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ABSTRACT

Despite the impressive performance of general large language models(LLMs),
many of their applications in specific domains (e.g., low-data and knowledge-
intensive) still confront significant challenges. Supervised fine-tuning (SFT)—
where a general LLM is further trained on a small labeled dataset to adapt for
specific tasks or domains—has shown great power for developing domain-specific
LLMs. However, existing SFT data primarily consist of Question and Answer
(Q&A) pairs, which poses a significant challenge for LLMs to comprehend the
correlation and logic of knowledge underlying the Q&A. To address this challenge,
we propose a conceptually flexible and general framework to boost SFT, namely
Knowledge Graph-Driven Supervised Fine-Tuning (KG-SFT). The key idea of
KG-SFT is to generate high-quality explanations for each Q&A pair via a structured
knowledge graph to enhance the knowledge comprehension and manipulation of
LLMs. Specifically, KG-SFT consists of three components: Extractor, Generator,
and Detector. For a given Q&A pair, (i) Extractor first identifies entities within
Q&A pairs and extracts relevant reasoning subgraphs from external KGs, (ii) Gen-
erator then produces corresponding fluent explanations utilizing these reasoning
subgraphs, and (iii) finally, Detector performs sentence-level knowledge conflicts
detection on these explanations to guarantee the reliability. KG-SFT focuses on
generating high-quality explanations to improve the quality of the Q&A pair, which
reveals a promising direction for supplementing existing data augmentation meth-
ods. Extensive experiments on fifteen different domains and six different languages
demonstrate the effectiveness of KG-SFT, leading to an accuracy improvement of
up to 18.1% and an average of 8.7% in low-data scenarios.

1 INTRODUCTION

Large language models (LLMs), such as GPT-4(Achiam et al., 2023), LlaMA 3(Touvron et al.,
2023a), and Claude 3 (cla), have exhibited remarkable power and impressive versatility across a wide
range of domains (Zhao et al., 2021; Brown et al., 2020; El-Kassas et al., 2021). However, applying
LLMs to low-data and knowledge-intensive domains (e.g., a specific medical field (Nori et al., 2023)
or private data with niche protocols (Cui et al., 2023; Li et al., 2023)) remain still challenging.

Recently, extensive research efforts have been devoted to boosting general LLMs performance
in particular domains. One innovative training paradigm, Supervised Fined-Tuning (SFT), has
emerged as a new trend and shown superior performance to enhance capabilities and controllability
of general LLMs in certain domains (Zhang et al., 2023). The key idea of SFT is to adapt pre-
trained LLMs to a specific task by continuing the training process on a labeled dataset, which
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allows the model to refine its parameters for enhanced performance on task-relevant features (Wei
et al., 2021). However, for certain domains, off-the-shelf SFT data in knowledge-intensive and
low-data domains is generally scarce, and the process of creating high-quality SFT data necessitates
considerable human effort and expertise, limiting the wide application of domain LLMs construction
(Li et al., 2024a). Canonical methods to enrich the quantity of Q&A in SFT data and enhance
LLMs performance are data augmentation. Traditional natural language processing methods such
as easy-data-augmentation (EDA) including synonym replacement, character replacement, random
swapping, and back translation (Wei & Zou, 2019; Belinkov & Bisk, 2017; Coulombe, 2018; Wang
et al., 2022). Recently, several endeavors have explored using an LLM to expand the SFT dataset.
AugGPT (Dai et al., 2023) utilizes an LLM (such as ChatGPT) to rephrase questions. GPT3Mix (Yoo
et al., 2021) enhances SFT data by prompting an LLM to generate similar questions to those in the
SFT data through few-shot prompts.

Despite the effectiveness of these augmentation methods in scaling up the quantity of SFT data,
the vanilla SFT data augmentation method still confronts a significant challenge that may hinder
the domain-specific fine-tuning of LLMs—the lack of correlation and logic between the knowledge
underlying the SFT data. Existing SFT data are mainly structured merely in the form of Q&A,
whereby LLMs during the SFT process simply acquire the superficial patterns (such as the output
space and format) of Q&A (Kung & Peng, 2023) and do not comprehend the correlation and logic
of knowledge underlying the Q&A pairs. For example, for the question: Which is not a common
symptom of cancer, persistent fever, or weight gain? The answer: Weight gain. This involves multiple
pieces of knowledge, such as "Cancer can cause a decrease in the body’s resistance", "A decrease in
resistance usually causes persistent fever", "Cancer cells consume a large amount of energy", and
"Energy consumption can lead to weight loss". This fragmented knowledge in pre-training makes it
difficult for LLMs to recall relevant knowledge for logical reasoning when answering questions. As
a result, even after undergoing substantial training with sufficient SFT data, fine-tuned LLMs still
cannot effectively manipulate the knowledge within the pre-training data, specifically in terms of
recall, reasoning, and transfer (Zhu & Li, 2023; Allen-Zhu & Li, 2023).

Therefore, in this paper, we seek to answer the question: Can we not only focus on just augmenting
the quantity but also the quality of the SFT training data, i.e., revealing the correlation and logic
of knowledge underlying the SFT data? With the previous Q&A pair as an example, it involves
the correlation and logic of knowledge as follows: "cancer–may cause–>decreased resistance–may
cause–>persistent fever", and "cancer cells–may cause–>energy consumption–may cause–>weight
loss". This corresponds well to the content within a series of triples (i.e., subgraphs) in the knowledge
graph (KG). We explore the introduction of KGs to generate high-quality explanations to promote
better comprehension for each Q&A pair. Thus, we propose a novel approach, namely Knowledge
Graph-Enhanced Supervised Fine-Tuning (KG-SFT), which can elucidate the correlation and logic
of knowledge to enhance the knowledge manipulation (e.g., knowledge recall, reasoning, and transfer)
ability of LLMs.

KG-SFT is a novel framework and effectively generates explanations that are logical, fluent, and
trustworthy. Specifically, these three characteristics are aligned with the three components of KG-SFT.

(i) Extractor integrates external open-source knowledge graphs such as UMLS (Bodenreider,
2004) to identify entities within Q&A pairs. Extractor also retrieves their multi-hop reason-
ing subgraph between them to reveal the correlation and logic of knowledge underlying the
Q&A pairs.

(ii) Generator uses a graph-structure significance scoring algorithm, HIST (Kleinberg, 1999),
to score entities and relations within the reasoning subgraph. Generator selects the higher-
scoring parts as the significant content for LLMs to let the LLMs generate a fluent draft
explanation to the Q&A pairs.

(iii) Detector splits the draft explanations at the sentence level and detects the potential knowledge
conflicts with the reasoning subgraph. Detector also reprompts to regenerate the conflict
explanations.

Extensive experiments on fifteen different domains and six different languages demonstrate the
effectiveness of KG-SFT, leading to a maximum accuracy improvement of up to 18.1% and an
average of 8.7% in low-data scenarios. Indeed, given the significant emphasis on accuracy in many
practical low-data domains, an average improvement of 8.7% may represent substantial economic
potential (Hendrix et al., 2022; Wolff et al., 2020). We also conduct knowledge manipulation
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experiments to evaluate the model’s advancements in recall, reasoning, and transfer capabilities.
KG-SFT can also be an effective plug-and-play module to incorporate with quantity augmenting
methods.

