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ABSTRACT

SE(3)-based generative models have shown great promise in protein geometry
modeling and effective structure design. However, the field currently lacks a
pipeline to support consistent re-training and fair comparison across different meth-
ods. In this paper, we propose Protein-SE(3), a unified framework accompanied
by the comprehensive benchmark for SE(3)-based protein design. Protein-SE(3)
integrates recent advanced methods, supports diverse evaluation metrics and also
develops a mathematical decoupling toolkit. Specifically, recent advanced genera-
tive models designed for typical protein design tasks (unconditional generation and
motif scaffolding), from multiple perspectives like DDPM (Genie1 and Genie2),
Score Matching (FrameDiff and RfDiffusion) and Flow Matching (FoldFlow and
FrameFlow) are systematically incorporated into our framework. All methods are
re-trained on identical datasets and evaluated with consistent metrics, ensuring
fair and reproducible comparison. Furthermore, the proposed decoupling toolkit
abstracts the mathematical foundations of generative models, facilitating rapid
prototyping of future algorithms without reliance on explicit protein structures.
Taken together, our work establishes a standardized foundation for the advancing
research field of SE(3)-based protein design.

1 INTRODUCTION

The design of protein structures is a fundamental challenge in computational biology, with far-
reaching implications like drug discovery and enzyme engineering (Quijano-Rubio et al., 2020;
Yang et al., 2025; Arunachalam et al., 2021). Recent advances in AI-driven methods (Jumper et al.,
2021; Abramson et al., 2024; Watson et al., 2023; Lin et al., 2023) have revolutionized this field,
enabling the de novo generation of complex, functional proteins. By operating residues in the
special Euclidean group SE(3) = R3 ⋊ SO(3) and respecting equivariance to rotation and translation,
SE(3)-based models demonstrate remarkable quality and diversity in generating protein structures.
From multiple perspectives of the diffusion process, researchers have proposed various generative
models (DDPM-based (Lin & AlQuraishi, 2023; Lin et al., 2024), Score Matching-based (Yim et al.,
2023; Watson et al., 2023) and Flow Matching-based (Bose et al., 2024; Yim et al., 2024) models)
to design protein structures. However, due to differences in their dataset and training protocols, it
remains challenging to make a fair cross-comparison of these methods. Existing benchmarks like
ProteinBench (Ye et al., 2024) and Scaffold-Lab (Zheng et al., 2024) primarily focus on the inference
performance, while overlooking the consistent re-training and fair comparison. Furthermore, the
implementation of diffusion processes is closely tied to the processing of specific protein data, which
hinders the understanding and further development of the underlying mathematical principles. All
these challenges motivate us to establish Protein-SE(3), a unified training framework accompanied
with comprehensive benchmark for SE(3)-based protein design.

Backend by Pytorch Lightning (Falcon et al., 2019), Protein-SE(3) is the first framework to systemat-
ically align diverse methods under identical datasets and training protocols, thereby laying a rigorous
foundation for fair, apples-to-apples comparisons. Diverse evaluation metric as Quality (scTM,
scRMSD), Diversity (Pairwise TM), and Novelty (Max. TM Score to PDB), are also integrated to
analyze the strengths and limitations of different methods on typical protein structure design tasks.
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Figure 1: Overview of our proposed Protein-SE(3) benchmark.

In addition to the unified training framework and comprehensive, Protein-SE(3) also abstracts high-
level mathematical principles from protein generation models into different perspectives (DDPM,
Score Matching and Flow Matching). Based on the and wasserstein distance, it enables visualization
and analysis of the two marginal diffusion processes in R3 and SO(3) spaces, facilitating agile
prototyping of future algorithms without requiring explicit protein structure data. Taken together, our
work is intended to equip researchers with fresh insights and foster further advances in the field. The
key contributions of this paper can be summarized as follows:

• Unified Training Framework: We incorporate advanced SE(3)-based protein structure design
methods into a unified training framework, which supports consistent re-training on identical
datasets and protocols, and therefore enables fair comparisons.

• Comprehensive Benchmark: Diverse evaluation metrics, including Quality (scTM, scRMSD),
Diversity (Pairwise TM), and Novelty (maximum TM score to PDB), are incorporated to compre-
hensively benchmark different methods on typical protein structure design tasks.

• Toolkit for Mathematical Decoupling: We present a decoupling toolkit that abstracts the mathe-
matical principles of SE(3)-based protein design methods (core formulations are summarized in
the Appendix). Through perspectives of DDPM, Score Matching, and Flow Matching, intuitive
demos illustrate the distribution alignment process in both R3 and SO(3) spaces. This facilitates
rapid prototyping and algorithm development without reliance on explicit protein structure data.

