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Abstract

Diffusion models have revolutionized customized text-to-image generation, allow-
ing for efficient synthesis of photos from personal data with textual descriptions.
However, these advancements bring forth risks including privacy breaches and
unauthorized replication of artworks. Previous researches primarily center around
using “prompt-specific methods” to generate adversarial examples to protect per-
sonal images, yet the effectiveness of existing methods is hindered by constrained
adaptability to different prompts. In this paper, we introduce a Prompt-Agnostic
Adversarial Perturbation (PAP) method for customized diffusion models. PAP
first models the prompt distribution using a Laplace Approximation, and then
produces prompt-agnostic perturbations by maximizing a disturbance expectation
based on the modeled distribution. This approach effectively tackles the prompt-
agnostic attacks, leading to improved defense stability. Extensive experiments
in face privacy and artistic style protection, demonstrate the superior generaliza-
tion of PAP in comparison to existing techniques. Our code will be available at
https://github.com/vancyland/PAP.

1 Introduction

Generative methods based on diffusion models [1–4] have made significant improvements in recent
years, enabling high quality text-to-image synthesis [5, 6], image editing [7], video generation [8, 9],
and text-to-3D conversion [10] by prompt engineering. One of the most representative methods in this
field is the Stable Diffusion [11, 12], which is a large-scale text-to-image model. By incorporating
customized techniques such as Text Inversion [13] and DreamBooth [14], Stable Diffusion only
requires fine-tuning on a few images to accurately generate highly realistic and high-quality images
based on the input prompts.

Despite this promising progress, the abuse of these powerful generative methods with wicked
exploitation raises wide concerns [15], especially in portrait tampering [16–18] and copyright in-
fringement [19]. For example, in Figure 1(a), given several photos of a person, attackers can utilize
diffusion models to generate fake images containing personal information, leading to reputation
defamation. Even worse, attackers can easily plagiarize unauthorized artworks using diffusion models,
leading to copyright and profit issues. There is an urgent technology need to protect images from
diffusion model tampering.
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Figure 1: Illustration of a portrait with (a) no defense, (b) prompt-specific and (c) our PAP prompt-
agnostic perturbation. In (a), the portrait is easily tampered with by the diffusion model. In (b), the
prompt-specific methods only perform well on learned prompts (i.e., Prompt A) and are fruitless
to unseen prompts (i.e., Prompts B and C). In (c), the proposed PAP is robust to both the seen and
unseen prompts, and successfully protects the portrait from diffusion model tampering

To this end, recent research studies delve into adding human-invisible adversarial perturbations onto
the images to prevent prompt-based tampering using diffusion models. The method Photoguard [20]
maximizes the distance in the VAE latent space. Glaze [21] aims to hinder specific style mimicry,
while Anti-DreamBooth [22]introduces an alternating training approach between the model and
adversarial examples. The AdvDM series [23, 24], Adv-Diff [25] present theoretical frameworks and
improved methods for attacking LDM.

These methods follow a prompt-specific paradigm, wherein they need to pre-define and enumerate
the possible prompts in training, and the test prompts are required to be identical to the training ones.
However, in real-world applications, once encountered with an unseen test prompt, their perturbations
are inevitably futile. As shown in Figure 1(b), the perturbation trained with Prompt A fails to protect
the portrait on unseen Prompts B and C at inference.

To meet this challenge, we propose a novel Prompt-Agnostic Adversarial Perturbation (PAP). Differ-
ent from existing prompt-specific methods that require pre-defining and enumerating the attackers’
prompts, PAP models the prompt distribution and generates prompt-agnostic perturbations by max-
imizing a disturbance expectation based on the prompt distribution. Specifically, using a Laplace
approximation, we derive the prompts distribution in a text-image embedding feature space satisfying
a Gaussian distribution, whose mean and variance can be estimated by the second-order Taylor expan-
sion and Hessian approximation with an input reference prompt. Then, by sampling on the Gaussian
prompt distribution and maximizing a disturbance expectation, we generate the PAP perturbations for
the input images. As shown in Figure 1(c), the PAP perturbation is trained using a Ref Prompt, while
is robust to unseen Prompts B and C at inference. To verify the efficiency of our proposed method, we
conduct comprehensive experiments on three widely used benchmark datasets, including VGGFace2,
Celeb-HQ and Wikiart. The experimental results show that the proposed PAP method 1) steadily and
significantly outperforms existing prompt-specific perturbation on 6 widely used metrics by a large
margin and 2) is robust and effective to different diffusion models, attacker prompts, and diverse
datasets. These results demonstrate the efficiency and superiority of the proposed PAP method.

In summary, our contributions are as follows:

• We propose a novel Prompt-Agnostic Adversarial Perturbation (PAP) for customized text-to-
image diffusion models. To the best of our knowledge, this is the first attempt at prompt-
agnostic perturbation for customized diffusion models.

• We model the prompt distribution as a Gaussian distribution with Laplace approximation,
where the approximation error is guaranteed. We then derive algorithms to estimate the
mean and variance by Taylor expansion and Hessian approximation.
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• Based on the prompt distribution modeling, we compute the prompt-agnostic perturbations
by maximizing a disturbance expectation via Monte Carlo sampling.

2 Related Work

Text-to-image generation models. Text-to-image generation has evolved from early cGANs [26]
and VQ-VAE [27] to advanced transformer-based models [28–33]. DALL-E [34] and GLIDE [35]
demonstrate breakthrough performance in diffusion models. Recent works like Textual Inversion
[13], DreamBooth [14], and ControlNet [6] further enhance generation quality through customization,
user-specific fine-tuning, and additional control mechanisms.

Gradient-based adversarial attacks. Gradient-based adversarial attacks deceive machine learn-
ing models through perturbed inputs. FGSM [36] maximizes loss function L(f�(x + �); y) as:
min� E(x;y)∼D max� L(f�(x + �); y). BIM [37] and PGD [38] enhance it through iterations. MI-
FGSM [39] adds momentum constraint, NI [40] employs Nesterov acceleration, EMI [41] stabilizes
with gradient averaging, and VMI [42] reduces variance via neighborhood tuning. CWA [43]
addresses local optima through loss landscape analysis.

Prompt-specific image cloaking for generation. Early cloaking methods like Fawkes [44], Lowkey
[45], and Deepfake defense [46] focus on face recognition protection. For diffusion models, Photo-
guard [20] maximizes VAE latent distance, Glaze [21] prevents style copying, and Anti-DreamBooth
[22] employs alternating training. Recent works like UAP [47], AdvDM series [23, 24, 48], AdvTDM
[49], AdvDiff [25], and Diffprotect [50] provide theoretical frameworks and improved methods for
attacking diffusion models.

In contrast, our work stands apart from these approaches by focusing on the predicted prompt
distribution rather than predefined prompt instances, enabling us to achieve global protection efficacy.

3 Prompt-Agnostic Adversarial Perturbation

3.1 Background and Motivation

Prompt-based Diffusion Models. A vanilla diffusion model [1, 3] aims to gradually transfer a
simple Gaussian noise into high-quality images through a series of denoising steps. It mainly
contains a forward process (i.e., diffusion) and a backward process (i.e., denoising). Begin with an
image x0, the forward process iteratively adds Gaussian noise � � N(0; I) with a noise scheduler
1� �t; �t 2 (0; 1)Tt=1 to the input image. The t-step obtained noised image xt can be written as:

xt =
p

��tx0 +
p

1� ��t� (1)

where ��t =
Qt
s=1 �s. When t!1, xt is a Gaussian noise (i.e., xt = �). In the backward process,

the objective is to learn a noise predictor ��(xt; t) predicting the added Gaussian noise at each step
t. On this basis, taking a Gaussian noise (i.e., xt(t ! 1)) as input, the diffusion model denoise
the image xt using ��(�), i.e., xt−1 = 1

�t
(xt � 1−�t√

1−��t
��(xt; t)) + �tz; z � N(0; I), and iteratively

generates a high-quality image x0 by t denoising steps.

The prompt-based diffusion models [11] aim to generate a semantic guided image x0 from the
Gaussian noise �. To this end, in the backward process, they additionally take a text prompt c as the
input of noise predictor ��(xt; t; c) alongside the Gaussian noise xt, and align the image and text
representation by cross-attention mechanism. The image generation objective of the prompt-based
diffusion models can be written as:

min
�
Lcond(x0; c; �) = Et;�∼N (0;1)L(x0; �; t; c; �); (2)

where L(x0; �; t; c; �) = k�� ��(xt; t; c)k22.

Prompt-Specific Perturbation. By collecting a set of characterized images (e.g., images of a certain
person) and a custom-built text prompt (e.g. "sks"), recent approaches such as DreamBooth [14]
exploit prompt-based diffusion models for customized image generation. Despite their promising
progress, they raise concerns on content falsification such as portrait tampering and copyright
infringement. To meet this challenge, existing diffusion-model perturbation methods [23, 22] attempt
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to add an adversarial perturbation � to the images, aiming to protect the characterized information of
the images (such as a person’s face) being falsified. Specifically, they often pre-define a custom text
prompt c0, and then optimize the adversarial perturbation � to maximize the image generation loss
function given c0, which can be written as:

�∗ = arg max
�
Lcond(x0 + �; c0; �); s.t. j�jp � �; (3)

where Lcond is evaluated according to Eq.(2). By adding the obtained �∗ to x0, the diffusion models
fail to generate high-quality images with the prompt c0.