2 RELATED WORK

2.1 TEXT DATA AUGMENTATION

Data augmentation is a classical research area in natural language processing. Traditional data
augmentation techniques primarily focus on character and word-level enhancements. For example,
EDA (Wei & Zou, 2019) utilizes random insertion, random swapping, random deletion, and synonym
replacement to enrich data diversity(Belinkov & Bisk, 2017; Coulombe, 2018; Wang et al., 2022).
Recently, techniques based on language models have enabled sentence or even document-level
augmentation, with methods based on cutting-edge LLMs demonstrating powerful competitive
advantages (Deng et al., 2023; Fang et al., 2023; Ubani et al., 2023). A noteworthy example is
AugGPT (Dai et al., 2023), which utilizes an LLM (such as ChatGPT) to rephrase questions in SFT
data to diversify the expression forms of Q&A. Moreover, GPT3Mix (Yoo et al., 2021) enhances SFT
data by prompting an LLM to generate similar questions to those in the SFT data through few-shot
prompts.

2.2 KNOWLEDGE GRAPH ENHANCED LLMS

Knowledge graphs (KGs) are considered a promising technology for addressing the limitations of
large language models (LLMs) in terms of inference and interpretability, given their advantages
in structured knowledge representation (Pan et al., 2024). Recent research has mainly focused on
converting structured knowledge from KGs into textual prompts to enhance the question-answering
capabilities of LLMs (Chen et al., 2024; Lv et al., 2024). For example, Think-on-Graph (ToG) (Sun
et al., 2023) utilizes iterative beam search on a KG to improve reasoning; KGR (Guan et al., 2024)
autonomously retrofits LLM responses with validated factual statements from KGs; and KAPING
(Baek et al., 2023) enhances zero-shot question answering by appending retrieved facts from KGs to
LLM inputs. Retrieval-augmented methods primarily provide factual knowledge to LLMs during the
reasoning phase. In contrast, our KG-SFT focuses on elucidating the correlation and logic between
knowledge by generating high-quality training data, thereby significantly enhancing the knowledge
manipulation capabilities of LLMs.

3 PRELIMINARIES

3.1 BM25 ALGORITHM

For a given document d and a query q containing keywords q1, q2, ..., qn, the BM25 score of d with
respect to q is computed as follows:BM25(d, q) =

∑n
i=1 IDF(qi) · f(qi,d)·(k1+1)

f(qi,d)+k1·(1−b+b· len(d)
avgdl )

, where

f(qi, d) is the term frequency of qi in d, len(d) is the length of the document d (in words), avgdl
is the average document length in the text collection from which documents are drawn, k1 and b
are free parameters usually chosen, without loss of generality, as k1 = 1.2 to 2.0 and b = 0.75,
and IDF(qi) is the inverse document frequency of qi across the collection of documents, defined as:
IDF(qi) = log N−n(qi)+0.5

n(qi)+0.5 , where N is the total number of documents in the collection and n(qi) is
the number of documents containing qi.

3.2 HITS ALGORITHM

The Hyperlink-Induced Topic Search (HITS) (Kleinberg, 1999), also known as Hubs and Authorities,
is an algorithm used to rate web pages. As for knowledge graphs, entities can be viewed as pages,
where a hub is an entity that points to many other entities (authorities), and authority is an entity
that is pointed to by many hubs. The iterative algorithm updates the hub and authority scores
for each entity based on its relationships, with the key equations being: h(ei) =

∑
ej∈O(ei)

a(ej)

and a(ei) =
∑

ej∈I(ei)
h(ej), where h(ei) and a(ei) are the hub and authority scores of entity ei,
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Question: Which of the following is not a typical 
symptom of cancer?
A. Weight gain
B. Persistent fever
Answer: A

Extractor Generator
Explanation: The common symptoms that 
cancer may cause include decreased 
resistance, which can lead to fever of 
unknown origin, usually manifested as 
persistent fever. Moreover, it is generally 
common for cancer to cause weight loss due 
to the large amount of energy consumed by 
cancer cells. Weight gain, on the other hand, 
is only associated with appetite rather than 
being a usual symptom of cancer.  Therefore, 
the correct answer is A, weight gain 
typically is not a symptom of cancer.

Detector

Detect Knowledge Conflict

The common symptoms that cancer 
may cause include decreased 
resistance, which can lead to fever of 
unknown origin, usually manifested 
as persistent fever. 

Moreover, it is generally common for 
cancer to cause weight loss due to 
the large amount of energy consumed 
by cancer cells. 

Weight gain, on the other hand, is 
only associated with appetite rather 
than being a usual symptom of 
cancer.  

Therefore, the correct answer is A, 
weight gain  typically is not a 
symptom of cancer.
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Figure 1: An overview of KG-SFT. KG-SFT integrates Extractor, Generator, and Detector to enhance
the quality of vanilla SFT data. The workflow is as follows. (1) Perform Named Entity Recognition
on the Q&A pair to extract potential entity list of question, options, and answer respectively. (2)
Search the neighboring entities for each entity to obtain the reasoning subgraph. (3) Preserve core
subgraphs that are strongly related to the Q&A pair via the HITS algorithm. (4) Generate reasoning
explanation via an external LLM (5) Detect knowledge conflict via the Natural language inference
model and the reasoning subgraph.

respectively, O(ei) is the set of entities that ei points to (out-links), and I(ei) is the set of entities
that point to ei (in-links). The scores are normalized over all entities after each iteration. We refer to
the mean of the final authority and hub score as the HIST score.

4 METHOD

We propose the KG-SFT framework to enhance the quality of the SFT data by revealing their
underlying correlation and logic of knowledge. Specifically, KG-SFT consists of three components:
Extractor, Generator, and Detector. An overview of KG-SFT is shown in Figure 1.

4.1 EXTRACTOR

Extractor first derives relevant reasoning subgraphs in the knowledge graph based on the Q&A pair
to reveal the underlying correlation and logic of knowledge. Specifically, for a given Q&A pair, the
workflow of Extractor is as follows:

(i) Extractor first conducts named entity recognition (NER) on the question, options, and
answer to derive the entity list of question, options, and answer, respectively. Regarding the
NER model, we employ the existing NER tools provided by the open-source knowledge
graphs, specifically leveraging tools like Metamap from UMLS.

(ii) To mine the correlation between knowledge underlying the Q&A pair, after obtaining the list
of entities, Extractor then enrich the neighbors of these entities within the external knowledge
graph. We further apply the off-the-shelf BM25 (Robertson et al., 2009) algorithm to rank
the triples (entity, relation, neighbor) based on their relevance to the Q&A text, retaining the
top (default 20) related triples as candidates.

(iii) To mine the comprehensive logic between knowledge underlying the Q&A pair, Extractor
finally retrieved three types of inference paths: from question entity to question entity, from
option entity to option entity, and from question entity to answer entity.

