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ABSTRACT

We present in this paper a novel query formulation using dynamic anchor boxes
for DETR (DEtection TRansformer) and offer a deeper understanding of the role
of queries in DETR. This new formulation directly uses box coordinates as queries
in Transformer decoders and dynamically updates them layer by layer. Using box
coordinates not only helps using explicit positional priors to improve the query-
to-feature similarity and eliminate the slow training convergence issue in DETR,
but also allows us to modulate the positional attention map using the box width
and height information. Such a design makes it clear that queries in DETR can
be implemented as performing soft ROI pooling layer by layer in a cascade man-
ner. As a result, it leads to the best performance on MS-COCO benchmark among
the DETR-like detection models under the same setting, e.g., AP 45.7% using
ResNet50-DC5 as backbone trained in 50 epochs. We also conducted extensive
experiments to confirm our analysis and verify the effectiveness of our meth-
ods. Code is available at https://github.com/IDEA-opensource/
DAB-DETR.

1 INTRODUCTION

Object detection is a fundamental task in computer vision of wide applications. Most classical
detectors are based on convolutional architectures which have made remarkable progress in the last
decade (Ren et al., 2017; Girshick, 2015; Redmon et al., 2016; Bochkovskiy et al., 2020; Ge et al.,
2021). Recently, Carion et al. (2020) proposed a Transformer-based end-to-end detector named
DETR (DEtection TRansformer), which eliminates the need for hand-designed components, e.g.,
anchors, and shows promising performance compared with modern anchor-based detectors such as
Faster RCNN (Ren et al., 2017).

In contrast to anchor-based detectors, DETR models object detection as a set prediction problem
and uses 100 learnable queries to probe and pool features from images, which makes predictions
without the need of using non-maximum suppression. However, due to its ineffective design and use
of queries, DETR suffers from significantly slow training convergence, usually requiring 500 epochs
to achieve a good performance. To address this issue, many follow-up works attempted to improve
the design of DETR queries for both faster training convergence and better performance (Zhu et al.,
2021; Gao et al., 2021; Meng et al., 2021; Wang et al., 2021).

∗This work was done when Shilong Liu was intern at IDEA.
†Corresponding author.
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Figure 1: Comparison of DETR, Conditional DETR, and our proposed DAB-DETR. For clarity, we
only show the cross-attention part in the Transformer decoder. (a) DETR uses the learnable queries
for all the layers without any adaptation, which accounts for its slow training convergence. (b) Con-
ditional DETR adapts the learnable queries for each layer mainly to provide a better reference query
point to pool features from the image feature map. In contrast, (c) DAB-DETR directly uses dynam-
ically updated anchor boxes to provide both a reference query point (x, y) and a reference anchor
size (w, h) to improve the cross-attention computation. We marked the modules with difference in
purple.

Despite all the progress, the role of the learned queries in DETR is still not fully understood or uti-
lized. While most previous attempts make each query in DETR more explicitly associated with one
specific spatial position rather than multiple positions , the technical solutions are largely different.
For example, Conditional DETR learns a conditional spatial query by adapting a query based on its
content feature for better matching with image features (Meng et al., 2021). Efficient DETR intro-
duces a dense prediction module to select top-K object queries (Yao et al., 2021) and Anchor DETR
formulates queries as 2D anchor points (Wang et al., 2021), both associating each query with a spe-
cific spatial position. Similarly, Deformable DETR directly treats 2D reference points as queries and
performs deformable cross-attention operation at each reference points (Zhu et al., 2021). But all
the above works only leverage 2D positions as anchor points without considering the object scales.

Motivated by these studies, we take a closer look at the cross-attention module in Transformer
decoder and propose to use anchor boxes, i.e., 4D box coordinates (x, y, w, h), as queries in DETR
and update them layer by layer. This new query formulation introduce better spatial priors for the
cross-attention module by considering both the position and size of each anchor box, which also
leads to a much simpler implementation and a deeper understanding of the role of queries in DETR.