These methods, as we discussed in Section 1, are insufficient when the text prompts are different from
the training prompt. As shown in Figure 1 (b), when obtaining a perturbation � based on prompt A,
the � failed to protect the image from being modified using different prompts such as B and C. These
methods compute the perturbations based on enumerated text prompt instances, i.e., prompt-specific
perturbation, are fruitless facing with endless attack prompts in real-world applications.

3.2 PAP: Prompt-Agnostic Perturbation by Prompt Distribution Modeling

Different from the existing methods that compute a prompt-specific perturbation by enumerating
prompt instances, we attempt to compute a prompt-agnostic perturbation by prompt distribution
modeling, wherein the obtained perturbation is robust to both seen and unseen attack prompts.

We choose the Laplace approximation as our estimator for three key reasons: 1) it typically yields
a Gaussian distribution suitable for large sample sizes; 2) it simplifies computations compared to
complex methods like Monte Carlo simulations, particularly when analytical forms are difficult to
obtain; and 3) it aligns well with our ideal prompt embedding distribution, concentrated around
extreme points.

To this end, we first model and compute a prompt distribution by Laplace approximation, wherein
two estimators � and  are developed to compute the distribution parameters. And then we perform
Monte Carlo sampling on each input distribution to maximize a disturbance expectation.

Specifically, for the prompt distribution modeling, we consider a protecting image x0 as input and
assume a probability-distance correlation between the attacker prompt c and x0, i.e., the further c is
from x0, the lower probability of c is in the distribution, and vice versa. The distribution relies on x0

is ambiguous, thus we introduce an auxiliary text prompt c0 roughly depicting x0 into the modeling.
Based on this foundation, we model the prompt distribution in the embedding space as c 2 Q(x0;c0),
where Q(x0;c0) represents the theoretical distribution with a probability density function p(cjx0; c0).

Based on this setup, we approximate the original distribution Q(x0;c0) using a Gaussian distri-
bution Q̂(x0;c0) by Laplace approximation, i.e., c 2 Q̂(x0;c0) � N (cx; H

−1), where cx =
arg maxc p(cjx0; c0), and H is the Hessian matrix of cx. As we derived in Section 3.3.1, the
approximation error is O(jc� cxj3), which is negligible as the sampled c 2 Q̂(x0;c0) is close to cx.

On this basis, we propose two estimators � and  used to estimate cx and H−1, respectively. For
�, to compute cx = arg maxc p(cjx0; c0) that best describe x0, we approximate ĉx = �(x0; �)
by minimizing the generation loss in Eq. (2) with momentum iterations starting from c0. This
approach accelerates convergence and avoids getting trapped in local minima. For  , we approximate
Ĥ−1 =  (x; �; c0; t) by performing a Taylor expansion around the flattened ĉx and incorporating
prior information from c0. In Appendixes A.2 and A.3, we have proven that the estimation errors of cx
and H−1 are with explicit upper bounds, and more detailed descriptions are provided in Section 3.3.2.

Then, we compute the prompt-agnostic adversarial perturbation � by maximizing the expectation of
Lcond in Eq.(2) over the prompt distribution Q(x0;c0). The objective can be formulated as:

�∗ = arg max
�
Ec∼Q(x0;c0)

Lcond(x0 + �; c0; �)]

= arg max
�

Z
p(cjx0; c0) � Lcond(x0 + �; c0; �)dc; s.t. j�jp � �;

(4)

where p(cjx0; c0) is used to represent the probability distribution of Q(x0;c0) given the inputs
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To optimize Eq.(4) from a global perspective, we devise a strategy in Section 3.4 that utilizes Monte
Carlo sampling on all input distributions, includinĝQ(x 0 ;c0 ) , to maximize the disturbance expectation.

3.3 Modeling the Prompt Distribution Q(x 0 ;c0 )

In this subsection, we �rst approximate the form ofQ(x 0 ;c0 ) and then estimate its mean and variance.

3.3.1 Laplace Modeling

De�nition 3.1. Sincex0 andc0 are independent ofc, we considerZ = p(x0; c0) as a constant. De-
noteg(c) := p(x0; c0jc) � p(c), cx := arg max c g(c), andH := �rr c logg(c)jcx for convenience.

We adopt Laplace approximation to modelQ(x 0 ;c0 ) . Using Bayes' theorem, we obtain:

p(cjx0; c0) =
p(x0; c0jc) � p(c)

p(x0; c0)
: (5)

We then approximatelogg(c) in De�nition 3.1 aroundcx using a second-order Taylor expansion:

logg(c) � logg(cx ) �
1
2

(c � cx )H (c � cx )T : (6)

From Eq.(6) and by ignoring terms that are independent of c, we infer that

p(cjx0; c0) / exp
�

�
1
2

(c � cx )H (c � cx )T
�

; (7)

which meansp(cjx0; c0) could be approximated as a normal distribution,i.e.,

Q(x 0 ;c0 ) (c) � N (cx ; H � 1): (8)
The derivation is provided in Appendix A.1, wherein the error of the Gaussian approximation is the
third-order derivatives oflogp(x) aroundcx , i.e., O(jc � cx j3).

3.3.2 Parameter Estimators

Estimator � . According to De�nition 3.1,cx is de�ned as the text feature that maximizes the joint
probability ofx0 andc0. As directly maximizing the likelihood is untrackable, similar to [51], we
convert the likelihood maximization problem into an expectation minimization problem with a proper
approximation (please kindly refer to Appendix A.2) for more details), which can be written as:

ĉx = � (x0; � ) = arg min
c

TX

t =0

L(x0; �; t; c ; � ) = arg min
c

TX

t =0

k� � � � (x t ; t; c)k2
2 (9)

To solve forĉx in Eq.(9) and avoid local minimal, we derive a momentum-based iterative method
[39] with the initial value set as the reference promptc0:

mi = �m i � 1 + (1 � � )r cL(x; �; t; c ; � );
ci = ci � 1 � r � mi ;

(10)

wheremi represents the momentum term at iterationi , andr , � are learning rates.

Estimator  . To computeH in De�nition 3.1, we adopt three operations: substituting� logg(c)
with the loss functionL in Eq.(2), incorporating prior information fromc0, and applying the Taylor
approximation ofL around the �attened̂cx (Detailed in Appendix A.3.1),which enable us to compute:

(c0 � cx )T H (c0 � cx ) = 2 � (L (x; �; t; c 0; � ) � L (x; �; t; ĉx ; � )) ; (11)
To obtainH � 1 from Eq.(11), we simplify the effective dimensionality ofH in Appendix A.3.2). This
allows us to estimate theH � 1 using the following expression:

Ĥ � 1 =  (x; �; c 0; t) =
jjc0 � ĉx jj2

2

2 � (L (x; �; t; c 0; � ) � L (x; �; t; ĉx ; � ))
I; (12)

whereI represents the identity matrix andx are input images. As we analyzed in Appendix A.3.2,
the cosine distance between the approximatedĤ � 1 andH � 1 (diagonalized assumption) is with an
upper bound of 0.0909 under our standard experimental settings. This simpli�cation signi�cantly
reduces the computational complexity with a minor approximation error.
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Algorithm 1 Prompt-Agnostic Adversarial Perturbation
Input: imagesx, reference promptc, parameter� , epoch numbersM , N , learning rates� , r , � ,
budget� , noise stepsT, loss functionL(x; �; t; c ; � ) in Eq.(2)
Output: Adversarial examplesxM
Initialize c0 = c, x0 = x, m0 = 0 , � c � N (0; I )
for j = 0 to N � 1 do

Sampletc 2 U(0; T),
Compute gradientgc = r cj L(x i ; � c; tc; cj ; � )
Compute momentummj +1 = �m j + (1 � � )gc
Updatecj +1 = cj � r � mj

end for
for i = 0 to M � 1 do

Sample� � N (0; I ), t 2 U(0; T)

Samplec � N (cN ; jj c0 � cx jj 2
2

2�(L (x i ;�;t;c 0 ;� ) � L (x i ;�;t;c N ;� )) I )
Compute gradientgx = r x i L(x i ; �; t; c ; � ))
Updatex i +1 = clipx 0 ;� (x i + � � sgn(gx ))

end for

3.4 Maximizing the disturbance expectation

In this subsection, we devise the strategy of maximizing the disturbance expectation based on the
modeled prompt distribution, thereby obtaining the �nal PAP algorithm outlined in Algorithm 1.

Sampling Distributions for maximization. To maximize the optimization objective Eq. (4) from
a global perspective, we adopt Monte Carlo sampling on all input distributions, includingQ(x 0 ;c0 ) .
Drawing inspiration from established adversarial attack methods [23, 36, 52], we iteratively sample
values fort, � , and� c. Subsequently, we perform a gradient ascent step ofL (x; �; t; c ; � ) with respect
to x, which can be summarized as:

x i +1 = x i + � � sgn(r x i L(x i ; �; t; c ; � )
�
� � � N (0; I ); t 2 U(0; T); c � Q(x 0 ;c0 ) ); (13)

where sgn(�) refers to the sign function, and� controls the step size of the gradient ascent.

Further Discussion.To further enhance the effectiveness of our proposed algorithm, we seamlessly
integrate it with other techniques in Appendix C, such as ASPL [22], to reach a better performance.
We also discuss modifying the perturbation space with thetanhfunction for smoother optimization
with better �exibility [ 52] than clipping-based constraints in Appendix B. Lastly, Appendix H explores
the limitations and future directions of our model.