By deduplicating and merging the triples obtained from the neighbor subgraph and inference path,
we can derive a triple list to represent the reasoning subgraph. For a given Q&A pair, "Which of
the following is not a typical symptom of cancer?" with options "A. Weight gain", "B. Persistent
fever" and the correct answer is "B. Persistent fever". First, Extractor conducts NER to derive
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the entity listquestion= [Cancer], the entity listoptions=[Weight gain, Persistent fever], and the entity
listanswer=[Persistent fever]. Then, Extractor enriches the neighbors of these entities. For example,
for "Cancer," Extractor enriches highly relevant triples such as (Cancer, May cause, Weight loss) and
(Cancer, May cause, Fever of unknown origin). Finally, Extractor retrieves the inference paths, e.g.,
(Cancer, May cause, Decreased resistance) followed by (Decreased resistance, May cause, Persistent
fever). The triples are finally combined to form the final list of triples for the reasoning subgraph.

4.2 GENERATOR

After extracting the reasoning subgraphs, Generator applies an LLM to create explanations for the
given Q&A and transform the structured knowledge and logic underlying the questions into a natural
language text format. Generator employs the off-the-shelf Hyperlink-Induced Topic Search (HITS)
algorithm (Kleinberg, 1999) to filter the significant content within the reasoning subgraph.

Specifically, Generator first calculates the HIST scores of entities within the reasoning subgraphs via
the HITS algorithm, which relies on the iterative updating of initial scores based on the structure of
graphs. Note that to find content related to the Q&A, we will assign a higher initial score to the entity
when it appears in the Q&A pair, while other entities will receive a lower score if the entity does not
appear in the Q&A pair. Then, Generator selects the top (default 10) ranked neighbor subgraphs and
inference paths by HIST scores as input to the LLMs (e.g. ChatGPT) to create draft explanations.
The prompt used instructs the LLMs to generate clear explanations based on the provided question,
answer, and triples. Please refer to Appendix A.4 for details.

Applying the HITS algorithm to the above-mentioned reasoning subgraph, we observe "Cancer" as an
entity exhibiting high authority due to its close association with "May cause" across multiple central
paths, notably highlighted through the relational chain of (Cancer, May cause, Fever of unknown
origin). Meanwhile, "persistent fever," as the answer entity, achieves significant centrality through
the path (Decreased resistance, May cause, Persistent fever).

Upon receiving these core triples, Generator produces draft explanations that reflect the logical
relationship between the question and the answer: "The common symptoms that cancer may cause
include decreased resistance, which can lead to fever of unknown origin, usually manifested as
persistent fever. Moreover, it is generally common for cancer to cause weight loss due to the large
amount of energy consumed by cancer cells. Weight gain, on the other hand, is only associated with
appetite rather than being a usual symptom of cancer. Therefore, the correct answer is A, weight
gain typically is not a symptom of cancer." Therefore, Generator conveys the underlying medical
knowledge in a more fluent and clear manner.

4.3 DETECTOR

After generating draft explanations for each Q&A pair, Detector further examines these explanations
using the triples from the inference graph to ensure their correctness. Detector aims to enhance the
correctness of the generated explanations and minimize potential misguidance that may occur during
the generation process by LLMs. Specifically, to generate the draft explanation, the detection process
is as follows:

(i) Segment the draft explanation into sentences and then match them with the initially obtained
entities list to form the matched comparison triples.

(ii) Input the matched comparison triples and segmented sentence explanations into an NLI
model to assess for knowledge conflicts. Considering the input length and capability
constraints of the NLI model, we directly input the comparison triples (five per group),
combined with sentences, into an off-the-shelf state-of-the-art NLI model, DeBERTa (He
et al., 2020; Xie et al., 2023) to determine the knowledge conflicts issue.

(iii) Mark a sentence with subsequent deletion tag, if it is detected with knowledge conflict. If
an excessive number of sentences (default 30%) are found with knowledge conflicts, the
re-prompt mechanism will re-guide the LLM to re-generate the explanations. The re-prompt
instructs the model to reference the marked sentences containing knowledge conflicts and
regenerate a new correct explanation. Please refer to Appendix A.4 for details.

For example, for "Weight gain, on the other hand, is only associated with appetite rather than being
a usual symptom of cancer." combined with a triple (Appetite, May cause, weight gain) input into
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DeBERTa, the probability of knowledge conflict obtained is greater than the predefined threshold and
thus will be marked as a knowledge conflict.

5 EXPERIMENTS

To evaluate the effectiveness of our KG-SFT, we design a suite of experiments that not only demon-
strate a significant enhancement in the SFT process for LLMs but also provide high-quality analytical
experiments. To simulate a more realistic application scenario and prove the versatility of KG-SFT,
we conduct experiments across six language settings: English, Chinese, French, Japanese, Russian,
and Spanish. Specifically, we divide the experiments into eight parts:

• To comprehensively evaluate the enhancements of KG-SFT over the original SFT, we retain
various proportions of the training set to simulate different scales of low-data scenarios.

• To demonstrate the superiority of KG-SFT, we conduct comparative experiments with
existing baselines on datasets across six languages.

• To validate the potential of KG-SFT as a plug-and-play module, we conduct joint experi-
ments on quantity and quality augmentation.

• To investigate the contribution of each component within KG-SFT, we conduct the ablation
study of each component.

• To demonstrate the generalizability of KG-SFT, we incorporate over 10 diverse domain
datasets from the multi-task language understanding benchmark.

• To further analyze why KG-SFT is effective, we conduct experiments on knowledge manip-
ulation to explore the fine-tuned LLMs with KG-SFT.

1. We explore the LLMs’ knowledge recall ability by locating factual knowledge.
2. We explore the LLMs’ knowledge reasoning ability by multi-hop reasoning Q&A

experiments.
3. We explore the LLMs’ knowledge transfer ability by multilingual transfer experiments,

please refer to Appendix B.4 for details.
• To prove the generalizability of KG-SFT, we perform experiments on LLaMA-2-7B-chat

(Touvron et al., 2023b), BLOOMZ-7B-chat (Muennighoff et al., 2022), and MMedLM2-7B
(Qiu et al., 2024), please refer to Appendix B.5 for details.

• To investigate potential data leakage, we conduct a thorough analysis to ensure that the
performance improvements of LLMs on the test set are not directly attributable to the KG
content added to the training set, please refer to Appendix B.1 for details.

5.1 EXPERIMENT SETUPS

Task and Datasets. We choose the medical field as a canonical low-data and knowledge-intensive
field, as high-quality supervised data is usually sparse, and medicine has rich and difficult factual
knowledge. Moreover, evaluating LLMs conventionally relies on multiple-choice questions, which
can provide an objective score (Qiu et al., 2024). Therefore, our evaluation task adopts multiple-
choice questions and selects medical examination questions in six languages as the evaluation data.
Please refer to Appendix A.1 for the statistics of our datasets.

Models and Metrics. Unless specified, we use LLaMA-2-7B-chat as the default backbone to evaluate
our KG-SFT. We choose ChatGPT (gpt-3.5-turbo) and DeBERTa-v2 as our Generator and Detector.
We use the accuracy rate of multiple-choice questions as metrics.