The key insight behind this formulation is that each query in DETR is formed by two parts: a
content part (decoder self-attention output) and a positional part (e.g., learnable queries in DETR) 1.
The cross-attention weights are computed by comparing a query with a set of keys which consists
of two parts as a content part (encoded image feature) and a positional part (positional embedding).
Thus, queries in Transformer decoder can be interpreted as pooling features from a feature map
based on the query-to-feature similarity measure, which considers both the content and positional
information. While the content similarity is for pooling semantically related features, the positional
similarity is to provide a positional constraint for pooling features around the query position. This
attention computing mechanism motivates us to formulate queries as anchor boxes as illustrated in
Fig. 1 (c), allowing us to use the center position (x, y) of an anchor box to pool features around the
center and use the anchor box size (w, h) to modulate the cross-attention map, adapting it to anchor
box size. In addition, because of the use of coordinates as queries, anchor boxes can be updated
layer by layer dynamically. In this way, queries in DETR can be implemented as performing soft
ROI pooling layer by layer in a cascade way.

We provide a better positional prior for pooling features by using anchor box size to modulate the
cross-attention. Because the cross-attention can pool features from the whole feature map, it is

1See the DETR implementation at https://github.com/facebookresearch/detr. The com-
ponents of queries and keys are also shown in each subplot of Fig. 1. Note that the learnable queries in DETR
are only for the positional part. Related discussion can also be found in Conditional DETR (Meng et al., 2021).
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crucial to provide a proper positional prior for each query to let the cross-attention module focus
on a local region corresponding to a target object. It can also facilitate to speed up the training
convergence of DETR. Most prior works improve DETR by associating each query with a specific
location, but they assume an isotropic Gaussian positional prior of a fixed size(Fig. 4 (b)), which is
inappropriate for objects of different scales. With the size information (w, h) available in each query
anchor box, we can modulate the Gaussian positional prior as an oval shape. More specifically, we
divide the width and height from the cross-attention weight (before softmax) for its x part and y part
separately, which helps the Gaussian prior to better match with objects of different scales(Fig. 4
(c)). To further improve the positional prior, we also introduce a temperature parameter to tune the
flatness of positional attention, which has been overlooked in all prior works.

In summary, our proposed DAB-DETR (Dynamic Anchor Box DETR) presents a novel query for-
mulation by directly learning anchors as queries. This formulation offers a deeper understanding of
the role of queries, allowing us to use anchor size to modulate the positional cross-attention map
in Transformer decoders and perform dynamic anchor update layer by layer. Our results demon-
strate that DAB-DETR attains the best performance among DETR-like architectures under the same
setting on the COCO object detection benchmark. The proposed method can achieve 45.7% AP
when using a single ResNet-50 (He et al., 2016) model as backbone for training 50 epochs. We
also conducted extensive experiments to confirm our analysis and verify the effectiveness of our
methods.

2 RELATED WORK

Most classical detectors are anchor-based, using either anchor boxes (Ren et al., 2017; Girshick,
2015; Sun et al., 2021) or anchor points (Tian et al., 2019; Zhou et al., 2019). In contrast,
DETR (Carion et al., 2020) is a fully anchor-free detector using a set of learnable vectors as queries.
Many follow-up works attempted to solve the slow convergence of DETR from different perspec-
tives. Sun et al. (2020) pointed out that the cause of slow training of DETR is due to the cross-
attention in decoders and hence proposed an encoder-only model. Gao et al. (2021) instead intro-
duced a Gaussian prior to regulate the cross-attention. Despite their improved performance, they did
not give a proper explanation of the slow training and the roles of queries in DETR.

Another direction to improve DETR, which is more relevant to our work, is towards a deeper un-
derstanding of the role of queries in DETR. As the learnable queries in DETR are used to provide
positional constraints for feature pooling, most related works attempted to make each query in DETR
more explicitly related to a specific spatial position rather than multiple position modes in the vanilla
DETR. For example, Deformable DETR (Zhu et al., 2021) directly treats 2D reference points as
queries and predicts deformable sampling points for each reference point to perform the deformable
cross-attention operation. Conditional DETR (Meng et al., 2021) decouples the attention formula-
tion and generates positional queries based on reference coordinates. Efficient DETR (Yao et al.,
2021) introduces a dense prediction module to select top-K positions as object queries. Although
these works connect queries with positional information, they do not have an explicit formulation to
use anchors.