2 PRELIMINARIES AND PROBLEM FORMULATION

Backbone parameterization As shown in Figures 2(a) and 2(b), the parameterization of the
protein backbone mainly follows two paths: the Alphafold2 frame (Jumper et al., 2021) and the
Frenet-Serret frame (Hu et al., 2011b; Chowdhury et al., 2022). Generally, each residue is associated

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

C

NN CC

2v 1v

1 2

3

,

( ,

GramSchmidt( )

C

SE(3)

SO(2)

)

r

r x

v v

T

x 



= 



= 

=



OO

(a) AlphaFold2 Frame (1AO7.b)

CC NN
1C

CC NN

3C

2v
1v

2C

1 2

2 3

Frenet-Serret( )

SE(3)

,

( , )

r v

T r

v

x C

x

= 



=

=

(b) Frenet-Serret Frame (1AO7.b)

Gaussian

)3(IGSO

TX TX

TR

tX

 
S
a
m
p
l
e
 
f
o
r
 
(
T
-
t
)
 
 
S
t
e
p
s

tR

Translations

Rotations

Neural Network 
Parameterization

C

N

C
C

N

C

C

C

N

C

Translations

Rotations

 
S
a
m
p
l
e
 
f
o
r
 
(
t
-
1
)
 
 
S
t
e
p
s

C

C

C

C

C

0R

0X

Pipeline

Prior

……

Reverse Process at Step t

……

Protein DesigntT

1tR −

1tX −

(c) SE(3)-based Protein Structure Generation (Decomposing into SO(3) and R3)

Figure 2: Protein frame parameterization and problem formulation.

with a frame, resulting in N frames that are SE(3)-equivariant for a protein of length N : (1) In
the seminal work of AlphaFold2, each frame maps a rigid transformation starting from idealized
coordinates of four heavy atoms [N∗,C∗

α,C∗,O∗] ∈ R3, with C∗
α = (0, 0, 0) being centered at the

origin. Thus, residue i ∈ [1, N ] is represented as an action T i = (ri, xi) ∈ SE(3) applied to the
idealized frame [N,Cα,C,O]i = T i ◦ [N∗,C∗

α,C∗,O∗]. The coordinate of backbone oxygen atom O
is constructed with an additional rotation angel φ; (2) Another way of backbone parameterization is
the Frenet-Serret (FS) frame, which maps each three consecutive Cα into a FS frame. Following (Lin
& AlQuraishi, 2023; Lin et al., 2024; Hu et al., 2011a), the FS frame T i is constructed as:

ti =
xi+1 − xi

||xi+1 − xi||
, bi =

ti−1 × ti

||ti−1 × ti||
, ni = bi × ti; ri = [ti, bi, ni], T i = (ri, xi) (1)

where the coordinate of the second element is recognized as the translation vector xi.

Decomposing SE(3) into SO(3) and R3 To construct the probability path of SE(3), the definitions
of an inner product and a metric on SE(3) are required to obtain a Riemannian structure (Bose et al.,
2024; Yim et al., 2023). The common choices in previous studies (Yim et al., 2023; Bose et al., 2024)
are:

Inner Products: ⟨r, r′⟩SO(3) = tr(rr′T )/2 and ⟨x, x′⟩ =
∑3

i=1
xix

′
i

Metric on SE(3): ⟨(r, x), (r′, x′)⟩SE(3) = ⟨r, r′⟩SO(3) + ⟨x, x′⟩R3

(2)

As shown in Figure 2(c), the probability path of SE(3) are typically decomposed into SO(3) and R3.
The protein structure design task is to learn the reverse process from the prior distributions (Gaussian
for R3 and IGSO(3) for SO(3)) to the target structure distributions of actual proteins (see Appendix
C for the definition of IGSO(3)).

3 DATASETS FOR RE-TRAINING

Unconditional Scaffolding Following the filtering protocol of FrameDiff(Yim et al., 2023), we
construct a subset of the Protein Data Bank (PDB) (Berman et al., 2000) by selecting monomeric
proteins with sequence lengths ranging from 60 to 512 residues and a structural resolution < 5Å.
After filtering out proteins with more than 50% loops, the dataset is left with 19,703 proteins.
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Motif Scaffolding Motif scaffolding problems consist of sequence and structure constraints on
motif(s). We use the same protein subset mentioned above but with lengths range from 60 to 320
(17,576 proteins in total). The motif masks are randomly generated during training, following the
mask sampling method described in Genie2 (Lin et al., 2024). For evaluation, we use a previously
published motif scaffolding benchmark Design24 (Watson et al., 2023) comprising 24 tasks curated
from recent publications.

Datasets for training and evaluation are all publicly available at Harvard Dataverse (organized as the
LMDB cache for efficient and parallel data loading).

4 BASELINE MODELS

We ensemble recent open source protein structure design baselines (Lin & AlQuraishi, 2023; Lin et al.,
2024; Yim et al., 2023; Bose et al., 2024; Yim et al., 2024) in the unified training framework. The
renowned method RfDiffusion (Watson et al., 2023) has received widespread recognition for excelling
in de novo design, but its training code is unfortunately unavailable, so we report its performance
with the official checkpoint as a supplementary reference.

DDPM Methods combine aspects of the SE(3)-equivariant reasoning machinery of IPA with
denoising diffusion probabilistic models to create a diffusion process (conditional or unconditional)
over protein structures, including Genie1 (Lin & AlQuraishi, 2023) and Genie2 (Lin et al., 2024).

Score-Matching Methods define a forward noising process as Brownian motion on SE(3), where
translations in R3 and rotations in SO(3) are treated separately but consistently. The score function
is then learned to estimate gradients of log-densities on this manifold, enabling efficient reverse
sampling that generates realistic protein backbones or scaffolds. Representative approaches include
FrameDiff (Yim et al., 2023) and RfDiffusion (Watson et al., 2023).

Flow-Matching Methods is a family of continuous normalizing flow models tailored for distribu-
tions on SE(3)N , which directly regress time-dependent vector fields that generate probability paths.
Representative methods are FoldFlow (Bose et al., 2024) and FrameFlow (Yim et al., 2024).

