier (Li et al., 2024) with top-k selection.

• Criteria Mix: Following (Wettig et al., 2024), the selected data from the above three filters are
merged, with duplicated documents removed.

Table 1: QuaDMix outperforms the methods focusing only on data quality or data mixture. With
benchmark training set as the target, the results further boost.

Selected Reading Commonsense
Methods Token Comprehension Reasoning Knowledge Math Average
Random Selection 500B 32.9 51.6 17.4 2.8 32.3
DSIR 72B 34.9 49.2 17.5 6.9 32.7
RegMix 500B 35.5 52.4 17.7 3.5 33.6
Fineweb-edu 30B 41.4 55.5 20.1 6.0 37.4
AskLLM 30B 38.9 54.2 19.0 2.3 35.5
DCLM 30B 41.2 53.1 19.8 8.2 36.7
Criteria Mix 74B 40.1 53.7 20.0 3.1 36.0
QuaDMix-OH 30B 44.0 55.7 21.0 10.2 39.0
QuaDMix-BMK 30B 44.8 55.7 21.3 11.5 39.5
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• DSIR: Documents are sampled based on the importance calculated with the N-gram features (Xie
et al., 2023b).

• RegMix: Following (Liu et al., 2024), we conduct 512 1M porxy experiments and randomly select
data using the optimized data mixtures.

And we conduct QuaDMix experiments base on two different evaluation sets:

• QuaDMix-OH: Documents are sampled with the proposed QuaDMix, where Openhermes is used
as the validation set for the proxy experiments

• QuaDMix-BMK: Documents are sampled with the proposed QuaDMix, where the training set of
5 downstream tasks (HellaSwag, ARC-E, ARC-C, MMLU, TriviaQA) are used as the validation set
to generate the optimal QuaDMix parameters. See appendix G for the details.

5.3 RESULTS

The results are summerized in Table 1. We can see that QuaDMix outperforms the methods focusing
only on data quality or data mixture on all the benchmarks, proving the necessity of jointly consid-
ering quality and diversity. It also shows that the proxy model experiments can well indicate the
performance on large scale model. With loss of the benchmark training set as the target when train-
ing the regression model, the results further boost. This prove the ability of QuaDMix of optimizing
for specific downstream tasks by choosing evaluation datasets in proxy experiments which are more
related to the downstream tasks. The detailed experiment results are shown in Appendix E.

Figure 1a indicats QuaDMix is computaionally efficient, QuaDMix achieves the same average per-
formance as the Random Selection baseline at 500B tokens with only about 18B tokens, which is
a 27 times faster. Furthermore, QuaDMix surpasses the Random Selection baseline by 7.2% in
average performance at 500B token.

Analysis of optimal QuaDMix parameters We show the optimal data mixtures and merging pa-
rameters of quality filters from QuaDMix-BMK in Figure 3. We see that the Health and Science
domain are upsampled for large margin, while Sports and Computers downsampled, indicating that
the downstream tasks we choose have preference for specific domains. The right figure shows that
the DCLM quality filter contributes most to the merged quality score, while AskLLM only occupies
a small weight among the three filters.

Figure 3: The visualization of optimal parameters from QuaDMix-BMK.

6 ABLATIONS

Quality Merging Benefits Selection To prove the necessity of quality score merging, we select
different combinations of quality filters by manually setting the weight of certain filters to 0 when
finding the optimal QuaDMix parameters. As shown in Table 2, merging with all three quality filters
shows the best performance. Although using one quality filter can be optimal for one specific task,
for example DCLM-only for MATH, the merging process reduces intrinsic bias within the quality
filters and outperforms in general ability, which is essential for language model pretraining.

More Tokens not always good We also experiment with selecting more tokens by loosing the
sampling parameter ω in QuaDMix. In that way we introduce more diversed tokens but lower

8
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Table 2: QuaDMix-OH with different settings on quality filters (AskLLM (A), Fineweb-edu (F),
DCLM (D)) and selected tokens.

