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Abstract

ChebNet, one of the earliest spectral GNNs, has largely been overshadowed by
Message Passing Neural Networks (MPNNs), which gained popularity for their
simplicity and effectiveness in capturing local graph structure. Despite their success,
MPNNs are limited in their ability to capture long-range dependencies between
nodes. This has led researchers to adapt MPNNs through rewiring or make use
of Graph Transformers, which compromises the computational efficiency that
characterized early spatial message-passing architectures, and typically disregards
the graph structure. Almost a decade after its original introduction, we revisit
ChebNet to shed light on its ability to model distant node interactions. We find that
out-of-box, ChebNet already shows competitive advantages relative to classical
MPNNs and GTs on long-range benchmarks, while maintaining good scalability
properties for high-order polynomials. However, we uncover that this polynomial
expansion leads ChebNet to an unstable regime during training. To address this
limitation, we cast ChebNet as a stable and non-dissipative dynamical system,
which we coin Stable-ChebNet. Our Stable-ChebNet model allows for stable
information propagation, and has controllable dynamics which do not require
the use of eigendecompositions, positional encodings, or graph rewiring. Across
several benchmarks, Stable-ChebNet achieves near state-of-the-art performance.

1 Introduction
Graph Neural Networks (GNNs) [81, 43, 74, 67, 14, 25, 44] have emerged as a prevalent framework
for handling data defined on graphs. Graph convolutional networks have their roots in spectral
approaches that extend convolutional filters to non-Euclidean domains. The first practical instantiation
of a GNN was proposed by [14], which leveraged the eigenbasis of the graph Laplacian to perform
spectral filtering, as an attempt to generalize image convolutions to non-euclidean structures. However,
this formulation required costly eigen-decompositions at each layer. Defferrard et al. [25] addressed
this inefficiency by approximating spectral filters with truncated Chebyshev polynomials, giving
rise to ChebNet, the first tractable and localized spectral GNN. By parameterizing filters as K-order
polynomials of the Laplacian, ChebNet could aggregate information from K-hop neighborhoods
without repeated eigendecompositions, thereby enabling scalable spectral convolution on large graphs.
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In 2017, Kipf and Welling distilled ChebNet into a simpler, first-order approximation now known
as the Graph Convolutional Network (GCN) by (i) restricting the polynomial order to one and (ii)
tying filter coefficients across hops [57]. This yielded an architecture that was both lightweight
and effective: a GCN with few layers would achieve strong node-classification performance on
standard homophilic benchmarks, and its O(|E|) complexity made it practical for large-scale graphs.
GCN’s efficiency and strong locality bias quickly made it the default baseline, and subsequent
message-passing neural networks (MPNNs) adopted a similar paradigm of iterative neighborhood
aggregation [41].
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Figure 1: Top: Vanilla ChebNet. Bottom: Stable-ChebNet.
While the original ChebNet’s high-order Chebyshev filters induce
unstable dynamics resulting in dissipative behavior, our Stable-
ChebNet yields bounded propagation through layers.

Despite their popularity, MPNNs
exhibit pronounced shortcom-
ings when made deeper and
when capturing long-range de-
pendencies [33]. Repeated neigh-
borhood aggregations tend to
cause representational collapse,
where node features become in-
distinguishable (often referred
to as “oversmoothing”) [15, 69],
and information from distant
nodes is “squashed” through nar-
row bottlenecks, limiting the
ability to model global con-
text [1]. In recent years, re-
searchers have proposed various
strategies to overcome these lim-
itations. To mitigate oversmooth-
ing, several models have drawn
on principles from physics [28, 12] to preserve feature diversity across layers. At the same time,
efforts to capture long-range dependencies have led to graph-rewiring techniques [82, 49, 7] that add
or reweight edges to shorten information pathways, as well as the emergence of graph transformers
[30], which replace purely local aggregation with global self-attention mechanisms. Although these
advances can alleviate depth-related pathologies, they often trade off numerous benefits that made
MPNNs appealing: scalability, parameter efficiency, and to only process information along the
graph’s edges. In this context, ChebNet and other spectral GNNs are usually relegated to a footnote -
mentioned only as a predecessor to GCN, which is typically not revisited as a competitive baseline.

In this work, we revisit ChebNet from first principles. We demonstrate that the original Cheb-
Net (without any rewiring or attention mechanisms) already delivers state-of-the-art performance
or is close on long-range graph tasks while scaling gracefully to large graphs. By deriving and
analyzing ChebNet’s linearized dynamics, we prove that enlarging its receptive field introduces
signal-propagation instabilities. To overcome this, we propose Stable-ChebNet, a minimal set
of architectural modifications that restore stable propagation for arbitrarily large receptive fields,
supported by both theoretical guarantees and empirical validation. To build intuition for our Stable-
ChebNet framework, Figure 1 illustrates how classical ChebNet filters (top) can exhibit unbounded
dynamics, whereas our antisymmetric, forward-Euler discretization yields smooth, stable propagation
(bottom). An intuitive heat-transfer analogy helps explain the difference: if we inject ‘heat’ at seed
nodes, the high-order filters of vanilla ChebNet diffuse and dissipate this heat so that distant nodes
cool rapidly. In contrast, the non-dissipative dynamics induced by the antisymmetric, forward-Euler
step in Stable-ChebNet preserve energy, keeping temperatures higher at nodes many hops away.

Across a suite of challenging long-range node- and graph-level benchmarks, Stable-ChebNet
matches or outperforms state-of-the-art message-passing neural networks and graph transformers,
while retaining the ChebNet backbone. We hope this work will reignite interest in spectral GNNs as
a scalable, theoretically grounded alternative for long-range graph modeling.
Contributions and Outline

• In Section 3.1, we empirically demonstrate that vanilla ChebNet can achieve very strong perfor-
mance on long-range benchmarks without incurring prohibitive computational cost.

• In Section 3.2, we analyze ChebNet’s signal-propagation dynamics, providing exact sensitivity
analysis, and theoretically and empirically prove the emergence of instability for large filter order.
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• In Section 3.3, we introduce Stable-ChebNet, which enforces layer-wise stability.
• In Section 4, we empirically validate that Stable-ChebNet consistently outperforms MPNNs,

rewiring methods, and graph transformers across a number of tasks.

2 Background
2.1 Background on Spectral Graph Neural Networks
Spectral GNNs extend the notion of convolution to graphs by leveraging the eigen-decomposition
of the graph Laplacian. Given an undirected graph G = (V,E) with normalized Laplacian
L = I − D−1/2AD−1/2, any graph signal X ∈ Rn can be filtered in the spectral domain via
Y = Ugθ(Λ)U⊤X, where L = UΛU⊤ diagonalizes the Laplacian, Λ = diag(λ1, . . . , λn) its
eigenvalues, and gθ is a learnable spectral response. Early methods directly parameterize gθ(Λ), but
require an expensive eigendecomposition of the Laplacian, which can be computationally and memory
intensive [14]. ChebNet alleviates the cost of an explicit eigendecomposition by approximating gθ
using the recurrence relation for a K-th order Chebyshev polynomial in L [25]. The latter defines gθ
as gθ(Λ) ≈

∑K
k=0 Θk Tk(Λ̃), where Tk(Λ̃) is the k-th polynomial of Λ̃ with Λ̃ = 2Λ

λmax
− In . The

spectral convolution can then be written without any eigendecomposition as the truncated expansion:

Y =

K∑
k=0

Θk Tk(L̃)X (1)

where L̃ = 2L
λmax

− In enabling efficient, localized filtering in O(K|E|) time.

