
Return of ChebNet: Understanding and Improving an
Overlooked GNN on Long-Range Tasks

Ali Hariri1,*,† Álvaro Arroyo2,* Alessio Gravina3,* Moshe Eliasof4

Carola-Bibiane Schönlieb4 Davide Bacciu3 Kamyar Azizzadenesheli5

Xiaowen Dong2 Pierre Vandergheynst1

Abstract

ChebNet, one of the earliest spectral GNNs, has largely been overshadowed by
Message Passing Neural Networks (MPNNs), which gained popularity for their
simplicity and effectiveness in capturing local graph structure. Despite their success,
MPNNs are limited in their ability to capture long-range dependencies between
nodes. This has led researchers to adapt MPNNs through rewiring or make use
of Graph Transformers, which compromises the computational efficiency that
characterized early spatial message-passing architectures, and typically disregards
the graph structure. Almost a decade after its original introduction, we revisit
ChebNet to shed light on its ability to model distant node interactions. We find that
out-of-box, ChebNet already shows competitive advantages relative to classical
MPNNs and GTs on long-range benchmarks, while maintaining good scalability
properties for high-order polynomials. However, we uncover that this polynomial
expansion leads ChebNet to an unstable regime during training. To address this
limitation, we cast ChebNet as a stable and non-dissipative dynamical system,
which we coin Stable-ChebNet. Our Stable-ChebNet model allows for stable
information propagation, and has controllable dynamics which do not require
the use of eigendecompositions, positional encodings, or graph rewiring. Across
several benchmarks, Stable-ChebNet achieves near state-of-the-art performance.

1 Introduction
Graph Neural Networks (GNNs) [81, 43, 74, 67, 14, 25, 44] have emerged as a prevalent framework
for handling data defined on graphs. Graph convolutional networks have their roots in spectral
approaches that extend convolutional filters to non-Euclidean domains. The first practical instantiation
of a GNN was proposed by [14], which leveraged the eigenbasis of the graph Laplacian to perform
spectral filtering, as an attempt to generalize image convolutions to non-euclidean structures. However,
this formulation required costly eigen-decompositions at each layer. Defferrard et al. [25] addressed
this inefficiency by approximating spectral filters with truncated Chebyshev polynomials, giving
rise to ChebNet, the first tractable and localized spectral GNN. By parameterizing filters as K-order
polynomials of the Laplacian, ChebNet could aggregate information from K-hop neighborhoods
without repeated eigendecompositions, thereby enabling scalable spectral convolution on large graphs.

1École Polytechnique Fédérale de Lausanne (EPFL)
2University of Oxford
3University of Pisa
4University of Cambridge
5NVIDIA Research
*Equal contribution
†Correspondence to: Ali Hariri (ali.hariri@epfl.ch)

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

In 2017, Kipf and Welling distilled ChebNet into a simpler, first-order approximation now known
as the Graph Convolutional Network (GCN) by (i) restricting the polynomial order to one and (ii)
tying filter coefficients across hops [57]. This yielded an architecture that was both lightweight
and effective: a GCN with few layers would achieve strong node-classification performance on
standard homophilic benchmarks, and its O(|E|) complexity made it practical for large-scale graphs.
GCN’s efficiency and strong locality bias quickly made it the default baseline, and subsequent
message-passing neural networks (MPNNs) adopted a similar paradigm of iterative neighborhood
aggregation [41].

Propagation
across K
hops

Better heat
preservation
Better heat
preservation

Heat
dissipation

Figure 1: Top: Vanilla ChebNet. Bottom: Stable-ChebNet.
While the original ChebNet’s high-order Chebyshev filters induce
unstable dynamics resulting in dissipative behavior, our Stable-
ChebNet yields bounded propagation through layers.

Despite their popularity, MPNNs
exhibit pronounced shortcom-
ings when made deeper and
when capturing long-range de-
pendencies [33]. Repeated neigh-
borhood aggregations tend to
cause representational collapse,
where node features become in-
distinguishable (often referred
to as “oversmoothing”) [15, 69],
and information from distant
nodes is “squashed” through nar-
row bottlenecks, limiting the
ability to model global con-
text [1]. In recent years, re-
searchers have proposed various
strategies to overcome these lim-
itations. To mitigate oversmooth-
ing, several models have drawn
on principles from physics [28, 12] to preserve feature diversity across layers. At the same time,
efforts to capture long-range dependencies have led to graph-rewiring techniques [82, 49, 7] that add
or reweight edges to shorten information pathways, as well as the emergence of graph transformers
[30], which replace purely local aggregation with global self-attention mechanisms. Although these
advances can alleviate depth-related pathologies, they often trade off numerous benefits that made
MPNNs appealing: scalability, parameter efficiency, and to only process information along the
graph’s edges. In this context, ChebNet and other spectral GNNs are usually relegated to a footnote -
mentioned only as a predecessor to GCN, which is typically not revisited as a competitive baseline.

In this work, we revisit ChebNet from first principles. We demonstrate that the original Cheb-
Net (without any rewiring or attention mechanisms) already delivers state-of-the-art performance
or is close on long-range graph tasks while scaling gracefully to large graphs. By deriving and
analyzing ChebNet’s linearized dynamics, we prove that enlarging its receptive field introduces
signal-propagation instabilities. To overcome this, we propose Stable-ChebNet, a minimal set
of architectural modifications that restore stable propagation for arbitrarily large receptive fields,
supported by both theoretical guarantees and empirical validation. To build intuition for our Stable-
ChebNet framework, Figure 1 illustrates how classical ChebNet filters (top) can exhibit unbounded
dynamics, whereas our antisymmetric, forward-Euler discretization yields smooth, stable propagation
(bottom). An intuitive heat-transfer analogy helps explain the difference: if we inject ‘heat’ at seed
nodes, the high-order filters of vanilla ChebNet diffuse and dissipate this heat so that distant nodes
cool rapidly. In contrast, the non-dissipative dynamics induced by the antisymmetric, forward-Euler
step in Stable-ChebNet preserve energy, keeping temperatures higher at nodes many hops away.

Across a suite of challenging long-range node- and graph-level benchmarks, Stable-ChebNet
matches or outperforms state-of-the-art message-passing neural networks and graph transformers,
while retaining the ChebNet backbone. We hope this work will reignite interest in spectral GNNs as
a scalable, theoretically grounded alternative for long-range graph modeling.
Contributions and Outline

• In Section 3.1, we empirically demonstrate that vanilla ChebNet can achieve very strong perfor-
mance on long-range benchmarks without incurring prohibitive computational cost.

• In Section 3.2, we analyze ChebNet’s signal-propagation dynamics, providing exact sensitivity
analysis, and theoretically and empirically prove the emergence of instability for large filter order.

2

• In Section 3.3, we introduce Stable-ChebNet, which enforces layer-wise stability.
• In Section 4, we empirically validate that Stable-ChebNet consistently outperforms MPNNs,

rewiring methods, and graph transformers across a number of tasks.

2 Background
2.1 Background on Spectral Graph Neural Networks
Spectral GNNs extend the notion of convolution to graphs by leveraging the eigen-decomposition
of the graph Laplacian. Given an undirected graph G = (V,E) with normalized Laplacian
L = I − D−1/2AD−1/2, any graph signal X ∈ Rn can be filtered in the spectral domain via
Y = Ugθ(Λ)U⊤X, where L = UΛU⊤ diagonalizes the Laplacian, Λ = diag(λ1, . . . , λn) its
eigenvalues, and gθ is a learnable spectral response. Early methods directly parameterize gθ(Λ), but
require an expensive eigendecomposition of the Laplacian, which can be computationally and memory
intensive [14]. ChebNet alleviates the cost of an explicit eigendecomposition by approximating gθ
using the recurrence relation for a K-th order Chebyshev polynomial in L [25]. The latter defines gθ
as gθ(Λ) ≈

∑K
k=0 Θk Tk(Λ̃), where Tk(Λ̃) is the k-th polynomial of Λ̃ with Λ̃ = 2Λ

λmax
− In . The

spectral convolution can then be written without any eigendecomposition as the truncated expansion:

Y =

K∑
k=0

Θk Tk(L̃)X (1)

where L̃ = 2L
λmax

− In enabling efficient, localized filtering in O(K|E|) time.

2.2 MPNNs and their Limitations

Message-Passing Neural Networks (MPNNs) define a general framework in which node features
are iteratively updated by exchanging “messages” along edges. At each layer l, every node v
aggregates information from its neighbors u ∈ N (v) and combines it with its own representation.
This formulation unifies many graph models, including graph convolutional networks (GCNs) [57]
and graph attention networks (GATs) [83]. While this local neighborhood aggregation captures
structural information effectively, it has a limited capacity to model long-range interactions within
the graph. This is due to the phenomenon of over-squashing, an information bottleneck that impedes
effective information flow among distant nodes [1, 82, 27]. Numerous techniques have emerged to
address this limitation such as graph rewiring [49, 7], Graph Transformers [71, 80, 79] in addition
to some enhanced spatial methods that tackle over-squashing through combined local and global
information [75, 40], or through non-dissipativity achieved by antisymmetric weight parameterization
[45, 46] or port-Hamiltonian systems [54].

0

10

20

E
p
oc

h
 T

im
e

(s
ec

.)

M⋅K = 12

ChebNet K=12, M=1

ChebNet K=6, M=2

ChebNet K=4, M=3

DRew

0

25

50

E
p
oc

h
 T

im
e

(s
ec

.)