5 METRICS

In this section, we briefly introduce the evaluation metrics that will be used to investigate different
protein design methods. After re-training on identical training datasets and protocols, all methods
integrated in Protein-SE(3) are fairly compared.

Quality. To test whether a model generates designable proteins, we use an in silico self-consistency
pipeline. The generated structure is first input into an inverse folding model (ProteinMPNN (Dauparas
et al., 2022)) to produce 8 candidate sequences, and their structures are then predicted with ESM-
Fold (Lin et al., 2023). The consistency between the generated and predicted structure is evaluated
using metrics scTM and scRMSD (Zhang & Skolnick, 2005).

Diversity. This metric measures the diversity of generated structures, ensuring the method produces
varied backbones rather than replicating known folds. We use the average pairwise TM-score across
designable samples and varying lengths as the diversity metric (lower is better).

Novelty. This metric evaluates a method’s ability to explore novel structural space. Novelty
is measured by the maximum TM-score between each designed structure and all reference PDB
structures, computed with Foldseek (Van Kempen et al., 2024) (lower is better).

Secondary Structure Distribution. For generated backbones, helix and strand percentages reflect
secondary structure distribution (Pelton & McLean, 2000; Venyaminov & Yang, 1996). A reasonable
distribution should resemble that of natural proteins, rather than being biased toward helices or
sheets (Lin et al., 2024; Yue et al., 2025).

4
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6 COMPREHENSIVE BENCHMARK

In this section, we present the benchmark developed to systematically evaluate the design performance
of the baseline methods. The experiments are organized as follows:

• Benchmarking unconditional protein structure design across varying lengths. We benchmark
models for unconditional protein structure design with the aforementioned metrics including
Quality, Diversity and Novelty. With length-based performance analysis, this benchmark could
serve as a standardized assessment for future work.

• Benchmarking motif scaffolding with Design24. Motif scaffolding problems consist of structure
and sequence constraints on motifs, along with length constraints on target scaffolds. We evaluate
baseline models (RfDiffusion, Genie2, Frameflow) on previously published benchmark Design24
(Watson et al., 2023) with common metrics (scTM and MotifRMSD).

• In-distribution analysis on secondary structure. Given the protein backbones generated with
different baselines, we record the percentages of the helix and strand, respectively, and visualize
the distribution with respect to the percentages. In-distribution analysis assesses how well the
model generalizes to natural proteins, rather than biased to a specific structural class.

• Efficiency Analysis. To measure the GPU memory and time needed to train an SE(3)-based
generative model or generate protein structures, we report training time, inference time, step
count, and model size across different methods. Although efficiency may be less critical compared
to other metrics, it remains a useful metric to assess the model scalability and practicality.

6.1 LENGTH-BASED PERFORMANCE ANALYSIS FOR UNCONDITIONAL SCAFFOLDING

Table 1: Performance of generative models for unconditional structure design across varying lengths.
We highlight the best performance in bold and the second-best with the underline. RfDiffusion
is evaluated with the official checkpoint (since the training code is not available). The superscript
∗ indicates that the generation quality does not meet the standard (scTM ¿ 0.5), so Novelty and
Diversity are excluded from the comparison.

Length 100 Length 200

Quality Novelty Diversity Quality Novelty Diversity

Method scTM ↑ scRMSD ↓ Max TM ↓ pairwise TM ↓ scTM ↑ scRMSD ↓ Max TM ↓ pairwise TM ↓
Genie1 0.89±0.11 1.25±0.98 0.30±0.09 0.35±0.06 0.72±0.23 5.27±4.60 0.23±0.12 0.32±0.04

Genie2 0.91±0.08 1.04±0.64 0.29±0.07 0.39±0.05 0.77±0.19 4.01±3.48 0.21±0.09 0.33±0.03

FrameDiff 0.92±0.04 0.93±0.39 0.39±0.13 0.37±0.06 0.81±0.16 3.11±3.08 0.34±0.13 0.35±0.07

RfDiffusion 0.97±0.01 0.52±0.10 0.34±0.13 0.39±0.07 0.97±0.02 0.63±0.15 0.31±0.10 0.35±0.06

FrameFlow 0.90±0.10 1.13±1.03 0.38±0.14 0.33±0.07 0.94±0.04 1.24±0.43 0.28±0.13 0.30±0.04
FoldFlow-Base 0.92±0.05 0.99±0.36 0.36±0.12 0.46±0.06 0.91±0.04 1.50±0.49 0.21±0.05 0.34±0.04

FoldFlow-OT 0.91±0.07 1.17±0.88 0.34±0.08 0.43±0.06 0.91±0.03 1.63±0.60 0.20±0.04 0.34±0.05

FoldFlow-SFM 0.87±0.06 1.39±0.55 0.33±0.10 0.44±0.06 0.82±0.22 3.76±3.12 0.21±0.05 0.35±0.04

Length 300 Length 500

Quality Novelty Diversity Quality Novelty Diversity

Method scTM ↑ scRMSD ↓ Max TM ↓ pair TM ↓ scTM ↑ scRMSD ↓ Max TM ↓ pair TM ↓
Genie1 0.68±0.19 6.57±3.80 0.37±0.22 0.33±0.07 0.47±0.12∗ 14.39±4.22 0.11±0.03 0.31±0.04

Genie2 0.64±0.20 7.56±4.33 0.15±0.04 0.35±0.03 0.46±0.08∗ 14.28±2.92 0.13±0.04 0.35±0.04