2.2 MPNNs and their Limitations

Message-Passing Neural Networks (MPNNs) define a general framework in which node features
are iteratively updated by exchanging “messages” along edges. At each layer l, every node v
aggregates information from its neighbors u ∈ N (v) and combines it with its own representation.
This formulation unifies many graph models, including graph convolutional networks (GCNs) [57]
and graph attention networks (GATs) [83]. While this local neighborhood aggregation captures
structural information effectively, it has a limited capacity to model long-range interactions within
the graph. This is due to the phenomenon of over-squashing, an information bottleneck that impedes
effective information flow among distant nodes [1, 82, 27]. Numerous techniques have emerged to
address this limitation such as graph rewiring [49, 7], Graph Transformers [71, 80, 79] in addition
to some enhanced spatial methods that tackle over-squashing through combined local and global
information [75, 40], or through non-dissipativity achieved by antisymmetric weight parameterization
[45, 46] or port-Hamiltonian systems [54].
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Figure 2: Epoch times for
DRew and ChebNet for dif-
ferent receptive fields on the
peptides-func task. M is the
number of layers, and K is
the number of filters.

However, some of the aforementioned methods suffer from substantial
overhead due to denser graph shift operators or the use of all-pairs
interactions. Specifically, [79] and other graph transformers increase
computational complexity through dense attention-maps; [40] relies
on costly full eigendecomposition operations; and graph rewiring
techniques heavily pre-process the graph topology, incurring O(n3)
time in the case of [49].For a detailed discussion on the relevant
literature, we point the reader to the Appendix A.
2.3 The Connection between ChebNet and GCN
Although often interpreted as disparate models, GCN [57] can be
derived as a special case of ChebNet [25] by truncating the Cheby-
shev expansion to K = 1 and making additional simplifications such
as approximating L̃ ≈ I −D−1/2AD−1/2 and adding self-loops to
improve numerical stability. These choices introduced a strong lo-
cality bias, which aligned with widely used homophilic benchmarks
and significantly reduced computational costs. Due to some of these
strengths, GCN has become the de facto backbone for many modern
GNNs, and has led to ChebNet being somewhat forgotten, under the
assumption that it does not perform well and will not scale well in
mid- to large-size graphs due to its spectral nature. For instance, until
recently, ChebNet was almost never included in popular GNN benchmarks, such as [31], or in those
designed to evaluate long-range dependencies, such as those in the Long Range Graph Benchmark
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(LRGB) [33] and the numerous studies that leveraged this dataset to assess the effectiveness of
graph rewiring, positional encodings, or Transformer-based architectures. ChebNet was similarly
disregarded from large-scale graph evaluations such as the OGB benchmarks [55], presumably due to
prevailing assumptions about its scalability.

3 Analyzing and Improving ChebNet from First Principles

3.1 The Effectiveness and Scalability of Vanilla ChebNet

In this subsection, we perform two high-level empirical tests to challenge the commonplace as-
sumption that spectral GNNs inherently suffer from poor performance and limited scalability. We
do so by firstly testing ChebNet [25] on a long-range test on the Ring Transfer dataset from [27],
which has become a de facto benchmark for state-of-the-art methods seeking to model long-distance
dependencies on graphs. Furthermore, to test scalability, we compare epoch training times on the
peptides-func dataset from [33] with respect to state-of-the-art rewired MPNNs [49] based on a
GCN backbone. We compare ChebNet with different numbers of filters K and layers MCheb with an
MMPNN-layer MPNN. To ensure a fair comparison, we ensure that MChebK = MMPNN so that the
two methods would have the same receptive field. The results are shown in Figures 2 and 3.

As seen from Figure 3, ChebNet is capable of performing long-range retrieval on the ring trans-
fer dataset for rings of up to 50 nodes, which is a substantial improvement over a regular GCN.
While this finding aligns with intuition, as we will formalize in the following sections, it may
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Figure 3: Test accuracy
on RingTransfer.

nonetheless surprise practitioners, since ChebNet is not typically included
as a benchmark in long-range studies such as that in [30]. On the other
hand, as seen in Figure 2, ChebNet scales gracefully on standard tasks
such as the peptides-func dataset. When compared to DRew, a state-
of-the-art method that leverages both dynamic rewiring and delay to
propagate information through a GCN (or other MPNN) backbone, we
observe that DRew’s epoch times are almost up to two orders of magnitude
larger than ChebNet’s. We note further that this inefficiency is not unique
to this particular baseline: Graph Transformers incur quadratic scaling in
the number of nodes and, by effectively discarding the underlying graph
structure, trade-off inductive bias for increased compute, while many

rewiring approaches depend on cubic-time algorithms (e.g., Floyd–Warshall or eigendecompositions).
Together, these examples underscore how numerous contemporary techniques intended to overcome
traditional message-passing limitations actually erode computational benefits, whereas ChebNet,
a more natural spectral baseline that generalizes GCN, delivers both training speed and strong
performance out-of-the-box.

3.2 Signal Propagation Analysis of ChebNet

In this subsection, we conduct a sensitivity analysis of ChebNet via the spectral norm of the
Jacobian of node features, providing an exact characterization of ChebNet’s information flow
through different layers and between pairs of nodes, in the spirit of [3]. Specifically, we begin by
analyzing the layer-wise Jacobian for Spectral GNNs that use polynomial filters. In this setting, we
demonstrate that the layer-wise Jacobian becomes unstable as the polynomial order K increases.
Lastly, we investigate the sensitivity of node pairs when using ChebNet. We provide the proofs for
the statements in Appendix B.

Lemma 3.1 (Layer-Wise Jacobian for a Spectral GNN). Consider a linear spectral GNN whose layer-wise
update is performed through the following polynomial filter f(X) =

∑K
k=1 Tk(L)XΘk, where X ∈ Rn×d is

the node feature matrix, Tk(L) ∈ Rn×n is the k-th polynomial of the Laplacian L ∈ Rn×n, and Θk ∈ Rd×d′

are learnable weight matrices. Then, the vectorized Jacobian J = ∂ vec(f(X))/∂ vec(X) is

J =

K∑
k=1

Θ⊤
k ⊗ Tk(L). (2)

Given the layer-wise Jacobian from Lemma 3.1, we proceed to analyze the dynamics of a Spectral
GNN in Theorem 1 below. Specifically, we focus on the case where the polynomial filter can be
approximated by powers of the Laplacian, i.e., Tk(L) = Lk.
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Figure 4: Singular-value spectra of the graph-wise Jacobian in the complex plane for vanilla ChebNet
with increasing polynomial order K.