M⋅K = 20

ChebNet K=20, M=1

ChebNet K=10, M=2

ChebNet K=5, M=4

DRew

175

200

0

25

E
p
oc

h
 T

im
e

(s
ec

.)

M⋅K = 40

ChebNet K=40, M=1

ChebNet K=20, M=2

ChebNet K=10, M=4

DRew

Figure 2: Epoch times for
DRew and ChebNet for dif-
ferent receptive fields on the
peptides-func task. M is the
number of layers, and K is
the number of filters.

However, some of the aforementioned methods suffer from substantial
overhead due to denser graph shift operators or the use of all-pairs
interactions. Specifically, [79] and other graph transformers increase
computational complexity through dense attention-maps; [40] relies
on costly full eigendecomposition operations; and graph rewiring
techniques heavily pre-process the graph topology, incurring O(n3)
time in the case of [49].For a detailed discussion on the relevant
literature, we point the reader to the Appendix A.
2.3 The Connection between ChebNet and GCN
Although often interpreted as disparate models, GCN [57] can be
derived as a special case of ChebNet [25] by truncating the Cheby-
shev expansion to K = 1 and making additional simplifications such
as approximating L̃ ≈ I −D−1/2AD−1/2 and adding self-loops to
improve numerical stability. These choices introduced a strong lo-
cality bias, which aligned with widely used homophilic benchmarks
and significantly reduced computational costs. Due to some of these
strengths, GCN has become the de facto backbone for many modern
GNNs, and has led to ChebNet being somewhat forgotten, under the
assumption that it does not perform well and will not scale well in
mid- to large-size graphs due to its spectral nature. For instance, until
recently, ChebNet was almost never included in popular GNN benchmarks, such as [31], or in those
designed to evaluate long-range dependencies, such as those in the Long Range Graph Benchmark

3

(LRGB) [33] and the numerous studies that leveraged this dataset to assess the effectiveness of
graph rewiring, positional encodings, or Transformer-based architectures. ChebNet was similarly
disregarded from large-scale graph evaluations such as the OGB benchmarks [55], presumably due to
prevailing assumptions about its scalability.

3 Analyzing and Improving ChebNet from First Principles

3.1 The Effectiveness and Scalability of Vanilla ChebNet

In this subsection, we perform two high-level empirical tests to challenge the commonplace as-
sumption that spectral GNNs inherently suffer from poor performance and limited scalability. We
do so by firstly testing ChebNet [25] on a long-range test on the Ring Transfer dataset from [27],
which has become a de facto benchmark for state-of-the-art methods seeking to model long-distance
dependencies on graphs. Furthermore, to test scalability, we compare epoch training times on the
peptides-func dataset from [33] with respect to state-of-the-art rewired MPNNs [49] based on a
GCN backbone. We compare ChebNet with different numbers of filters K and layers MCheb with an
MMPNN-layer MPNN. To ensure a fair comparison, we ensure that MChebK = MMPNN so that the
two methods would have the same receptive field. The results are shown in Figures 2 and 3.

As seen from Figure 3, ChebNet is capable of performing long-range retrieval on the ring trans-
fer dataset for rings of up to 50 nodes, which is a substantial improvement over a regular GCN.
While this finding aligns with intuition, as we will formalize in the following sections, it may

0 10 20 30 40 50 60 70 80

Nodes

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

GCN

ChebNet

Figure 3: Test accuracy
on RingTransfer.

nonetheless surprise practitioners, since ChebNet is not typically included
as a benchmark in long-range studies such as that in [30]. On the other
hand, as seen in Figure 2, ChebNet scales gracefully on standard tasks
such as the peptides-func dataset. When compared to DRew, a state-
of-the-art method that leverages both dynamic rewiring and delay to
propagate information through a GCN (or other MPNN) backbone, we
observe that DRew’s epoch times are almost up to two orders of magnitude
larger than ChebNet’s. We note further that this inefficiency is not unique
to this particular baseline: Graph Transformers incur quadratic scaling in
the number of nodes and, by effectively discarding the underlying graph
structure, trade-off inductive bias for increased compute, while many

rewiring approaches depend on cubic-time algorithms (e.g., Floyd–Warshall or eigendecompositions).
Together, these examples underscore how numerous contemporary techniques intended to overcome
traditional message-passing limitations actually erode computational benefits, whereas ChebNet,
a more natural spectral baseline that generalizes GCN, delivers both training speed and strong
performance out-of-the-box.

3.2 Signal Propagation Analysis of ChebNet

In this subsection, we conduct a sensitivity analysis of ChebNet via the spectral norm of the
Jacobian of node features, providing an exact characterization of ChebNet’s information flow
through different layers and between pairs of nodes, in the spirit of [3]. Specifically, we begin by
analyzing the layer-wise Jacobian for Spectral GNNs that use polynomial filters. In this setting, we
demonstrate that the layer-wise Jacobian becomes unstable as the polynomial order K increases.
Lastly, we investigate the sensitivity of node pairs when using ChebNet. We provide the proofs for
the statements in Appendix B.

Lemma 3.1 (Layer-Wise Jacobian for a Spectral GNN). Consider a linear spectral GNN whose layer-wise
update is performed through the following polynomial filter f(X) =

∑K
k=1 Tk(L)XΘk, where X ∈ Rn×d is

the node feature matrix, Tk(L) ∈ Rn×n is the k-th polynomial of the Laplacian L ∈ Rn×n, and Θk ∈ Rd×d′

are learnable weight matrices. Then, the vectorized Jacobian J = ∂ vec(f(X))/∂ vec(X) is

J =

K∑
k=1

Θ⊤
k ⊗ Tk(L). (2)

Given the layer-wise Jacobian from Lemma 3.1, we proceed to analyze the dynamics of a Spectral
GNN in Theorem 1 below. Specifically, we focus on the case where the polynomial filter can be
approximated by powers of the Laplacian, i.e., Tk(L) = Lk.

4

-1 0 1

Real

-1

0

1

Im
ag

in
a
ry

K = 1

-1 0 1

Real

-1

0

1

K = 2

-1 0 1

Real

-1

0

1

K = 3

-1 0 1

Real

-1

0

1

K = 5

-1 0 1

Real

-1

0

1

K = 10

Figure 4: Singular-value spectra of the graph-wise Jacobian in the complex plane for vanilla ChebNet
with increasing polynomial order K.

Theorem 1 (Layer-Wise Jacobian singular-value distribution). Assume the setting of Lemma 3.1, with Tk(L) =
Lk and L the symmetric normalized Laplacian, and let all Θk ∈ Rd×d be initialized with i.i.d. N (0, σ2) entries.
Denote the eigenvalues of L as {λ1, . . . , λn}, the squared singular values of Θk Θ

T
k as {µ1,k, . . . , µd,k}, and

the squared singular values of the Jacobian by γi,j . Then, for sufficiently large d the empirical eigenvalue
distribution of ΘkΘ

T
k converges to the Marchenko-Pastur distribution ∀k. Then, the mean and variance of

each γi,j are

E
[
γi,j
]
= σ2

K∑
k=1

λ2k
i , (3)

Var
[
γi,j
]
= σ4

(K∑
k=1

λ2k
i

)2

. (4)

Theorem 1 shows that the singular values spectrum of the layer-wise Jacobian depends on the sum
over the powers of the normalized Laplacian’s eigenvalues. This indicates that larger polynomial
orders K push the singular value-spectrum towards unstable dynamics, as empirically demonstrated
in Figure 4. Stacking several layers of large filter orders will therefore severely hinder the trainability
of a Spectral GNN of this form.

Beyond analyzing the information propagation dynamics between different layers, we are interested
in quantifying the communication ability between distant nodes in the graph. Recent literature has
proposed to measure information flow in the graph by evaluating the sensitivity of a node embedding
after l layers (i.e., hops of propagation) with respect to the input of another node using the node-wise
Jacobian [82, 27, 3], i.e., ∂x(l)

u /∂x
(0)
v . Following this approach, we measure how sensitive a node

embedding of ChebNet at an arbitrary layer l with respect to the initial features of another node, to
better illustrate the long-range propagation capabilities of spectral GNNs.
Theorem 2 (ChebNet Sensitivity). Consider a Chebyshev-based Graph Neural Network (ChebNet) defined as:

X(l+1) =

K∑
k=0

Tk(L)X
(l)W

(l)
k , (5)

where L ∈ Rn×n is the graph Laplacian, Tk(L) is the k-th Chebyshev polynomial of the Laplacian, and W
(l)
k

are learnable weight matrices. Assume activation function σ is identity and let X(0) be the input features.

Then, the sensitivity of node v with respect to node u after l layers is given by:

∂x
(l)
v

∂x
(0)
u

=

(
l−1∏
l=0

(
K∑

k=0

Tk(L)W
(l)
k

))
v,u

. (6)

This result indicates that the sensitivity of ChebNet is closely tied to the polynomial order K. We
note that, in the case of K = 1, the sensitivity aligns with that of standard MPNNs 1 (such as GCN),
exhibiting reduced long-range communication. However, for K > 1, the higher polynomial orders
significantly enhance the ChebNet’s sensitivity, enabling more effective long-range propagation and
improving the overall capacity to capture distant dependencies in the graph. Therefore, we conclude
that a large filter order K is needed to enable long-range communication between nodes in the graph,
but this will result in unstable training dynamics. This serves to explain the decay in performance in
Figure 3. In the next subsection, we will propose a remedy to this issue.

