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Abstract
This paper proposes a style-unified meta-001
in-context learning that enhances In-Context002
Learning (ICL) ability for language models003
by learning to unify the output styles. Meta-004
training for ICL (MetaICL), a method that005
learns ICL ability for enhancing to follow a006
few in-context examples, has been proposed.007
However, the language models trained with008
MetaICL might not be able to consider informa-009
tion obtained from in-context examples at infer-010
ence because it has been reported that the per-011
formance is unaffected when random or flipped012
outputs are used in a few in-context examples.013
Our key idea for using in-context information014
is explicitly giving a relationship between out-015
puts in context and a target output by unifying016
the output style. Specifically, arbitrary sym-017
bols (e.g., integer or word) are inserted into the018
outputs in context, and we expect the model019
to focus on examples by learning to output the020
same symbols at the same positions. To evalu-021
ate the proposed method, we create a Japanese022
dataset containing multiple examples per task.023
Experiments using a 0.6B Japanese language024
model demonstrate that the proposed method025
outperforms the conventional method.026

1 Introduction027

In-Context Learning (ICL) improves the ability to028

solve unseen tasks at inference in language mod-029

els by conditioning on a few in-context examples030

(Brown et al., 2020). However, since the language031

models do not learn to solve tasks conditioned on032

the few in-context examples during pre-training,033

there is a gap between pre-training and using ICL034

(Chen et al., 2022). To fill the gap, Meta-training035

for ICL (MetaICL), a method to learn how to do036

ICL, has been proposed. In MetaICL, the lan-037

guage models are fine-tuned on a large set of tasks038

that contain multiple input-output examples. This039

method is expected to improve ICL capability and040

solve unseen tasks with high performance.041

However, it has been reported that task per- 042

formance is unaffected when random or flipped 043

outputs are used in a few in-context examples in 044

MetaICL (Min et al., 2022b; Wei et al., 2023b). 045

This suggests the model may not consider the in- 046

formation from a few examples but only the in- 047

struction and input to solve the task. Therefore, 048

symbol tuning has been proposed to encourage lan- 049

guage models to use in-context information (Wei 050

et al., 2023a). In symbol tuning, by learning input 051

and arbitrary symbol (e.g., “foo,” “bar”) mapping 052

instead of input and natural language labels (e.g., 053

“positive,” “negative”), the model is expected to 054

figure out tasks using in-context information. This 055

approach has enabled improvements in ICL ability 056

and following flipped outputs in context. Unfortu- 057

nately, it treats only classification tasks and cannot 058

deal with generation tasks. 059

To mitigate this problem, we consider a method 060

to learn the ICL ability while using in-context in- 061

formation, which can be used for generation tasks. 062

Our idea for considering a few in-context examples 063

more explicitly is to give a strong relationship be- 064

tween the outputs of a few examples and a target 065

output by unifying these output styles. Specifically, 066

arbitrary symbols are inserted into the outputs of 067

a few examples, and the same symbol is inserted 068

at the same position for the target output. With 069

this approach, we expect language models to solve 070

tasks by following a few in-context examples be- 071

cause they need to access examples to predict the 072

symbol and its position. In addition, this approach 073

can be applied to both classification and generation 074

tasks easily because symbols are not replaced with 075

the output but only added to the output. 076

In this paper, we propose style-unified meta-in- 077

context learning as a method to learn ICL ability. 078

In the proposed method, a language model is fine- 079

tuned using training data inserted the same symbol 080

into the outputs in context and target output at the 081

same position. Specifically, a symbol is selected 082
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Figure 1: Overview of style-unified meta-in-context learning. In style-unified data, symbols are inserted into outputs
to unify the output style in context. We prepare four position patterns and a different symbol pool in test data to
investigate the ability to follow a few in-context examples.