Theorem 1 (Layer-Wise Jacobian singular-value distribution). Assume the setting of Lemma 3.1, with Tk(L) =
Lk and L the symmetric normalized Laplacian, and let all Θk ∈ Rd×d be initialized with i.i.d. N (0, σ2) entries.
Denote the eigenvalues of L as {λ1, . . . , λn}, the squared singular values of Θk Θ

T
k as {µ1,k, . . . , µd,k}, and

the squared singular values of the Jacobian by γi,j . Then, for sufficiently large d the empirical eigenvalue
distribution of ΘkΘ

T
k converges to the Marchenko-Pastur distribution ∀k. Then, the mean and variance of

each γi,j are

E
[
γi,j
]
= σ2

K∑
k=1

λ2k
i , (3)

Var
[
γi,j
]
= σ4

( K∑
k=1

λ2k
i

)2

. (4)

Theorem 1 shows that the singular values spectrum of the layer-wise Jacobian depends on the sum
over the powers of the normalized Laplacian’s eigenvalues. This indicates that larger polynomial
orders K push the singular value-spectrum towards unstable dynamics, as empirically demonstrated
in Figure 4. Stacking several layers of large filter orders will therefore severely hinder the trainability
of a Spectral GNN of this form.

Beyond analyzing the information propagation dynamics between different layers, we are interested
in quantifying the communication ability between distant nodes in the graph. Recent literature has
proposed to measure information flow in the graph by evaluating the sensitivity of a node embedding
after l layers (i.e., hops of propagation) with respect to the input of another node using the node-wise
Jacobian [82, 27, 3], i.e., ∂x(l)

u /∂x
(0)
v . Following this approach, we measure how sensitive a node

embedding of ChebNet at an arbitrary layer l with respect to the initial features of another node, to
better illustrate the long-range propagation capabilities of spectral GNNs.
Theorem 2 (ChebNet Sensitivity). Consider a Chebyshev-based Graph Neural Network (ChebNet) defined as:

X(l+1) =

K∑
k=0

Tk(L)X
(l)W

(l)
k , (5)

where L ∈ Rn×n is the graph Laplacian, Tk(L) is the k-th Chebyshev polynomial of the Laplacian, and W
(l)
k

are learnable weight matrices. Assume activation function σ is identity and let X(0) be the input features.

Then, the sensitivity of node v with respect to node u after l layers is given by:

∂x
(l)
v

∂x
(0)
u

=

(
l−1∏
l=0

(
K∑

k=0

Tk(L)W
(l)
k

))
v,u

. (6)

This result indicates that the sensitivity of ChebNet is closely tied to the polynomial order K. We
note that, in the case of K = 1, the sensitivity aligns with that of standard MPNNs 1 (such as GCN),
exhibiting reduced long-range communication. However, for K > 1, the higher polynomial orders
significantly enhance the ChebNet’s sensitivity, enabling more effective long-range propagation and
improving the overall capacity to capture distant dependencies in the graph. Therefore, we conclude
that a large filter order K is needed to enable long-range communication between nodes in the graph,
but this will result in unstable training dynamics. This serves to explain the decay in performance in
Figure 3. In the next subsection, we will propose a remedy to this issue.

1The sensitivity upper bound of standard MPNNs is further discussed in Appendix B.5.
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3.3 Stable-ChebNet: Stability with Antisymmetric Parameterization

As discussed in Section 3.2, although ChebNet demonstrates strong long-range propagation capabili-
ties, increasing the polynomial order can introduce significant instability into the model dynamics. To
address this challenge, we propose Stable-ChebNet, a simple yet effective modification of classical
ChebNet aimed at improving its stability. Recent literature has demonstrated that the effectiveness of
neural architectures can be significantly improved by framing them as stable, non-dissipative dynami-
cal systems [50, 18, 45, 46, 54]. The core idea behind these approaches is to carefully regulate the
spectrum of the Jacobian matrix to ensure the network operates within a stable regime. Specifically,
this behavior can be achieved by constraining the eigenvalues of the Jacobian to be purely imaginary.
Under this constraint, the input graph information is effectively propagated through the successive
transformations into the final nodes’ representation. Motivated by this line of work, we begin by
reformulating ChebNet as a continuous-time differential equation. Specifically, we consider the
following ordinary differential equation (ODE):

dX(t)

dt
=

K∑
k=0

Tk(L)X(t)Wk (7)

for time t ∈ [0, T ] and subject to the initial condition (i.e., the input features) X(0) = X(0). In
other words, the dynamics of the system (i.e., the continuous flow of information over the graph)
is now described as the ChebNet update rule. To ensure the Jacobian of this system has purely
imaginary eigenvalues, a straightforward approach is to use antisymmetric weight matrices2 and the
symmetrically normalized Laplacian. This choice, as formalized in the following theorem, directly
enforces the desired spectral property, leading to inherently stable dynamics.

Theorem 3 (Purely Imaginary Eigenvalues). Let L be the symmetric normalized Laplacian and −Wk = W⊤
k

∀k = 0, . . . ,K, then the graph-wise Jacobian of the ODE in Equation (7) has purely imaginary eigenvalues,
i.e.,

Re(λi(J)) = 0, ∀i. (8)

Even in this section, we provide the proofs for the statements in Appendix B. Theorem 3 shows
that by enforcing antisymmetry in the weight matrices and leveraging the symmetric structure of
the Laplacian, we guarantee that the Jacobian has purely imaginary eigenvalues, ensuring that node
representations remain sensitive to input features of far away nodes without suffering from the
instability of standard ChebNet.

As for standard differential-equation-inspired neural architectures, a numerical discretization method
is needed to solve Equation (7). We solve the equation with a simple finite difference scheme, i.e.,
forward Euler’s method, yielding the following node update equation

X(l+1) = X(l) + ϵ

(
K∑

k=0

Tk(L)X
(l)(Wk −W⊤

k − γI)

)
(9)

where I is the identity matrix, γ ∈ R is a hyper-parameter that maintains the stability of the forward
Euler method, and ϵ ∈ R+ is the discretization step.

We refer to the ODE in Equation (9) as Stable-ChebNet, and in the following, we show that this
new formulation achieves second-order stability. This is a critical improvement, as a naive Euler
discretization of the original ChebNet (without imposing constraints on the Jacobian eigenvalues)
would result in only first-order stability, which is considerably more prone to numerical instability.
Specifically, without these constraints, the model can exhibit exponential growth or decay in the
gradients, significantly limiting its ability to capture long-range dependencies [3]. In contrast,
second-order stable systems, like Stable-ChebNet, maintain controlled gradient dynamics over longer
timescales, allowing for effective long-range information propagation.

2A matrix A ∈ Rd×d is antisymmetric (i.e., skew-symmetric) if −A = A⊤
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Table 1: Mean test set log10(MSE) and standard deviation averaged over 4 random weight initializa-
tions for each configuration on the Graph Property Prediction dataset. The lower the better.