1The sensitivity upper bound of standard MPNNs is further discussed in Appendix B.5.

5

3.3 Stable-ChebNet: Stability with Antisymmetric Parameterization

As discussed in Section 3.2, although ChebNet demonstrates strong long-range propagation capabili-
ties, increasing the polynomial order can introduce significant instability into the model dynamics. To
address this challenge, we propose Stable-ChebNet, a simple yet effective modification of classical
ChebNet aimed at improving its stability. Recent literature has demonstrated that the effectiveness of
neural architectures can be significantly improved by framing them as stable, non-dissipative dynami-
cal systems [50, 18, 45, 46, 54]. The core idea behind these approaches is to carefully regulate the
spectrum of the Jacobian matrix to ensure the network operates within a stable regime. Specifically,
this behavior can be achieved by constraining the eigenvalues of the Jacobian to be purely imaginary.
Under this constraint, the input graph information is effectively propagated through the successive
transformations into the final nodes’ representation. Motivated by this line of work, we begin by
reformulating ChebNet as a continuous-time differential equation. Specifically, we consider the
following ordinary differential equation (ODE):

dX(t)

dt
=

K∑
k=0

Tk(L)X(t)Wk (7)

for time t ∈ [0, T] and subject to the initial condition (i.e., the input features) X(0) = X(0). In
other words, the dynamics of the system (i.e., the continuous flow of information over the graph)
is now described as the ChebNet update rule. To ensure the Jacobian of this system has purely
imaginary eigenvalues, a straightforward approach is to use antisymmetric weight matrices2 and the
symmetrically normalized Laplacian. This choice, as formalized in the following theorem, directly
enforces the desired spectral property, leading to inherently stable dynamics.

Theorem 3 (Purely Imaginary Eigenvalues). Let L be the symmetric normalized Laplacian and −Wk = W⊤
k

∀k = 0, . . . ,K, then the graph-wise Jacobian of the ODE in Equation (7) has purely imaginary eigenvalues,
i.e.,

Re(λi(J)) = 0, ∀i. (8)

Even in this section, we provide the proofs for the statements in Appendix B. Theorem 3 shows
that by enforcing antisymmetry in the weight matrices and leveraging the symmetric structure of
the Laplacian, we guarantee that the Jacobian has purely imaginary eigenvalues, ensuring that node
representations remain sensitive to input features of far away nodes without suffering from the
instability of standard ChebNet.

As for standard differential-equation-inspired neural architectures, a numerical discretization method
is needed to solve Equation (7). We solve the equation with a simple finite difference scheme, i.e.,
forward Euler’s method, yielding the following node update equation

X(l+1) = X(l) + ϵ

(
K∑

k=0

Tk(L)X
(l)(Wk −W⊤

k − γI)

)
(9)

where I is the identity matrix, γ ∈ R is a hyper-parameter that maintains the stability of the forward
Euler method, and ϵ ∈ R+ is the discretization step.

We refer to the ODE in Equation (9) as Stable-ChebNet, and in the following, we show that this
new formulation achieves second-order stability. This is a critical improvement, as a naive Euler
discretization of the original ChebNet (without imposing constraints on the Jacobian eigenvalues)
would result in only first-order stability, which is considerably more prone to numerical instability.
Specifically, without these constraints, the model can exhibit exponential growth or decay in the
gradients, significantly limiting its ability to capture long-range dependencies [3]. In contrast,
second-order stable systems, like Stable-ChebNet, maintain controlled gradient dynamics over longer
timescales, allowing for effective long-range information propagation.

2A matrix A ∈ Rd×d is antisymmetric (i.e., skew-symmetric) if −A = A⊤

6

Table 1: Mean test set log10(MSE) and standard deviation averaged over 4 random weight initializa-
tions for each configuration on the Graph Property Prediction dataset. The lower the better.

Model Diameter SSSP Eccentricity

GCN 0.7424± 0.0466 0.9499± 0.0001 0.8468± 0.0028
GAT 0.8221± 0.0752 0.6951± 0.1499 0.7909± 0.0222
GraphSAGE 0.8645± 0.0401 0.2863± 0.1843 0.7863± 0.0207
GIN 0.6131± 0.0990 −0.5408± 0.4193 0.9504± 0.0007
GCNII 0.5287± 0.0570 −1.1329± 0.0135 0.7640± 0.0355
DGC 0.6028± 0.0050 −0.1483± 0.0231 0.8261± 0.0032
GRAND 0.6715± 0.0490 −0.0942± 0.3897 0.6602± 0.1393
A-DGN w/ GCN backbone 0.2271± 0.0804 −1.8288± 0.0607 0.7177± 0.0345

ChebNet -0.1517 ± 0.0343 -1.8519 ± 0.0539 -1.2151 ± 0.0852
Stable-ChebNet (ours) -0.2477 ± 0.0526 -2.2111 ± 0.0160 -2.1043 ± 0.0766

Theorem 4 (Non-exponential Information Growth or Decay with Antisymmetric Weights). Consider the
Stable-type Chebyshev Graph Neural Network (Stable-ChebNet) defined by:

X(l+1) = X(l) + ϵ

K∑
k=0

Tk(L)X
(l)W

(l)
k , (10)

with small step size ϵ > 0 and antisymmetric weight matrices:

(W
(l)
k)⊤ = −W

(l)
k , ∀k, l. (11)

Then the Jacobian J(l) of the layer does not lead to exponential growth or decay across layers. Specifically, we
have:

∥J(l)∥2 = 1 +O(ϵ2). (12)

Conversely, for general weights without the antisymmetric property, exponential growth or decay of the Jacobian
norm typically occurs.

4 Experiments

We evaluate ChebNet and its stable formulation (Stable-ChebNet) across a variety of settings to
thoroughly assess long-range capabilities. In this section, we report and discuss the performance
of both models on these benchmarks. We report additional experiments on heterophilic node
classification tasks from [70] in Appendix F. We run our experiments on a single A100 GPU and
provide the full details on the hyperparameter search for all datasets in Appendix D, and baseline and
datasets details in Appendix C.

Graph Property Prediction Dataset. We evaluate our model’s ability to predict long-range graph
properties using a synthetic dataset developed by Corso et.al in [24] under the experimental setup of
[45]. The dataset consists of undirected graphs drawn from a diverse set of random and structured
families (Erdős–Rényi, Barabási–Albert, caterpillar, etc), ensuring a broad coverage of topological
properties. Each graph contains between 25 and 35 nodes as per the setup of Gravina et.al in [45] (in
contrast to the 15–25 node range originally used by [24]), thus increasing task complexity and raising
the need for long-range information propagation. Finally, each node is assigned a single scalar feature
sampled uniformly at random from the interval [0, 1]. We provide a detailed comparison in Table 1.

Results. Compared to classical ChebNet, Stable-ChebNet yields consistent and significant gains
across all three tasks. On the Diameter task, classical ChebNet achieves a log10(MSE) of −0.15,
whereas Stable-ChebNet improves it to −0.25. On the Single Source Shortest Path (SSSP) task,
the gain is larger and goes from −1.85 using ChebNet to −2.21 with our Stable-ChebNet form.
Finally, on Eccentricity, where the difficulty is highest due to the necessity to propagate information
about the most distant nodes individually, classical ChebNet achieves a log10(MSE) of −1.22 while
Stable-ChebNet reaches −2.10, reducing the average prediction error by more than an order of
magnitude relative to the baseline. Relative to other baselines, Stable-ChebNet dominates most
models based on standard message-passing or modified diffusion mechanisms. Methods like GCN
and GCNII are badly over-squashed, barely reaching negative log10(MSE) values.

7

Over-Squashing Analysis on Barbell Graphs. To further investigate the robustness of our model to
oversquashing, we use as a benchmark the barbell regression tasks introduced in [5]. In this task, a
model that fails to transfer any information across the single bridge edge will produce an essentially
random constant and obtain a mean-squared error (MSE) close to 1; an error in the 0.4–0.6 band
indicates that only a partial amount of information has overcome the bottleneck. Errors around
≈ 0.25 and below suggest that the oversquashing has been effectively overcome. In this work, we
compare Stable-ChebNet’s performance on barbell graphs of varying sizes (N = 10, 25, 50, 100)
against numerous baselines, mainly an MLP and variants of MPNNs such as GCN [57], GAT [83],
and SAGE [51]. Further description of the task is found in Appendix C.2.

10 25 50
Number of nodes N

0.00

0.25

0.50

0.75

1.00

M
S
E

MLP

GCN

SAGE

GAT

ChebNet

Stable-ChebNet

10
0.00
0.02
0.04

Figure 5: Mean Squared Error (MSE) compari-
son of various MPNN baselines at different node
counts N of Barbell graphs.

Results. We observe in Figure 5 that both a clas-
sical ChebNet and Stable-ChebNet successfully
learn the small N = 10 case with negligible
error. However, for moderate graph sizes with
N = 50, a classical ChebNet with fixed K = 8
already sits in the "partial collapse" regime as its
MSE increases to around 0.90 and slides towards
the random-guess area as N keeps growing (Ta-
ble 2). For the same range of hops K, replac-
ing the standard update with our stable Euler-
based formulation keeps the error almost two
orders of magnitude smaller with an MSE below
0.20, confirming that the non-dissipative time-
stepping effectively prevents the over-squashing
phenomenon.

Table 2: Mean squared error (MSE) of ChebNet and Stable-ChebNet on the over-squashing experi-
ment for barbell graphs. Left: sizes N = 50, 70 for K = 9 and 10. Right: size N = 100 for K = 20.