FrameDiff 0.72±0.13 5.40±2.97 0.34±0.15 0.36±0.09 0.64±0.19 9.68±5.17 0.20±0.08 0.34±0.05

RfDiffusion 0.94±0.04 1.04±0.89 0.32±0.12 0.38±0.04 0.90±0.11 3.65±2.95 0.24±0.08 0.37±0.06

FrameFlow 0.90±0.06 2.00±0.89 0.30±0.12 0.32±0.09 0.56±0.20 11.10±6.12 0.17±0.08 0.35±0.07

FoldFlow-Base 0.87±0.12 2.82±2.71 0.16±0.04 0.33±0.03 0.57±0.23 11.67±6.70 0.13±0.03 0.29±0.03
FoldFlow-OT 0.70±0.21 6.01±4.43 0.16±0.03 0.34±0.04 0.38±0.05∗ 13.35±3.25 0.12±0.05 0.32±0.04

FoldFlow-SFM 0.68±0.23 7.54±6.53 0.17±0.04 0.30±0.03 0.37±0.08∗ 15.46±3.70 0.12±0.03 0.32±0.05

We first retrain baseline models (except RfDiffusion), and then evaluate them for unconditional
scaffolding across varying lengths. The results are presented in Table 1, which is based on our
previously introduced metrics (Quality, Novelty and Diversity).
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In terms of the Quality metric (scTM and scRMSD), flow-matching based methods (FrameFlow and
Foldflow) demonstrates relatively better performance, which is in line with the mathematical analysis
in Section 7. Novelty is also an essential metric to evaluates a method’s capacity to explore new
protein structures. With quality constraint (scTM>0.5), FoldFlow and Genie2 demonstrate strong
performance in generating novel structures. Based on the structural diversity metric, flow-matching
models still demonstrates impressive performance across the different chain lengths. It’s noteworthy
that the performance of all methods across various metrics shows a decline trend as the protein length
increases, which suggests that these models generally struggle to create larger proteins due to the
increased conformational complexity and diversity.

6.2 MOTIF SCAFFOLDING RESULTS ON DESIGN24
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Figure 3: Motif scaffolding results based on Design24. In the case visualization, motif regions are
colored orange and scaffolding regions green.

We consider three baselines that support the motif scaffolding task. RfDiffusion is evaluated with the
official checkpoint (no source code for re-training), while FrameFlow and Genie2 are re-trained with
our processed protein dataset with the length ranging from 60 to 320. with 4 scaffolding samples
(using the same pipeline for quality evaluation) for each motif, the average scTM and MotifRMSD
(scRSMD that only considers the motif region) of three methods are illustrated in Figure 3. Frameflow
achieves the most designable scaffolds (highest scTM) among all methods in 13 out of 24 test motifs
compared to Genie2’s 7/24 and RfDiffusion’s 6/24. For the MotifRMSD metric, FrameFlow still
demonstrates superior performance by generating 19 proteins with the lowest MotifRMSD out of 24
tests, compared to the Rfdiffusion’s 1/24 and Genie2’s 4/24.
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6.3 IN-DISTRIBUTION ANALYSIS ON THE SECONDARY STRUCTURE
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Figure 4: The distribution of secondary structure on unconditionally generated protein structures.

Given 5 unconditionally generated protein structures with every length ranging from 60 to 320 (1,040
structures in total), we report the secondary structure distribution (the percentages of helix and strand)
of each method in Figure 4. The proteins generated by official RfDiffusion, re-trained FrameFlow and
FrameDiff have more reasonable distributions, which is similar to those randomly sampled from the
PDB (bottom right). However, the distributions of FoldFlow, Genie1 and Genie2 differ significantly
from the PDB distribution, indicating the risk to generate protein backbones consistently dominated
by helical structures. This explains why the performance of these methods is inferior to that of the
others in the Quality and Diversity, as shown in the Table 1.

6.4 COMPUTATIONAL EFFICIENCY

Table 2: Efficiency comparison for protein generation models.
Method Epochs Training Time GPUs Model Size Sample Steps Inference Time
Genie1 (Lin & AlQuraishi, 2023) 100 ∼3.0 days 2×A100 4.10M 1k 40 hours
Genie2 (Lin et al., 2024) 100 ∼3.0 days 4×A100 15.7M 1k 26 hours
FrameDiff (Yim et al., 2023) 150 ∼4.2 days 2×L20 18.8M 100 31 hours
FoldFlow (Bose et al., 2024) 100 ∼3.5 days 2×L20 17.4M 100 3.8 hours
FrameFlow (Yim et al., 2024) 800 ∼2.0 days 2×L20 11.3M 100 1.9 hours

To encourage developing more efficient and scalable models in the future, we also benchmark the
training cost, evaluation cost, model size, and sample steps in Table 2. Note that the inference time is
the total time for generating 1040 proteins with lengths ranging from 60 to 320 (following the setup
for in-distribution analysis in Section 6.3). Here we found that:

• Genie1 and Genie2 consume the most GPU memory during training and time for inference,
primarily due to the O(N3) scaling of triangular multiplicative update layers (Lin et al., 2024).

• As for inference efficiency, Flow-Matching methods (FrameFlow and FoldFlow) significantly
outperform DDPM (Genie1 and Genie2) and Score-Matching (FrameDiff) approaches. This is
primarily because flow matching leverages ordinary differential equations (ODEs) to model prob-
ability paths (Chen et al., 2023; Frans et al., 2024), allowing fewer sample steps for generation.