Model Diameter SSSP Eccentricity

GCN 0.7424± 0.0466 0.9499± 0.0001 0.8468± 0.0028
GAT 0.8221± 0.0752 0.6951± 0.1499 0.7909± 0.0222
GraphSAGE 0.8645± 0.0401 0.2863± 0.1843 0.7863± 0.0207
GIN 0.6131± 0.0990 −0.5408± 0.4193 0.9504± 0.0007
GCNII 0.5287± 0.0570 −1.1329± 0.0135 0.7640± 0.0355
DGC 0.6028± 0.0050 −0.1483± 0.0231 0.8261± 0.0032
GRAND 0.6715± 0.0490 −0.0942± 0.3897 0.6602± 0.1393
A-DGN w/ GCN backbone 0.2271± 0.0804 −1.8288± 0.0607 0.7177± 0.0345

ChebNet -0.1517 ± 0.0343 -1.8519 ± 0.0539 -1.2151 ± 0.0852
Stable-ChebNet (ours) -0.2477 ± 0.0526 -2.2111 ± 0.0160 -2.1043 ± 0.0766

Theorem 4 (Non-exponential Information Growth or Decay with Antisymmetric Weights). Consider the
Stable-type Chebyshev Graph Neural Network (Stable-ChebNet) defined by:

X(l+1) = X(l) + ϵ

K∑
k=0

Tk(L)X
(l)W

(l)
k , (10)

with small step size ϵ > 0 and antisymmetric weight matrices:

(W
(l)
k )⊤ = −W

(l)
k , ∀k, l. (11)

Then the Jacobian J(l) of the layer does not lead to exponential growth or decay across layers. Specifically, we
have:

∥J(l)∥2 = 1 +O(ϵ2). (12)

Conversely, for general weights without the antisymmetric property, exponential growth or decay of the Jacobian
norm typically occurs.

4 Experiments

We evaluate ChebNet and its stable formulation (Stable-ChebNet) across a variety of settings to
thoroughly assess long-range capabilities. In this section, we report and discuss the performance
of both models on these benchmarks. We report additional experiments on heterophilic node
classification tasks from [70] in Appendix F. We run our experiments on a single A100 GPU and
provide the full details on the hyperparameter search for all datasets in Appendix D, and baseline and
datasets details in Appendix C.

Graph Property Prediction Dataset. We evaluate our model’s ability to predict long-range graph
properties using a synthetic dataset developed by Corso et.al in [24] under the experimental setup of
[45]. The dataset consists of undirected graphs drawn from a diverse set of random and structured
families (Erdős–Rényi, Barabási–Albert, caterpillar, etc), ensuring a broad coverage of topological
properties. Each graph contains between 25 and 35 nodes as per the setup of Gravina et.al in [45] (in
contrast to the 15–25 node range originally used by [24]), thus increasing task complexity and raising
the need for long-range information propagation. Finally, each node is assigned a single scalar feature
sampled uniformly at random from the interval [0, 1]. We provide a detailed comparison in Table 1.

Results. Compared to classical ChebNet, Stable-ChebNet yields consistent and significant gains
across all three tasks. On the Diameter task, classical ChebNet achieves a log10(MSE) of −0.15,
whereas Stable-ChebNet improves it to −0.25. On the Single Source Shortest Path (SSSP) task,
the gain is larger and goes from −1.85 using ChebNet to −2.21 with our Stable-ChebNet form.
Finally, on Eccentricity, where the difficulty is highest due to the necessity to propagate information
about the most distant nodes individually, classical ChebNet achieves a log10(MSE) of −1.22 while
Stable-ChebNet reaches −2.10, reducing the average prediction error by more than an order of
magnitude relative to the baseline. Relative to other baselines, Stable-ChebNet dominates most
models based on standard message-passing or modified diffusion mechanisms. Methods like GCN
and GCNII are badly over-squashed, barely reaching negative log10(MSE) values.
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Over-Squashing Analysis on Barbell Graphs. To further investigate the robustness of our model to
oversquashing, we use as a benchmark the barbell regression tasks introduced in [5]. In this task, a
model that fails to transfer any information across the single bridge edge will produce an essentially
random constant and obtain a mean-squared error (MSE) close to 1; an error in the 0.4–0.6 band
indicates that only a partial amount of information has overcome the bottleneck. Errors around
≈ 0.25 and below suggest that the oversquashing has been effectively overcome. In this work, we
compare Stable-ChebNet’s performance on barbell graphs of varying sizes (N = 10, 25, 50, 100)
against numerous baselines, mainly an MLP and variants of MPNNs such as GCN [57], GAT [83],
and SAGE [51]. Further description of the task is found in Appendix C.2.
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Figure 5: Mean Squared Error (MSE) compari-
son of various MPNN baselines at different node
counts N of Barbell graphs.

Results. We observe in Figure 5 that both a clas-
sical ChebNet and Stable-ChebNet successfully
learn the small N = 10 case with negligible
error. However, for moderate graph sizes with
N = 50, a classical ChebNet with fixed K = 8
already sits in the "partial collapse" regime as its
MSE increases to around 0.90 and slides towards
the random-guess area as N keeps growing (Ta-
ble 2). For the same range of hops K, replac-
ing the standard update with our stable Euler-
based formulation keeps the error almost two
orders of magnitude smaller with an MSE below
0.20, confirming that the non-dissipative time-
stepping effectively prevents the over-squashing
phenomenon.

Table 2: Mean squared error (MSE) of ChebNet and Stable-ChebNet on the over-squashing experi-
ment for barbell graphs. Left: sizes N = 50, 70 for K = 9 and 10. Right: size N = 100 for K = 20.

Method K 50 70

ChebNet K = 9 0.32± 0.39 1.08± 0.05
K = 10 0.05 ± 0.00 1.08± 0.01

Stable-
ChebNet

K = 9 0.17± 0.11 0.47± 0.49
K = 10 0.05 ± 0.00 0.06 ± 0.03

Method K 100
ChebNet K = 20 0.87± 0.05
Stable-
ChebNet (ours) K = 20 0.21 ± 0.27

Open-Graph Benchmark. To evaluate real-world applicability on large-scale graphs, we run
experiments for node-level tasks on two large-scale graph datasets from the Open-Graph Benchmark
(OGB) [55]. ogbn-arxiv is a citation network in which each node corresponds to an academic
paper, and the task is node classification by predicting the subject area of unseen papers. The other
dataset we use, ogbn-proteins, is a protein–protein interaction network aimed at inferring protein
functions. To ensure a fair comparison and emphasize efficiency, we limit the number of parameters
in our models to be within the same range as those used in existing and most recent OGB benchmarks.