Selected Reading Commonsense
A F D Token Comprehension Reasoning Knowledge Math Average
✓ 30B 38.9 53.5 18.6 2.9 35.2

✓ 30B 41.4 55.5 20.1 6.0 37.4
✓ 30B 41.3 53.4 19.7 12.2 37.3

✓ ✓ 30B 41.9 55.6 20.0 5.1 37.5
✓ ✓ 30B 41.8 54.6 19.8 9.1 37.5

✓ ✓ 30B 43.5 55.6 20.8 9.6 38.7
✓ ✓ ✓ 90B 40.7 55.2 19.5 4.6 36.8
✓ ✓ ✓ 180B 37.8 53.9 18.9 2.8 35.1
✓ ✓ ✓ 30B 44.0 55.7 21.0 10.2 39.0

Table 3: QuaDMix-OH vs QuaDMix-BMK on 5 downstream tasks. The trend mostly agree with the
prediction loss on proxy model except for HellaSwag.

Method HellaSwag ARC-C ARC-E MMLU TriviaQA
QuaDMix-OH 56.5 39.2 71.1 34.1 21.6

QuaDMix-BMK 56.1 40.2 71.3 34.4 22.8

quality into the training. The results in Table 2 show that selecting 30B tokens, i.e. documents
with top5% quality yields the best result, meaning that curing data quality contributes more than
increasing the number of unique tokens within this range.

Proxy Ability of Small Models How well the prediction loss on proxy models forecasts the per-
formance on large-scale models is the key factor of QuaDMix. To study this, we train 5 separate
regression models, each using the loss on training set of one benchmark as the target. The results on
the validation set are shown as blue points in Figure 4. We notice that HellaSwag has larger variance
than others, which indicates there may be more influencing factors related with HellaSwag, making
the loss on it harder to predict. Then we predict the loss for optimal parameters from QuaDMix-OH
and QuaDMix-BMK using each regression model as shown in Figure 4. It is reasonable to see the
loss of QuaDMix-BMK surpasses QuaDMix-OH on all tasks since QuaDMix-BMK utilizes bench-
mark training set as optimizing target. Finally we report the performance of large model in Table
3. Except for HellaSwag, QuaDMix-BMK outperforms QuaDMix-OH on other tasks, which agrees
with the trend on prediction loss. The inconsistent conclusion on HellaSwag is because the predict
loss has larger variance as mentioned above, making the proxy ability lower than other tasks. How
to further increase the proxy ability is one of the future direction to explore.

Figure 4: The prediction loss of QuaDMix-BMK surpasses QuaDMix-OH on all 5 downstream
tasks.

7 CONCLUSION

In this paper, we propose a novel data selection method QuaDMix that jointly optimizes the data
quality and diversity for language model pretraining. We design a parameterized space that controls
both the data quality and diversity, and conduct proxy experiments to find the correlation between
the parameter and model performance. The training data generated with optimal parameters are
proved to outperform others on various downstream tasks.

9
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8 ETHICS STATEMENT

Our research is based on the publicly available and extensively filtered RefinedWeb dataset. We do
not foresee any direct negative societal impacts stemming from our methodology or the resulting
models.

9 REPRODUCIBILITY STATEMENT

Our experiments are based on the open-source RefinedWeb dataset. All experimental settings, model
architectures, hyperparameters, and implementation details have been thoroughly described in the
main body and the appendix to ensure that other researchers can independently reproduce our results
based on this information.
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A CRITERIA AND DOMAIN CLASSIFIER

We use three quality criteria in QuaDMix, namely AskLLM, Fineweb-Edu, and DCLM. And one
domain classifier to identify which domain each datapoint belongs to. The spearman correlation
between three criteria is as illustrated in Figure 5. The three criteria have pool correlation that
indacating they focus on diffrent aspects of the documents.

AskLLM (Sachdeva et al., 2024) is based on Llama-2-7B, with the prompt shown in Figure 6, it
gives every document a score P (”yes”|prompt).

Fineweb-Edu (Penedo et al., 2024) uses the prompt shown in figure 7, and DeBERTa-v3-small to
give the ducument a score. It scores a document from its educational value.