7 TOOLKIT FOR MATHEMATICAL DECOUPLING

SE(3)-based methods model and align protein structures on both the translational R3 and rotational
SO(3) spaces. To abstract and abstract the mathematical principles underlying protein structure design
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models, we developed a mathematical decoupling toolkit to visualize and analyze the distribution
alignment process with the measurement of 1st-order Wasserstein distance (see Appendix C for
the definition). This toolkit is built upon simple MLP layers training on the synthetic data (3D
coordinates and rotation matrices represented as Euler angles), enabling systematic study on how
various generative models (DDPM (Ho et al., 2020; Leach et al., 2022), Score Matching (Song
et al., 2020), and Flow Matching (Bose et al., 2024)) align distributions in both the translational and
rotational spaces.

(a) R3 alignment on target distribution A

(b) R3 alignment on target distribution B

(c) R3 alignment on target A (d) R3 alignment on target B

Figure 5: Experiments on R3 Alignment with different generative modeling methods.

Translation alignment in R3 space The translations (Cα positions) of proteins are defined in
the standard R3 space, where the probability path can be constructed easily through the previously
derived closed form equations (Luo & Hu, 2021). Detailed formulations of translation alignment, as
derived from different generative models, are presented in Appendix D. While figure 5 provides a
visualization of the translation alignment: as training epochs increase, the R3 distributions sampled
by three generative models become progressively closer to the target distribution, as evidenced by the
decreasing Wasserstein Distance, ultimately achieving alignment with the target distribution.

Rotation alignment on SO(3) manifold Different from Euclidean space, SO(3) is a Riemannian
manifold (Lee, 2018). Therefore, the probability path on SO(3) has been the focus of previous studies,
requiring thoughtful design for the following reasons: (1) Arithmetic operations on Riemannian man-
ifolds are not linearly defined; (2) Modeling noise with IGSO(3) rather than a Gaussian distribution;
To abstract the mathematical principles behind rotation alignment from different perspectives, we
first provide definitions and formulations in Appendix E. Then we use two sets of synthetic rotation
matrices as the target SO(3) distributions, which is visualized using the Euler-angle representation in
Figure 6 (the range of three Euler angles is set to [−π/2, π/2]). With increasing training epochs, the
SO(3) distributions sampled by the generative models gradually converge to the target distribution, as
confirmed by the decreasing 1st-order Wasserstein Distance.

Compared to DDPM and Score Matching, the curves of Flow Matching on R3 and SO(3) alignment
exhibit better convergence, indicating the superior design performance evaluated in Section 6.

8
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(a) SO(3) alignment on target distribution A (Euler Angle Representation)

(b) SO(3) alignment on target distribution B (Euler Angle Representation)

(c) SO(3) alignment on target A (d) SO(3) alignment on target B

Figure 6: Experiments on SO(3) alignment with different generative modeling methods.

8 INSIGHTS FOR FUTURE METHOD DESIGN

To conclude our experimental results, we summarize several key insights that may inspire the design
of future methods, with the aim of facilitating broader progress in the community:

• Flow Matching as a Superior Choice: As revealed by our mathematical decoupling toolkit,
the alignment process of Flow Matching in the R3 and SO(3) space exhibits superior efficiency
and stability. This suggests flow matching generally outperforms other models for modeling the
generation process, and recent progress in the Flow Matching community (MeanFlow (Geng
et al., 2025), Shortcut Model (Frans et al., 2024)) can be leveraged for future method design.

• Distribution-level Guidance Control: Despite most methods achieving remarkable results
on certain evaluation metrics, the secondary structure distributions of their generated proteins
differ substantially from that of native PDBs. This observation reveals the need to introduce
distribution-level guidance into the training process (in line with ProtFID (Faltings et al., 2025)).

• SE(3) Invariant Encoder: Genie1 and Genie2 consume the most GPU memory during training
and the most time for inference, primarily due to the scaling of triangular multiplicative update
layers (Jumper et al., 2021), which indicates the need for a more efficient SE(3)-invariant encoder.

9 CONCLUSION AND FUTURE WORK

We propose Protein-SE(3), a unified framework and comprehensive benchmark for SE(3)-based
protein design approaches, which enables fair comparison with consistent re-training on identical
datasets and protocols. The developed mathematical toolkit provide intuitive demos to interpret the
distribution alignment process in the R3 and SO(3) space. In the future, we will gradually broaden
our scope beyond SE(3)-based structure generation algorithms (Geffner et al., 2025; Campbell et al.,
2024; Wang et al., 2024), and will keep Protein-SE(3) updated in accordance with the latest research
(some preliminary results using the official checkpoints are presented in Appendix B)

9
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Cameron LM Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein
structure search with foldseek. Nature biotechnology, 42(2):243–246, 2024.

Sergei Yu Venyaminov and Jen Tsi Yang. Determination of protein secondary structure. In Circular
dichroism and the conformational analysis of biomolecules, pp. 69–107. Springer, 1996.

Cédric Villani and Cédric Villani. The wasserstein distances. Optimal transport: old and new, pp.
93–111, 2009.

Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Dplm-2: A
multimodal diffusion protein language model. arXiv preprint arXiv:2410.13782, 2024.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

Wei Yang, Derrick R Hicks, Agnidipta Ghosh, Tristin A Schwartze, Brian Conventry, Inna Goreshnik,
Aza Allen, Samer F Halabiya, Chan Johng Kim, Cynthia S Hinck, et al. Design of high-affinity
binders to immune modulating receptors for cancer immunotherapy. Nature Communications, 16
(1):2001, 2025.