Results. Table 3 reports the performance on the ogbn-arxiv citation network, where ChebNet
achieves around 73% test accuracy, while Stable-ChebNet boosts the performance further to 75.7%,
outperforming all other methods, including a variety of MPNNs and Graph Transformers such
as GraphGPS [71] and Exphormer [80]. Similarly, on the ogbn-proteins interaction network,
ChebNet attains about 77.6% accuracy compared to Stable-ChebNet’s 79.5% (Table 4). Competing
approaches achieve nearly 72% for MPNN-based methods, while Transformer-based models’ perfor-
mances range from 77.4% for NodeFormer [88] to 79.5% for SGFormer [89]. Hence, Stable-ChebNet
remarkably competes and often outperforms state-of-the-art models on this benchmark, demonstrating
that the Euler formulation consistently narrows the gap with and in some cases overtakes Transformer
baselines such as SGFormer [89] and Spexphormer [79]. Together, these results demonstrate that
augmenting ChebNet with an Euler step not only addresses the classical ChebNet’s shortcomings on
long-range information propagation but also performs effectively well on graphs with hundreds of
thousands of nodes, in contrast to regular-sized graphs seen in previous experiments.
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Table 3: Accuracy on ogbn-arxiv.
Model ogbn-arxiv
GCN 71.74 ± 0.29
ChebNet 73.27 ± 0.23
ChebNetII 72.32 ± 0.23
GraphSAGE 71.49 ± 0.27
GAT 72.01 ± 0.20
NodeFormer 59.90 ± 0.42
GraphGPS 70.92 ± 0.04
GOAT 72.41 ± 0.40
EXPHORMER+GCN 72.44 ± 0.28
SPEXPHORMER 70.82 ± 0.24

Stable-ChebNet (ours) 75.73 ± 0.51

Table 4: Accuracy on ogbn-proteins.
Model ogbn-proteins
MLP 72.04 ± 0.48
GCN 72.51 ± 0.35
ChebNet 77.55 ± 0.43
SGC 70.31 ± 0.23
GCN-NSAMPLER 73.51 ± 1.31
GAT-NSAMPLER 74.63 ± 1.24
SIGN 71.24 ± 0.46
NodeFormer 77.45 ± 1.15
SGFormer 79.53 ± 0.38
SPEXPHORMER 80.65 ± 0.07
Stable-ChebNet (ours) 79.55 ± 0.34

Long-Range Graph Benchmark (LRGB). LRGB [33] is a collection of GNN benchmarks that
evaluate models on tasks involving long-range interactions. We use two of its molecular-property
datasets: Peptides-func for graph classification and Peptides-struct for graph regression.

Results. A detailed leaderboard is shown in Table 5. It can be seen that Stable-ChebNet improves
upon its vanilla counterpart. Together with S2GCN, it reaches an average precision (AP) above
70 on Peptide-func and a Mean Absolute Error (MAE) below 0.26 on the regression task, bearing
in mind that S2GCN requires a more expensive full Laplacian eigendecomposition. Overall, our
model achieves competitive performance on peptide structures with results competing with and
often outperforming some well-known graph-based models including graph transformers such as
Exphormer [80] and GraphViT [53], state space models including Graph Mamba and GMN [84], and
rewiring methods like DRew [49]. It is worth noting that the gain in AP for DRew comes at the cost
of computing positional encodings (Laplacian eigenvectors) for every graph before training, while
Stable-ChebNet does not use any positional encodings.

Heterophilic benchmarks We further assess Stable-ChebNet on node-classification tasks explicitly
designed to stress performance under heterophily, following the standardized protocol of Platonov
et al. (“Roman-empire”, “Amazon-ratings”, “Minesweeper” and “Tolokers”) [70]. We keep the
exact data processing, splits, and metrics recommended therein. Concretely, we report accuracy on
Roman-empire and Amazon-ratings, and ROC-AUC on Minesweeper and Tolokers averaging over
four random initializations as in the protocol.

Link to oversmoothing, heterophily, and long-rangeness. Our heterophilic results (Table 9) should
not be over-interpreted as “evidence of long-range propagation” or as a direct antidote to oversmooth-
ing. The recent position paper by Arnaiz-Rodríguez & Errica [2] argues that several widespread
assumptions in the literature are often conflated: (i) that heterophily is inherently detrimental while
homophily is beneficial, (ii) that long-range propagation is best evaluated on heterophilic graphs, and
(iii) that performance degradation mainly arises from oversmoothing. They show that heterophily,
long-range interactions, and oversmoothing are orthogonal factors: a graph may be heterophilic yet
dominated by local dependencies, or homophilic yet require long-range reasoning. Hence, evaluations
should focus on the nature of the learning task, not merely on global homophily ratios. In this light,
our Stable-ChebNet scores on Roman-empire, Minesweeper, and Tolokers demonstrate that a stable
spectral propagator has competitive performance on standardized heterophily benchmarks, but they
do not by themselves certify long-rangeness. Those conclusions are better supported by our dedicated
long-range tests and stability analysis.

5 Conclusion

In this work, we have re-examined ChebNet, one of the earliest spectral GNNs, from first principles,
uncovering its innate ability to capture long-range dependencies via higher-order polynomial filters,
but also its susceptibility to unstable propagation dynamics as the polynomial order grows. By casting
ChebNet as a continuous-time ODE and imposing antisymmetric weight constraints, we introduced
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Table 5: Long-range benchmark results. AP is the target metric on peptides-func (higher is better),
and MAE is the target metric on peptides-struct (lower is better).

Model Type Model peptides-func (AP ↑) peptides-struct (MAE ↓)

Transformer

SAN+LapPE 63.84 ± 1.21 0.2683 ± 0.0043
TIGT 66.79 ± 0.74 0.2485 ± 0.0015
Specformer 66.86 ± 0.64 0.2550 ± 0.0014
Exphormer 65.27 ± 0.43 0.2481 ± 0.0007
G.MLPMixer 69.21 ± 0.54 0.2475 ± 0.0015
Graph ViT 69.42 ± 0.75 0.2449 ± 0.0016
GRIT 69.88 ± 0.82 0.2460 ± 0.0012

Rewiring LASER 64.40 ± 0.10 0.3043 ± 0.0019
DRew-GCN 69.96 ± 0.76 0.2781 ± 0.0028

+PE 71.50 ± 0.44 0.2536 ± 0.0015

State Space Graph Mamba 67.39 ± 0.87 0.2478 ± 0.0016
GMN 70.71 ± 0.83 0.2473 ± 0.0025
MP-SSM 69.93 ± 0.52 0.2458 ± 0.0017

GNN

A-DGN 59.75 ± 0.44 0.2874 ± 0.0021
ChebNet 69.61 ± 0.33 0.2627 ± 0.0033
ChebNetII 68.19 ± 0.27 0.2618 ± 0.0058
GCN 68.60 ± 0.50 0.2460 ± 0.0007
GRAMA 70.93 ± 0.78 0.2436 ± 0.0022
GRAND 57.89 ± 0.62 0.3418 ± 0.0015
GraphCON 60.22 ± 0.68 0.2778 ± 0.0018
PH-DGN 70.12 ± 0.45 0.2465 ± 0.0020
SWAN 67.51 ± 0.39 0.2485 ± 0.0009
PathNN 68.16 ± 0.26 0.2545 ± 0.0032
CIN++ 65.69 ± 1.17 0.2523 ± 0.0013
S2GCN 72.75 ± 0.66 0.2467 ± 0.0019

+PE 73.11 ± 0.66 0.2447 ± 0.0032
Stable-ChebNet (ours) 70.32 ± 0.26 0.2542 ± 0.0030

Stable-ChebNet, whose forward Euler discretization yields non-dissipative, second-order–stable
information flow without resorting to costly eigendecompositions, positional encodings, or graph
rewiring. We provide a theoretical analysis of Stable-ChebNet showing purely imaginary Jacobian
spectra and bounded layerwise sensitivity. We support the analysis with extensive experiments
on a variety of synthetic and other long-range graph benchmarks. Stable-ChebNet consistently
matches or outperforms state-of-the-art message-passing, rewiring, state-space, and transformer-
based models , while retaining the fundamental properties of Chebyshev filters. Future work can
focus on generalizing this ODE-based framework to broader spectral GNN families, whereby the
stability analysis can be extended to other polynomial types and orthogonal bases.