DCLM (Li et al., 2024) is a fastText model (Joulin et al., 2017) trained with instruction-formatted
data from Openhermes 2.5(Teknium, 2023) and r/ExplainLikeImFive(ELI5) as the positive data and
random data from Commen Crawl as negative data.

Domain Classifier (Jennings et al.) is based on DeBERTa-V3-Base with 512 token context length,
it classifies documents into one of 26 domains. The 26 domains are illustrated in Figure 8.

B MODEL STRUCTURE & TRAINING DETAILS

We use 3000 proxy-model with 1M parameter and train the large-scale model with 530M parameter.
We use transformer architecture (Vaswani et al., 2017), SwiGLU (Shazeer, 2020) as the activation
function and RoPE embeddings (Su et al., 2024). We use a tokenizer with 136k vocabulary. The
detailed model structure are illustrated in table 4.

We train all the model with 2048 as the max sequence length, we use a cosine decay schedular and
the initial learning rate is shown in table 4, the warm up ratio is set 0.5%. We use AdamW optimizer
with β1 = 0.9, β2 = 0.95, weight-decay= 0.1. We train 1M proxy model for 1B tokens and 530M
model for 1T tokens, the performance reported for 530M model is its corresponding results at 500B
token for time efficience. And we train 1.2B model for 30B tokens and 6.5B model for 150B tokens.

C EVALUATION

We choose 9 downstream tasks, including 3 commonsense reasoning tasks (PIQA (Bisk et al., 2019),
HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018)), 3 reading comprehension
tasks (ARC-E/C (Clark et al., 2018), TriviaQA (Joshi et al., 2017)), 1 math problem solving task
(SVAMP (Patel et al., 2021)) and 2 knowledge intensive tasks (MMLU (Hendrycks et al., 2021),
NQ-open (Kwiatkowski et al., 2019; Lee et al., 2019)) as the evaluation sets. We use lm-eval-
harnes to evaluate the model performance on all above benchmarks except MMLU. And we evaluate
performance of MMLU using LightEval library (Habib et al., 2023).

Figure 5: The spearman correlation between three criteria.
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Figure 6: The Prompt of ASKLLM.

D COST ANALYSIS

The time cost for each model of different size is illustrated in table 6. Thought using three criteria
and one domain classifier cost extra GPU time, the results have a wide range of applications in terms
of quality analysis beyond this work, We do not include these costs in our calculation. For the 3000
proxy models, 3000 H-100 GPU hours were spent, it’s about half of the cost of training a 7B model
for 150B token. Considering the improvements QuaDMix can bring, we believe it is worthwhile.

E DETAILED EXPERIMENT RESULTS

We show the full experiment results on 530M model in table 7, note that the performance of 530M
models reported in this paper is its corresponding results at 500B token for time efficience thought
the training scheduler was set 1T token. We also conducted experiments with other scale models to
further verify the effectiveness of QuaDMix, which is illustrated in table 8.

F PROXY ABILITY OF SMALL MODELS

We use Openhermes 2.5 as the evaluation set for proxy models, for efficiency, we sampled 10k sam-
ples from it, named Openhermes-10k. And train a regression model taking the QuaDMix parameters
as input and the corresponding normalized evaluation loss as output. And the 3000 experiments are
split into 2800 and 200 for training and evaluation. We tested on three regression models: Light-
GBM, SVR (Drucker et al., 1996) with Linear kernel and SVR with RBF kernel. As illustrated in

Table 4: Structure of models used in QuaDMix.

Hyperparameter 1M 530M 1.2B 7.7B
Hidden states dimention 192 1536 2048 4096

MLP dimention 768 2816 5540 14336
Number of Layers 3 24 24 32
Number of Heads 3 16 16 32

Initial Learning Rate 0.005 0.0008 0.0005 0.000036
Batch Size 128 1024 1024 4096
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Table 5: Summary of Downstream Evaluation Tasks

Downstream Task Category Metric Shots Baseline
PIQA Commonsense Reasoning acc norm 5 0.50
HellaSwag Commonsense Reasoning acc norm 10 0.25
OpenBookQA Commonsense Reasoning acc norm 10 0.25
ARC-Easy Reading Comprehension acc norm 25 0.25
ARC-Challenge Reading Comprehension acc norm 25 0.25
TriviaQA Reading Comprehension exact match 5 0.00
SVAMP Math Problem Solving exact match 5 0.00
MMLU(lighteval) Knowledge Intensive acc norm 5 0.25
NQ-open Knowledge Intensive exact match 5 0.00