Method K 50 70

ChebNet K = 9 0.32± 0.39 1.08± 0.05
K = 10 0.05 ± 0.00 1.08± 0.01

Stable-
ChebNet

K = 9 0.17± 0.11 0.47± 0.49
K = 10 0.05 ± 0.00 0.06 ± 0.03

Method K 100
ChebNet K = 20 0.87± 0.05
Stable-
ChebNet (ours) K = 20 0.21 ± 0.27

Open-Graph Benchmark. To evaluate real-world applicability on large-scale graphs, we run
experiments for node-level tasks on two large-scale graph datasets from the Open-Graph Benchmark
(OGB) [55]. ogbn-arxiv is a citation network in which each node corresponds to an academic
paper, and the task is node classification by predicting the subject area of unseen papers. The other
dataset we use, ogbn-proteins, is a protein–protein interaction network aimed at inferring protein
functions. To ensure a fair comparison and emphasize efficiency, we limit the number of parameters
in our models to be within the same range as those used in existing and most recent OGB benchmarks.

Results. Table 3 reports the performance on the ogbn-arxiv citation network, where ChebNet
achieves around 73% test accuracy, while Stable-ChebNet boosts the performance further to 75.7%,
outperforming all other methods, including a variety of MPNNs and Graph Transformers such
as GraphGPS [71] and Exphormer [80]. Similarly, on the ogbn-proteins interaction network,
ChebNet attains about 77.6% accuracy compared to Stable-ChebNet’s 79.5% (Table 4). Competing
approaches achieve nearly 72% for MPNN-based methods, while Transformer-based models’ perfor-
mances range from 77.4% for NodeFormer [88] to 79.5% for SGFormer [89]. Hence, Stable-ChebNet
remarkably competes and often outperforms state-of-the-art models on this benchmark, demonstrating
that the Euler formulation consistently narrows the gap with and in some cases overtakes Transformer
baselines such as SGFormer [89] and Spexphormer [79]. Together, these results demonstrate that
augmenting ChebNet with an Euler step not only addresses the classical ChebNet’s shortcomings on
long-range information propagation but also performs effectively well on graphs with hundreds of
thousands of nodes, in contrast to regular-sized graphs seen in previous experiments.

8

Table 3: Accuracy on ogbn-arxiv.
Model ogbn-arxiv
GCN 71.74 ± 0.29
ChebNet 73.27 ± 0.23
ChebNetII 72.32 ± 0.23
GraphSAGE 71.49 ± 0.27
GAT 72.01 ± 0.20
NodeFormer 59.90 ± 0.42
GraphGPS 70.92 ± 0.04
GOAT 72.41 ± 0.40
EXPHORMER+GCN 72.44 ± 0.28
SPEXPHORMER 70.82 ± 0.24

Stable-ChebNet (ours) 75.73 ± 0.51

Table 4: Accuracy on ogbn-proteins.
Model ogbn-proteins
MLP 72.04 ± 0.48
GCN 72.51 ± 0.35
ChebNet 77.55 ± 0.43
SGC 70.31 ± 0.23
GCN-NSAMPLER 73.51 ± 1.31
GAT-NSAMPLER 74.63 ± 1.24
SIGN 71.24 ± 0.46
NodeFormer 77.45 ± 1.15
SGFormer 79.53 ± 0.38
SPEXPHORMER 80.65 ± 0.07
Stable-ChebNet (ours) 79.55 ± 0.34

Long-Range Graph Benchmark (LRGB). LRGB [33] is a collection of GNN benchmarks that
evaluate models on tasks involving long-range interactions. We use two of its molecular-property
datasets: Peptides-func for graph classification and Peptides-struct for graph regression.

Results. A detailed leaderboard is shown in Table 5. It can be seen that Stable-ChebNet improves
upon its vanilla counterpart. Together with S2GCN, it reaches an average precision (AP) above
70 on Peptide-func and a Mean Absolute Error (MAE) below 0.26 on the regression task, bearing
in mind that S2GCN requires a more expensive full Laplacian eigendecomposition. Overall, our
model achieves competitive performance on peptide structures with results competing with and
often outperforming some well-known graph-based models including graph transformers such as
Exphormer [80] and GraphViT [53], state space models including Graph Mamba and GMN [84], and
rewiring methods like DRew [49]. It is worth noting that the gain in AP for DRew comes at the cost
of computing positional encodings (Laplacian eigenvectors) for every graph before training, while
Stable-ChebNet does not use any positional encodings.

Heterophilic benchmarks We further assess Stable-ChebNet on node-classification tasks explicitly
designed to stress performance under heterophily, following the standardized protocol of Platonov
et al. (“Roman-empire”, “Amazon-ratings”, “Minesweeper” and “Tolokers”) [70]. We keep the
exact data processing, splits, and metrics recommended therein. Concretely, we report accuracy on
Roman-empire and Amazon-ratings, and ROC-AUC on Minesweeper and Tolokers averaging over
four random initializations as in the protocol.

Link to oversmoothing, heterophily, and long-rangeness. Our heterophilic results (Table 9) should
not be over-interpreted as “evidence of long-range propagation” or as a direct antidote to oversmooth-
ing. The recent position paper by Arnaiz-Rodríguez & Errica [2] argues that several widespread
assumptions in the literature are often conflated: (i) that heterophily is inherently detrimental while
homophily is beneficial, (ii) that long-range propagation is best evaluated on heterophilic graphs, and
(iii) that performance degradation mainly arises from oversmoothing. They show that heterophily,
long-range interactions, and oversmoothing are orthogonal factors: a graph may be heterophilic yet
dominated by local dependencies, or homophilic yet require long-range reasoning. Hence, evaluations
should focus on the nature of the learning task, not merely on global homophily ratios. In this light,
our Stable-ChebNet scores on Roman-empire, Minesweeper, and Tolokers demonstrate that a stable
spectral propagator has competitive performance on standardized heterophily benchmarks, but they
do not by themselves certify long-rangeness. Those conclusions are better supported by our dedicated
long-range tests and stability analysis.

5 Conclusion

In this work, we have re-examined ChebNet, one of the earliest spectral GNNs, from first principles,
uncovering its innate ability to capture long-range dependencies via higher-order polynomial filters,
but also its susceptibility to unstable propagation dynamics as the polynomial order grows. By casting
ChebNet as a continuous-time ODE and imposing antisymmetric weight constraints, we introduced

9

Table 5: Long-range benchmark results. AP is the target metric on peptides-func (higher is better),
and MAE is the target metric on peptides-struct (lower is better).

Model Type Model peptides-func (AP ↑) peptides-struct (MAE ↓)

Transformer

SAN+LapPE 63.84 ± 1.21 0.2683 ± 0.0043
TIGT 66.79 ± 0.74 0.2485 ± 0.0015
Specformer 66.86 ± 0.64 0.2550 ± 0.0014
Exphormer 65.27 ± 0.43 0.2481 ± 0.0007
G.MLPMixer 69.21 ± 0.54 0.2475 ± 0.0015
Graph ViT 69.42 ± 0.75 0.2449 ± 0.0016
GRIT 69.88 ± 0.82 0.2460 ± 0.0012

Rewiring LASER 64.40 ± 0.10 0.3043 ± 0.0019
DRew-GCN 69.96 ± 0.76 0.2781 ± 0.0028

+PE 71.50 ± 0.44 0.2536 ± 0.0015

State Space Graph Mamba 67.39 ± 0.87 0.2478 ± 0.0016
GMN 70.71 ± 0.83 0.2473 ± 0.0025
MP-SSM 69.93 ± 0.52 0.2458 ± 0.0017

GNN

A-DGN 59.75 ± 0.44 0.2874 ± 0.0021
ChebNet 69.61 ± 0.33 0.2627 ± 0.0033
ChebNetII 68.19 ± 0.27 0.2618 ± 0.0058
GCN 68.60 ± 0.50 0.2460 ± 0.0007
GRAMA 70.93 ± 0.78 0.2436 ± 0.0022
GRAND 57.89 ± 0.62 0.3418 ± 0.0015
GraphCON 60.22 ± 0.68 0.2778 ± 0.0018
PH-DGN 70.12 ± 0.45 0.2465 ± 0.0020
SWAN 67.51 ± 0.39 0.2485 ± 0.0009
PathNN 68.16 ± 0.26 0.2545 ± 0.0032
CIN++ 65.69 ± 1.17 0.2523 ± 0.0013
S2GCN 72.75 ± 0.66 0.2467 ± 0.0019

+PE 73.11 ± 0.66 0.2447 ± 0.0032
Stable-ChebNet (ours) 70.32 ± 0.26 0.2542 ± 0.0030

Stable-ChebNet, whose forward Euler discretization yields non-dissipative, second-order–stable
information flow without resorting to costly eigendecompositions, positional encodings, or graph
rewiring. We provide a theoretical analysis of Stable-ChebNet showing purely imaginary Jacobian
spectra and bounded layerwise sensitivity. We support the analysis with extensive experiments
on a variety of synthetic and other long-range graph benchmarks. Stable-ChebNet consistently
matches or outperforms state-of-the-art message-passing, rewiring, state-space, and transformer-
based models , while retaining the fundamental properties of Chebyshev filters. Future work can
focus on generalizing this ODE-based framework to broader spectral GNN families, whereby the
stability analysis can be extended to other polynomial types and orthogonal bases.