from the symbol pool (e.g., integers and words),083

and it is inserted at a randomly selected position084

either before or after the output (e.g., instruction,085

input, output → instruction, input, symbol + out-086

put, or output + symbol). To evaluate the pro-087

posed method, we create a Japanese dataset that in-088

volves 3,231 Japanese generation tasks (e.g., ques-089

tion answering). Experiments using our dataset090

and a 0.6B language model demonstrate that the091

proposed method outperforms MetaICL.092

2 Related Work093

ICL can improve the ability of language models094

that solve unseen tasks at inference time by condi-095

tioning on a few in-context examples (Brown et al.,096

2020). However, it has been reported that the per-097

formance of ICL strongly relies on the demonstra-098

tion surface, including the demonstration format099

and the order of demonstration examples (Zhao100

et al., 2021; Perez et al., 2021). To this end, several101

studies have examined demonstration design strate-102

gies, such as demonstration selection (Liu et al.,103

2022; Rubin et al., 2022), ordering (Lu et al., 2022),104

and formatting (Zhou et al., 2023; Wei et al., 2022).105

There are also studies on how to learn the ICL abil-106

ity, as language models are not explicitly trained107

to learn in context (Chen et al., 2022). For exam-108

ple, methods to learn ICL ability by learning target109

tasks with a few in-context examples have been110

proposed (Min et al., 2022a; Wei et al., 2023a), as111

have methods that pre-train language models by au-112

tomatically building data containing few examples113

from a general plaintext corpus to maintain gener-114

alization performance (Gu et al., 2023). The pro- 115

posed method is regarded as an advanced method 116

for learning target tasks with a few in-context exam- 117

ples to improve the ICL ability. The key advance is 118

that it can treat generation tasks and leans to unify 119

the output styles for using in-context information. 120

3 Style-Unified Meta-In-Context 121

Learning 122

In this paper, we propose a novel method to learn 123

ICL ability, style-unified meta-in-context learning, 124

which can be used for classification and genera- 125

tion tasks. In the proposed method, as shown in 126

Fig. 1, a language model is trained using a dataset 127

containing multiple in-context examples (an orig- 128

inal dataset in this paper). The proposed method 129

is an advanced method of MetaICL that trains lan- 130

guage models using the original dataset. In contrast 131

to MetaICL, the proposed method trains language 132

models using both the original and a style-unified 133

dataset. The style-unified dataset is created by in- 134

serting the same symbol into the output of a few 135

examples and the target output at the same position, 136

as shown in Fig. 1. In this dataset, the arbitrary 137

symbols are selected randomly from a symbol pool 138

containing integers and words12. Also, the inser- 139

tion position is randomly selected before or after 140

the output. In summary, the proposed method is 141

trained using the style-unified dataset where arbi- 142

1In our evaluation of the Japanese task in Sec. 4, we
used 185,136 vocabularies from the Japanese vocabulary list
(Maekawa et al., 2014) as a word set.

2The integer and word categories of the symbol pool were
determined by referencing symbol-tuning (Wei et al., 2023a).
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trary symbols are inserted randomly before or after143

the output. The model learns to output the same144

symbol at the same position as the outputs of a145

few in-context examples; in other words, it learns146

to unify the output style in context. We expect147

language models to focus on a few in-context ex-148

amples by using the proposed method because they149

need to access the output of examples to output150

the same symbol at the same position. In addi-151

tion, the proposed method can be applied to any152

task because symbols are added to unify the output153

style.154

4 Experiment155

Dataset: Training data with multiple examples156

per task is required to evaluate the proposed157

method, but currently, there are few such datasets158

in Japanese. We therefore create a Japanese dataset159

containing multiple examples per task using crowd-160

sourcing. First, we give 13 Japanese workers 15161

categories3. Next, the workers select one category162

and create the appropriate instruction, input, and163

output for that category as questions with uniquely164

defined answers. The workers create ten samples165

per instruction, and the categories should be se-166

lected so that the number of instructions is not167

biased. Then, we instruct the workers that the in-168

struction and output should be sentence and word,169

respectively, and the input could be sentence or170

word. In this dataset, some tasks have duplicate171

outputs because the same output may be produced172

for different inputs. We show examples of data in173

the “liberal arts” and “living” categories below.174

• Instruction: Which country matches the capi-175

tal? \n Input: Tokyo \n Output: Japan176

• Instruction: What is the number of days in the177

month? \n Input: April \n Output: 30178

Also, we divide the dataset into training, validation,179

and test sets to avoid task overlap. Table 1 shows180

the breakdown. In the evaluation, unseen tasks181

are evaluated because the tasks in the test set are182

not included in the training set. The training and183

validation sets randomly contain 2–4 examples per184

task. In the proposed method, the style-unified185

training data is created using a symbol pool with186

1–4-digit integers and 105,136 words. The test set187

contains 1–4 examples per task. Note that we use188

3Internet/ Entertainment/ Smart Devices/ News/ Economy/
Living Things/ Manners/ Liberal Arts/ Health/ School/ Food/
Interpersonal relationships/ Community/ Living/ Other