Figure 7: The Prompt of Fineweb-Edu.

figure 9, the left figure indicates that as the training data increases, the Mean Average Error (MAE)
of the regression models on the validation set continues to decrease, and it can be observed that
the performance of LightGBM is consistently the best. The right figure shows strong correlation
between the predicted loss and the real model loss on the validation set, providing the evidence that
there exists statistical pattern between the QuaDMix parameters and the model performance.

We test the evaluation loss of proxy models on various dnowstream tasks, their pearson correlations
between loss and predicted loss of lightGBM on validation set are illustrated in table 9. There is a
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Figure 8: The 26 domains of Domain Classifier.

Table 6: Training cost for different model configurations.

Model Size Token H-100 GPU Hours
1M 1B ∼1

530M 500B ∼2300
1.2B 30B ∼220
7.7B 150B ∼5900

significant spearmanr correlation between ground truth and the predicted loss by lightGBM on the
validation set for vast majority of benchmarks, except for a few benchmarks such as HellaSwag or
Xnli. We believe this is because some factors other than the QuaDMix parameters can also affect
performance on these benchmarks. And this will be left for our future work.

G TARGETED OPTIMIZATION

To further verify QuaDMix’s ability to optimize for specific dnowstream tasks, we test the evaluation
loss of proxy models on various dnowstream tasks. For each benchmark, we have 3000 evaluation
loss from proxy models, we treat it as a 3000-dimentional vector thus we can calculate the correlation
between benchmarks. We show the spearmanr correlation between all the benchmarks in figure 10.

Benchmark Merge We choose 5 benchmarks: HellaSwag, ARC-E, ARC-C,MMLU, TriviaQA and
train a lightGBM for each benchmark. We aim to find a set of QuaDMix parameters so that the pre-
train model perform as well as possible on these 5 benchmarks simultaneously. Specifically, we find
a set of weights α for different benchmarks and a set of QuaDMix parameters so that the α weighted
sum of the losses predicted by LightGBM under the QuaDMix parameters for the 5 benchmarks
is minimized. As illustrated in table 7, the QuaDMix-BMK outperforms QuaDMix-OH on almost
all above 5 benchmarks except HellaSwag, the QuaDMix-BMK’s lagging behind on HellaSwag

Table 7: Performance comparison of different methods across various benchmarks of 530M model.

Method PIQA HellaSwag OpenBookQA ARC-E ARC-C Triviaqa SVAMP MMLU NQ-open
Random Selection 70.9 51.1 32.7 57.2 27.9 13.6 2.8 29.4 5.4

DSIR 70.9 45.9 30.8 60.9 30.2 13.6 6.9 30.1 4.8
RegMix 71.4 52.1 33.6 62.6 31.1 12.7 3.5 30.1 5.3

Fineweb-edu 73.7 54.8 34.4 70.8 38.2 18.1 10.7 34.2 6.9
ASKLLM 73.2 54.2 35.1 64.8 32.2 19.7 2.3 30.9 7.1

DCLM 71.2 51.7 36.3 68.5 35.7 19.4 8.2 32.4 7.2
Criteria Mix 72.6 54.0 34.5 67.2 34.2 18.9 3.1 32.5 7.4

QuaDMix-OH 73.2 56.5 37.3 71.1 39.2 21.6 10.2 34.1 7.9
QuaDMix-BMK 74.1 56.1 36.9 71.3 40.2 22.8 11.5 34.4 8.1
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Table 8: Performance comparison of different model size across various benchmarks.