Impact Statement. This work aims to advance the field of machine learning on graph-structured
data which are abundant in the real world. There are many potential societal consequences of our
work, none of which we feel must be specifically highlighted here.

Code Availability All code and datasets will be made publicly available at
https://github.com/ahariri13/Stable-ChebNet to support reproducibility and future work.

Acknowledgments and Disclosure of Funding

AG and DB acknowledge funding from EU-EIC EMERGE (Grant No. 101070918). XD acknowl-
edges support from the Oxford-Man Institute of Quantitative Finance and EPSRC No. EP/T023333/1.

10

https://github.com/ahariri13/Stable-ChebNet

References
[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical

implications. In International Conference on Learning Representations, 2021.

[2] Adrian Arnaiz-Rodriguez and Federico Errica. Oversmoothing," oversquashing", heterophily,
long-range, and more: Demystifying common beliefs in graph machine learning. arXiv preprint
arXiv:2505.15547, 2025.

[3] Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio,
Xiaowen Dong, Michael Bronstein, and Pierre Vandergheynst. On vanishing gradients, over-
smoothing, and over-squashing in gnns: Bridging recurrent and graph learning. arXiv preprint
arXiv:2502.10818, 2025.

[4] Hugo Attali, Davide Buscaldi, and Nathalie Pernelle. Rewiring techniques to mitigate over-
squashing and oversmoothing in gnns: A survey. arXiv preprint arXiv:2411.17429, 2024.

[5] Jacob Bamberger, Federico Barbero, Xiaowen Dong, and Michael Bronstein. Bundle neural
networks for message diffusion on graphs. arXiv preprint arXiv:2405.15540, 2024.

[6] Jacob Bamberger, Benjamin Gutteridge, Scott le Roux, Michael M Bronstein, and Xiaowen
Dong. On measuring long-range interactions in graph neural networks. arXiv preprint
arXiv:2506.05971, 2025.

[7] Federico Barbero, Ameya Velingker, Amin Saberi, Michael M. Bronstein, and Francesco Di
Giovanni. Locality-aware graph rewiring in GNNs. In The Twelfth International Conference on
Learning Representations, 2024.

[8] Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state
space models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 119–130, 2024.

[9] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing
in gnns through the lens of effective resistance. In International Conference on Machine
Learning, pages 2528–2547. PMLR, 2023.

[10] Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks
meet transformers. arXiv preprint arXiv:2303.01028, 2023.

[11] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in
graph convolutional networks. Proceedings of the AAAI Conference on Artificial Intelligence,
35(5):3950–3957, May 2021.

[12] Cristian Bodnar, Francesco Di Giovanni, Benjamin P. Chamberlain, Pietro Liò, and Michael M.
Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing
in GNNs, 2022.

[13] Xavier Bresson and Thomas Laurent. Residual Gated Graph ConvNets. arXiv preprint
arXiv:1711.07553, 2018.

[14] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[15] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

[16] Andrea Ceni, Alessio Gravina, Claudio Gallicchio, Davide Bacciu, Carola-Bibiane Schonlieb,
and Moshe Eliasof. Message-Passing State-Space Models: Improving Graph Learning with
Modern Sequence Modeling. arXiv preprint arXiv:2505.18728, 2025.

[17] Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele
Rossi, and Michael M Bronstein. GRAND: Graph neural diffusion. In International Conference
on Machine Learning (ICML), pages 1407–1418. PMLR, 2021.

11

[18] Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. AntisymmetricRNN: A dynamical
system view on recurrent neural networks. In International Conference on Learning Represen-
tations, 2019.

[19] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph trans-
former for node classification in large graphs. In Proceedings of the International Conference
on Learning Representations, 2023.

[20] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and Deep
Graph Convolutional Networks. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 1725–1735. PMLR, 13–18 Jul 2020.

[21] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In International Conference on Learning Representations,
2021.

[22] Yun Young Choi, Sun Woo Park, Minho Lee, and Youngho Woo. Topology-informed graph
transformer. arXiv preprint arXiv:2402.02005, 2025.

[23] Krzysztof Choromanski, Marcin Kuczynski, Jacek Cieszkowski, Paul L. Beletsky, Konrad M.
Smith, Wojciech Gajewski, Gabriel De Masson, Tomasz Z. Broniatowski, Antonina B. Gorny,
Leszek M. Kaczmarek, and Stanislaw K. Andrzejewski. Performers: A new approach to scaling
transformers. Proceedings of the 37th International Conference on Machine Learning (ICML),
pages 2020–2031, 2020.

[24] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pages 13260–13271, 2020.

[25] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29, 2016.

[26] Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph
transformer in linear time. In The Twelfth International Conference on Learning Representations,
2024.

[27] Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and
Michael M Bronstein. On over-squashing in message passing neural networks: The impact of
width, depth, and topology. In International conference on machine learning, pages 7865–7885.
PMLR, 2023.

[28] Francesco Di Giovanni, James Rowbottom, Benjamin P Chamberlain, Thomas Markovich,
and Michael M Bronstein. Graph neural networks as gradient flows: understanding graph
convolutions via energy. arXiv preprint arXiv:2206.10991, 2022.

[29] Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang.
Gbk-gnn: Gated bi-kernel graph neural networks for modeling both homophily and heterophily.
In Proceedings of the ACM Web Conference 2022, WWW ’22, page 1550–1558, New York,
NY, USA, 2022. Association for Computing Machinery.

[30] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

[31] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. J. Mach. Learn. Res., 24(1), January
2023.

[32] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022.

12

[33] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340, 2022.

[34] Moshe Eliasof, Alessio Gravina, Andrea Ceni, Claudio Gallicchio, Davide Bacciu, and Carola-
Bibiane Schönlieb. Graph Adaptive Autoregressive Moving Average Models. In Forty-second
International Conference on Machine Learning, 2025.

[35] Federico Errica, Henrik Christiansen, Viktor Zaverkin, Takashi Maruyama, Mathias Niepert, and
Francesco Alesiani. Adaptive message passing: A general framework to mitigate oversmoothing,
oversquashing, and underreaching. In Proceedings of the 42nd International Conference on
Machine Learning, volume 267 of Proceedings of Machine Learning Research, pages 15490–
15515. PMLR, 13–19 Jul 2025.

[36] Lukas Fesser and Melanie Weber. Mitigating over-smoothing and over-squashing using aug-
mentations of forman-ricci curvature. In Soledad Villar and Benjamin Chamberlain, editors,
Proceedings of the Second Learning on Graphs Conference, volume 231 of Proceedings of
Machine Learning Research, pages 19:1–19:28. PMLR, 27–30 Nov 2024.

[37] Ben Finkelshtein, Xingyue Huang, Michael M. Bronstein, and Ismail Ilkan Ceylan. Cooperative
Graph Neural Networks. In Forty-first International Conference on Machine Learning, 2024.

[38] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. arXiv preprint
arXiv:2004.11198, 2020.

[39] Johannes Gasteiger, Stefan Weiß enberger, and Stephan Günnemann. Diffusion Improves
Graph Learning. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[40] Simon Markus Geisler, Arthur Kosmala, Daniel Herbst, and Stephan Günnemann. Spatio-
spectral graph neural networks. Advances in Neural Information Processing Systems, 37:49022–
49080, 2024.

[41] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[42] Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar, and Pietro Liò. Cin++:
Enhancing topological message passing. arXiv preprint arXiv:2306.03561, 2023.

[43] M Gori, G Monfardini, and F Scarselli. A new model for learning in graph domains. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pages 729–734. IEEE, 2005.

[44] Alessio Gravina and Davide Bacciu. Deep Learning for Dynamic Graphs: Models and Bench-
marks. IEEE Transactions on Neural Networks and Learning Systems, 35(9):11788–11801,
2024.

[45] Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-Symmetric DGN: a stable
architecture for Deep Graph Networks. In The Eleventh International Conference on Learning
Representations, 2023.

[46] Alessio Gravina, Moshe Eliasof, Claudio Gallicchio, Davide Bacciu, and Carola-Bibiane
Schönlieb. On oversquashing in graph neural networks through the lens of dynamical systems.
In The 39th Annual AAAI Conference on Artificial Intelligence, 2025.

[47] Alessio Gravina, Claudio Gallicchio, and Davide Bacciu. Non-dissipative Propagation by
Randomized Anti-symmetric Deep Graph Networks. In Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, pages 25–36, Cham, 2025. Springer Nature
Switzerland.

13

[48] Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, and Claas Grohnfeldt.
Long Range Propagation on Continuous-Time Dynamic Graphs. In Proceedings of the 41st In-
ternational Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pages 16206–16225. PMLR, 21–27 Jul 2024.

[49] Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
Dynamically rewired message passing with delay. In International Conference on Machine
Learning, pages 12252–12267. PMLR, 2023.

[50] E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1), 2017.

[51] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems (NeurIPS), volume 30, 2017.

[52] Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. Advances in Neural Information Processing Systems,
35:7264–7276, 2022.

[53] Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In International conference on machine learning,
pages 12724–12745. PMLR, 2023.

[54] Simon Heilig, Alessio Gravina, Alessandro Trenta, Claudio Gallicchio, and Davide Bacciu.
Port-Hamiltonian Architectural Bias for Long-Range Propagation in Deep Graph Networks. In
The Thirteenth International Conference on Learning Representations, 2025.

[55] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs.
In Proceedings of the 34th International Conference on Neural Information Processing Systems,
NIPS ’20. Curran Associates Inc., 2020.

[56] Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring
for addressing oversquashing in gnns. In The Eleventh International Conference on Learning
Representations, ICLR, 2023.

