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Abstract

This paper proposes a style-unified meta-
in-context learning that enhances In-Context
Learning (ICL) ability for language models
by learning to unify the output styles. Meta-
training for ICL (MetalCL), a method that
learns ICL ability for enhancing to follow a
few in-context examples, has been proposed.
However, the language models trained with
MetalCL might not be able to consider informa-
tion obtained from in-context examples at infer-
ence because it has been reported that the per-
formance is unaffected when random or flipped
outputs are used in a few in-context examples.
Our key idea for using in-context information
is explicitly giving a relationship between out-
puts in context and a target output by unifying
the output style. Specifically, arbitrary sym-
bols (e.g., integer or word) are inserted into the
outputs in context, and we expect the model
to focus on examples by learning to output the
same symbols at the same positions. To evalu-
ate the proposed method, we create a Japanese
dataset containing multiple examples per task.
Experiments using a 0.6B Japanese language
model demonstrate that the proposed method
outperforms the conventional method.

1 Introduction

In-Context Learning (ICL) improves the ability to
solve unseen tasks at inference in language mod-
els by conditioning on a few in-context examples
(Brown et al., 2020). However, since the language
models do not learn to solve tasks conditioned on
the few in-context examples during pre-training,
there is a gap between pre-training and using ICL
(Chen et al., 2022). To fill the gap, Meta-training
for ICL (MetalCL), a method to learn how to do
ICL, has been proposed. In MetalCL, the lan-
guage models are fine-tuned on a large set of tasks
that contain multiple input-output examples. This
method is expected to improve ICL capability and
solve unseen tasks with high performance.

However, it has been reported that task per-
formance is unaffected when random or flipped
outputs are used in a few in-context examples in
MetalCL (Min et al., 2022b; Wei et al., 2023b).
This suggests the model may not consider the in-
formation from a few examples but only the in-
struction and input to solve the task. Therefore,
symbol tuning has been proposed to encourage lan-
guage models to use in-context information (Wei
et al., 2023a). In symbol tuning, by learning input
and arbitrary symbol (e.g., “foo,” “bar’’) mapping
instead of input and natural language labels (e.g.,
“positive,” “negative”), the model is expected to
figure out tasks using in-context information. This
approach has enabled improvements in ICL ability
and following flipped outputs in context. Unfortu-
nately, it treats only classification tasks and cannot
deal with generation tasks.

To mitigate this problem, we consider a method
to learn the ICL ability while using in-context in-
formation, which can be used for generation tasks.
Our idea for considering a few in-context examples
more explicitly is to give a strong relationship be-
tween the outputs of a few examples and a target
output by unifying these output styles. Specifically,
arbitrary symbols are inserted into the outputs of
a few examples, and the same symbol is inserted
at the same position for the target output. With
this approach, we expect language models to solve
tasks by following a few in-context examples be-
cause they need to access examples to predict the
symbol and its position. In addition, this approach
can be applied to both classification and generation
tasks easily because symbols are not replaced with
the output but only added to the output.

In this paper, we propose style-unified meta-in-
context learning as a method to learn ICL ability.
In the proposed method, a language model is fine-
tuned using training data inserted the same symbol
into the outputs in context and target output at the
same position. Specifically, a symbol is selected
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Figure 1: Overview of style-unified meta-in-context learning. In style-unified data, symbols are inserted into outputs
to unify the output style in context. We prepare four position patterns and a different symbol pool in test data to

investigate the ability to follow a few in-context examples.

from the symbol pool (e.g., integers and words),
and it is inserted at a randomly selected position
either before or after the output (e.g., instruction,
input, output — instruction, input, symbol + out-
put, or output + symbol). To evaluate the pro-
posed method, we create a Japanese dataset that in-
volves 3,231 Japanese generation tasks (e.g., ques-
tion answering). Experiments using our dataset
and a 0.6B language model demonstrate that the
proposed method outperforms MetalCL.

2 Related Work

ICL can improve the ability of language models
that solve unseen tasks at inference time by condi-
tioning on a few in-context examples (Brown et al.,
2020). However, it has been reported that the per-
formance of ICL strongly relies on the demonstra-
tion surface, including the demonstration format
and the order of demonstration examples (Zhao
etal., 2021; Perez et al., 2021). To this end, several
studies have examined demonstration design strate-
gies, such as demonstration selection (Liu et al.,
2022; Rubin et al., 2022), ordering (Lu et al., 2022),
and formatting (Zhou et al., 2023; Wei et al., 2022).
There are also studies on how to learn the ICL abil-
ity, as language models are not explicitly trained
to learn in context (Chen et al., 2022). For exam-
ple, methods to learn ICL ability by learning target
tasks with a few in-context examples have been
proposed (Min et al., 2022a; Wei et al., 2023a), as
have methods that pre-train language models by au-
tomatically building data containing few examples
from a general plaintext corpus to maintain gener-

alization performance (Gu et al., 2023). The pro-
posed method is regarded as an advanced method
for learning target tasks with a few in-context exam-
ples to improve the ICL ability. The key advance is
that it can treat generation tasks and leans to unify
the output styles for using in-context information.