4 Experiments

In this section, we experimentally compare PAP with other protection methods for customized
models, speci�cally targeting DreamBooth, the leading customized text-to-image diffusion model
for personalized image synthesis. DreamBooth customizes models by reconstructing images using a
generic prompt that includes pseudo-words like "sks," while also addressing over�tting and shifting
through a prior preservation loss. We evaluate PAP on various tasks, including privacy and style
protection, using diverse datasets.

4.1 Experimental setup

Datasets. Our experiments involve face generation tasks using CelebA-HQ [53] and VGGFace2
[54] datasets, as well as style imitation task using the Wikiart dataset [55]. For CelebA-HQ and
VGGFace2, we select subsets of 600 images respectively, with each of 12 photos from an identical
individual. For Wikiart, we choose 100 paintings, with each set consisting of 20 paintings from the
same artist.

Implementation Details. We optimize adversarial perturbations over 50 training steps and 20 text
sampling steps. The step size of image, text and momentum is set to 1/255 and 0.001, 0.5 respectively,
and the default noise budget is 0.05. For the Dreambooth, LoRA ,TI models, we train the models
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with a learning rate of5 � 10� 7 and batch size 4. We perform 1,000 iterations of �ne-tuning with
SD1.5 as a pretrained model. The PAP method takes approximately 4 to 6 minutes to complete on
an NVIDIA A800 GPU with 80GB memory. To assess defense robustness, we simulate diverse
attacker prompts using ten inference sentences in Table 7 that cover a wide range of possibilities. All
experimental results presented below are based on the average metrics obtained from ten sentences
at default. This approach provides a comprehensive evaluation of overall protection capability with
smoother metric variations.

Evaluation Metrics. We utilize six metrics, categorized into three aspects. For a more detailed
introduction, please refer to Appendix E.4.

1) Image-to-Image Similarity: We adopt the following metrics to assess image similarity:
CLIP Image-to-Image Similarity (CLIP-I) [56], Fréchet Inception Distance (FID), and
Learned Perceptual Image Patch Similarity (LPIPS) [57]. Lower CLIP-I (#) and LPIPS (#),
and higher FID (" ) indicate better defense performance;

2) Text-to-Image Similarity : CLIP measures the coherence between the test prompt and
generated images, with lower scores (#) indicating worse alignment;

3) Image Quality: BRISQUE [58] evaluates image quality using statistical features, with
higher scores (" ) indicating worse quality. LAION aesthetic predictor [59] assesses the
aesthetic quality of images based on visual features, with lower scores (#) indicating worse
aesthetics.

Table 1: Comparison with other adversarial perturbation methods on the face generation task (includ-
ing Celeb-HQ and VGGFace2 datasets, training prompt "a photo of sks person") and style imitation
task (including Wikiart dataset, training prompt "a sks painting") using ten different test prompts,
where the reported metric values are the average across these ten test prompts.

Dataset Method FID (" ) CLIP-I (#) LPIPS (" ) LAION (#) BRISQUE (" ) CLIP (#)

Celeb-HQ

Clean 124.2 0.7844 0.4776 6.082 28.12 0.3368
AdvDM 217.1 0.6728 0.5682 5.721 34.19 0.2905
Anti-DB 233.3 0.6371 0.5924 5.497 35.89 0.2800
IAdvDM 159.1 0.6955 0.5303 5.768 31.77 0.2699
PAP(Ours) 249.9 0.5539 0.6730 5.280 36.95 0.2543

VGGFace2

Clean 230.3 0.6567 0.5471 5.889 25.67 0.3254
AdvDM 243.8 0.5931 0.6775 5.551 31.41 0.2823
Anti-DB 273.0 0.5483 0.6960 5.334 28.95 0.2766
IAdvDM 248.6 0.5802 0.6798 5.597 32.93 0.2835
PAP(Ours) 288.5 0.5164 0.7023 5.127 35.02 0.2577

Wikiart

Clean 198.7 0.7715 0.6193 6.367 27.34 0.3515
AdvDM 392.7 0.6498 0.7606 5.949 33.54 0.3026
Anti-DB 386.4 0.6462 0.7396 5.715 31.01 0.2997
IAdvDM 390.0 0.6550 0.7149 5.996 35.30 0.3037
PAP(Ours) 448.3 0.5641 0.7782 5.490 38.47 0.2654

4.2 Comparison with State-of-the-Art Methods

4.2.1 Face Privacy Protection

We �rst conduct experiments in preserving face privacy. During training, the reference and training
prompt are both set as “a photo of sks person". Then we use ten prompts related to sks person
to evaluate the models' ability to synthesize images. The average results are presented in Table 1,
showcasing the superior performance of our method in terms of all metrics on both the CelebA-HQ
and VGGFace2 datasets. For example, on the Celeb-HQ dataset, our method exceeds the second-best
Anti-DB by 13.55%in LPIPS, and reduces by13.06%and3.948%in CLIP-I and LAION. Also, on
the VGGFace2 dataset, our method exceeds the second-best method by6.347%in BRISQUE, and
reduces by5.818%and6.833%in CLIP-I and CLIP. These results highlight the effectiveness of our
method in preserving face privacy as well as robustness to datasets and various prompts' attacks. In
Figure 2 (left), we visualize some of the comparative protection results.
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Figure 2: Qualitative defense results of different methods in VGGFace2 (left) and Wikiart (right).
Each row represents a method, and each column represents a different test prompt (shown at the
bottom). The adversarial examples generated by our method effectively defend against all prompts in
both datasets. In contrast, other baselines primarily focus on protecting the �xed prompt (the �rst
column), resulting in compromised defense for other prompts.

Table 2: Ablation study of text sampling steps.

Text sampling stepsFID (" ) CLIP-I (#) LPIPS (" ) LAION (_) BRISQUE (̂ ) CLIP (_) Cycle Time
0 386.4 0.6462 0.7396 5.715 31.01 0.2997 0.3s
10 430.8 0.5873 0.7665 5.577 36.24 0.2710 5.0s
15 448.3 0.5641 0.7782 5.490 38.47 0.2654 7.4s
20 457.5 0.5562 0.7854 5.466 38.33 0.2591 9.6s
25 462.8 0.5481 0.7901 5.508 38.37 0.2552 11.9s

4.2.2 Style Imitation

We also evaluate methods' ability to prevent artistic style imitation using the Wikiart dataset. The
reference and training prompt are both set as “a sks painting". Ten prompts related to the style of
“sks” painting are used to evaluate the model's performance and robustness. It is observed in Table 1
that our method achieves a higher FID, LPIPS, BRISQUE and lower CLIP-I, LAION and CLIP
compared to existing methods. For instance, the FID and BRISQUE of our method outperforms that
of others by at least14.16%and8.980%while the CLIP-I and LAION reduce by at least12.71%
and3.94% These results demonstrate the effectiveness of our method in preventing style imitation
as well as robustness to attacks with different prompts. In Figure 2 (right), we visualize some of
the comparative protection results for Wikiart dataset. More visualized results are demonstrated in
Appendix I.

4.3 Ablation Study

Text Sampling Steps.We evaluate PAP under different text sampling stepsN (ranging from 0 to
25) used for sampling the promptc during training. We use the Wikiart dataset and “a sks painting"
prompt to conduct this ablation experiment (see Table 2). Taking into account the cycle time and
model performance, we set the text sampling stepN to 15.

Inference Prompt Combination. To analyze the effect of prompt variation, we design combinations
of prompt categories and quantity: 4� 20, 8� 10, 10� 8, 16� 5, 20� 4. This keeps the total number of
generated images constant while varying the number of prompt categories, allowing us to isolate the
effect of prompt categories on the results. As Figure 3 shows, PAP consistently surpasses all other
comparison methods and maintains a robust defense against changes in prompt categories.
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Sensitivity to the Initial Prompt. In Table 3, we present the outcomes when using the initial prompt
"", showcasing a signi�cant decline in performance compared to the original PAP. This decline is
attributed to: a) the initial prompt serves as a crucial prior for estimating parameters, facilitating rapid
iteration (only 20 steps) to achieve a reliable approximation; b) it is involved in the modeling ofH
estimation, where the approximate expression forH is based on the Taylor expansion modeling of
the relevant parameters.

Table 3: Results with the initial prompt ""

Dataset FID (#) CLIP-I (" ) LPIPS (#) LAION (#) BRISQUE (" ) CLIP (#)
Celeb-HQ 154.57 0.72 0.50 5.83 30.18 0.32
VGGFace2 232.34 0.61 0.60 5.65 29.20 0.29

Wikiart 320.79 0.69 0.71 5.72 31.88 0.30

Pseudo-word.In our experiments, we conduct evaluations using the commonly used pseudo-word
"sks," which is representative but may not cover all possible cases. To further validate our method,
we included additional less commonly used pseudo-words. Results in Table 12 clearly demonstrates
that our method consistently outperforms the others with other pseudo-word.

Evaluate the approximatingH . We conduct a simple experiment by directly adding Gaussian noise
(with variances 1, 5, 10, and 20) to the input to evaluate the value of approximatingH . As shown in
Table 4, our proposed PAP method, using the variance estimate� 2, achieves the best performance
across all metrics. Speci�cally, it outperforms the second-best method by 3% (LPIPS), 2% (FDFR),
3% (ISM), and 2.27% (BRISQUE). These �ndings underscore the necessity of estimating variance
� 2 to generate more effective adversarial perturbations.