Impact Statement. This work aims to advance the field of machine learning on graph-structured
data which are abundant in the real world. There are many potential societal consequences of our
work, none of which we feel must be specifically highlighted here.
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https://github.com/ahariri13/Stable-ChebNet to support reproducibility and future work.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
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license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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ducted for this paper.
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tion of the paper involves human subjects, then as much detail as possible should be
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not a core component of this paper in terms of methods.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Related Work

Effective propagation and preservation of information on graphs remains a central challenge in deep
learning on graphs, especially when long-range communication between nodes becomes fundamental
for the downstream task [77]. GNNs usually rely on local neighborhood aggregation, which limits
their capacity to capture interactions between distant nodes [1, 27] due to challenges such as over-
smoothing [15, 69, 72] and over-squashing [1, 82, 27], which are linked to the problem of vanishing
gradients [3]. Several techniques have been proposed to address this issue.

Graph rewiring techniques [39, 1, 4] modify the original topology, usually as a pre-processing step,
with the aim of directly connect distant nodes and facilitate information flow. Rewiring methods can
be broadly classified based on the type of information they leverage, including curvature metrics
[1, 68, 36], effective resistance [9], random walks [7], spectral gap [56], and node features [49].

Similarly, Graph Transformers [76, 59, 91, 71] enable direct message passing between any pair of
nodes via attention mechanisms, employing an attention mechanism on the entire graph. These
models often incorporate positional encodings, such as Laplacian eigenvectors [30] or random-walk
structural encodings (RWSE) [32], to encode graph structure. To reduce the quadratic complexity of
the full attention mechanism, recent methods introduce methods such as sparse attention mechanisms
[92, 23], Exphormer [80], and linear graph transformers [26].

Despite the success of graph rewiring methods and Graph Transformers, these approaches often
introduce additional computational complexity due to the use of denser graph shift operators. An
alternative strategy to enhance long-range propagation focuses on constraining the dynamics of
the GNN to remain stable and non-dissipative, while maintaining the computational complexity
of classical MPNNs. In this paradigm, the GNN is interpreted as a discretization of a differential
equation, leveraging dynamical systems theory to maintain a constant rate of information flow between
nodes. This behavior has been achieved either through antisymmetric weight parameterization
[45, 46, 47, 48] or by exploiting port-Hamiltonian dynamics [54].

Recent works further explore long-range interactions in GNNs. In [6], Bamberger et al. formalize and
measure interaction ranges in graph operators, while in [61] Liang et al. introduce a large-scale dataset
and metric to quantify long-range dependencies. These studies complement existing approaches by
providing tools to better evaluate and understand information propagation across distant nodes.

Other approaches include filtering messages in the information flow [37, 35], using a graph adaptive
method based on a learnable ARMA framework [34], state space models [8, 16], or fractional power
of the graph shift operator [64].

B Sensitivity Results

In this section, we provide the proofs for the statements in Section 3.2.

B.1 Proof of Lemma 3.1

Proof. Applying vectorization to f(X) and recalling that vec(AXB) = (B⊤ ⊗ A) vec(X), we
obtain

vec(f(X)) =

K∑
k=1

(Θ⊤
k ⊗ Lk) vec(X).

Taking derivatives:

Jf =
∂f

∂ vec(X)
=

K∑
k=1

(Θ⊤
k ⊗ Tk(L)).

B.2 Proof of Theorem 1

Proof. Define the k-hop Jacobian block Jk = Θk ⊗ Lk and the full Jacobian J =
∑K

k=1 Jk.
Because Θk ⊗ Lk has singular values sj(Θk) |λi|k, the squared singular values of Jk are given by
γ
(k)
i,j = λ2k

i µj,k.
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For a square Gaussian matrix, the empirical spectrum of ΘkΘ
⊤
k converges to the Marchenko–Pastur

(MP) law. Scaling by σ2λ2k
i yields

m
(k)
1 = σ2λ2k

i (13)

m
(k)
2 = 2

(
σ2λ2k

i

)2
. (14)

Independence, together with the rotational symmetry of each Θk implies the blocks Jk are asymp-
totically free. Freeness gives additive R-transforms, hence additive free cumulants κr

(∑
k Jk

)
=∑

k κr(Jk). For r = 1, 2 the classical moments coincide with the free cumulants, so the ordinary
moments of γi,j also add:

mr =

K∑
k=1

m(k)
r , r ∈ {1, 2}. (15)

Insert Equation (13) into Equation (15):

m1 = σ2
K∑

k=1

λ2k
i (16)

m2 = 2σ4
K∑

k=1

λ4k
i . (17)

Finally,
V ar[γi,j ] = m2 −m2

1

= 2σ4
∑
k

λ4k
i − σ4

(∑
k

λ2k
i

)2
= σ4

(∑
k

λ2k
i

)2
.

B.3 Proof of Theorem 2

Proof. Recall that the forward pass for one ChebNet layer (omitting the activation function) is:

X(l+1) =

K∑
k=0

Tk(L)X
(l)W

(l)
k . (18)

Applying vectorization, we obtain:

vec(X(l+1)) =

K∑
k=0

(
(W

(l)
k )⊤ ⊗ Tk(L)

)
vec(X(l)). (19)

By unrolling Equation (19) and taking the derivative with respect to vec(X(0)), we obtain the
sensitivity after l layers:

∂vec(X(l))

∂vec(X(0))
=

l−1∏
l=0

(
K∑

k=0

(
(W

(l)
k )⊤ ⊗ Tk(L)

))
. (20)

Focusing on a single feature channel (or summing across channels), we obtain the sensitivity:

∂X(l)

∂X(0)
=

l−1∏
l=0

(
K∑

k=0

Tk(L)W
(l)
k

)
. (21)

Then, the sensitivity of node v with respect to node u after l layers is given by:

∂x
(l)
v

∂x
(0)
u

=

(
l−1∏
l=0

(
K∑

k=0

Tk(L)W
(l)
k

))
v,u

. (22)
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B.4 Proof of Theorem 3

Proof. Given that the graph-wise Jacobian of Equation (7) is Equation (2), we note that each term
in the Jacobian, of the form W⊤

k ⊗ Tk(L), is an antisymmetric matrix. This follows from the
fact that Wk is antisymmetric by construction, Tk(L) preserves the symmetry of the normalized
Laplacian, and the Kronecker product of an antisymmetric matrix with a symmetric matrix is itself
antisymmetric. Finally, since the sum of antisymmetric matrices remains antisymmetric, it follows
that the graph-wise Jacobian of Equation (7) has purely imaginary eigenvalues.