Baseline Models. We implement twelve variants of methods as our baselines for a comprehensive
comparison. (i) Vanilla: standalone LLMs without any modification. (ii) Vanilla SFT: original
supervised fine-tuning method based on Q&A dataset. (iii) EDA-RS: easy data augmentation by
randomly removing words within sentences. (iv) EDA-RS: easy data augmentation by randomly
swapping word positions within sentences. (v) EDA-RI: easy data augmentation by randomly
inserting new words within sentences. (vi) EDA-SR: easy data augmentation by swapping words
within sentences with their synonyms. (vii) AugGPT: utilizing an LLM (such as ChatGPT) to rephrase
questions in SFT data to diversify the expression forms of Q&A. (viii) GPT3Mix: prompting an
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LLM to generate similar questions to those in the SFT data through few-shot prompts. (ix) CoT:
prompting an LLM to directly generate explanations based on Chain of Thought. Moreover, we
introduce knowledge graph (KG)-enhanced methods, such as (x) Think-on-Graph (ToG), which
utilizes iterative beam search on a knowledge graph for improved reasoning; (xi) KGR, which
autonomously retrofits LLM responses with validated factual statements from knowledge graphs;
and (xii) KAPING, which enhances zero-shot question answering by appending retrieved facts from
knowledge graphs to LLM inputs.

5.2 MAIN RESULTS

Table 1: Experiment results on the multiple-choice questions benchmarks in six languages range
from different data ratios. For each dataset and data ratio, the numbers before/after the slash represent
the accuracy rates for SFT and KG-SFT, respectively, with the bold indicating the best results.
% Data MedQA MedQA IgakuQA RuMedDaNet MedMCQA HeadQA

(English) (Chinese) (Russian) (Spanish) (French) (Japanese)

5% 26.02/40.00 35.57/38.83 21.80/58.20 29.35/36.49 12.90/14.69 13.56/16.58
10% 39.89/43.76 37.65/43.63 42.57/61.32 35.84/40.66 13.56/17.36 17.93/19.90
20% 43.04/47.21 44.16/47.70 46.88/65.23 39.24/42.37 16.12/20.10 21.11/21.60
50% 44.61/48.63 55.66/57.85 53.12/67.57 41.90/44.71 21.73/28.45 25.63/28.14

100% 47.80/49.25 65.02/67.86 65.62/68.75 43.44/46.49 27.37/33.51 30.16/32.66

In this section, we explore different data ratios to comprehensively evaluate the enhancements of
KG-SFT over the original SFT. We set the data ratio from 5% to 100% to demonstrate the superiority
of our KG-SFT in different augmented data scenarios. As shown in Table 1, KG-SFT achieves
superior results across all data ratio and language settings over the vanilla SFT methods by a large
margin. Notably, in the English scenarios, with only 5% of the augmented training data, KG-SFT
leads to nearly 14% improvements over the vanilla methods. In the Russian scenarios, KG-SFT
exhibits the most substantial performance gain at the 5% data ratio, from 21.8% to 58.20%. As the
data ratio increases, KG-SFT still maintains superiority in all language scenarios as well.

It is worth noting that KG-SFT demonstrates superior performance across all languages, particularly
in low-data scenarios. This highlights the effectiveness of generating high-quality explanations with
corresponding the correlation and logic of knowledge underlying the Q&A pair. In high data ratio
scenarios, although the improvement is limited, KG-SFT still maintains a performance lead across all
language settings. This not only highlights the distinct advantages of KG-SFT when data availability
is limited, but also indicates that KG-SFT can consistently enhance model performance, even in
high-data scenarios.

5.3 RESULTS OF DIFFERENT BASELINES

First, as shown in Table 2, KG-SFT significantly outperforms these knowledge-enhanced methods
/ retrieval-augmented methods, such as TOG, KGR, and KAPING. This indicates that relying on
simple retrieval-augmented methods may struggle to address the complexities of medical question-
answering, as these questions often involve intricate knowledge and reasoning. Second, compared
with the existing data augmentation baseline methods, KG-SFT achieves the optimal results across
datasets in all six languages. Specifically, compared with traditional data augmentation methods
such as random deletion, random swapping, random insertion, and synonym replacement, KG-SFT
demonstrates higher performance scores across all languages. For instance, EDA-RD achieves an
average score of 34.12, whereas KG-SFT shows an improvement of 7.67%. Furthermore, when
compared with advanced data augmentation methods based on LLMs, such as AugGPT and GPT3Mix,
KG-SFT still maintains its superior performance. An appealing feature of KG-SFT is that it generates
high-quality explanations for each Q&A which enhances the correlation and logic of knowledge
during the supervised fine-tuning process. These results demonstrate the effectiveness in real-world
knowledge-intensive and low-data domains.
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Table 2: Experiment results for vanilla LLM and different SFT variants. #Tuning QA refers to the
final number of QA pairs for training enhanced by each method, with 1000 before augmentation. If
the method does not require training, the #Tuning QA is "-". We bold the best results for each dataset.

Method #Tuning QA MedQA MedQA IgakuQA RuMedDaNet MedMCQA HeadQA
(English) (Chinese) (Russian) (Spanish) (French) (Japanese) Avg.

Vanilla - 28.20 28.37 51.17 32.97 12.76 11.10 27.43
TOG - 34.27 28.13 48.42 35.59 12.47 19.61 29.75
KGR - 33.15 26.88 47.52 34.74 13.39 17.29 28.83
KAPING - 36.39 27.24 54.66 34.98 11.54 15.91 30.12
StructGPT - 35.16 24.50 55.32 36.16 14.24 20.01 30.90

SFT 1000 33.62 29.33 66.40 35.19 12.67 21.11 33.05
EDA-RD 2000 40.14 17.83 62.50 41.39 16.72 26.13 34.12
EDA-RS 2000 40.84 32.51 66.41 39.89 15.59 25.12 36.73
EDA-RI 2000 39.67 32.37 65.63 40.11 18.81 26.13 37.12
EDA-SR 2000 38.25 33.65 65.23 40.95 17.04 23.11 36.37
AugGPT 2000 40.29 36.54 62.14 40.70 22.99 27.13 38.30
GPT3Mix 2000 39.35 37.97 66.01 41.50 25.08 26.13 39.34
CoT 1000 37.65 39.01 65.23 40.33 25.08 23.63 38.49

KG-SFT 1000 41.71 39.31 68.75 44.40 28.45 28.14 41.79

Table 3: Experiment results for joint experiments on quantity and quality. We bold the best results
for each comparative experiment. The row of MAX in the table is filled in with the best result for
each dataset.

Method MedQA MedQA IgakuQA RuMedDaNet MedMCQA HeadQA
(English) (Chinese) (Russian) (Spanish) (French) (Japanese)

AugGPT 40.29 36.54 62.14 40.70 22.99 27.13
AugGPT+KG-SFT 40.92 40.45 68.35 43.14 27.33 28.63
GPT3Mix 39.35 37.97 66.01 41.50 25.08 26.13
GPT3Mix+KG-SFT 41.79 40.11 69.14 45.25 28.93 33.31
EDA-RD 40.14 17.83 62.5 41.39 16.72 26.13
EDA-RD+KG-SFT 41.39 37.62 69.92 43.18 27.81 28.14
EDA-RS 40.84 32.51 66.41 39.89 15.59 25.12
EDA-RS+KG-SFT 41.71 40.02 71.48 43.36 29.42 30.15
EDA-RI 39.67 32.37 65.63 40.11 18.81 26.13
EDA-RI+KG-SFT 41.24 38.29 67.18 42.26 29.58 33.16
EDA-SR 38.25 33.65 65.23 40.95 17.04 23.11
EDA-SR+KG-SFT 40.84 38.67 68.75 42.74 29.09 30.15
KG-SFT 41.71 39.31 68.75 44.40 28.45 28.14
MAX 41.79 40.45 71.48 45.25 29.42 33.31

5.4 JOINT EXPERIMENTS ON QUANTITY AND QUALITY

We conduct joint experiments on quantity and quality to demonstrate that KG-SFT can be incorporated
with quantity-augmenting baselines as a plug-and-play module. As shown in Table 3, all quantity
augmenting baselines achieve significant improvements by incorporating KG-SFT. For example, the
accuracy of traditional EDA-RS in French increased from 15.59 to 29.42 with incorporating KG-SFT
for quality enhancement, marking a relative improvement of 88.71% and even surpassing the original
KG-SFT. Moreover, advanced baselines such as GPT3Mix achieve significant improvements by
incorporating KG-SFT, outperforming the original KG-SFT in all values. These results highlight the
significant potential when combining quantity augmenting methods with KG-SFT.