Table 4: Simple Baseline of Adding Gaussian Noise to the Input on VGGFace2 Dataset

Variance LPIPS (#) FDFR (#) ISM (" ) BRISQUE (" )
1 0.67 0.64 0.38 31.92
5 0.67 0.65 0.38 32.75
10 0.66 0.62 0.40 29.21
20 0.64 0.60 0.44 27.01
H 0.70 0.67 0.34 35.02

Other Customized Models.To verify the robustness of proposed methods to �ne-tuning methods,
we apply PAP to Textual Inversion and DreamBooth with LoRA. LoRA [60], a widely used ef�cient
low-rank personalization method, poses concerns due to its strong few-shot capability that enables
unauthorized artistic style copying. Textual Inversion [13] learns customized concepts by simply
optimizing a word vector instead of �netuning the full model. Table 5 demonstrates that PAP effec-
tively defends against both methods, highlighting our ef�cacy in countering various personalization
techniques.

Noise Budget.We conduct experiments to explore the impact of noise budget� on PAP's defense
performance (see Table 11 in Appendix F.4). A noise budget of 0.05 is effective and adopted.

Figure 3: Defense performance of different methods in prompt variation settings. The x-axis
represents the number of prompt categories multiplied by the number of generated images per prompt:
4� 20, 8� 10, 10� 8, 16� 5, and 20� 4. The y-axis displays the values of different metrics.
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Table 5: Robustness of our method to different �ne-tuning models.

Def.? FID (" ) CLIP-I (#) LPIPS (" ) LAION (_) BRISQUE (̂ ) CLIP (_)
LoRA � 152.5 0.7944 0.5929 6.227 18.25 0.4379
LoRA X 375.8 0.6271 0.7673 5.534 41.16 0.2440
TI � 144.3 0.8007 0.5882 6.391 13.21 0.4533
TI X 281.8 0.6605 0.7220 5.588 38.94 0.2462

4.4 Extending Experiments

DiffPure. DiffPure [61] utilizes SDEdit [62] to purify adversarial images by adding noise and
denoising them using diffusion models. In Table 6, we conduct experiments on the Wikiart dataset
using DiffPure (t=100). We can see that, 1) compared toNo Defense, PAP+DiffPure achieves
much better adversarial perturbation performance (0.565(_), 3.38(̂ ), 0.0408(_) advances on LAION,
BROSQUE and CLIP metrics). 2) Compared to other methods+DiffPure, PAP+DiffPurestill achieves
the best performance on all metrics.

Table 6: Performance comparison after applying DiffPure with changes in ().

FID (^) CLIP-I (_) LPIPS (̂ ) LAION (_) BRISQUE (̂ ) CLIP (_)
AdvDM+DiffPure 301.22(91.48-) 0.71(0.06+) 0.70(0.06-) 6.217(0.268+) 28.58(4.96-) 0.3376(0.0350+)
Anti-DB+DiffPure 335.94(50.46-) 0.69(0.04+) 0.68(0.06-) 5.991(0.276+) 30.12(0.89-) 0.3410(0.0413+)
IAdvDM+DiffPure 271.02(118.98-) 0.72(0.01+) 0.68(0.03-) 6.227(0.231+) 28.00(7.30-) 0.3489(0.0452+)
PAP+DiffPure 379.60(68.70-) 0.64(0.08+) 0.72(0.06-) 5.802(0.312+) 30.72(7.75-) 0.3107(0.0453+)
No Defense 198.71 0.77 0.62 6.367 27.34 0.3515

Preprocessing.A recent study [63] reveals that current data protections in text-to-image models are
fragile and demonstrate limited robustness against data transformations like JPEG compression. To
assess the resilience of our proposed Prompt-Agnostic Adversarial Perturbation (PAP) method, we
conduct targeted evaluations using the LAION and BRISQUE metrics. Despite a slight decrease in
performance, our method still achieves favorable outcomes in terms of image quality metrics For a
detailed discussion and results, please see Appendix F.6.

5 Conclusion

This work mitigates risks from misusing customized text-to-image diffusion models. We introduce
subtle perturbations optimized from a modeled prompt distribution, fooling such models for any
prompt. Demonstrating resilience against diverse attacks, our framework surpasses prior prompt-
speci�c defenses through robustness gains. By ef�ciently perturbing content via a distribution-aware
method, our contributions effectively safeguard images from diffusion model tampering under
unknown prompts.
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A Derivation of Prompt Distribution Modeling

In this section, our goal is to develop an algorithm for modeling the prompt distribution given a
reference promptc0 and protecting imagesx0. Since the exact form of this distribution is impractical
to derive, we employ the idea of Laplace approximation. By considering a second-order Taylor
expansion at a critical point, we approximate the distribution near this critical point as a Gaussian
distribution. To reduce computational complexity, we make assumptions and approximate estimates
for the mean and variance. The algorithm is presented in Algorithm 2.

Algorithm 2 Prompt Distribution Modeling
Input: imagesx, reference promptc, parameter� , epoch numbersN , learning ratesr , � , noise� ,
loss functionL(x; �; t; c ; � ) in Eq.(2).
Output: MeancN , squareH � 1

Initialize: c0 = c, x0 = x, m0 = 0
for j = 0 to N � 1 do

Samplet
Compute gradientgc = r cj L(x; �; t; c j ; � )
Compute momentummj +1 = �m j + (1 � � )gc
Updatecj +1 = cj � r � g

end for
ComputeĤ � 1 = jj c0 � cN ) jj 2

2
2�(L (x;�;t;c 0 ;� ) � L (x;�;t;c N ;� ))

In the following, we will provide a mathematical justi�cation for the algorithm's validity.

A.1 Laplace Approximation Details

A.1.1 Motivation and Basic Idea

Laplace approximation is a simple yet widely used method for approximating probability distributions,
especially in the context of Bayesian inference and machine learning. The main idea behind Laplace
approximation is to approximate a target distributionp(x) by a Gaussian distributionN (�; �) , where
the mean� and covariance� are determined by matching the extreme point and curvature of the
target distribution at its extreme point.

Speci�cally, let cx be the maximum point ofp(x), i.e.,cx = arg max x p(x). Laplace approximation
uses a second-order Taylor expansion oflogp(x) aroundcx to construct the approximate Gaussian
distribution:

logp(x) � logp(cx ) �
1
2

(x � cx )T H (cx )(x � cx ) + O(jx � cx � j 3); (14)

whereH (cx ) is the Hessian matrix (the matrix of second-order partial derivatives) oflogp(x)
evaluated atcx . Exponentiating both sides and ignoring the higher-order terms, we obtain the Laplace
approximation:

p(x) � N (cx ; � H (cx ) � 1): (15)

A.1.2 Error Analysis

The error of the Laplace approximation comes from neglecting the higher-order terms in the Taylor
expansion. The approximation error can be quanti�ed by the remainder termO(jx � cx j3), which
represents the third and higher-order derivatives oflogp(x) evaluated at some point betweenx and
cx .

More precisely, let� (x) denote the remainder term, then the Laplace approximation can be written
as:

p(x) = N (cx ; � H (cx ) � 1) exp(� (x)) ; (16)
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where� (x) satis�eslim j x � cx j! 0 � (x)=jx � cx j3 = 0 . This means that the relative error of the Laplace
approximation isO(jx � cx j3) in a neighborhood ofcx .

In general, the accuracy of the Laplace approximation depends on the smoothness and behavior of the
target distributionp(x) around its modecx . If p(x) is suf�ciently smooth and concentrated around
cx , the higher-order terms in the Taylor expansion become negligible, and the Laplace approximation
provides a good approximation. However, ifp(x) has heavy tails or is multi-modal, the approximation
error can be signi�cant, especially in regions far away fromcx .

A.2 Estimation of cx

From De�nition 3.1 and derivations in AdvDM [23], we have:

logg(c) = log p(c) + log p(x0; c0jc)
= log p(c) + Et [logp(x t � 1jc; xt )];

(17)

wherex t is de�ned in Eq.(1).

Since minimizing the diffusion loss to maximize likelihood is a common practice, we have:

cx = arg max
c

Et [logp(x t � 1 j c; xt )]

= arg min
c

Et;� �N (0 ;1) L cond (x0 + �; c ; � ):
(18)

To reduce computational cost, we approximate Eq.(18) with bounded error, and estimatecx using
a single sample of� instead of averaging. The detailed derivation and justi�cation can be found in
Appendix A.2.1 and A.2.2. The �nal estimation ofcx can be derived as follows:

ĉx = arg min
c

TX

t =0

L(x; �; t; c ; � ): (19)

Empirical ablation experiments validate the effectiveness of this estimation, as demonstrated in Table
10.

To solve forĉx and avoid local optima, we employ an iterative method with momentum to estimate
cx instead of directly solving for a local minimum. In this approach, we leverage the ensemble of loss
functions from different time steps in Eq. (2). Inspired by transferable adversarial attacks [39], we
aim to �nd a transferablecx that navigates the diverse loss landscape using the momentum iteration
algorithm.

mi = �m i � 1 + (1 � � )r cL(x; �; t; c ; � );
ci = ci � 1 � r � mi :

(20)

Here,mi represents the momentum term at iterationi . The details of the information about the
transferable adversarial attacks can be found in Appendix D.

Additionally, considering thatc0 serves as a reference prompt input that is typically expected to be
highly correlated with the content of the image, we assume thatc0 andcx are very close in the textual
space. Then the iterative solution forcx can be initialized fromc0.