B.5 Sensitivity upperbound of standard MPNNs

In the following theorem we report the sensitivity upperbound computed for standard MPNNs in
[27].
Theorem 5 (Sensitivity uppperbound of standard MPNNs, taken from [27]). Consider a standard
MPNN with l layers, where cσ is the Lipschitz constant of the activation σ, w is the maximal
entry-value over all weight matrices, and d is the embedding dimension. For u, v ∈ V we have∥∥∥∥∥ ∂h(l)

v

∂h
(0)
u

∥∥∥∥∥ ≤ (cσwd)
l︸ ︷︷ ︸

model

(Ol)vu︸ ︷︷ ︸
topology

, (23)

with O = crI+ caA ∈ Rn×n is the message passing matrix adopted by the MPNN, with cr and ca
are the contributions of the self-connection and aggregation term.

B.6 Proof of Theorem 4

Proof. First, recall the Jacobian explicitly:

J(l) = I+ ϵ

K∑
k=0

(
(W

(l)
k )⊤ ⊗ Tk(L)

)
. (24)

Define:

A(l) =

K∑
k=0

(
(W

(l)
k )⊤ ⊗ Tk(L)

)
. (25)

Antisymmetric Case: When (W
(l)
k )⊤ = −W

(l)
k , the matrix A(l) is antisymmetric, because it is a

Kronecker product of antisymmetric and symmetric matrices. Its eigenvalues are purely imaginary
(or symmetric about zero), meaning their real parts vanish. Thus, for the spectral radius, we have:

∥J(l)∥22 = ρ
(
(J(l))⊤J(l)

)
(26)

= ρ
(
I+ ϵ(A(l) + (A(l))⊤) + ϵ2(A(l))⊤A(l)

)
. (27)

Due to antisymmetry:
(A(l))⊤ +A(l) = 0. (28)

Hence:
∥J(l)∥22 = ρ

(
I+ ϵ2(A(l))⊤A(l)

)
. (29)

The matrix (A(l))⊤A(l) is symmetric and positive semi-definite, having nonnegative real eigenvalues.
Expanding around the identity gives:

∥J(l)∥2 =
√
1 + ϵ2λmax

(
(A(l))⊤A(l)

)
= 1 +O(ϵ2). (30)

Thus, no exponential growth or decay occurs.

General Case of Stable-ChebNet (Without Antisymmetry): For arbitrary matrices, the linear
term (A(l) + (A(l))⊤) typically does not vanish, introducing nonzero real eigenvalues. This causes
exponential growth or decay in the Jacobian norm across layers:

∥J(l)∥2 ≈ 1± Cϵ, (31)
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for some constant C = maxi=0,··· ,l C
(i) > 0. Iterating over layers results in exponential instability:

∥J(l)J(l−1) . . .J(0)∥2 ≈ (1± Cϵ)l, (32)

which grows or decays exponentially as the depth l increases.

Thus, antisymmetric weights provide explicit protection against exponential growth or decay, while
general weights typically do not.

Standard ChebNet Case: Iterating over layers, this results in exponential instability:

∥J(l)J(l−1) . . .J(0)∥2 ≈ (±C)l, (33)

which grows or decays exponentially as the depth l increases.

C Dataset and Baseline Description

C.1 Graph Property Prediction task description

For the graph property prediction dataset, we make use of three separate tasks:

Diameter (Graph-Level). The diameter is defined as the length of the longest shortest path between
any two nodes in the graph. It requires aggregating information from distant regions of the graph.

SSSP (Node-Level). Single-Source Shortest Path requires predicting each node’s distance to a
designated source node. Solving this task with GNNs places a strong emphasis on propagating
information from nodes that may lie many hops away from the source.

Eccentricity (Node-Level). For each node u, the eccentricity is the length of the maximum shortest
path between u and any other node. As with diameter and SSSP, accurate eccentricity estimation
relies heavily on capturing long-distance relationships.

In total, the task contains 5,120 graphs for training, 640 for validation, and 1,280 for testing. The
train/validation/test splits follow the same seed and setup in [45]. We train our models by optimizing
mean squared error (MSE) for each task, performing a grid search over hyperparameters (e.g., learning
rate, weight decay, number of layers). Each experiment is repeated across four random initializations,
and we report the average performance.

Because shortest-path-related tasks inherently rely on propagating signals over large portions of a
graph, they serve as a natural stress test for the capacity of GNNs to perform long-range propagation.

C.2 Barbell graph task description

A Barbell graph Bn,k is formed by connecting two complete graphs Kn (the “bells”) with a simple
path of length k (the “bridge”). Therefore, every node inside a bell has high intra-cluster connectivity
(n− 1 neighbors), whereas the bridge nodes have degree 2 and constitute the only communication
route between the two bells. In this task, the target for nodes is to output the average input feature
over nodes of the opposite bell and vice-versa, as illustrated in Figure 6. Mean squared error (MSE)
is used for node-level regression as a proxy for how severely the GNN is either oversquashing (failing
to pass information across the narrow “bridge”) or oversmoothing (collapsing all node embeddings to
be nearly identical). Numerical MSE outcomes are associated with each pathology.

An MSE of around 1 corresponds to oversquashing: The model is so bottlenecked by the bridge
that it effectively ignores or fails to incorporate information from the other “bell.” In other words,
each side of the barbell can predict its own node labels, but the information from the opposite side
never gets through, leading to a characteristic level of error (≈ 1 in their chosen label distribution).

An MSE of around 30 corresponds to oversmoothing: The model passes messages so many times
(or in such a way) that it “collapses” all node embeddings toward the same prediction, ignoring local
distinctions within each side. Because the barbell’s node labels are diverse (randomly assigned),
forcing every node toward the same value yields a much larger overall MSE (≈ 30 in their setup).

On the other hand, an MSE of around 0.5 as shown in the results simply means that the model is
doing better than the severe oversquashing case (it is not completely failing to pass information across
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the barbell). In other words, some amount of meaningful communication is happening between the
two “bells,” and the node representations are not entirely collapsed.

Figure 6: Illustration of input and output node features in a barbell graph setup. Adapted from
Bamberger et.al [5].

C.3 Employed baselines

In our experiments, the performance of our method is compared with various state-of-the-art GNN
baselines from the literature. Specifically, we consider:

• Classical GNN methods, i.e., GCN [57], GraphSAGE [51], GAT [83], GIN [90], and GC-
NII [20], ChebNet [25], ChebNetII [52], CIN++ [42], PathNN [66], S2GCN [40], SGC [87],
SIGN [38], GRAMA [34], GatedGCN [13], CoGNN [37], H2GCN [95], CPGNN [94],
FAGCN [11], GPR-GNN [21], FSGNN [65], GloGNN [60], GBK-GNN [29], JacobiConv
[85];

• Differential-equation inspired GNNs (DE-GNNs), i.e., DGC [86], GRAND [17], Graph-
CON [73], A-DGN [45], and SWAN [46] PH-DGN [54];

• Graph Transformers, i.e., SAN [59], GraphGPS [71], GOAT [58], Exphormer [80],
GRIT[63], GraphViT [53], G.MLPMixer [53] SPEXPHORMER [79], TIGT [22], SG-
Former [89], NodeFormer [88], Specformer [10], GCN-nsampler and GAT-nsampler [93],