Fei Ye, Zaixiang Zheng, Dongyu Xue, Yuning Shen, Lihao Wang, Yiming Ma, Yan Wang, Xinyou
Wang, Xiangxin Zhou, and Quanquan Gu. Proteinbench: A holistic evaluation of protein foundation
models. arXiv preprint arXiv:2409.06744, 2024.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation. In
Proceedings of the 40th International Conference on Machine Learning, pp. 40001–40039, 2023.

Jason Yim, Andrew Campbell, Emile Mathieu, Andrew Y. K. Foong, Michael Gastegger, Jose
Jimenez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Frank Noe, Regina
Barzilay, and Tommi Jaakkola. Improved motif-scaffolding with SE(3) flow matching. Transactions
on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/
forum?id=fa1ne8xDGn.

Angxiao Yue, Zichong Wang, and Hongteng Xu. Reqflow: Rectified quaternion flow for efficient and
high-quality protein backbone generation. arXiv preprint arXiv:2502.14637, 2025.

Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on the
tm-score. Nucleic acids research, 33(7):2302–2309, 2005.

Zhuoqi Zheng, Bo Zhang, Bozitao Zhong, Kexin Liu, Zhengxin Li, Junjie Zhu, Jinyu Yu, Ting Wei,
and Hai-Feng Chen. Scaffold-lab: Critical evaluation and ranking of protein backbone generation
methods in a unified framework. bioRxiv, pp. 2024–02, 2024.

12

https://openreview.net/forum?id=fa1ne8xDGn
https://openreview.net/forum?id=fa1ne8xDGn


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LARGE LANGUAGE MODELS

We used an LLM solely to aid and polish writing. Specifically, OpenAI’s ChatGPT was employed for
copy-editing (grammar, fluency, and tone), minor phrasing suggestions, and occasional condensation
or expansion of author-written paragraphs without altering their scientific meaning.

B PRELIMINARY RESULTS ON RECENT METHODS

Table 3: Preliminary Evaluation Results of Recent Methods beyond SE(3) Paradigm.
Method scTM ↑ scRMSD ↓ MaxTM ↓ PairwiseTM ↓ Information of Protein Architecture

Length 100

Proteina 0.95± 0.03 0.75± 0.23 0.48± 0.19 0.36± 0.07 Cα Coordinates Only Flow Matching
Proteina-Long 0.88± 0.06 1.01± 0.42 0.40± 0.24 0.32± 0.05 Cα Coordinates Only Flow Matching
MultiFlow 0.98± 0.01 0.51± 0.09 0.44± 0.12 0.39± 0.07 SE(3) Frames + Sequences Flow Matching
DPLM-2 0.88± 0.07 1.31± 0.65 0.84± 0.16 0.31± 0.15 Cα Coordinates + Sequences Language Model

Length 300

Proteina 0.87± 0.06 4.39± 2.38 0.21± 0.14 0.31± 0.04 Cα Coordinates Only Flow Matching
Proteina-Long 0.95± 0.03 1.01± 0.42 0.40± 0.24 0.32± 0.05 Cα Coordinates Only Flow Matching
MultiFlow 0.98± 0.04 0.64± 0.11 0.24± 0.12 0.33± 0.05 SE(3) Frames + Sequences Flow Matching
DPLM-2 0.94± 0.05 1.76± 1.63 0.83± 0.14 0.27± 0.03 Cα Coordinates + Sequences Language Model

Length 500

Proteina 0.41± 0.08 44.1± 5.26 0.20± 0.10 0.23± 0.03 Cα Coordinates Only Flow Matching
Proteina-Long 0.93± 0.10 2.22± 2.13 0.32± 0.18 0.31± 0.06 Cα Coordinates Only Flow Matching
MultiFlow 0.97± 0.01 1.01± 0.26 0.33± 0.06 0.17± 0.05 SE(3) Frames + Sequences Flow Matching
DPLM-2 0.84± 0.12 3.90± 2.82 0.69± 0.21 0.28± 0.13 Cα Coordinates + Sequences Language Model

In addition to the methods integrated in our proposed Protein-SE(3), we also have evaluate several
recent approaches beyond SE(3) paradigm, including Proteina (Geffner et al., 2025), MultiFlow
(Campbell et al., 2024), and DPLM-2 (Wang et al., 2024). For these methods, we use the official
checkpoints released by the authors, while noting that retraining under our standardized dataset and
framework is left for future work. The corresponding results are reported in Table 3, which further
indicate that the method MultiFlow incorporating SE(3) information achieves superior performance,
particularly on Quality-related metrics such as scTM and scRMSD, suggesting that SE(3)-based
approaches merit greater attention and exploration.

C DEFINITIONS

Definition 1. IGSO(3): The Isotropic Gaussian Distribution on SO(3) is a probability distribution
over the 3D rotation group SO(3), which generalizes the idea of a Gaussian (normal) distribution
to the non-Euclidean manifold of 3D rotations (Nikolayev & Savyolov, 1997). Detailed sampling
process is described in the Appendix E.1.