A.2.1 Upper bound ofcx estimation error.

Theorem A.1. Assumeg : Rm � m ! R is Lipschitz continuous underL 1 norm. Then, asn ! 1 ,
we have

(
1
n

nX

i =1

g(x i ) � g

 p
n

n

nX

i =1

x i

!

) < 2L �

r
2
�

(21)

wherex i
i.i.d.� N (0; I ) for i = 1 : n.

Proof. The Lipschitz continuity condition for the 1-norm can be expressed as follows: For any
x; y 2 Rm � m , there exists a constantL > 0 such thatkg(x) � g(y)k j � L kx � yk. By taking the
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difference of the two equations in Eq.(21), we have:
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Notice that for anyi from 1 ton ,
0

@x i �
p

n
n

P n
i =1 x iq

2 � 2p
n

1

A � N (0; I ): (23)

So we have: �
�
�
�
�
�

x i �
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n
n

P n
i =1 x iq
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�
�
�
�
�
�

� F (0; I ): (24)

The folded normal distribution, denoted byF , has a probability density function (PDF) given by

f Y (x; �; � 2) =
1

p
2�� 2

�
e� ( x � � ) 2

2 � 2 + e� ( x + � ) 2

2 � 2

�
; (25)

for x � 0, and 0 elsewhere. The PDF can be simpli�ed as

f (x) =

r
2

�� 2 e� ( x 2 + � 2 )
2 � 2 cosh

� �x
� 2

�
; (26)

wherecoshis the hyperbolic cosine function. The cumulative distribution function (CDF) is given by

FY (x; �; � 2) =
1
2

�
erf

�
x + �
p

2� 2

�
+ erf

�
x � �
p

2� 2

��
; (27)

for x � 0, whereerf() is the error function. The expression simpli�es to the CDF of the half-normal
distribution when� = 0 .

The mean of the folded distribution is given by

� Y = �

r
2
�

�
1 � e� � 2

2 � 2

�
+ �

h
1 � 2�

�
�

�
�

�i
; (28)

where�( x) is the standard normal cumulative distribution function.

The variance can be easily expressed in terms of the mean:

� 2
Y = � 2 + � 2 � � 2

Y (29)
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Denote the �nal expression in Eq. (22) asY , we can obtain the following results asn approaches
in�nity:

E (Y ) = lim
n !1
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n

�
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r
2
�

= 2L �

r
2
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;

Var(Y ) = lim
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�
L
n

�
2 �

2
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�� 2

� (n � 1) �
�

1 �
2
�

�
= 0 :

(30)

This means that the upper bound for our estimation error is2L �
q

2
� .

A.2.2 Single sample for�

Based on the theorem's conclusion, we have the �exibility to choose between weighting before the
forward pass or weighting after the forward pass during Gaussian sampling, while ensuring that
their errors are within a certain upper bound. By introducing the scaling factor

p
n, we are able to

preserve the distribution characteristics of the input samples, which is crucial for subsequent diffusion
processes.

An easy corollary of Theorem A.1 further states:

Corollary A.2. LetL (� ) denotes Eq.(2) for convenience, givent; x 0; c; � . Asn ! 1 , we have

nX

i =1

1
n

L(� i ) � L

 
nX

i =1

p
n

n
� i

!

< 2K �

r
2
�

; (31)

where� i
i.i.d.� N (0; I ) for i = 1 : n, K is �nite.

To enable backpropagation, the model lossL(� ) must be differentiable with bounded gradients,
satisfying the Lipschitz continuity condition with respect to� . In Corollary A.2, we observe that
P n

i =1

p
n

n � i � N (0; I ). Instead of computing the entire average, we can directly sample� from
N (0; I ) for the forward process. This allows estimating Eq.(18) practically with a single sample� ,
while ensuring that the estimation error is within a certain range as introduced in Eq.(31).

Please note that this is a very coarse upper bound estimation. In practice, we �nd that the actual
difference is far less than this upper bound. This may be because we use a pretrained large model
which has already been well-trained and generalized well to lots of inputs, making the loss typically
very close to and small (always within 1 (K )). Therefore, we corroborate with experimental results
and �nd that it unnecessary to resample� repeatedly in the process of optimizingcx .

Moreover, merely comparing the L values is insuf�cient. We must show that when L values are close,
the difference between the corresponding c values is suf�ciently small. When the loss difference
L(cx ) � L (cy ) is constrained within a certain range, the text embedding differencecx � cy will also
typically be limited, due to the following reasons:

• Pretrained language generation models are extremely sensitive to even minor changes in
input sequences [64], such as the prompt. These subtle alterations can result in signi�cant
variations in the model's predicted outcomes and loss function. Therefore, when the
difference in loss is constrained within a certain range, we can infer that the semantic
disparity in the prompts is also effectively controlled.

Therefore, restricting the loss difference helps bound the text embedding difference, validating that
the proposed c values indeed represent meaningful alternative text options rather than arbitrary or
randomly perturbed sequences. This ensures the method can generate semantically-meaningful
alternatives as expected.
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A.3 Estimation of H � 1

A.3.1 Derivation of H

Directly computing theH matrix requires quadratic complexity, and calculating its inverse further
requires cubic complexity. Even with an A800 device with 80GB of memory, it is insuf�cient to
support such a computational workload.

Recall that we are interested in estimating the inverse of the Hessian matrixH = �rr c logg(c)jcx .
In general, the inverse of a matrix is expensive to compute, especially for large matrices. Therefore,
we seek to simplify the computation ofH � 1 by leveraging low-order information.

We begin by considering the second-order Taylor expansion ofg(c) aroundcx (�attened 59,136-
dimension vector) :

g(c) � g(cx ) + r g(cx )T (c � cx ) +
1
2

(c � cx )T H (c � cx ) (32)

Sincecx is the maximizer ofg(c), we haver g(cx ) = 0 . Therefore, Eq. 32 simpli�es to:

g(c) � g(cx ) �
1
2

(c � cx )T H (c � cx ) (33)

We can obtain the estimation formula ofH with respect toL (c) since� L (c) is used to computeg(c):

H = rr L (c)jcx ; (34)

Therefore, we have:
(c0 � cx )T H (c0 � cx ) = 2( L (c0) � L (cx )) ; (35)

A.3.2 Simpli�cation for Estimation of H � 1

Research [65] has shown that word embeddings can represent word semantics through distributed,
low-dimensional dense vectors. These embeddings capture linguistic patterns and regularities while
requiring substantially less memory than sparse high-dimensional representations.

Based on the aforementioned research �ndings and previous approaches for variance estimation in
Laplace modeling [66], we make the assumption that the Hessian matrix is a positive de�nite diagonal
matrix. This assumption is reasonable since calculating the Hessian matrix in the high-dimensional
text feature space poses signi�cant computational challenges for stable diffusion models. Furthermore,
as the Hessian matrix represents the second-order derivative of the log-likelihood function, it must be
positive de�nite at the maximizercx to ensure the local convexity of the function.

De�nition A.3. Let (c0 � cx ) = [ t1; t2; : : : ; tn ]T . LetH = diag(h1; h2; : : : ; hn ); 1
l > h i > 0; i =

1; 2; :::; n. DenoteL := 2( L (c0) � L (cx )) . De�ne D :=
q P n

i =1
1

h2
i
.

From De�nition A.3, we have:

(c0 � cx )T H (c0 � cx ) = [ t1; t2; : : : ; tn ]

2

6
6
4

h1 0 : : : 0
0 h2 : : : 0
...

...
...

...
0 0 : : : hn

3

7
7
5

2

6
6
4

t1
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...

tn

3

7
7
5 =

nX

i =1

t2
i hi (36)

This implies that Eq.(35) can be written as:

nX

i =1

t2
i hi = L (37)

Given Eq.(37) as a n-variable linear equation, solving it alone is insuf�cient. Additional n-1 equations
are required to obtain a complete solution. However, due to the large value of n=51,396, solving this
system of equations would be highly time-consuming.
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To solve this problem, let's consider̂H = � 2I , where� 2 is an unknown positive scalar andI is the
identity matrix. ReplacingH with Ĥ in Eq.(A.3), we approximate� 2 as follows:

� 2 =
L

P n
i =1 t2

i
=

L
jjc0 � cx jj2

2
(38)

This implies:

Ĥ � 1 = ( � 2I ) � 1 =
jjc0 � cx jj2

2

L
I (39)

On the other hand, in De�nition A.3, we assume that the diagonal elements of matrixH are bounded.
SinceH is a diagonal matrix, its eigenvalues (diagonal elements) are inherently bounded. In our
experiments with a learning rate of 0.001 and a step count of 15, we have a bound of10� 6 for t2

i
from Eq. (37). This leads to an upper bound of106L for

P n
i =1 hi , resulting in an average value

of thehi sequence with an approximate upper bound of around20L. Based on our observations,
we incorporate the following into our standard experimental con�guration:L < 1, suggesting a
value around20 for 1=l, and subsequently determine thatD < 12:5 (We will further explore the
implications of different values ofD in Figure 4.).