No. of tasks No. of samples
Train 3,231 32,310
Validation 175 1,750
Test 178 1,780

Table 1: Number of tasks and samples in train, valida-
tion, and test sets in our created dataset.

only a prompt of the above example format in this 189

dataset. 190

Evaluation: In our experiment, the methods are 191

evaluated using the original dataset. Also, if the 192

model can learn to follow a few in-context exam- 193

ples, it should be able to generate the output in 194

the same style as the examples by using in-context 195

learning. Thus, to investigate the ability to follow a 196

few in-context examples, we create four patterns of 197

style-unified test data, as shown in Fig. 1: a) insert- 198

ing symbols before or after the output randomly 199

(trained), b) inserting symbols before and after the 200

output (not trained), c) inserting symbols for the 201

right side of each token in output (not trained), 202

and d) inserting symbols for the left side of each 203

token in output (not trained). The symbols are se- 204

lected from a symbol pool with 5-digit integers and 205

80,000 words, and none of them are duplicated in 206

the training set. In the evaluation with style-unified 207

test data, an answer is considered correct when the 208

same symbol is output in the same position as the 209

examples in context and incorrect even if only the 210

answer is correct. 211

Models: For these evaluations, we used the small 212

Japanese language model we created. Small lan- 213

guage models have the advantage of requiring 214

fewer machine resources and faster inference speed, 215

making them suitable for commercial deployment. 216

Our language model is constructed as a Trans- 217

former encoder-decoder model (Vaswani et al., 218

2017) with 24 encoder layers and 12 decoder lay- 219

ers, with 0.6B parameters. In pre-training, we used 220

Japanese plaintext corpus such as MC4, Oscar, and 221

Wikipedia, and our language model was trained 222

using the UL2 (Tay et al., 2022). We evaluate the 223

proposed method by comparing it with a baseline 224

and a conventional method. 225

• Baseline: Our pre-trained language model. 226

• Conventional method: Fine-tuned language 227

model with MetaICL (Min et al., 2022a) using 228

the original training data constructed in Sec. 229

4. 230
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Original test data Style-unified test data
In-context learning 4-shot in-context learning

No. of tasks 1-shot 2-shot 3-shot 4-shot a b c d
Baseline – 33.5 42.5 42.3 42.0 42.6 41.6 35.2 33.4
Conventional 1,500 45.8 49.0 50.1 50.9 33.6 23.1 38.3 17.4
Proposed 47.2 50.9 52.4 53.0 52.5 51.9 42.5 42.4
Conventional 3,231 49.7 51.9 52.5 53.5 34.8 25.4 38.7 19.1
Proposed 50.5 53.7 54.9 55.2 54.3 52.4 43.7 43.3

Table 2: Results of in-context learning using original and style-unified test data.

In-context learning
1-shot 2-shot 3-shot 4-shot

Baseline 11.2 16.5 17.9 18.3
Conventional 8.7 11.7 14.0 15.4
Proposed 11.2 14.4 17.0 18.1

Table 3: Results of in-context learning using original
test data in which outputs are replaced with arbitrary
symbols.