5.5 ABLATION STUDY

To further investigate the contribution of each component within KG-SFT, we conduct a series of
ablation experiments on the KG-SFT entire framework. Specifically, We denote KG-SFT without
Extractor, i.e., without the knowledge graph, the LLM directly generates explanations, as KG-
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Table 4: Results of ablation study on multi-Q&A datasets on all six languages, using LLaMA-2-7B-
chat as the backbone.

Method MedQA MedQA IgakuQA RuMedDaNet MedMCQA HeadQA
(English) (Chinese) (Russian) (Spanish) (French) (Japanese)

KG-SFTw/o Extractor 37.65 39.01 40.33 65.23 25.08 23.63
KG-SFTw/o Generator 36.22 38.02 41.61 66.40 23.79 27.13
KG-SFTw/o Detector 37.24 40.05 41.61 67.66 26.52 25.13
KG-SFT 39.31 41.71 44.40 68.75 28.45 28.14

SFTw/o Extractor, KG-SFT without Generator, i.e., without LLMs, KG-SFT directly utilizes triples
without converting them into natural language form, as KG-SFTw/o Generator, and KG-SFT without
Detector, i.e., without Detector to alleviate knowledge conflict, as KG-SFTw/o Detector, respectively.

As shown in Table 4, the absence of any component within KG-SFT results in a performance
degradation of the entire framework. Notably, the absence of Extractor has a more significant impact
on the performance of KG-SFT, which demonstrates the importance of extracting reasoning subgraphs
via external knowledge graphs to promote better comprehension during the SFT process.

5.6 RESULTS ON MULTI DOMAINS

Table 5: Accuracy results of SFT, GPT3Mix, AugGPT, TOG, KGR, KAPING and KG-SFT across
multi-domains. For each domain, we bold the best results and underline the suboptimal ones.

Domain SFT GPT3Mix AugGPT TOG KGR KAPING StructGPT KG-SFT
Nutrition 51.29 56.45 59.68 43.55 45.16 40.32 50.84 62.35
Astronomy 48.39 49.39 50.01 38.71 41.94 35.48 49.50 54.84
Microeconomics 39.58 41.67 41.67 35.42 39.58 29.17 34.15 47.92
Formal Logic 38.46 42.31 34.62 31.12 32.65 34.42 45.63 39.61
Computer Security 55.00 40.00 55.00 45.00 45.00 45.00 50.00 60.00
Psychology 45.53 47.97 44.72 45.08 44.26 43.09 45.32 52.03
Professional Accounting 49.12 47.36 50.87 42.55 46.18 47.24 48.88 49.62
International Law 74.00 82.00 84.00 72.00 72.00 68.00 65.00 88.00
Management 70.00 71.43 72.67 57.14 52.38 57.14 68.42 75.00
History 62.50 52.08 58.33 52.64 51.32 49.50 47.18 67.08
Professional Law 40.07 43.00 39.41 34.31 34.43 32.35 36.45 43.65
Commensense Reasoning 55.50 63.00 62.90 59.20 57.20 61.20 62.16 64.50
Avg 52.45 53.06 54.49 46.39 46.84 45.25 50.29 58.72

To demonstrate the generalizability of our approach, we broaden the scope of our datasets. Specifically,
we have incorporated over 10 diverse domain datasets from the multi-task language understanding
benchmark (Hendrycks et al., 2020). As shown in Table 5, the experimental results indicate that our
KG-SFT consistently achieves state-of-the-art performance across most domains, when compared to
other data augmentation and knowledge-enhanced methods. In addition, our method has achieved
suboptimal results in formal logic and professional accounting. These domians require precise
numerical computation or symbolic reasoning, such as mathematics or logical reasoning, where the
emphasis is less on knowledge-based inference. This is one direction for the future.

5.7 FACTUAL KNOWLEDGE RECALL

To explore the capacity of LLM in manipulating (e.g., recall) factual knowledge within models, we
conduct an interpretability analysis following (Yu et al., 2023). This work primarily investigated
methods for locating factual knowledge in LLMs, particularly mapping the key neurons (also known
as Important Subvalues) to the vocabulary space.

We conduct case analyses and select the representative case as Table 6. More cases can be found in
Appendix B.3. For questions related to "cold", the KG-SFT model could directly recall related terms
such as "cold", "Cold", "flu", and related to illness states like "sick", "ill", "Ill", and even cause-related
terms such as "vir", "virus". In contrast, the knowledge recalled by the original SFT model is mostly
unrelated to "cold", and even included special characters like " ". Overall, KG-SFT performs well
on multiple datasets, probably because it provides a lot of correlation and logic of knowledge, which
enhances the LLM’s ability to recall and locate relevant knowledge during pre-training.
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Table 6: Important subvalues’ top10 tokens on vocabulary space. Please note that for each model,
we analyze the top2 neurons (also known as Important Subvalues) that have the greatest impact on
answering the question. In the table, ffn2683

19 represents the 2683th neuron located at the 19th MLP
layer.

Input Text Probing Token
A common viral respiratory infection presenting symptoms like sneezing,
sore throat, and runny nose is

cold

Method—subvalue Top Tokens

SFT—ffn6404
31 partially, designated, swing, phys, direct, regularly, straight, controlled

SFT—ffn2683
19 , eign, lak, Alo, haupt, ufen, eclipse, isie, illing, hmen

KG-SFT—ffn6404
31 partially, designated, phys, swing, direct, regularly, straight, potentially

KG-SFT—ffn4355
21 cold, Cold, sick, ill, vir, col, Ill, flu, resp, virus

5.8 COMMONSENSE MULTI-HOP REASONING

Table 7: Commonsense Multi-Hop Reasoning on 3-hop Meta QA
3-hop Meta QA Semantic Similarity Accuracy
GPT-3.5 66.10 53.0
GPT-4o 67.49 55.0
OpenAI o1 34.28 58.0

SFT 80.25 55.5
AugGPT 83.00 62.9
GPT3Mix 83.35 63.0
Think on Graph 81.20 59.2
KGR 80.79 57.2
KAPING 81.79 61.2
KG-SFT 84.25 64.5

To explore the LLMs’ knowledge reasoning ability and demonstrate that the remarkable performance
of KG-SFT is not limited to specific domains, we conduct experiments on the common sense question-
answering dataset Meta QA (Zhang et al., 2018). Specifically, Meta QA is a multi-hop reasoning
question-answering dataset. We select the most complex 3-hop questions from it as our experimental
data. As shown in Table 7, KG-SFT significantly outperforms the baselines in both semantic similarity
and accuracy of the answers, and even the strong baseline OpenAI o1. For example, the accuracy of
KG-SFT achieves a notable increase of 9.0% compared to SFT. In summary, KG-SFT continues to
achieve remarkable results in the domain of common sense and can enhance the LLMs’ multi-hop
reasoning capabilities. This may be one of the reasons behind the superior performance of KG-SFT.