Since Eq. (39) is considered as the �nal estimation ofH � 1, it is crucial to estimate the upper bound of
the distance between̂H � 1 andH � 1. As both matrices are high-dimensional and diagonal, we employ
the cosine dissimilarity, a widely used metric for measuring the distance between high-dimensional
vectors, to quantify the matrix distance. Speci�cally, we extract the diagonal elements of the matrices
as vectors and compute their cosine dissimilarity, which is de�ned as:

Cosine Dissimilarity(~x; ~y) = 1 �
~x � ~y

jj~xjjjjj ~yjj
(40)

The cosine dissimilarity ranges from 0 to 2, where 0 indicates that the vectors are identical, 1 implies
that they are orthogonal, 2 indicates they are maximally dissimilar. We �rst calculate the cosine
similarity:

Similarity = cos(Ĥ � 1; H � 1)

=
Ĥ � 1 � H � 1

kĤ � 1kkH � 1k

=

P n
i =1

1
h i � 2

p
n

� 2

q P n
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1
h2

i
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1
n

P n
i =1

1
h iq

1
n

P n
i =1

1
h2

i

�

p
D 2 � (n � 1)l2 + ( n � 1)l

p
nD

;

(41)

wherel andD are de�ned in De�nition A.3.

We conduct ablation experiments with differentl andD values, as shown in Figure 4. Under the
standard setting (the yellow point in the bottom left), the cosine dissimilarity betweenĤ � 1 and
H � 1 is upper bounded by 0.0909. Even whenD increases signi�cantly (close to 60), the cosine
dissimilarity does not exceed 0.6.

While this simpli�cation may introduce some errors, it signi�cantly reduces the complexity of
computing the Hessian matrix, which is bene�cial for model training.

B Further Discussion for PAP

We propose to incorporate prompt sampling and optimization into the PGD framework, analogous to
AdvDM. Inspired by CW attacks [52], which maps adversarial examples to the tanh space, we can
relax the constraints on the optimization problem compared to standard PGD.
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Figure 4: Cosine dissimilarity between̂H � 1 andH � 1 under different settings ofD andl.

Speci�cally, instead of clipping the perturbations to the[x0 � �; x 0 + � ] box as in PGD, we can allow
the perturbation� to vary in the entire space by modifying the image as:

xadv =
1
2

(tanh(� ) + 1) (42)

This has two key advantages: 1.The perturbations� are no longer bounded by� , allowing for more
�exible optimization; 2.We can leverage the derivative properties of tanh:

d
dx

tanh(x) = 1 � tanh2(x) (43)

to perform gradient computations without additional cost.

Overall, modifying the space in this way could lead to a smoother optimization process and is a
promising direction for future improvement. The full algorithm would involve iteratively optimizing
both the prompt embedding and image perturbations via signed gradient steps.

C Generalized Prompt-agnostic Adversarial Perturbation

PAP algorithm can incorporate other arbitrary optimizers, such as ASPL, FGSM. The pseudo-code
is in Algorithm 3 as an improved algorithm AS-PAP. It is worth noting that when we set the text
sampling step to 0, our AS-PAP algorithm is essentially equivalent to Anti-DB [22].

D Transfer-based Adversarial Attacks

When crafting adversarial examples, the objective is to �nd perturbations that maximize the loss
function, leading to misclassi�cation or a decrease in the model's con�dence. However, the loss
landscape is often complex and non-convex, with numerous local optima and saddle points [67]. This
landscape structure poses challenges for optimization algorithms, as gradient-based methods can
easily get trapped in local optima, resulting in suboptimal or non-transferable adversarial examples.

In the context of our approach to estimatecx , by treating different instances of the loss functionL t as
individual "classi�ers" mentioned in above works and incorporating momentum in the optimization
process, we aim to steer the convergence towards �atter regions in the timestept landscape. This
strategy allows us to �nd a value ofcx that minimizes the expected value of the integral in Eq. (18)
while promoting improved generalization across the sampled loss functionsL t .

Analyzing and leveraging the loss landscape in classi�cation adversarial attack opens up new avenues
for understanding and improving adversarial robustness. Exhaustive enumeration of all possible
perturbations is often computationally expensive and time-consuming. On the other hand, solely
�tting the optimization process on a few sampled time steps can lead to over�tting and lack of
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Algorithm 3 Alternating Surrogate and Prompt-agnostic Adversarial Perturbation(AS-PAP)
Input: imagesx0, reference promptc, parameter� , epoch numbersM , N , K , Max , learning
rates� , r , � ,  , budget� , noise stepsT, loss functionL(x; �; t; c ; � ).
Output: Adversarial examplesxK

M
Initialize x0

0 = x0
for j = 0 to N � 1 do

Sampletc 2 U(0; T), � � N (0; I )
Compute gradientgc = r cj L(x0; � c; tc; cj ; � )
Compute momentummj +1 = �m j + (1 � � )gc
Updatecj +1 = cj � r � mj

end for
for k = 0 to K do

Initialize xk
0 = xk

M , c0 = c
for i = 0 to M � 1 do

Sample�; � c � N (0; I ), t 2 U(0; T)

Computec = cN + j c0 � cN ) j2
2

2�(L (x k
i ;�;t;c 0 ;� ) � L (x k

i ;�;t;c N ;� )) � � c

Updatexk
i +1 = clipx 0 ;� (xk

i + � � r x k
i
L(xk

i ; �; t; c ; � ))
end for
for m = 0 to Max-1do

�  � �  r � L(xk
M ; �; t; c 0; � )

end for
end for

generalization. It provides insights into the optimization process and offers opportunities to develop
more effective and transferable adversarial attacks and defenses.

E Implementation Details

E.1 Additional Details

Artists Name: vangogh, john-miler, alfred-sisley, pablo-picasso, abraham

Test prompt contents:The speci�c prompts we use for test on Celeb-HQ, VGGFace2 and Wikiart
are shown in Table 7:

Celeb-HQ and VGGFace2 Wikiart
p0 a photo of sks person. a sks painting.
p1 a dslr portrait of sks person. a sks painting of a tree.
p2 an impressionistic depiction of sks person.a photo of a dog in the style of sks painting.
p3 an abstract representation of sks person. a photo of a person in the style of sks paint-

ing.
p4 a cyberpunk style photo of sks person. a sks painting of a starry night.
p5 a realistic painting of sks person. a photo of a lion in the style of sks painting.
p6 a concept art of sks person. a photo of a sun�ower in the style of sks

painting.
p7 a headshot photo of sks person. a photo of a modern building in the style of

sks painting.
p8 a caricature sketch of sks person. a photo of a robot machine in the style of

sks painting.
p9 a digital portrait of sks person. a photo of the Mona Lisa in the style of sks

painting.
Table 7: Test prompts
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E.2 LoRA

LoRA is a method that utilizes low-rank weight updates to improve memory ef�ciency by decom-
posing the weight matrix of a pre-trained model into the product of two low-rank matrices,i.e.,
W = AB . This low-rank weight decomposition reduces parameters, minimizing storage needs.
While simple, LoRA enhances memory ef�ciency crucial for large models on constrained hardware.
However, defenses alone are limited versus robust methods. LoRA primarily optimizes ef�ciency
over security, so is used to validate stronger defenses against complex attacks. Combining LoRA
with such defenses yields balanced, resilient machine learning.

E.3 Textual Inversion

Textual Inversion allows users to personalize text-to-image generation models with their own unique
concepts, without re-training or �ne-tuning the model.

The key steps are:

1. Represent a new concept with a pseudo-wordS� .

2. Find the embedding vectorv� for this pseudo-wordS� by optimizing the following objective
using a small set of images depicting the concept:

v� = arg min
v

Ez� E (x ) ;y;� �N (0 ;1) ;t
�
k� � � � (zt ; t; c� (y))k2

2

�
; (44)

whereE is the encoder of a pre-trained Latent Diffusion Model (LDM),x are the input
images,y are prompts of the form "A photo ofS� ", � � is the denoising network,c� is the
text encoder,zt is the noised latent code, andt is the timestep.

3. Use the learned pseudo-wordS� (represented byv� ) in natural language prompts to generate
customized images with the text-to-image model,e.g., "A painting ofS� ".

E.4 Metrics

CLIP (Contrastive Language-Image Pretraining) is a framework that not only enables cross-modal
understanding between images and text but also allows direct comparison between two images. The
CLIP metric measures the similarity between two images using their embeddings.

The CLIP similarity between two imagesI 1 andI 2 can be calculated using the following formula:

CLIP(I 1; I 2) =
CosSim(f (I 1); f (I 2)) + 1

2
(45)

Here, the terms have the following meanings:

I 1: the �rst image,I 2: the second image,f (I 1): the embedding of the �rst image,f (I 2): the
embedding of the second image, CosSim(x; y): the cosine similarity between vectorsx andy.

The formula calculates the cosine similarity between the embeddings of the two images. The resulting
similarity score is normalized to the range [0, 1] by adding 1 and dividing by 2. A higher CLIP
value indicates a stronger similarity between the two images. CLIP models are trained on large-scale
datasets to learn a joint embedding space for images and text. This enables the models to capture
similarities and differences between images using their embeddings. By comparing the embeddings
of two images using the cosine similarity, CLIP provides a measure of their visual similarity. The
CLIP metric can be used in various tasks such as image retrieval, image similarity search, and image
clustering. It allows for effective comparison and organization of images based on their visual content,
without the need for explicit labels or annotations.