3 Style-Unified Meta-In-Context
Learning

In this paper, we propose a novel method to learn
ICL ability, style-unified meta-in-context learning,
which can be used for classification and genera-
tion tasks. In the proposed method, as shown in
Fig. 1, a language model is trained using a dataset
containing multiple in-context examples (an orig-
inal dataset in this paper). The proposed method
is an advanced method of MetalCL that trains lan-
guage models using the original dataset. In contrast
to MetalCL, the proposed method trains language
models using both the original and a style-unified
dataset. The style-unified dataset is created by in-
serting the same symbol into the output of a few
examples and the target output at the same position,
as shown in Fig. 1. In this dataset, the arbitrary
symbols are selected randomly from a symbol pool
containing integers and words'2. Also, the inser-
tion position is randomly selected before or after
the output. In summary, the proposed method is
trained using the style-unified dataset where arbi-

'In our evaluation of the Japanese task in Sec. 4, we
used 185,136 vocabularies from the Japanese vocabulary list
(Maekawa et al., 2014) as a word set.

“The integer and word categories of the symbol pool were
determined by referencing symbol-tuning (Wei et al., 2023a).



trary symbols are inserted randomly before or after
the output. The model learns to output the same
symbol at the same position as the outputs of a
few in-context examples; in other words, it learns
to unify the output style in context. We expect
language models to focus on a few in-context ex-
amples by using the proposed method because they
need to access the output of examples to output
the same symbol at the same position. In addi-
tion, the proposed method can be applied to any
task because symbols are added to unify the output
style.

4 Experiment

Dataset: Training data with multiple examples
per task is required to evaluate the proposed
method, but currently, there are few such datasets
in Japanese. We therefore create a Japanese dataset
containing multiple examples per task using crowd-
sourcing. First, we give 13 Japanese workers 15
categories. Next, the workers select one category
and create the appropriate instruction, input, and
output for that category as questions with uniquely
defined answers. The workers create ten samples
per instruction, and the categories should be se-
lected so that the number of instructions is not
biased. Then, we instruct the workers that the in-
struction and output should be sentence and word,
respectively, and the input could be sentence or
word. In this dataset, some tasks have duplicate
outputs because the same output may be produced
for different inputs. We show examples of data in
the “liberal arts” and “living” categories below.

¢ Instruction: Which country matches the capi-
tal? \n Input: Tokyo \n Output: Japan

* Instruction: What is the number of days in the
month? \n Input: April \n Output: 30

Also, we divide the dataset into training, validation,
and test sets to avoid task overlap. Table 1 shows
the breakdown. In the evaluation, unseen tasks
are evaluated because the tasks in the test set are
not included in the training set. The training and
validation sets randomly contain 2—4 examples per
task. In the proposed method, the style-unified
training data is created using a symbol pool with
1-4-digit integers and 105,136 words. The test set
contains 1-4 examples per task. Note that we use

3Internet/ Entertainment/ Smart Devices/ News/ Economy/
Living Things/ Manners/ Liberal Arts/ Health/ School/ Food/
Interpersonal relationships/ Community/ Living/ Other

No. of tasks  No. of samples

Train 3,231 32,310
Validation 175 1,750
Test 178 1,780

Table 1: Number of tasks and samples in train, valida-
tion, and test sets in our created dataset.

only a prompt of the above example format in this
dataset.

Evaluation: In our experiment, the methods are
evaluated using the original dataset. Also, if the
model can learn to follow a few in-context exam-
ples, it should be able to generate the output in
the same style as the examples by using in-context
learning. Thus, to investigate the ability to follow a
few in-context examples, we create four patterns of
style-unified test data, as shown in Fig. 1: a) insert-
ing symbols before or after the output randomly
(trained), b) inserting symbols before and after the
output (not trained), ¢) inserting symbols for the
right side of each token in output (not trained),
and d) inserting symbols for the left side of each
token in output (not trained). The symbols are se-
lected from a symbol pool with 5-digit integers and
80,000 words, and none of them are duplicated in
the training set. In the evaluation with style-unified
test data, an answer is considered correct when the
same symbol is output in the same position as the
examples in context and incorrect even if only the
answer is correct.

Models: For these evaluations, we used the small
Japanese language model we created. Small lan-
guage models have the advantage of requiring
fewer machine resources and faster inference speed,
making them suitable for commercial deployment.
Our language model is constructed as a Trans-
former encoder-decoder model (Vaswani et al.,
2017) with 24 encoder layers and 12 decoder lay-
ers, with 0.6B parameters. In pre-training, we used
Japanese plaintext corpus such as MC4, Oscar, and
Wikipedia, and our language model was trained
using the UL2 (Tay et al., 2022). We evaluate the
proposed method by comparing it with a baseline
and a conventional method.

 Baseline: Our pre-trained language model.

* Conventional method: Fine-tuned language
model with MetalCL (Min et al., 2022a) using
the original training data constructed in Sec.
4.