[57] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. International Conference on Learning Representations (ICLR), 2017.

[58] Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C. Bayan Bruss, and Tom Goldstein.
GOAT: A global transformer on large-scale graphs. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings
of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 17375–17390. PMLR, 23–29 Jul 2023.

[59] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Pro-
cessing Systems, 34:21618–21629, 2021.

[60] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining
Qian. Finding global homophily in graph neural networks when meeting heterophily. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 13242–13256. PMLR, 17–23 Jul 2022.

[61] Huidong Liang, Haitz Sáez de Ocáriz Borde, Baskaran Sripathmanathan, Michael Bronstein,
and Xiaowen Dong. Towards quantifying long-range interactions in graph machine learning: a
large graph dataset and a measurement. arXiv preprint arXiv:2503.09008, 2025.

[62] Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu,
Xiao-Wen Chang, Doina Precup, Rex Ying, Stan Z. Li, Jian Tang, Guy Wolf, and Stefanie
Jegelka. The heterophilic graph learning handbook: Benchmarks, models, theoretical analysis,
applications and challenges, 2024.

14

[63] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
In Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 23321–23337. PMLR, 23–29 Jul 2023.

[64] Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph laplacian
approach to oversmoothing. Advances in Neural Information Processing Systems, 36, 2024.

[65] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node classifica-
tion in graph neural networks. Journal of Computational Science, 62:101695, 2022.

[66] Gaspard Michel, Giannis Nikolentzos, Johannes Lutzeyer, and Michalis Vazirgiannis. Path
neural networks: expressive and accurate graph neural networks. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[67] Alessio Micheli. Neural Network for Graphs: A Contextual Constructive Approach. IEEE
Transactions on Neural Networks, 20(3):498–511, 2009.

[68] Khang Nguyen, Hieu Nong, Vinh Nguyen, Nhat Ho, Stanley Osher, and Tan Nguyen. Revisiting
over-smoothing and over-squashing using ollivier-ricci curvature. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[69] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations, 2020.

[70] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we re-
ally making progress? In The Eleventh International Conference on Learning Representations,
2023.

[71] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501–14515, 2022.

[72] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A Survey on Oversmooth-
ing in Graph Neural Networks. arXiv preprint arXiv:2303.10993, 2023.

[73] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael
Bronstein. Graph-coupled oscillator networks. In International Conference on Machine
Learning, pages 18888–18909. PMLR, 2022.

[74] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[75] Florian Sestak, Lisa Schneckenreiter, Johannes Brandstetter, Sepp Hochreiter, Andreas Mayr,
and Günter Klambauer. Vn-egnn: E (3)-equivariant graph neural networks with virtual nodes
enhance protein binding site identification. arXiv preprint arXiv:2404.07194, 2024.

[76] Ahsan Shehzad, Feng Xia, Shagufta Abid, Ciyuan Peng, Shuo Yu, Dongyu Zhang, and Karin
Verspoor. Graph transformers: A survey, 2024.

[77] Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem
on GNNs: Current Methods, Benchmarks and Challenges, 2023.

[78] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-supervised classification. In Zhi-Hua
Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelli-
gence, IJCAI-21, pages 1548–1554. International Joint Conferences on Artificial Intelligence
Organization, 8 2021. Main Track.

[79] Hamed Shirzad, Honghao Lin, Balaji Venkatachalam, Ameya Velingker, David P Woodruff,
and Danica J Sutherland. Even sparser graph transformers. Advances in Neural Information
Processing Systems, 37:71277–71305, 2024.

15

[80] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, pages 31613–31632. PMLR, 2023.

[81] Alessandro Sperduti. Encoding labeled graphs by labeling raam. Advances in Neural Informa-
tion Processing Systems, 6, 1993.

[82] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In International Conference on Learning Representations, 2022.

[83] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

[84] Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024.

[85] Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 23341–23362. PMLR, 17–23 Jul 2022.

[86] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the Diffusion Process
in Linear Graph Convolutional Networks. In Advances in Neural Information Processing
Systems, volume 34, pages 5758–5769. Curran Associates, Inc., 2021.

[87] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying Graph Convolutional Networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 6861–6871. PMLR, 09–15 Jun 2019.

[88] Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable
graph structure learning transformer for node classification. Advances in Neural Information
Processing Systems, 35:27387–27401, 2022.

[89] Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao
Bian, and Junchi Yan. Sgformer: Simplifying and empowering transformers for large-graph
representations. Advances in Neural Information Processing Systems, 36:64753–64773, 2023.

[90] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

[91] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform bad for graph representation? In Proceedings
of the 35th International Conference on Neural Information Processing Systems, NIPS ’21.
Curran Associates Inc., 2021.

[92] Manzil Zaheer, Guru prasad G. H., Lihong Wang, S. V. K. N. L. Wang, Yujia Li, Jakub Konečný,
Shalmali Joshi, Danqi Chen, Jennifer R. R., Zhenyu Zhang, Shalini Devaraj, and Srinivas
Narayanan. Bigbird: Transformers for longer sequences. Proceedings of the 37th International
Conference on Machine Learning (ICML), pages 12168–12178, 2020.

[93] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931,
2019.

[94] Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai
Koutra. Graph neural networks with heterophily. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(12):11168–11176, May 2021.

[95] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective designs. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 7793–7804. Curran Associates, Inc., 2020.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All the claims found in the abstract and introduction are supported by the
results and theorems discussed in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention the scope of this work that is limited to ChebNet and leave the
expansion to other Spectral GNN methods for future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

17

Answer: [Yes]
Justification: The paper provides a set of theorems that justify and motivate the choice of
the developed model. The corresponding proofs are also presented and can be found in the
appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The datasets we use are publicly available and we share the code in the
supplementary materials folder. The set of sweeped hyperparameters to reproduce the
results is also shared.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

18

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The provided repository includes all the datasets used as well as the necessary
code to reproduce the experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify that we follow the same training procedure for the datasets as their
papers of reference. We also show our hyperparameter sweep in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide all our results in terms of graph performance in the format “mean
± standard error of the mean".

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide detailed information about the used resources in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We preserve anonymity in our submission and our submission abides by the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss potential positive and negative societal impacts after the conclusion
section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

20

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The release of our data and models does not pose a direct risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide citations for all sources of code and/or data used, both in the paper
and in the accompanying repository. For the datasets, we reference the original open-source
work they are based on, in full accordance with their licensing terms.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

21

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects were involved in the experiments con-
ducted for this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or human subjects were involved in the experiments con-
ducted for this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

22

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not a core component of this paper in terms of methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

A Supplementary Related Work

Effective propagation and preservation of information on graphs remains a central challenge in deep
learning on graphs, especially when long-range communication between nodes becomes fundamental
for the downstream task [77]. GNNs usually rely on local neighborhood aggregation, which limits
their capacity to capture interactions between distant nodes [1, 27] due to challenges such as over-
smoothing [15, 69, 72] and over-squashing [1, 82, 27], which are linked to the problem of vanishing
gradients [3]. Several techniques have been proposed to address this issue.

Graph rewiring techniques [39, 1, 4] modify the original topology, usually as a pre-processing step,
with the aim of directly connect distant nodes and facilitate information flow. Rewiring methods can
be broadly classified based on the type of information they leverage, including curvature metrics
[1, 68, 36], effective resistance [9], random walks [7], spectral gap [56], and node features [49].

Similarly, Graph Transformers [76, 59, 91, 71] enable direct message passing between any pair of
nodes via attention mechanisms, employing an attention mechanism on the entire graph. These
models often incorporate positional encodings, such as Laplacian eigenvectors [30] or random-walk
structural encodings (RWSE) [32], to encode graph structure. To reduce the quadratic complexity of
the full attention mechanism, recent methods introduce methods such as sparse attention mechanisms
[92, 23], Exphormer [80], and linear graph transformers [26].

Despite the success of graph rewiring methods and Graph Transformers, these approaches often
introduce additional computational complexity due to the use of denser graph shift operators. An
alternative strategy to enhance long-range propagation focuses on constraining the dynamics of
the GNN to remain stable and non-dissipative, while maintaining the computational complexity
of classical MPNNs. In this paradigm, the GNN is interpreted as a discretization of a differential
equation, leveraging dynamical systems theory to maintain a constant rate of information flow between
nodes. This behavior has been achieved either through antisymmetric weight parameterization
[45, 46, 47, 48] or by exploiting port-Hamiltonian dynamics [54].

Recent works further explore long-range interactions in GNNs. In [6], Bamberger et al. formalize and
measure interaction ranges in graph operators, while in [61] Liang et al. introduce a large-scale dataset
and metric to quantify long-range dependencies. These studies complement existing approaches by
providing tools to better evaluate and understand information propagation across distant nodes.

Other approaches include filtering messages in the information flow [37, 35], using a graph adaptive
method based on a learnable ARMA framework [34], state space models [8, 16], or fractional power
of the graph shift operator [64].

B Sensitivity Results

In this section, we provide the proofs for the statements in Section 3.2.

B.1 Proof of Lemma 3.1

Proof. Applying vectorization to f(X) and recalling that vec(AXB) = (B⊤ ⊗ A) vec(X), we
obtain

vec(f(X)) =

K∑
k=1

(Θ⊤
k ⊗ Lk) vec(X).

Taking derivatives:

Jf =
∂f

∂ vec(X)
=

K∑
k=1

(Θ⊤
k ⊗ Tk(L)).