LPIPS (Learned Perceptual Image Patch Similarity) is a metric used to measure the perceptual
similarity between two images. It takes into account the local image patches instead of global image
features, making it more aligned with human perception. The LPIPS metric is calculated using the
following formula:

d(x; x 0) =
1

H l � Wl

H lX

h=1

W lX

w=1

kwl � (ŷlhw � ŷl 0hw )k2
2 (46)
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Here, the terms have the following meanings:

x: the input to the model,x0: the reference input,l : the layer index,H l : the height of the feature
map at layerl , Wl : the width of the feature map at layerl , ŷlhw: the predicted output of the model
at position(h; w) in layerl , ŷl0hw: the predicted output of the model at position(h; w) in layerl
for the reference inputx0, wl : the weight associated with the position(h; w) in layerl The formula
calculates the squared Euclidean distance between the weighted differences of predicted outputs at
each position(h; w) in layerl , normalized by the total number of positions(H l � Wl ). This quanti�es
the perceptual similarity between the inputx and the reference inputx0 at the speci�ed layer. LPIPS
provides a perceptually meaningful measure for comparing images, capturing both local and global
information. It has been widely used in various computer vision tasks and can be especially useful
for evaluating the performance of image synthesis models.

BRISQUE is a widely used no-reference image quality assessment metric that evaluates the quality
of an image without relying on a reference image. It computes a quality score based on statistical
features extracted from the image, such as brightness, contrast, and naturalness. The BRISQUE score
ranges from 0 to 100, with higher scores indicating better image quality. The computation involves:

1. Extracting local normalized luminance statistics from the image.

2. Computing a feature vector from the statistics using a pre-trained model.

3. Mapping the feature vector to a quality score using a support vector regression model.

BRISQUE is effective in capturing distortions introduced by various image processing operations
and is widely used in benchmarking image generation models.

LAION aesthetics predictor is a linear model that takes CLIP image encodings as input. It was
trained on a dataset of 17,600 images rated by humans. The images in the training set were scored on
a scale from 1 to 10, with higher scores typically indicating artistic quality. In subsequent experiments,
the LAION aesthetics predictor assigns scores to samples generated by diffusion models. Higher
scores indicate a higher level of artistic quality in the images.

E.5 Baselines

To ensure a fair comparison, we followed the original settings of AdvDM, IadvDM, and Anti-
Dreambooth in our experiments. We constrained the noise budget to be the same for all methods
and focused on comparing their performance in untargted scenarios. This approach avoids the bias
introduced by selecting speci�c target images, as each method may have its own optimized target
image. Hence, we standardized the evaluation by considering untargted scenarios. For the attack
stage, we set the number of steps to 20. If a method involved training Dreambooth, we limited
the training steps to 10. To expedite the training process, we used a batch size of 20 for training
Dreambooth.

F Additional Study

F.1 More evidence of protecting fail of previous methods

The Table 8 presents the results of previous protective perturbation methods (No defense, AdvDM,
and Anti-DB) on the CelebA-HQ dataset, evaluated using the BRISQUE (higher is better) and CLIP
(lower is better) metrics. The results are reported for ten different test prompts, where p0 is the same
as the training prompt.

For the training prompt p0, both AdvDM and Anti-DB outperform the "No defense" baseline,
achieving higher BRISQUE scores (39.85 and 40.08 vs. 21.20) and lower CLIP scores (0.2053 and
0.1877 vs. 0.4821). This indicates that the protective perturbations are effective when the test prompt
matches the training prompt.

However, for the other test prompts (p1 to p9), which differ from the training prompt, the performance
of AdvDM and Anti-DB is not consistently better than the "No defense" baseline. For instance,
considering the BRISQUE metric, AdvDM achieves similar scores to "No defense" for prompts p2
(29.45 vs. 27.65), p4 (29.78 vs. 28.45), and p7 (26.89 vs. 26.73). Anti-DB shows similar BRISQUE
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Figure 5: Visualized results of different test prompts toward Anti-DB method on the CelebA-HQ
dataset and Wikiart dataset, with training prompt: a photo of sks person (top) / a sks painting (bottom).
The left column are adversarial examples (denoted as AE) by Anti-DB.

scores to "No defense" for prompts p3 (33.14 vs. 29.11), p5 (31.51 vs. 30.22), and p7 (31.74 vs.
26.73).

The CLIP metric also exhibits a similar trend, where AdvDM and Anti-DB do not consistently
outperform "No defense" for prompts different from the training prompt. For example, AdvDM has
similar CLIP scores to "No defense" for prompts p2 (0.3124 vs. 0.2543), p4 (0.3267 vs. 0.2987),
p7 (0.2654 vs. 0.3015), p8 (0.3012 vs. 0.2976), p9 (0.3129 vs. 0.3211) indicating poor defense
performance.

These observations suggest that while AdvDM and Anti-DB are effective in protecting against
the training prompt, their performance deteriorates when the test prompt deviates from the training
prompt. This highlights the challenge of developing robust protective perturbations that can generalize
to unseen prompts, which is a crucial requirement in real-world scenarios.

Table 8: Results of previous protective perturbations using ten different test promtps (Prompt contents
in Table 7 of Appendix) on the CelebA-HQ dataset. p0 is the same as the training prompt.

Metrics Method p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

BRISQUE (" )
No defense 21.20 25.34 27.65 29.11 28.45 30.22 27.89 26.73 31.05 28.98
AdvDM 39.85 37.12 29.45 35.67 29.78 33.14 37.25 26.89 36.52 32.23
Anti-DB 40.08 38.96 36.65 33.14 34.98 31.51 32.82 31.74 37.66 35.98

CLIP (#)
No defense 0.4821 0.4675 0.2543 0.4032 0.2987 0.3465 0.4211 0.2654 0.3012 0.3129
AdvDM 0.2053 0.2687 0.3124 0.2845 0.3267 0.2895 0.2532 0.3015 0.2976 0.3211
Anti-DB 0.1877 0.2612 0.3029 0.2754 0.3165 0.2806 0.2459 0.2924 0.2884 0.3115

Additionally, from Figure 5, when the test prompt matches the training prompt (e.g.green prompt,
the test images exhibit stable interference. However, when the test prompts differ, the test images
maintain high quality and semantic consistency with test prompts, nearly resembling scenarios
without any defense. This failure in previous protection is evident from the red prompt-generated
images in Figure 5

F.2 Sampling steps for training DreamBooth

The selection of the number of steps for �ne-tuning is also a critical factor that affects the quality of
the generated images. Therefore, we conducted ablation experiments with different sampling step
values: 500, 1000, 1200, 1600, and 2000. The results in Table 9 demonstrate the stable defense
effectiveness of our method across different sampling test step settings.
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Table 9: Ablation study of sampling test steps.

Sampling steps FID (" ) CLIP-I (#) LPIPS (" ) LAION (_) BRISQUE (̂ ) CLIP (_)
500 452.0 0.5467 0.7363 5.293 38.91 0.2875
1000 448.3 0.5641 0.7782 5.490 38.47 0.2654
1200 437.9 0.5909 0.7889 5.419 38.12 0.2387
1600 446.8 0.5948 0.7683 5.587 37.98 0.2032
2000 433.2 0.5978 0.7759 5.338 37.24 0.1921

F.3 Sampling steps for� sampling steps

We also analyze the effect of� sampling steps used to estimatecx , which is approximated in our
method. As shown in Table 10, metrics such as FID, CLIP, and LPIPS peak at 10� steps, then
stabilize and resemble the 0� step results from 15 steps onward. This validates our method for
approximatingcx in Eq.(9).

Table 10: Ablation study of� sampling steps on Wikiart.

� sampling steps FID (" ) CLIP-I (#) LPIPS (" )
0 448.3 0.5641 0.7782
5 446.8 0.5607 0.7743
10 482.2 0.5598 0.7801
15 454.5 0.5639 0.7788
20 453.9 0.5602 0.7775

F.4 Noise budget

Table 11 shows the impact of the noise budget� on PAP's defense performance. The trade-off
between noise stealthiness and defense performance is important to consider. A noise budget of
� = 0 :05 is effective, but increasing the budget improves performance at the expense of stealth.

We provide a detailed analysis of the impact of noise budget on our experimental results, with
additional visualizations available in Figure I. In general, a larger noise budget yields better defense
performance. However, it also introduces more noticeable image distortions. In extreme cases,
excessive perturbations can degrade the image to pure noise, defeating the purpose of our task.
Hence, striking a balance between protection effectiveness and the magnitude of image perturbations
becomes essential.

F.5 Other Pseudo-word

In our experiments, we conducted evaluations using the commonly used pseudo-word "sks," which
is representative but may not cover all possible cases. To further validate our method, we included
additional less commonly used pseudo-words. We selected three traditional metrics for measuring
image similarity, and the results in Table 12 clearly demonstrates that our method consistently
outperforms the others.

F.6 Robustness

Adversarial examples often lose their protective effect on images when subjected to image operations
such as Gaussian blur, JPEG compression, etc. Therefore, we conduct robustness tests speci�cally
targeting the JPEG compression and Gaussian Blur. We evaluate the quality of the generated images
at different settings, as shown in Table 13. Despite a slight decline in our results after applying these
treatments, it is worth noting that the evaluation based on image quality metrics still demonstrates
favorable outcomes. This suggests that our method maintains a good level of effectiveness even in
the presence of JPEG compression and Gaussian Blur.

F.7 Targeted Attack

Targeted attack on generative models aims to perturb an input image towards a speci�c target image,
resulting in outputs that closely resemble the target. Compared to untargeted attack, targeted attack
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Table 11: Ablation study of noise budget, ranging from 0.01 to 0.15.