6 CONCLUSION AND DISCUSSION

In this paper, we propose a conceptually flexible, and general framework Knowledge Graph-Driven
Supervised Fine-Tuning that focuses on quality augmentation to boost supervised fine-tuning.
Specifically, we propose extractor, generator, and detector to generate high-quality explanations
for each Q&A pair via structured knowledge graph to promote better knowledge manipulation for
LLMs. Extensive experiments demonstrate the effectiveness of our KG-SFT, leading to a maximum
accuracy improvement of up to 18.1% and an average of 8.7% in low-data scenarios. Moreover,
KG-SFT also serves as a plug-and-play framework for existing quantity augmenting methods that
achieve a maximum relative improvement of 88.71% in the accuracy metric and achieve the new
state-of-the-art methods.
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7 ETHICS STATEMENT

This paper presents the Knowledge Graph-Driven Supervised Fine-Tuning (KG-SFT) framework
to enhance large language models (LLMs) in specific domains. Our research adheres to ethical
guidelines, avoiding human subjects or sensitive data. The data used consists solely of open source
SFT data, with no harmful applications identified. While KG-SFT aims to improve knowledge
comprehension and manipulation, we discourage the use of the generated models in high-stakes
scenarios without further validation, as the potential for errors or misinterpretations exists. No
conflicts of interest were found, and all experiments comply with relevant ethical standards.

8 REPRODUCIBILITY STATEMENT

In this study, to ensure the reproducibility of our approach, we provide key information from the
main text and Appendix as follows.

1. Algorithm and Experimental Details. We provide the architecture of our approach KG-
SFT in Section 4. We also provide the detailed implementation of KG-SFT in Appendix A.
See Appendix A.4 for the PROMPTS of KG-SFT. Moreover, we provide detailed experiment
settings in Section 5.1, Appendices A.1, A.2, and A.3.

2. Source Code. According to the architecture in Section 4, the BM25 algorithm, HIST
algorithm, NER tools, and training framework we used are all open-source and publicly
available. Specifically, in Section 5.1, we use the code from (Zheng et al., 2024) for
model training, available at https://github.com/hiyouga/LLaMA-Factory. Moreover, we are
committed to providing the source code of our approach, if accepted.
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A IMPLEMENTATION

In this section, we introduce the implementation details of the experiments, including training
parameters and prompts used.

A.1 DATASET DETAILS

Table 8 presents the statistical results for medical multiple-choice questions benchmarks in six
language.

Table 8: Statistical results for medical multiple-choice questions benchmarks in six languages.

Dataset Language Source Train Test
MedQA English United States Medical Licensing Ex-

amination
10178 1273

MedQA Chinese United States Medical Licensing Ex-
amination

27400 3426

IgakuQA Japanese Japan’s medical licensure exams
(2018-2022)

1590 199

RuMedDaNet Russian Russian medical judgment question
dataset

1052 256

FrenchMedMCQA French Professional exams for the French
Pharmacy degree

2171 622

Head-QA Spanish Exams for positions in the Spanish
healthcare

2657 2742

A.2 TRAINING DETAILS

Specifically, we use two data formats, the vanilla SFT data without explanations and the enhanced
KG-SFT data with explanations, to conduct full-model fine-tuning training. In the fine-tuning phase,
our optimization objective is minimizing the loss between generated text and target text. We set the
maximum context length to 2048, padding each batch to match the longest sequence in that batch. We
use AdamW optimizer with the following hyper-parameters: β1 = 0.95, β2 = 0.9. For full-model
fine-tuning, we utilized DeepSpeed, BF16 data type, and gradient checkpointing technology. We set
the global batch size to 64 and the warmup ratio to 0.03. For vanilla SFT data without explanations,
we set a learning rate of 1e-6. In the case of the enhanced KG-SFT data with explanations, we set a
learning rate of 5e-6. Finally, the models are trained on four A100 GPUs for 5 epochs.

A.3 FINE-TUNING PROMPTS

It is worth noting that the two SFT data formats contain different types of Q&A data. The vanilla
SFT data without explanations only contains instructions that only require the correct answer for each
Q&A pair. In the KG-SFT data, for each Q&A pair, there are not only instructions that only require
the correct answer, but also instructions that require the model to give the explanations.

In our fine-tuning approach, we employ two distinct types of prompts for the two instructions. This
helps the models discern whether they should generate detailed rationale sentences or not, thus
minimizing confusion when the inference phase only requires the model to give the correct answer.
Specifically, for the instructions that only require the correct answer, we use the following prompt:

Please play the role of a language doctor, respond to the
medical inquiries based on the patient’s account. Provide
the most appropriate option directly.

In contrast, to obtain an answer accompanied by its corresponding rationale, we use a more detailed
prompt:
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Please play the role of a language doctor, respond to
the medical inquiries based on the patient’s account.
Provide the most appropriate option directly. Let’s solve
this step-by-step. You should first give the reason in
{language} for your choice. Then you should give the right
answer.

It’s important to note that during evaluation phase, we only need the model to give the correct answer
to calculate the accuracy for the multiple-choice questions. So we used the first instruction prompt
for the inference.

A.4 KG-SFT PROMPTS

In the generator and detector components of KG-SFT, we utilize LLMs to accomplish the specified
tasks. The details of the prompts used are illustrated in the table9.

Table 9: The prompts used in KG-SFT. In the prompts, "{str(qa)}" represents a specific Q&A pair
and "{str(triples)}" represents the reasoning subgraph obtained from extractor.

Prompt Type Text
Prompts for generat-
ing explanations in
the generator

Assuming you are a knowledgeable and experienced medical expert,
please generates a logical and fluent explanation based on the knowl-
edge graph information (triple list) provided below, as well as the
questions and answers, and be careful not to mention "knowledge
graphs" or "triple" in the output, as these contents are only visible to
you.
Question and answer:{str(qa)}
Triples for reasoning subgraph:{str(triples)}
The generated format is json like this: {"Explanation": "..."}.
You should output with {language} and do not output any irrelevant
content.

Prompts for re-
generating in the
detector

Assuming you are a knowledgeable and experienced medical expert, the
explanation below contains content that conflicts with the knowledge
graph (sentences with knowledge conflicts have been marked with an *
on both sides). Q&A, explanation, and related knowledge graphs are as
follows. Please generate the correct explanation again, and be careful
not to mention "knowledge graphs" or "triple" in the output, as these
contents are only visible to you.
Question and answer:{str(qa)}
Triples for reasoning subgraph:{str(triples)}
Explanation:{str(explanation)}
The generated format is josn like this: {"Explanation": "..."}.
You should output with {language} and do not output any irrelevant
content.