Method Model-size PIQA HellaSwag OpenBookQA ARC-E ARC-C Triviaqa SVAMP MMLU NQ-open Avg
Random Selection 1.2B 71.82 50.93 31.40 57.70 27.90 12.61 3.90 29.73 5.29 32.36

QuaDMix-OH 1.2B 74.05 57.20 38.00 71.09 39.76 21.43 7.80 34.75 7.73 39.09
Random Selection 7B 73.18 53.69 31.80 59.68 29.27 16.13 1.60 30.60 5.54 33.50

QuaDMix-OH 7B 75.73 59.14 38.80 71.17 40.61 24.41 5.60 35.62 8.39 39.94

Figure 9: Left: The prediction model loss vs real model loss. Right: The regression model perfor-
mance (MAE) vs training size.

Table 9: Pearson correlation across different benchmarks.

Benchmark Pearson Benchmark Pearson Benchmark Pearson
ARC-C 0.9451 XCOPA-EN 0.8972 PIQA 0.9460
ARC-E 0.9430 Social-I-QA 0.9040 MathQA 0.8965
MMLU 0.9452 MuSR 0.9036 OpenHermes 0.9545
TriviaQA 0.9251 CommonsenseQA 0.8882 GSM8K 0.7055
BoolQ 0.9128 XWinograd 0.8732 Minerva (Algebra) 0.9549
NQ-Open 0.8654 XNLI-EN 0.7514 APE210K 0.8921
XStoryCloze 0.9014 HellaSwag 0.6605 OpenBookQA 0.9045
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Figure 10: The spearmanr correlation between benchmarks.
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Figure 11: The spearmanr correlation between enchmarks.

may be due to the LightGBM of this benchmark having poorer predictive ability compared to other
benchmarks, see Appendix F.

Cluster Merge As shown in figure 10, there is a clear clustering phenomenon among different
benchmarks, where the same set of QuaDMix parameters model performs similarly on benchmarks
within the same cluster. We believe this is because benchmarks in the same cluster require similar
abilities, such as mathematical ability, logical reasoning ability, and reading comprehension ability.
Therefore, we further optimize the Benchmark Merge method to enable QuaDMix to simultaneously
optimize multiple abilities.

We first use fuzzy C-means to cluster all benchmarks into N clusters. Fuzzy c-maens is a soft
clustring method that allows each datapoint belongs to all cluster and represents the ”fuzziness” of
each data point’s membership in each cluster by assigning a membership degree between 0 and 1. As
illustrated in figure 11, we show the cluster results of N = 3 in 21 benchmarks. Then we normaliz
the weights in a cluster, so we can get a weighted score for each cluster with a set of QuaDMix
parameters. And we finally find a optimal weights of cluter and a set of QuaDMix parameters that
minimize the weighted cluter loss.

We also observed that when using Openhermes as the only validation set, the mathematics related
benchmarks’ performance have also improved like MathQA, GSM8K, etc. They are all in the same
cluster from 11, indicating that different benchmarks may reqiure similar abilities, and Cluster
Merge gives it a way to targeted optimize the model performance based on the abilities required
by the benchmarks.

We show the lightGBM predicte loss for each method in figure 12, when using 5 benchmarks (Hel-
laSwag, ARC-E, ARC-C,MMLU, TriviaQA) as evaluation set with Benchmark Merge, it has a great
improvement in target benchmarks. As for the cluster merge method, we obersed a highly competi-
tive result across all benchmarks, validating the feasiblity of our Cluster Meger for optimize model
performance based on abilities rather than benchmarks.

H LIMITATIONS

We note several limitations of our work. There exist improvement space for the design of parameter
space of QuaDMix. For example the parameters of sampling function may generate similar func-
tions under different parameters, which will cause redundancy and introduce uncertainty into the
regression model. Secondly, the searching in the parameter space for optimal parameters is ineffi-
cient. We use random guessing in a space with 200 more dimensions, for certain the current optimal
parameter is a local minimum and how to effectively search in the parameter space remains unclear.
Finally, the proxy ability of small models is crucial, what is the systematic way to improve it is an
important yet less explored topic. However, QuaDMix provides a useful solution for jointly opti-
mize for data quality and diversity, and it worth continually exploring on the limitations mentioned
above.
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Figure 12: The spearman correlation between benchmarks.

I USAGE OF LLM

During the writing process of this paper, large language models (LLMs) were used for language
polishing and spell-checking. All academic content is the original work of the authors.
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