• Proposed method: Fine-tuned language model231

with style-unified meta-in-context learning us-232

ing the original and style-unified training data233

described in Sec. 3.234

For the fine-tuning, we used the RAdam optimizer235

(Liu et al., 2019) and label smoothing (Lukasik236

et al., 2020) with a smoothing parameter of 0.1. We237

set the mini-batch size to 32, and the dropout rate238

in each Transformer block to 0.1. The tokenizer is239

our trained SentencePiece (Kudo and Richardson,240

2018) that has 30K tokens. It takes less than a day241

to finish fine-tuning on a single A100 80G GPU.242

5 Results243

Main result: Table 2 lists the results of ICL us-244

ing the original and the style-unified test data de-245

scribed in Sec. 3. In the table, the value represents246

the accuracy and is calculated as the exact match247

rate between the generated result and the reference.248

Lines 2–3 show the results using 1,500 tasks in the249

training set, and lines 4–5 show the results using250

all tasks. The accuracy of lines 2–5 are the aver-251

ages calculated from models with three different252

parameters. For the original test data results, the253

proposed method outperformed the conventional254

method. The reason is that notational distortion255

often occurred between the outputs in context and256

generated output in the conventional method, but257

this was improved in the proposed method. For the258

style-unified test data results, the performance of259

the proposed method is approximately 10% better260

than the baseline for all patterns a–d. On the other261

hand, since the conventional method failed to gen-262

erate symbols for most outputs, its performance 263

was significantly worse than the baseline. These 264

results indicate that the proposed method forces the 265

models to use in-context information by unifying 266

output styles and can improve the ICL ability. 267

Evaluation of ability to follow examples: Wei 268

et al. (2023b) showed that while language models 269

could follow flipped outputs presented in context 270

to some extent, MetaICL degraded this ability. To 271

evaluate whether the proposed method improves 272

the ability to follow examples in context, we cre- 273

ated test data by replacing the outputs in the origi- 274

nal test data with randomly selected symbols pre- 275

pared in Sec. 3. These symbols were completely 276

unrelated to the tasks, and the same output word 277

was replaced with the same symbol. Table 3 lists 278

the results. As shown, the conventional method 279

reduced the ability to follow arbitrary symbols in 280

context, but the proposed method recovered to the 281

same level as during pre-training. This indicates 282

that the proposed method improves the ability to 283

solve tasks by following the examples in context. 284

Since this data contains many generation tasks, pre- 285

dicting symbols not present in context is challeng- 286

ing, and the accuracy range was small. 287

6 Conclusion 288

In this paper, we proposed style-unified meta-in- 289

context learning, a method to improve ICL ability 290

by learning to unify the output styles. In the pro- 291

posed method, when the model learns ICL, the 292

same arbitrary symbols (e.g., words or integers) 293

are inserted into outputs of examples and a tar- 294

get output at the same position. Since language 295

models need to focus on examples in context in 296

order to output symbols, we expect the proposed 297

method to improve the ICL ability. To investigate 298

the effectiveness of the proposed method, we cre- 299

ated a Japanese dataset containing ten examples per 300

task. Experimental results using a 0.6B Japanese 301

language model showed that the proposed method 302

outperformed the conventional method. 303
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Limitations304

In this paper, our evaluation had three limitations.305

First, we only used a single small language model306

in our experiment. Since the results may differ307

depending on the sizes and kinds of language mod-308

els, evaluating the method on different sizes and309

kinds of language models would be worthwhile.310

On the other hand, large language models are not311

easy to use because they require large computa-312

tional resources and take a lot of time for train-313

ing. Also, evaluating other language datasets and314

models would be worthwhile because the proposed315

method does not rely on language.316

Next, in the proposed method, the style-unified317

dataset was created by inserting arbitrary symbols318

into the outputs of a few examples in context at the319

same position. Although these symbols were se-320

lected from a symbol pool containing integers and321

words, there are various ways to create a symbol322

pool, such as combining integers and words, cre-323

ating long symbols, selecting a set of other words,324

and using only numbers or words. Thus, it would325

be worthwhile to select symbols from a vast pool.326

In addition, it would be worthwhile investigating327

the performance when there is an increase or de-328

crease in patterns of position, although only two329

patterns were used concerning the position at which330

the symbols are inserted.331

Finally, this study dealt with a single prompt for-332

mat in the dataset; however, studies have shown333

that language models are not robust to prompts334

(Brown et al., 2020; Reynolds and McDonell,335

2021). If more variations of prompt formats are336

added during training and evaluation, it should be337

possible to show that the proposed format is not338

dependent on the prompt format.339
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