Definition 2. Wasserstein Distance: The Wasserstein distance (Kantorovich, 1960; Villani & Villani,
2009) measures the minimum cost required to transform one probability distribution into another. For
probability distributions µ and υ over a metric space χ (e.g. R3 and SO(3)), let Γ(µ, υ) is the set of
all joint distributions on χ× χ, the 1st-order Wasserstein distance is defined as:

W1(µ, υ) = inf
γ∈Γ(µ,υ)

E(x,y)∼γ [∥x− y∥] (3)

where γ(x, y) represents a transport plan and ∥x− y∥ denotes the transport cost from point x to y.
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D THEORETICAL FORMULATIONS OF R3 ALIGNMENT

The translations (Cα positions) of proteins are defined in the standard R3 Euclidean space, where
the probability path can be constructed easily through the previously derived closed form equations.
From different perspectives (DDPM (Lin & AlQuraishi, 2023), Score Matching (Yim et al., 2023) and
Flow Matching (Bose et al., 2024)), we summarize core formulations for R3 distribution alignment
implemented in Section 7.

D.1 TRANSLATION ALIGNMENT BASED ON DDPM

Here, we present the formulations of DDPM-based translation alignment following the description of
Genie1 (Lin & AlQuraishi, 2023). Let x = [x1,x2, ...,xN ] denote a sequence of Cα coordinates of
length N . Given a sample x0 from the target distribution over the synthetic data, the forward process
iteratively adds Gaussian noise to the sample with a cosine variance schedule β = [β1, β2, ..., βT ],
where the diffusion steps T is set to 1,000:

q(xt | xt−1) = N (xt |
√
1− βtxt−1, βtI) (4)

By applying the reparameterization trick to the forward process, we have

q(xt | x0) = N (xt |
√
ᾱtx0, (1− ᾱt)I),

ᾱt =

t∏
i=1

αi , αt = 1− βt

(5)

According to the derivation of DDPM, the reverse process is modeled with a Gaussian distribution:

p(xt−1 | xt) = N (xt−1 | µθ(xt, t),Σθ(xt, t)I),

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) , Σθ(xt, t) = βt
(6)

This reverse process requires evaluating ϵθ(xt, t) based on MLP layers, which predict the noise
added at time step t. The loss function is defined as:

L = Et,x0,ϵ

[
N∑
i=1

∥ϵt − ϵθ(xt, t)∥2
]

= Et,x0,ϵ

[
N∑
i=1

∥∥ϵt − ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵt, t)

∥∥2] (7)

where ϵ =
[
ϵ1, ϵ2, · · · , ϵN

]
and each ϵi ∼ N (0, I).

D.2 TRANSLATION ALIGNMENT BASED ON SCORE MATCHING

Following FrameDiff (Yim et al., 2023), the process of R3 alignment is modeled as an Orn-
stein–Uhlenbeck process ( also called VP-SDE (Song et al., 2020)). Still, Let x = [x1,x2, ...,xN ]
denote a sequence of Cα coordinates of length N . Converging geometrically towards Gaussian, the
VP-SDE of x in the R3 space is:

dx = −1

2
β(t)xdt+

√
β(t)dw (8)

where β(t) is a non-negative function of t to describe the time-dependent noise schedule, and w is
the standard Wiener process. Its analytical solution is:

xt = α(t)x0 + σ(t)z, z ∼ N (0, I)

α(t) = exp

(
−1

2

∫ t

0

β(s)ds

)
, σ2(t) = 1− α2(t)

(9)
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To train a score-based model, we want the network sθ(xt, t) to approximate the score function
∇xt

log p (xt | x0). Note that the conditional distribution is Gaussian:

p (xt | x0) = N
(
α(t)x0, σ

2(t)I
)
, (10)

so the formulation of the true score becomes:

∇xt
log p (xt | x0) = − 1

σ2(t)
(xt − α(t)x0) . (11)

With the simple MSE loss function to train the network sθ(xt, t):

L = ∥sθ(xt, t)−∇xt
log p(xt | x0)∥2, (12)

the reverse process from xt to xt−1 can be formulated as:

dx =

[
−1

2
β(t)x+ β(t)sθ(x, t)

]
dt+

√
β(t)dw̄, (13)

where w̄ is denotes Wiener process run backward in time.

D.3 TRANSLATION ALIGNMENT BASED ON FLOW MATCHING

Flow Matching in the R3 space aims to learn a time-dependent velocity field uθ(x, t) such that the
solution to the following ordinary differential equation (ODE):

dx

dt
= uθ(x, t), (14)

which maps samples from a known base distribution p0(x0) to samples from the target distribution
p1(x1) over time t ∈ [0, 1]. In the R3 space, the target velocity at time t is simply:

vt = x1 − x0 (15)
The model is trained to predict this velocity via a regression loss:

L(θ) = Ex0,x1,t

[
∥uθ (xt, t)− (x1 − x0)∥2

]
(16)

Once the model uθ(x, t) is trained, it defines a velocity field over space and time. The sampling
process amounts to integrating the learned ODE from a noise sample to a data sample:

xt−1 = xt + uθ (xt, t) dt (17)
Solvers like Euler method and Runge-Kutta can be further used to numerically integrate the ODE for
higher speed and accuracy.

E THEORETICAL FORMULATIONS OF SO(3) ALIGNMENT

Different from Euclidean space, SO(3) is a Riemannian manifold. Therefore, the diffusion process
(or probability flow) on SO(3) has been the focus of previous studies, requiring thoughtful design.
Here we provide the formulations of rotation alignment in the SO(3) space, which is implemented
from different perspectives(DDPM, Score Matching and Flow Matching) in Section 7.