� FID (" ) CLIP-I (#) LPIPS (" ) LAION (_) BRISQUE (̂ ) CLIP (_)
- 198.7 0.7715 0.6193 6.367 27.34 0.3515

0.01 262.7 0.7188 0.6522 5.994 31.12 0.3154
0.03 334.8 0.6632 0.6840 5.603 35.57 0.2896
0.05 448.3 0.5641 0.7782 5.490 38.47 0.2654
0.10 498.5 0.4914 0.8384 5.003 42.22 0.2088
0.15 512.9 0.4208 0.8755 4.635 46.26 0.1716

Table 12: Comparison with other adversarial attack methods with pseudo-word "t@t"

Dataset Method FID (" ) CLIP-I (#) LPIPS (" )

Celeb-HQ

Clean 142.3 0.7872 0.4725
AdvDM 187.8 0.7023 0.5213
Anti-DB 197.4 0.6961 0.5597
IAdvDM 161.6 0.7488 0.4912
PAP (Ours) 228.6 0.5749 0.6348

VGGFace2

Clean 239.7 0.6504 0.5529
AdvDM 240.6 0.6432 0.5733
Anti-DB 254.4 0.6307 0.6097
IAdvDM 244.9 0.6336 0.5955
PAP (Ours) 272.8 0.5301 0.6877

Wikiart

Clean 177.7 0.7339 0.5929
AdvDM 313.7 0.6704 0.6558
Anti-DB 349.2 0.6489 0.6910
IAdvDM 302.8 0.6641 0.6590
PAP (Ours) 383.0 0.6167 0.7168

achieves more consistent and effective results. We conduct additional experiments. The results are
presented in Table 14.

F.8 The Performance of the Trained Prompts

In Table 15, our method slightly trails behind the SOTA by 0.01/39.57 in LPIPS/FID respectively.
However, our method still maintains a leading position in ISM, FDFR, BRISQUE, and CLIP metrics.

F.9 Time Comparisons with Baselines

In Table 16, we present the time required for each method. The results demonstrate that PAP
introduces an average computation time of processing a set of images (<300s). In the future, we aim
to further optimize the algorithm to reduce the time to within 4 minutes.

F.10 Error Bars

Due to the sampling from three different distributions involved in our algorithm, the results obtained in
each experimental run may exhibit slight variations. To address this, we conduct multiple independent
repetitions of the experiments and calculate the mean and standard deviation for each evaluated
metric. The results are then presented with error bars, providing a more comprehensive assessment of
the algorithm's performance.

Speci�cally, for each metric to be evaluated, we performN = 10 independent experiment repetitions,
obtainingN result valuesx1; x2; : : : ; xN . The mean� and standard deviation� of these values are
calculated as follows:

� =
1
N

NX

i =1

x i (47)

� =

vu
u
t 1

N � 1

NX

i =1

(x i � � )2 (48)
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Table 13: Metrics for images generated by PAP after JPEG compression or Gaussian Blur.

LAION (_) BRISQUE (̂ )
PAP 5.490 38.47

JPEG Comp. Q=10 5.732 45.33
JPEG Comp. Q=30 5.485 34.29
JPEG Comp. Q=50 5.561 33.63
JPEG Comp. Q=70 5.593 39.34
Gaussian Blur K=3 5.882 41.88
Gaussian Blur K=5 5.796 42.08
Gaussian Blur K=7 5.552 43.76
Gaussian Blur K=9 5.991 41.20

Table 14: Ablation study of targeted attack.

- FID (" ) CLIP-I (#) LPIPS (" ) LAION (_) BRISQUE (̂ ) CLIP (_)
untarget 448.3 0.5641 0.7782 5.490 38.47 0.2654
target 492.1 0.5335 0.7922 4.974 40.23 0.2108

When plotting the results, we use the mean� as the metric's result value and the values� � � as the
upper and lower limits of the error bars, respectively. By presenting the error bars, we aim to provide
a more reliable and informative evaluation of our proposed method.

As shown in Figure 6, the error bars of our PAP method demonstrate the stability and consistency of
our method's performance across different runs.

G Impact Statements

Powerful customized diffusion models enable many applications but also raise privacy and intellectual
property concerns [68, 19] if misused to reconstruct private images or replicate protected artistic
works without consent [16, 69]. Previous work on privacy protection has been questioned in its
effectiveness [70, 71] and suffers from a lack of generalization to unknown prompts [72]. Our
proposed Prompt-agnostic Adversarial Perturbation technique aims to address the limitations by
considering the distribution of text prompts the attacker may use. Experiments demonstrate our
approach more effectively prevents unauthorized use of sensitive private data and artistic styles
compared to state-of-the-art baselines under unseen prompts. By enhancing resilience against unseen
attacks targeting uncontrolled generation, our work can help balance AI's societal bene�ts with
mitigating privacy and legal risks, and provides insights towards continued research on defense
techniques that responsibly enable trustworthy applications involving generation of human data.

However, our model could also be used to maliciously contaminate data sources. If adversarial exam-
ples generated by our model are mixed with regular natural images, it could potentially contaminate
the entire dataset, leading to its abandonment, as the adversarial perturbations we introduce may be
dif�cult to detect.

H Limitations and Future Work

H.1 Semantic Relevance in Prompt Sampling

While modeling the prompt distribution as a continuous Gaussian distribution is a reasonable approx-
imation, we must acknowledge that the sampled c values may not always re�ect realistic semantics in
the text feature space. For instance, simply adding noise to text embedding can result in incoherent
sentences that lack real-world meaning. This poses a challenge to the effectiveness of our global
protection when sampling from the prompt distribution. In reality, we aim to consider prompt samples
that are both close to the mean and contain meaningful semantic information, resembling a discrete
scenario.

To further explore the relationship between the estimated prompts and natural language, we have
conducted a visual experiment in Figure 7. By reducing the dimensionality of 10 test prompts'
embeddings andcN using PCA, we visualize the estimated prompt distribution and test prompts
projected in a low-dimensional space for the tasks of "Facial Protection" (left) and "Preservation of
Artistic Style" (right) respectively. The �gures demonstrate that the two principal components of
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Table 15: Performance of the trained prompts.

Method LPIPS FDFR ISM BRISQUE FID CLIP
AdvDM 0.65 0.61 0.39 33.68 301.55 0.25
Anti-DB 0.71 0.68 0.34 32.24 277.24 0.24
IAdvDM 0.65 0.57 0.43 33.55 296.31 0.28

PAP 0.70 0.68 0.33 36.43 261.98 0.24
No Defense 0.50 0.01 0.55 23.22 128.31 0.38

Table 16: Time comparisons with baselines.

Method AdvDM Anti-DB IAdvDM PAP
Time 262s 288s 204s 297s

test prompts are discretely distributed within the modeled prompt distribution, indicating a �exible
probability of being selected for adversarial attacks. This illustrates that our modeling effectively
covers a range of natural language inputs in the semantic space.

Figure 7: Evaluation of generation performance of models across different stable diffusion versions
on different metrics.

In future work, one potential improvement is to discretize the modeled Gaussian distribution by
introducing a restriction module, denoted as F. This module would reject prompt samples lacking
semantic information, allowing only those with strong semantic relevance to enter the optimization
process. This approach would provide a more accurate representation of meaningful alternative text
options.

H.2 H � 1 Estimation

In estimatingH � 1, we made simpli�cations that inevitably introduced errors. Although we theoreti-
cally demonstrated that the upper bound of the error caused by our simpli�cation is suf�ciently small,
it is worth exploring if there are alternative estimation methods that can achieve even smaller and
more accurate errors.

In future work, we may consider other estimation approaches forH � 1, such as matrix low-rank
decomposition, to pursue a more rigorous approximation. By exploring these alternative methods, we
aim to discover more precise and reasonable estimations forH � 1.
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Figure 6: All six metric results with error bars on the CelebA-HQ dataset. The error bars indicate the
stability of the results across multiple runs. For the purpose of visual representation, the results of
FID, BRISQUE, and LAION in the graph are obtained by multiplying the original data by 0.001,
0.01, and 0.1, respectively.

31



I Visualization

Figure 8: Clean examples and generated images (qualitative defense results) of different methods in
VGGFace2 (left) and Wikiart (right). Each row represents a method, and each column represents
a different test prompt (shown at the bottom). The adversarial examples generated by our method
effectively defend against all prompts in both datasets. In contrast, other comparison methods
primarily focus on protecting the �xed prompt (the �rst column), resulting in compromised defense
for other prompts.
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Figure 9: Clean examples and corresponding adversarial examples generated by our method with
different noise budgets (ranging from 0.01 to 0.15) on VGGFace2. The training prompt is “a photo of
sks person".
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Figure 10: Top: clean examples. Bottom left: adversarial examples produced by our method with
different noise budgets (ranging from 0.01 to 0.15) on VGGFace2 with training prompt: “a photo of
sks person". Bottom right: corresponding generated images of stable diffusion with sampling steps
500 and sampling steps 1,000.
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Figure 11: Top: clean examples. Bottom: generated images of different methods with different noise
budgets (ranging from 0.01 to 0.15) on VGGFace2. The training prompt is “a photo of sks person".

Figure 12: Left: clean examples. Top right: generated images of Anti-DB and our method with
different noise budgets (ranging from 0.01 to 0.15) on VGGFace2. The inference prompt is “a dslr
portrait of sks person". Bottom right: generated images of Anti-DB and our method with different
noise budgets on VGGFace2. The inference prompt is “an impressionistic depiction of sks person".
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