GT [78], NAGphormer [19], Polynormer [26];

• Rewiring-based methods, i.e., LASER [7], and DRew [49];

• SSM-based GNN, i.e., Graph-Mamba [84], GMN [8], MP-SSM [16]

D Hyper-parameter grids

Tables 6 to 8 summarize our hyperparameter exploration: Table 6 listing the sweep ranges for
Stable-ChebNet on Peptides-func, graph-property benchmarks (Diameter, SSSP, Eccentricity), and
ogbn-arxiv along with ogbn-proteins experiments, respectively.
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Table 6: Hyper-parameter grid for Stable-ChebNet ablation on Peptides-func.
Hyper-parameter Reference Sweep values used in ablation
Hidden dim d 140 100, 120, 140, 145, 160
Polynomial order K 10 6,8,10
Num of layers 4 3,4,5
MLP layers 2 1,2,3
Step size ε 0.5 [0.1, 1.0]
Dissipative force γ 0.05 0.001, 0.01, 0.05, 0.1
Batch size 64 32, 64, 128
Learning rate 0.001 0.0001, 0.001, 0.01
Optimizer AdamW AdamW
Pos-enc type None None, Laplacian, RW
Pos-enc dim 16 8, 16, 32

Table 7: Hyper-parameter grid and best settings for Stable-ChebNet on three synthetic graph-property
benchmarks.

Hyper-parameter Values in grid Diam SSSP Ecc

Hidden dimension d 20, 30, 50 50 30 30
Number of layers 1, 2, 3, 5, 10, 20 20 5 5
Polynomial order K 3, 5, 10 4 10 10
Step size ε 0.01, 0.10, 0.20, 0.30 0.40 0.30 0.30
Dissipative force γ 0, 0.01, 0.50, 1 0.01 0.00 0.00
Activation function tanh, relu relu relu relu
Learning rate 0.001,0.003 0.003 0.003 0.003
Weight decay 1× 10−6 1× 10−6 1× 10−6 1× 10−6

Table 8: Hyper-parameter sweep ranges for Stable-ChebNet on ogbn-arxiv and ogbn-proteins.
Hyper-parameter Sweep (arxiv) Sweep (proteins)
Hidden dim d 128, 256, 512 256, 512, 1024
Polynomial order K 4, 5, 6, 10 5, 10, 15
Num of layers 2, 3, 4, 5 3, 5, 7
MLP layers 1, 2, 3 1, 2, 3
Step size ϵ [0.1, 1.0] [0.1, 1.0]
Dissipative force γ 0.01, 0.05, 0.1 0.01, 0.05, 0.1
Batch size 256, 512, 1024 512, 1024, 2048
Learning rate 0.001, 0.01, 0.05 0.0005, 0.001, 0.005
Optimizer Adam Adam
Pos-enc type None, Laplacian, RW None, Laplacian, RW
Pos-enc dim 8, 16, 32 16, 32, 64

E Eigenvalues distribution comparison

Figures 7a and 7b provide an empirical comparison of the Jacobian eigenvalue spectra for a classical
ChebNet versus our Stable-ChebNet layer at K = 5. The top two panels illustrate ChebNet’s
spectrum: the left histogram shows that both the real and imaginary parts of its eigenvalues span
broadly from roughly −2 to +2, with pronounced peaks near the extremes signaling a large spectral
radius and a susceptibility to unstable, oscillatory dynamics. The accompanying scatter plot maps
these eigenvalues in the complex plane, revealing many points lying well outside the unit circle,
which corroborates the theoretical prediction that high-order Chebyshev filters can push the system
toward chaotic regimes.

In contrast, the bottom row portrays the spectrum of Stable-ChebNet. Its histogram (bottom left) is
tightly concentrated within approximately −0.4 to +0.4 on both axes, indicating that eigenvalues
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remain far inside the unit circle. The complex-plane scatter (bottom right) further demonstrates that
all eigenvalues lie symmetrically about the imaginary axis and are bounded in magnitude, consistent
with the antisymmetric weight parameterization, guaranteeing purely imaginary Jacobian eigenvalues
and therefore more stable dynamics.
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Figure 7: Comparison of eigenvalue distributions: (a) ChebNet and (b) StableChebNet.

F Additional Experiments on Heterophilic Benchmarks

To further evaluate the performance of our Stable-ChebNet, we assess its the effectiveness in capturing
complex relational information in heterophilic settings, where nodes belonging to same class are often
connected through longer and sparser paths, we consider the five node classification tasks introduced
in [70]. Specifically, we consider the “Roman-empire”, “Amazon-ratings” and “Minesweeper”,
“Tolokers” datasets. We adhere to the same data and experimental setting presented in [70].
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Table 9: Mean test set score and std averaged over 4 random weight initializations on heterophilic
datasets. The higher, the better.

Model Roman-empire Amazon-ratings Minesweeper Tolokers
Acc ↑ Acc ↑ AUC ↑ AUC ↑

[62]
MLP-2 66.04±0.71 49.55±0.81 50.92±1.25 74.58±0.75

SGC-1 44.60±0.52 40.69±0.42 82.04±0.77 73.80±1.35

MLP-1 64.12±0.61 38.60±0.41 50.59±0.83 71.89±0.82

MPNNs
GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47

GAT (LapPE) 84.80±0.46 44.90±0.73 93.50±0.54 84.99±0.54

GAT (RWSE) 86.62±0.53 48.58±0.41 92.53±0.65 85.02±0.67

Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67

GCN (LapPE) 83.37±0.55 44.35±0.36 94.26±0.49 84.95±0.78

GCN (RWSE) 84.84±0.55 46.40±0.55 93.84±0.48 85.11±0.77

CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18 83.36±0.89

CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41 84.45±1.17

SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78

NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66 78.32±0.95

GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04

GPS 82.00±0.61 53.10±0.42 90.63±0.67 83.71±0.48

GPSGCN+Performer (LapPE) 83.96±0.53 48.20±0.67 93.85±0.41 84.72±0.77

GPSGCN+Performer (RWSE) 84.72±0.65 48.08±0.85 92.88±0.50 84.81±0.86

GPSGCN+Transformer (LapPE) OOM OOM 91.82±0.41 83.51±0.93

GPSGCN+Transformer (RWSE) OOM OOM 91.17±0.51 83.53±1.06

GT 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92

Polynormer 92.55±0.30 54.81±0.49 97.46±0.36 85.91±0.74

Heterophily-Designated GNNs
CPGNN 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01

FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67

GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97

H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65

Graph SSMs
GMN 87.69±0.50 54.07±0.31 91.01±0.23 84.52±0.21

GPS + Mamba 83.10±0.28 45.13±0.97 89.93±0.54 83.70±1.05

GRAMAGCN 88.61±0.43 53.48±0.62 95.27±0.71 86.23±1.10

MP-SSM 90.91±0.48 53.65±0.71 95.33±0.72 85.26±0.93

Ours
Stable-ChebNet 92.03±0.85 53.15±0.21 95.71±2.26 85.55±3.35
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