B.2 Proof of Theorem 1

Proof. Define the k-hop Jacobian block Jk = Θk ⊗ Lk and the full Jacobian J =
∑K

k=1 Jk.
Because Θk ⊗ Lk has singular values sj(Θk) |λi|k, the squared singular values of Jk are given by
γ
(k)
i,j = λ2k

i µj,k.

24

For a square Gaussian matrix, the empirical spectrum of ΘkΘ
⊤
k converges to the Marchenko–Pastur

(MP) law. Scaling by σ2λ2k
i yields

m
(k)
1 = σ2λ2k

i (13)

m
(k)
2 = 2

(
σ2λ2k

i

)2
. (14)

Independence, together with the rotational symmetry of each Θk implies the blocks Jk are asymp-
totically free. Freeness gives additive R-transforms, hence additive free cumulants κr

(∑
k Jk

)
=∑

k κr(Jk). For r = 1, 2 the classical moments coincide with the free cumulants, so the ordinary
moments of γi,j also add:

mr =

K∑
k=1

m(k)
r , r ∈ {1, 2}. (15)

Insert Equation (13) into Equation (15):

m1 = σ2
K∑

k=1

λ2k
i (16)

m2 = 2σ4
K∑

k=1

λ4k
i . (17)

Finally,
V ar[γi,j] = m2 −m2

1

= 2σ4
∑
k

λ4k
i − σ4

(∑
k

λ2k
i

)2
= σ4

(∑
k

λ2k
i

)2
.

B.3 Proof of Theorem 2

Proof. Recall that the forward pass for one ChebNet layer (omitting the activation function) is:

X(l+1) =

K∑
k=0

Tk(L)X
(l)W

(l)
k . (18)

Applying vectorization, we obtain:

vec(X(l+1)) =

K∑
k=0

(
(W

(l)
k)⊤ ⊗ Tk(L)

)
vec(X(l)). (19)

By unrolling Equation (19) and taking the derivative with respect to vec(X(0)), we obtain the
sensitivity after l layers:

∂vec(X(l))

∂vec(X(0))
=

l−1∏
l=0

(
K∑

k=0

(
(W

(l)
k)⊤ ⊗ Tk(L)

))
. (20)

Focusing on a single feature channel (or summing across channels), we obtain the sensitivity:

∂X(l)

∂X(0)
=

l−1∏
l=0

(
K∑

k=0

Tk(L)W
(l)
k

)
. (21)

Then, the sensitivity of node v with respect to node u after l layers is given by:

∂x
(l)
v

∂x
(0)
u

=

(
l−1∏
l=0

(
K∑

k=0

Tk(L)W
(l)
k

))
v,u

. (22)

25

B.4 Proof of Theorem 3

Proof. Given that the graph-wise Jacobian of Equation (7) is Equation (2), we note that each term
in the Jacobian, of the form W⊤

k ⊗ Tk(L), is an antisymmetric matrix. This follows from the
fact that Wk is antisymmetric by construction, Tk(L) preserves the symmetry of the normalized
Laplacian, and the Kronecker product of an antisymmetric matrix with a symmetric matrix is itself
antisymmetric. Finally, since the sum of antisymmetric matrices remains antisymmetric, it follows
that the graph-wise Jacobian of Equation (7) has purely imaginary eigenvalues.

B.5 Sensitivity upperbound of standard MPNNs

In the following theorem we report the sensitivity upperbound computed for standard MPNNs in
[27].
Theorem 5 (Sensitivity uppperbound of standard MPNNs, taken from [27]). Consider a standard
MPNN with l layers, where cσ is the Lipschitz constant of the activation σ, w is the maximal
entry-value over all weight matrices, and d is the embedding dimension. For u, v ∈ V we have∥∥∥∥∥ ∂h(l)

v

∂h
(0)
u

∥∥∥∥∥ ≤ (cσwd)
l︸ ︷︷ ︸

model

(Ol)vu︸ ︷︷ ︸
topology

, (23)

with O = crI+ caA ∈ Rn×n is the message passing matrix adopted by the MPNN, with cr and ca
are the contributions of the self-connection and aggregation term.

B.6 Proof of Theorem 4

Proof. First, recall the Jacobian explicitly:

J(l) = I+ ϵ

K∑
k=0

(
(W

(l)
k)⊤ ⊗ Tk(L)

)
. (24)

Define:

A(l) =

K∑
k=0

(
(W

(l)
k)⊤ ⊗ Tk(L)

)
. (25)

Antisymmetric Case: When (W
(l)
k)⊤ = −W

(l)
k , the matrix A(l) is antisymmetric, because it is a

Kronecker product of antisymmetric and symmetric matrices. Its eigenvalues are purely imaginary
(or symmetric about zero), meaning their real parts vanish. Thus, for the spectral radius, we have:

∥J(l)∥22 = ρ
(
(J(l))⊤J(l)

)
(26)

= ρ
(
I+ ϵ(A(l) + (A(l))⊤) + ϵ2(A(l))⊤A(l)

)
. (27)

Due to antisymmetry:
(A(l))⊤ +A(l) = 0. (28)

Hence:
∥J(l)∥22 = ρ

(
I+ ϵ2(A(l))⊤A(l)

)
. (29)

The matrix (A(l))⊤A(l) is symmetric and positive semi-definite, having nonnegative real eigenvalues.
Expanding around the identity gives:

∥J(l)∥2 =
√
1 + ϵ2λmax

(
(A(l))⊤A(l)

)
= 1 +O(ϵ2). (30)

Thus, no exponential growth or decay occurs.

General Case of Stable-ChebNet (Without Antisymmetry): For arbitrary matrices, the linear
term (A(l) + (A(l))⊤) typically does not vanish, introducing nonzero real eigenvalues. This causes
exponential growth or decay in the Jacobian norm across layers:

∥J(l)∥2 ≈ 1± Cϵ, (31)

26

for some constant C = maxi=0,··· ,l C
(i) > 0. Iterating over layers results in exponential instability:

∥J(l)J(l−1) . . .J(0)∥2 ≈ (1± Cϵ)l, (32)

which grows or decays exponentially as the depth l increases.

Thus, antisymmetric weights provide explicit protection against exponential growth or decay, while
general weights typically do not.

Standard ChebNet Case: Iterating over layers, this results in exponential instability:

∥J(l)J(l−1) . . .J(0)∥2 ≈ (±C)l, (33)

which grows or decays exponentially as the depth l increases.

C Dataset and Baseline Description

C.1 Graph Property Prediction task description

For the graph property prediction dataset, we make use of three separate tasks:

Diameter (Graph-Level). The diameter is defined as the length of the longest shortest path between
any two nodes in the graph. It requires aggregating information from distant regions of the graph.

SSSP (Node-Level). Single-Source Shortest Path requires predicting each node’s distance to a
designated source node. Solving this task with GNNs places a strong emphasis on propagating
information from nodes that may lie many hops away from the source.

Eccentricity (Node-Level). For each node u, the eccentricity is the length of the maximum shortest
path between u and any other node. As with diameter and SSSP, accurate eccentricity estimation
relies heavily on capturing long-distance relationships.

In total, the task contains 5,120 graphs for training, 640 for validation, and 1,280 for testing. The
train/validation/test splits follow the same seed and setup in [45]. We train our models by optimizing
mean squared error (MSE) for each task, performing a grid search over hyperparameters (e.g., learning
rate, weight decay, number of layers). Each experiment is repeated across four random initializations,
and we report the average performance.

Because shortest-path-related tasks inherently rely on propagating signals over large portions of a
graph, they serve as a natural stress test for the capacity of GNNs to perform long-range propagation.

C.2 Barbell graph task description

A Barbell graph Bn,k is formed by connecting two complete graphs Kn (the “bells”) with a simple
path of length k (the “bridge”). Therefore, every node inside a bell has high intra-cluster connectivity
(n− 1 neighbors), whereas the bridge nodes have degree 2 and constitute the only communication
route between the two bells. In this task, the target for nodes is to output the average input feature
over nodes of the opposite bell and vice-versa, as illustrated in Figure 6. Mean squared error (MSE)
is used for node-level regression as a proxy for how severely the GNN is either oversquashing (failing
to pass information across the narrow “bridge”) or oversmoothing (collapsing all node embeddings to
be nearly identical). Numerical MSE outcomes are associated with each pathology.

An MSE of around 1 corresponds to oversquashing: The model is so bottlenecked by the bridge
that it effectively ignores or fails to incorporate information from the other “bell.” In other words,
each side of the barbell can predict its own node labels, but the information from the opposite side
never gets through, leading to a characteristic level of error (≈ 1 in their chosen label distribution).

An MSE of around 30 corresponds to oversmoothing: The model passes messages so many times
(or in such a way) that it “collapses” all node embeddings toward the same prediction, ignoring local
distinctions within each side. Because the barbell’s node labels are diverse (randomly assigned),
forcing every node toward the same value yields a much larger overall MSE (≈ 30 in their setup).

On the other hand, an MSE of around 0.5 as shown in the results simply means that the model is
doing better than the severe oversquashing case (it is not completely failing to pass information across

27

the barbell). In other words, some amount of meaningful communication is happening between the
two “bells,” and the node representations are not entirely collapsed.

Figure 6: Illustration of input and output node features in a barbell graph setup. Adapted from
Bamberger et.al [5].