E.1 PRELIMINARIES

The exponential and logarithmic maps. Generally speaking, the exponential and logarithmic
relate the elements in Lie Group (rotation matrices) to the ones in Lie Algebra (skew-symmetric
matrices). The skew-symmetric matrices in Lie Algebra can be specified with a rotation vector Φ:

Φ̂ =

[
0 z −y
−z 0 x
y −x 0

]
, where Φ = (x, y, z). (18)

The magnitude of this vector ω = ∥Φ∥ represents the angle of rotation, and its direction n = Φ/ω
denotes the axis of rotation. Following the Rodrigues formula, the exponential map (rotation vector
Φ to rotation matrix r) can be simplified to a closed form:

r = exp(Φ̂) = cos(ω)I + sin(ω)n̂+ (1− cos(ω)nnT (19)
Similarly, the matrix logarithm can be expressed using the rotation angle:

Φ̂ = log(r) =
ω

2sinω
(r − rT ), ω = arccos[(Trace(r)− 1)/2] (20)
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Sampling from IGSO3(µ,ϵ2) To form a rotation matrix r ∼ IGSO3(µ, ϵ2), we first perform a
random sampling from IGSO3(I, ϵ2). The axis of rotation n is uniformly sampled, and the rotation
angle θ is given by the following CDF (Nikolayev & Savyolov, 1997):

f(ω) =

∞∑
ℓ=0

(2ℓ+ 1) exp
(
−l(l + 1)ϵ2

) sin((ℓ+ 1/2)ω)

sin(ω/2)
, (21)

which together yield a rotation vector Φ = ωn. Then the rotation vector is shifted by the mean of the
distribution to obtain R = µexp(Φ̂) as the sampled rotation matrix.

E.2 ROTATION ALIGNMENT BASED ON DDPM

Following the previous work (Leach et al., 2022), we implement a SO(3) DDPM model based on
several MLP layers for the rotation alignment in Section 7. With definitions described in Section
E.1, the rotation matrix can be scaled by converting them into the Lie algebra (rotation vector),
element-wise multiplying by scalar value, and converting back to rotation matrix through exponential
map. The matrix scaling operation is defined as:

λ(c, r) = exp(c log(r)), (22)

where λ(...) is the geodesic flow from I to R by the amount c. Applying these to equations from the
original DDPM model we arrive at the following definitions:

q (rt | r0) = IGSO3
(
λ
(√

ᾱt, r0
))

, (1− ᾱt)
)
;

p (rt−1 | rt, r0) = IGSO3
(
µ̃ (rtr0) , β̃t

) (23)

and

µ̃ (rt, r0) = λ

(√
ᾱt−1βt

1− ᾱt
, r0

)
λ

(√
αt−1 (1− ᾱt−1)

1− ᾱt
, rt

)
(24)

where β and α are schedule values in line with the description in Section D.1. To train the DDPM
model ϵθ(Rt, t) that predicts R0, the loss function is formulated as follows:

L = E∥ϵθ(rt, t)rT0 − I∥2F , (25)

where ∥ · ∥F represents Frobenius norm.

E.3 ROTATION ALIGNMENT BASED ON SCORE MATCHING

We abstract the mathematical principles behind score matching for SO(3) from the previous work
FrameDiff (Yim et al., 2023). For any t ∈ [0, 1] and r0 ∈ SO(3), it assumes that rt ∼ IGSO3(r0, t),
which is stated as the Brownian motion on SO(3). To train a score-based model on SO(3), we want
the network sθ(rt, t) to approximate the score function ∇rt log p (rt | r0):

∇rt log p (rt | r0) =
rt

r⊤0 rt
log

{
r⊤0 rt

} ∂ωf
(
ω(r⊤0 rt), t

)
f
(
ω(r⊤0 rt), t

) (26)

where ω(r) is the rotation angle in radians for any r ∈ SO(3). In our toolkit, we use MSE loss to
train the MLP network sθ(rt, t):

L = ∥sθ(rt, t)−∇rt log p(rt | r0)∥2. (27)

The reverse process from rt to rt−1 can be formulated as:

rt−1 = rt[g(t)
2sθ(rt, t)dt+ g(t)dw̄], (28)

where g(t) is the diffusion coefficient and w̄ is the time-reversal Wiener process.
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E.4 ROTATION ALIGNMENT BASED ON FLOW MATCHING

According to the method described in FoldFlow (Bose et al., 2024), we implemented the SO(3)
alignment process based on Flow Matching in our toolkit. Given two rotation matrices r0, r1 ∈ SO(3),
the geodesic interpolation index by t has the following form:

rt = r0 · exp[t · log(r⊤0 r1)] (29)

Flow Matching over SO(3) aims to learn a time-dependent velocity field uθ(r, t) such that the solution
to the following ordinary differential equation (ODE):

dr

dt
= uθ(r, t) (30)

FoldFlow takes log(r⊤t r0) divided by t as the target velocity at rt. Thus we train the velocity field
(MLP layers) uθ(r, t) with the following loss function:

L(θ) = Er0,r1,t

∥∥uθ (rt, t)− log(r⊤t r0)/t
∥∥2

SO(3) (31)

where the distance induced by the ∥ · ∥SO(3) metric is given by:

dSO(3)(r0, r1) = ∥ log(r⊤0 r1)∥F , (32)

With learned velocity field uθ(r, t), the reverse process can be written as:

rt−1 = rt · exp[r⊤0 · uθ(rt, t)dt] (33)
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