Original test data Style-unified test data
In-context learning 4-shot in-context learning
No. of tasks | 1-shot 2-shot 3-shot 4-shot a b c d
Baseline - 335 42.5 42.3 420 | 42.6 41.6 352 334
Conventional 1.500 45.8 49.0 50.1 509 | 33.6 23.1 383 174
Proposed ’ 47.2 50.9 524 53.0 | 525 519 425 424
Conventional 3931 49.7 51.9 525 53,5 | 348 254 387 19.1
Proposed ’ 50.5 53.7 54.9 55.2 | 543 524 4377 433

Table 2: Results of in-context learning using original and style-unified test data.

In-context learning

I-shot 2-shot 3-shot 4-shot
Baseline 11.2 16.5 17.9 18.3
Conventional 8.7 11.7 14.0 154
Proposed 11.2 14.4 17.0 18.1

Table 3: Results of in-context learning using original
test data in which outputs are replaced with arbitrary
symbols.

* Proposed method: Fine-tuned language model
with style-unified meta-in-context learning us-
ing the original and style-unified training data
described in Sec. 3.

For the fine-tuning, we used the RAdam optimizer
(Liu et al., 2019) and label smoothing (Lukasik
et al., 2020) with a smoothing parameter of 0.1. We
set the mini-batch size to 32, and the dropout rate
in each Transformer block to 0.1. The tokenizer is
our trained SentencePiece (Kudo and Richardson,
2018) that has 30K tokens. It takes less than a day
to finish fine-tuning on a single A100 80G GPU.

5 Results

Main result: Table 2 lists the results of ICL us-
ing the original and the style-unified test data de-
scribed in Sec. 3. In the table, the value represents
the accuracy and is calculated as the exact match
rate between the generated result and the reference.
Lines 2-3 show the results using 1,500 tasks in the
training set, and lines 4—-5 show the results using
all tasks. The accuracy of lines 2—5 are the aver-
ages calculated from models with three different
parameters. For the original test data results, the
proposed method outperformed the conventional
method. The reason is that notational distortion
often occurred between the outputs in context and
generated output in the conventional method, but
this was improved in the proposed method. For the
style-unified test data results, the performance of
the proposed method is approximately 10% better
than the baseline for all patterns a—d. On the other
hand, since the conventional method failed to gen-

erate symbols for most outputs, its performance
was significantly worse than the baseline. These
results indicate that the proposed method forces the
models to use in-context information by unifying
output styles and can improve the ICL ability.

Evaluation of ability to follow examples: Wei
et al. (2023b) showed that while language models
could follow flipped outputs presented in context
to some extent, MetalCL degraded this ability. To
evaluate whether the proposed method improves
the ability to follow examples in context, we cre-
ated test data by replacing the outputs in the origi-
nal test data with randomly selected symbols pre-
pared in Sec. 3. These symbols were completely
unrelated to the tasks, and the same output word
was replaced with the same symbol. Table 3 lists
the results. As shown, the conventional method
reduced the ability to follow arbitrary symbols in
context, but the proposed method recovered to the
same level as during pre-training. This indicates
that the proposed method improves the ability to
solve tasks by following the examples in context.
Since this data contains many generation tasks, pre-
dicting symbols not present in context is challeng-
ing, and the accuracy range was small.

6 Conclusion

In this paper, we proposed style-unified meta-in-
context learning, a method to improve ICL ability
by learning to unify the output styles. In the pro-
posed method, when the model learns ICL, the
same arbitrary symbols (e.g., words or integers)
are inserted into outputs of examples and a tar-
get output at the same position. Since language
models need to focus on examples in context in
order to output symbols, we expect the proposed
method to improve the ICL ability. To investigate
the effectiveness of the proposed method, we cre-
ated a Japanese dataset containing ten examples per
task. Experimental results using a 0.6B Japanese
language model showed that the proposed method
outperformed the conventional method.



Limitations

In this paper, our evaluation had three limitations.
First, we only used a single small language model
in our experiment. Since the results may differ
depending on the sizes and kinds of language mod-
els, evaluating the method on different sizes and
kinds of language models would be worthwhile.
On the other hand, large language models are not
easy to use because they require large computa-
tional resources and take a lot of time for train-
ing. Also, evaluating other language datasets and
models would be worthwhile because the proposed
method does not rely on language.

Next, in the proposed method, the style-unified
dataset was created by inserting arbitrary symbols
into the outputs of a few examples in context at the
same position. Although these symbols were se-
lected from a symbol pool containing integers and
words, there are various ways to create a symbol
pool, such as combining integers and words, cre-
ating long symbols, selecting a set of other words,
and using only numbers or words. Thus, it would
be worthwhile to select symbols from a vast pool.
In addition, it would be worthwhile investigating
the performance when there is an increase or de-
crease in patterns of position, although only two
patterns were used concerning the position at which
the symbols are inserted.

Finally, this study dealt with a single prompt for-
mat in the dataset; however, studies have shown
that language models are not robust to prompts
(Brown et al., 2020; Reynolds and McDonell,
2021). If more variations of prompt formats are
added during training and evaluation, it should be
possible to show that the proposed format is not
dependent on the prompt format.
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