B MORE RESULTS

B.1 INVESTIGATE THE POTENTIAL FOR DATA LEAKAGE

To further investigate the potential for data leakage, we analyze whether the performance improve-
ments of the model on the test set are directly attributable to the KG content added to the training
set. We conduct a thorough analysis to ensure that our experiments are not affected by such potential
issues. Firstly, we employed a state-of-the-art Natural Language Inference (NLI) model, DeBERTa,
to assess the semantic relationship between each generated explanation and every question in the test
set. Specifically, we categorized the relationships as entailment, neutral, or contradiction.

(i) An entailment indicates that the generated explanation directly answers the test question.
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(ii) A neutral indicates no direct semantic connection.

(iii) A contradiction indicates a semantic conflict.

Our results revealed that only 0.01% of the explanations were classified as entailment, while 97.71%
were classified as neutral, and 2.28% as contradiction. This suggests that our performance improve-
ments are not attributable to data leakage, and the presence of contradictions aligns with the claim in
our paper that knowledge conflicts may still occur in generated explanations.

Table 10: The data leakage ratio for different values of overlap k. If the proportion of overlap
between the entity set of a question in the test set and the entity set of any question in the training set
exceeds k, that data point is considered to have potential data leakage.

Overlap-k 0.2 0.25 0.3 0.35 0.4
data leakage (%) 1.18 0.31 0.16 0.00 0.00

Furthermore, we conducted a statistical analysis to check for potential overlap between the entities in
the training and test sets. We performed Named Entity Recognition (NER) on each question in both
sets. We defined a threshold K to evaluate if there was significant overlap between entities in test set
questions and any training set questions. As shown in Table 10, with K set at 0.2, we found that only
1.18% of the test set questions showed potential overlap with the training set. Increasing K to 0.35
resulted in no detectable overlap. These results provide additional statistical evidence supporting
that there is no significant data leakage between our training and test sets.

B.2 RESULTS OF COMPUTATIONAL OVERHEAD

Table 11: Time comparison of SFT, GPT3Mix, and KG-SFT at different augmentation ratios.

Ratio Num. Time (min)
SFT GPT3Mix KG-SFT

5% 506 3 7 5
20% 2032 12 25 18
50% 5081 25 60 40
100% 10128 52 120 85

We conducted experiments to evaluate the computational overhead of our KG-SFT method compared
to vanilla supervised fine-tuning in Table 11. Our experiments were performed using 4 A100
GPUs(80GB) over 5 epochs with the LLaMA2-7B model. Notably, our approach only involves data
synthesis, and thus, the overhead is independent of model size. According to our results, KG-SFT
incurs approximately 1.5 times the computational overhead of the original SFT, while typical data
augmentation methods, such as GPT3Mix (which doubles the dataset size), result in an overhead of
around 2 times.

B.3 MORE CASES FOR FACTUAL KNOWLEDGE RECALL

In Table 12, we provide more cases for experiments of factual knowledge recall.

B.4 MULTILINGUAL TRANSFER EXPERIMENTS

To further explore whether KG-SFT can enhance the knowledge transfer capability of LLMs, we
conduct multilingual transfer experiments. Specifically, as shown in Figures 2 and 3, the y-axis
represents the language type of the fine-tuning data, and the x-axis represents the language type
of the test data. This setup is used to investigate if the knowledge or abilities acquired through
fine-tuning in one language can be transferred to another language. For a clearer comparison, we list
the performance comparison between KG-SFT and SFT in Table 13, where each value represents
the accuracy difference between KG-SFT and SFT. From able 13, it is demonstrated that KG-SFT
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Table 12: Important subvalues’ top10 tokens on vocabulary space. Please note that for each model,
we analyze the top2 MLPs (also known as Important Subvalues) that have the greatest impact on
answering the question. In the table, ffn110518 represents the 1105th MLP located at the 18th layer.

Input Text Probing Token
The disease characterized by the growth of abnormal cells in the lungs is cancer

Method—subvalue Top Tokens

SFT—ffn1105
18 prost, suic, sexual, murder, sex, drug, dru, cancer, Blood, assass

SFT—ffn0802
10 squ, sar, mel, cancer, car, mes, colon, tum, onc, rare

KG-SFT—ffn1105
18 prost, suic, sexual, sex, murder, drug, dru, cancer, Blood, lung

KG-SFT—ffn0801
16 clin, surg, patients, disease, patient, medic, medicine, drug, cancer, medical

Figure 2: SFT for Multilingual Transfer Ex-
periments

Figure 3: KG-SFT for Multilingual Transfer
Experiments

Table 13: Performance comparison between KG-SFT and SFT
Chinese English Spanish Russian French Japanese

Chinese +4.77% +1.28% +3.21% -7.79% +5.17% +8.20%
English -1.10% +4.82% +4.45% +1.28% +25.87% +2.21%
Spanish +6.21% +4.86% +6.35% +0.81% +29.90% +6.68%
Russian +0.00% +10.31% +3.20% +1.15% +1.38% +13.34%
French +1.85% +5.73% +14.38% -6.03% +21.90% -7.33%

Japanese +13.58% +1.16% +8.13% +11.12% +28.04% +12.72%

outperforms SFT in the majority of indicators. For example, in the transfer from Japanese to
Russian, KG-SFT achieves an accuracy rate of 58.59, compared to SFT’s 52.73, marking an actual
improvement of 5.86%, or a relative improvement of 11.12%. Moreover, in the transfer to Russian
and Japanese, KG-SFT does not consistently outperform SFT. Referring to the (Touvron et al., 2023b),
we discover that in the pre-training corpus of Llama 2, Russian made up only 0.13% and Japanese a
mere 0.10%, significantly less than other languages. This suggests that the likely reason is that Llama
2 stored less relevant knowledge during pre-training for these languages. In summary, KG-SFT
demonstrates a superior transfer capability compared to the original SFT, which might be one of the
reasons for its better performance.

B.5 RESULTS OF DIFFERENT LLMS

We also conduct experiments to demonstrate the generalizability of various LLMs. We apply general
LLMs (LLaMA-2-7B-chat and BLOOMZ-7B-chat) and medical LLMs (MMedLM2) as the backbone
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Table 14: Experiment results for different LLM backbones, including LLaMA-2-7B-chat, BLOOMZ-
7B-chat, and MMedLM2 7B.

Model Metric Chinese English Spanish Russian French Japanese

Llama 2
sft 33.62 29.33 66.40 35.19 12.67 21.11
kgsft 41.71 39.31 68.75 44.40 28.45 28.14
Impr. +24.06% +34.02% +3.54% +26.15% +124.54% +33.29%

BLOOMZ
sft 41.09 32.60 37.61 58.59 12.86 19.59
kgsft 43.72 36.99 41.24 60.15 21.22 25.12
Impr. +6.41% +13.45% +9.66% +2.66% +65.00% +28.23%

MMedLM2
sft 63.45 50.82 59.4 67.18 28.29 46.73
kgsft 69.61 57.34 64.29 78.12 48.55 58.29
Impr. +9.71% +12.81% +8.23% +16.28% +71.65% +24.75%

models. As shown in Table 14, we can observe that KG-SFT significantly outperforms the traditional
SFT method across all language settings. Specifically, in the French scenario, KG-SFT gets relative
improvement by 124.54% compared to the vanilla SFT method. For MMedLM2, our KG-SFT
still maintains consistent performance improvements across all languages. These results further
demonstrate the generalizability of KG-SFT over various LLM backbones, which highlights the
importance of generating explanations for Q&A pairs.