C.3 Employed baselines

In our experiments, the performance of our method is compared with various state-of-the-art GNN
baselines from the literature. Specifically, we consider:

• Classical GNN methods, i.e., GCN [57], GraphSAGE [51], GAT [83], GIN [90], and GC-
NII [20], ChebNet [25], ChebNetII [52], CIN++ [42], PathNN [66], S2GCN [40], SGC [87],
SIGN [38], GRAMA [34], GatedGCN [13], CoGNN [37], H2GCN [95], CPGNN [94],
FAGCN [11], GPR-GNN [21], FSGNN [65], GloGNN [60], GBK-GNN [29], JacobiConv
[85];

• Differential-equation inspired GNNs (DE-GNNs), i.e., DGC [86], GRAND [17], Graph-
CON [73], A-DGN [45], and SWAN [46] PH-DGN [54];

• Graph Transformers, i.e., SAN [59], GraphGPS [71], GOAT [58], Exphormer [80],
GRIT[63], GraphViT [53], G.MLPMixer [53] SPEXPHORMER [79], TIGT [22], SG-
Former [89], NodeFormer [88], Specformer [10], GCN-nsampler and GAT-nsampler [93],

GT [78], NAGphormer [19], Polynormer [26];

• Rewiring-based methods, i.e., LASER [7], and DRew [49];

• SSM-based GNN, i.e., Graph-Mamba [84], GMN [8], MP-SSM [16]

D Hyper-parameter grids

Tables 6 to 8 summarize our hyperparameter exploration: Table 6 listing the sweep ranges for
Stable-ChebNet on Peptides-func, graph-property benchmarks (Diameter, SSSP, Eccentricity), and
ogbn-arxiv along with ogbn-proteins experiments, respectively.

28

Table 6: Hyper-parameter grid for Stable-ChebNet ablation on Peptides-func.
Hyper-parameter Reference Sweep values used in ablation
Hidden dim d 140 100, 120, 140, 145, 160
Polynomial order K 10 6,8,10
Num of layers 4 3,4,5
MLP layers 2 1,2,3
Step size ε 0.5 [0.1, 1.0]
Dissipative force γ 0.05 0.001, 0.01, 0.05, 0.1
Batch size 64 32, 64, 128
Learning rate 0.001 0.0001, 0.001, 0.01
Optimizer AdamW AdamW
Pos-enc type None None, Laplacian, RW
Pos-enc dim 16 8, 16, 32

Table 7: Hyper-parameter grid and best settings for Stable-ChebNet on three synthetic graph-property
benchmarks.

Hyper-parameter Values in grid Diam SSSP Ecc

Hidden dimension d 20, 30, 50 50 30 30
Number of layers 1, 2, 3, 5, 10, 20 20 5 5
Polynomial order K 3, 5, 10 4 10 10
Step size ε 0.01, 0.10, 0.20, 0.30 0.40 0.30 0.30
Dissipative force γ 0, 0.01, 0.50, 1 0.01 0.00 0.00
Activation function tanh, relu relu relu relu
Learning rate 0.001,0.003 0.003 0.003 0.003
Weight decay 1× 10−6 1× 10−6 1× 10−6 1× 10−6

Table 8: Hyper-parameter sweep ranges for Stable-ChebNet on ogbn-arxiv and ogbn-proteins.
Hyper-parameter Sweep (arxiv) Sweep (proteins)
Hidden dim d 128, 256, 512 256, 512, 1024
Polynomial order K 4, 5, 6, 10 5, 10, 15
Num of layers 2, 3, 4, 5 3, 5, 7
MLP layers 1, 2, 3 1, 2, 3
Step size ϵ [0.1, 1.0] [0.1, 1.0]
Dissipative force γ 0.01, 0.05, 0.1 0.01, 0.05, 0.1
Batch size 256, 512, 1024 512, 1024, 2048
Learning rate 0.001, 0.01, 0.05 0.0005, 0.001, 0.005
Optimizer Adam Adam
Pos-enc type None, Laplacian, RW None, Laplacian, RW
Pos-enc dim 8, 16, 32 16, 32, 64

E Eigenvalues distribution comparison

Figures 7a and 7b provide an empirical comparison of the Jacobian eigenvalue spectra for a classical
ChebNet versus our Stable-ChebNet layer at K = 5. The top two panels illustrate ChebNet’s
spectrum: the left histogram shows that both the real and imaginary parts of its eigenvalues span
broadly from roughly −2 to +2, with pronounced peaks near the extremes signaling a large spectral
radius and a susceptibility to unstable, oscillatory dynamics. The accompanying scatter plot maps
these eigenvalues in the complex plane, revealing many points lying well outside the unit circle,
which corroborates the theoretical prediction that high-order Chebyshev filters can push the system
toward chaotic regimes.

In contrast, the bottom row portrays the spectrum of Stable-ChebNet. Its histogram (bottom left) is
tightly concentrated within approximately −0.4 to +0.4 on both axes, indicating that eigenvalues

29

remain far inside the unit circle. The complex-plane scatter (bottom right) further demonstrates that
all eigenvalues lie symmetrically about the imaginary axis and are bounded in magnitude, consistent
with the antisymmetric weight parameterization, guaranteeing purely imaginary Jacobian eigenvalues
and therefore more stable dynamics.

2 1 0 1 2
Eigenvalues

0

20

40

60

80

100

120
Fr

eq
ue

nc
y

Real
Imaginary

2 1 0 1 2
Real

2

1

0

1

2

Im
ag

in
ar

y

(a)

0.0 0.5 1.0
Eigenvalues

0

200

400

600

800

Fr
eq

ue
nc

y

Real
Imaginary

1.0 0.5 0.0 0.5 1.0
Real

1.0

0.5

0.0

0.5

1.0
Im

ag
in

ar
y

(b)

Figure 7: Comparison of eigenvalue distributions: (a) ChebNet and (b) StableChebNet.

F Additional Experiments on Heterophilic Benchmarks

To further evaluate the performance of our Stable-ChebNet, we assess its the effectiveness in capturing
complex relational information in heterophilic settings, where nodes belonging to same class are often
connected through longer and sparser paths, we consider the five node classification tasks introduced
in [70]. Specifically, we consider the “Roman-empire”, “Amazon-ratings” and “Minesweeper”,
“Tolokers” datasets. We adhere to the same data and experimental setting presented in [70].

30

Table 9: Mean test set score and std averaged over 4 random weight initializations on heterophilic
datasets. The higher, the better.

Model Roman-empire Amazon-ratings Minesweeper Tolokers
Acc ↑ Acc ↑ AUC ↑ AUC ↑

[62]
MLP-2 66.04±0.71 49.55±0.81 50.92±1.25 74.58±0.75

SGC-1 44.60±0.52 40.69±0.42 82.04±0.77 73.80±1.35

MLP-1 64.12±0.61 38.60±0.41 50.59±0.83 71.89±0.82

MPNNs
GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47

GAT (LapPE) 84.80±0.46 44.90±0.73 93.50±0.54 84.99±0.54

GAT (RWSE) 86.62±0.53 48.58±0.41 92.53±0.65 85.02±0.67

Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67

GCN (LapPE) 83.37±0.55 44.35±0.36 94.26±0.49 84.95±0.78

GCN (RWSE) 84.84±0.55 46.40±0.55 93.84±0.48 85.11±0.77

CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18 83.36±0.89

CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41 84.45±1.17

SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78

NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66 78.32±0.95

GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04

GPS 82.00±0.61 53.10±0.42 90.63±0.67 83.71±0.48

GPSGCN+Performer (LapPE) 83.96±0.53 48.20±0.67 93.85±0.41 84.72±0.77

GPSGCN+Performer (RWSE) 84.72±0.65 48.08±0.85 92.88±0.50 84.81±0.86

GPSGCN+Transformer (LapPE) OOM OOM 91.82±0.41 83.51±0.93

GPSGCN+Transformer (RWSE) OOM OOM 91.17±0.51 83.53±1.06

GT 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92

Polynormer 92.55±0.30 54.81±0.49 97.46±0.36 85.91±0.74

Heterophily-Designated GNNs
CPGNN 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01

FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67

GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97

H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65

Graph SSMs
GMN 87.69±0.50 54.07±0.31 91.01±0.23 84.52±0.21

GPS + Mamba 83.10±0.28 45.13±0.97 89.93±0.54 83.70±1.05

GRAMAGCN 88.61±0.43 53.48±0.62 95.27±0.71 86.23±1.10

MP-SSM 90.91±0.48 53.65±0.71 95.33±0.72 85.26±0.93

Ours
Stable-ChebNet 92.03±0.85 53.15±0.21 95.71±2.26 85.55±3.35

31

	Introduction
	Background
	Background on Spectral Graph Neural Networks
	MPNNs and their Limitations
	The Connection between ChebNet and GCN

	Analyzing and Improving ChebNet from First Principles
	The Effectiveness and Scalability of Vanilla ChebNet
	Signal Propagation Analysis of ChebNet
	Stable-ChebNet: Stability with Antisymmetric Parameterization

	Experiments
	Conclusion
	Supplementary Related Work
	Sensitivity Results
	Proof of lem:linearjacobian
	Proof of lem:nonlinearjacobian
	Proof of thm:chebnetsensitivity
	Proof of thm:chebnetODEeigenvalues
	Sensitivity upperbound of standard MPNNs
	Proof of thm:Non-exponentialInformationGrowth

	Dataset and Baseline Description
	Graph Property Prediction task description
	Barbell graph task description
	Employed baselines

	Hyper-parameter grids
	Eigenvalues distribution comparison
	Additional Experiments on Heterophilic Benchmarks