B.6 MORE RELATED WORK

Supervised fine tuning (SFT) is a powerful alignment technique for LLMs, which can help LLMs adapt
to specialized domain tasks or align with human intentions. SFT can also refer to general sequence-
to-sequence fine-tuning, which includes human alignment, instruction fine-tuning, downstream task
fine-tuning, etc (Dong et al., 2023). Recent research explores multi-task SFT to achieve better
zero-shot performance across various downstream tasks (Sanh et al., 2021). (Chung et al., 2024)
and (Longpre et al., 2023) further integrate almost all existing NLP tasks for large-scale multi-task
instruction fine-tuning. Moreover, some methods attempt to apply SFT to more complex downstream
tasks such as mathematical reasoning (Yuan et al., 2023; Hendrycks et al., 2021; Liu et al., 2024a)
and code generation (Luo et al., 2023). Regarding research on knowledge graphs, some early work
focused on reasoning within knowledge graphs to enhance link prediction (Sun et al., 2019; Zhang
et al., 2020) and inductive link prediction (Teru et al., 2020; Chen et al., 2021; Liu et al., 2024b)
capabilities. Although these efforts do not directly enhance the reasoning abilities of LLMs, they
can provide potential insights for future directions in augmenting LLMs with knowledge graphs.
Moreover, another line integrates pre-trained LLM and graph neural networks (Shi et al., 2023; 2025),
to encode the texts and graph structures simultaneously (Shi et al., 2024; Li et al., 2024b).

B.7 MORE RESULTS OF LLM SCORER METHODS

We further have conducted additional experiments by replacing the HITS scoring algorithm with
semantic-based scoring methods using LLaMA 2 models (13B and 70B) for entity selection to
provide a more comprehensive insight of our KG-SFT. As shown in Table 15, the LLaMA 2 70B
model achieved notable performance, even surpassing the original HITS-based KG-SFT in certain test
cases, which highlights the effectiveness of semantic scoring approaches. However, when considering
overall accuracy, the HITS algorithm still delivered the best results while also being significantly
more cost-efficient. These findings further validate the rationale behind our choice of the HITS
algorithm. In future work, we can explore and optimize scoring methods further, particularly in the
context of downstream task requirements, to strike a balance between accuracy, interpretability, and
computational efficiency.

B.8 MORE RESULTS FOR 70B
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Table 15: More results for LLM scorer variants methods. We bold the best results for each dataset.
Method #Tuning QA MedQA MedQA IgakuQA RuMedDaNet MedMCQA HeadQA

(English) (Chinese) (Russian) (Spanish) (French) (Japanese) Avg.

KG-SCORE-13B 1000 41.79 37.91 68.75 43.28 25.72 27.11 40.76
KG-SCORE-70B 1000 42.41 38.32 71.48 43.10 25.72 29.14 41.70

KG-SFT 1000 41.71 39.31 68.75 44.40 28.45 28.14 41.79

We further have conducted additional experiments with the LLaMA-2-70B model. As shown in Table
16, the results demonstrate that KG-SFT continues to achieve the best performance and significant
improvements even at this larger scale. Moreover, in some test cases (MedQA-C, IgakuQA, and
MedMCQA), the KG-SFT-enhanced 7B model even outperforms the original and SFT-finetuned
LLaMA-2-70B models. These findings strongly validate the effectiveness and scalability of the
KG-SFT approach.

Table 16: Comparison of methods on 70B
Method QA_num English Chinese Russian Spanish French Japanese Avg
Vanilla-7B - 28.20 28.37 51.17 32.97 12.76 11.10 27.43
SFT-7B 1000 33.62 29.33 66.40 35.19 12.67 21.11 33.05
KG-SFT-7B 1000 41.71 39.31 68.75 44.40 28.45 28.14 41.79
Vanilla-70B - 45.99 34.67 50.00 47.38 20.45 20.10 36.43
SFT-70B 1000 47.89 37.53 66.52 48.10 22.55 30.80 42.23
KG-SFT-70B 1000 51.21 46.73 69.53 48.94 30.06 36.68 47.19

C CASE STUDY

In this section, we present a detailed analysis of individual cases within the English dataset. Specifi-
cally, we compare the responses generated by various models, including the vanilla Llama2 model,
the Llama2 model fine-tuned with the vanilla SFT, and the Llama2 model fine-tuned using KG-SFT.
Through this comparative analysis, we aim to demonstrate the superior performance of the KG-SFT
method. The specific results of this comparison are illustrated in the accompanying figures 4,5,6,7.

In Case 1, all models answer correctly, including the vanilla Llama2 model that did not undergo SFT.
This question involves how residents should document surgical reports, specifically emphasizing that
all intraoperative events must be accurately recorded. This represents a straightforward assessment
of professional medical knowledge with simple logic. In the knowledge graph, this constitutes
one-to-one single-hop logical reasoning, which all models can easily handle.

In Case 2, the vanilla Llama2 model did not provide the correct answer, but both the vanilla SFT-
trained and KG-SFT-trained models did. This question presents the patient’s symptoms and asks
for the most likely diagnosis. The symptoms of hyperandrogenism, menstrual irregularities, obesity,
and glucose intolerance all indicate PCOS. In the knowledge graph, this represents many-to-one
single-hop logical reasoning. Due to the fragmented nature of the knowledge required, the vanilla
Llama2 model could not answer correctly. However, since this question still belongs to single-hop
reasoning, the vanilla SFT-trained model are able to provide the correct answer.

In Case 3, only the model trained with KG-SFT can provide the correct answer. This question
presents the patient’s symptoms and asks what additional symptoms the patient may experience. To
address this, it is necessary to first diagnose the patient’s disease based on the initial symptoms, and
then predict other potential symptoms associated with the diagnosed disease. This process involves
many-to-one and one-to-many multi-hop reasoning within the knowledge graph. The vanilla SFT
model fails to solve this problem, whereas KG-SFT successfully provides the correct answer. This
demonstrates that our method enhances the model’s capability for multi-hop reasoning and knowledge
manipulation.

In Case 4, none of the models answered correctly. The problem analysis revealed that the patient
had diabetes and peripheral arterial disease, which might suggest consideration of vascular-related
diseases. Additionally, right-sided flank pain and hypertension can be associated with various
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Figure 4: Case 1. In this example, all models can answer correctly, even the vanilla Llama2 model
that did not pass SFT.

Figure 5: Case 2. In this example, the vanilla llama2 model don’t get it right. Both SFT trained and
KG-SFT trained models answer correctly.

conditions, complicating the diagnosis. The causes of dilation of the right ureter and renal pelvis (i.e.,
hydronephrosis) are diverse and necessitate comprehensive judgment based on clinical manifestations.
This question requires identifying multiple possible causes and conducting a thorough analysis based
on the patient’s specific symptoms and examination results. Even in real-life medical scenarios, this
question is still a very difficult one. The models, including KG-SFT, still struggle to answer such
inductive questions accurately.
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Figure 6: Case 3. In this example, only the model trained by KG-SFT answers correctly

Figure 7: Case 4. In this example, none of the models answer correctly.
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