Different from the hypothesis in prior works that the learnable query vectors contain box coordinate
information, our approach is based on a new perspective that all information contained in queries
are box coordinates. That is, anchor boxes are better queries for DETR. A concurrent work Anchor
DETR (Wang et al., 2021) also suggests learning anchor points directly, while it ignores the anchor
width and height information as in other prior works. Besides DETR, Sun et al. (2021) proposed a
sparse detector by learning boxes directly, which shares a similar anchor formulation with us, but
it discards the Transformer structure and leverages hard ROI align for feature extraction. Table 1
summarizes the key differences between related works and our proposed DAB-DETR. We compare
our model with related works on five dimensions: if the model directly learns anchors, if the model
predicts reference coordinates (in its intermediate stage), if the model updates the reference anchors
layer by layer, if the model uses the standard dense cross-attention, if the attention is modulated to
better match with objects of different scales, and if the model updates the learned queries layer by
layer. A more detailed comparison of DETR-like models is available in Sec. B of Appendix. We
recommend this section for readers who have confusions about the table.
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Models Learn Anchors? Reference Anchors Dynamic Anchors Standard Attention Size-Modulated Attention Update Learned Spatial Queries?
DETR No No ✓

Deformable DETR No 4D ✓ ✓

SMCA No 4D ✓ ✓

Conditional DETR No 2D ✓

Anchor DETR 2D 2D ✓

Sparse RCNN 4D 4D ✓

DAB-DETR 4D 4D ✓ ✓ ✓ ✓

Table 1: Comparison of representative related models and our DAB-DETR. The term “Learn An-
chors?” asks if the model learns 2D points or 4D anchors as learnable parameters directly. The
term ”Reference Anchors” means if the model predicts relative coordinates with respect to a ref-
erence points/anchors. The term “Dynamic Anchors” indicates if the model updates its anchors
layer-by-layer. The term “Standard Attention” shows whether the model leverages the standard
dense attention in cross-attention modules. The term “Object Scale-Modulated Attention” means if
the attention is modulated to better match with object scales. The term “Size-Modulated Attention”
means if the attention is modulated to better match with object scales. The term “Update Spatial
Learned Queries?” means if the learned queries are updated layer by layer. Note that Sparse RCNN
is not a DETR-like architecture. we list it here for their similar anchor formulation with us. See Sec.
B of Appendix for a more detailed comparison of these models.

3 WHY A POSITIONAL PRIOR COULD SPEEDUP TRAINING?

(b) Cross-attention in decoder of DETR(a) Self-attention in encoder of DETR
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Figure 2: Comparison of self-attention in encoders and cross-attention in decoders of DETR. As they
have the same key and value components, the only difference comes from the queries. Each query
in an encoder is composed of an image feature (content information) and a positional embedding
(positional information), whereas each query in a decoder is composed of a decoder embedding
(content information) and a learnable query (postional information). The differences between two
modules are marked in purple.

Much work has been done to accelerate the training convergence speed of DETR, while lacking a
unified understanding of why their methods work. Sun et al. (2020) showed that the cross-attention
module is mainly responsible for the slow convergence, but they simply removed the decoders for
faster training. We follow their analysis to find which sub-module in the cross-attention affects the
performance. Comparing the self-attention module in encoders with the cross-attention module in
decoders, we find the key difference between their inputs comes from the queries, as shown in Fig. 2.
As the decoder embeddings are initialized as 0, they are projected to the same space as the image
features after the first cross-attention module. After that, they will go through a similar process in
decoder layers as the image features in encoder layers. Hence the root cause is likely due to the
learnable queries.

Two possible reasons in cross-attention account for the model’s slow training convergence: 1) it is
hard to learn the queries due to the optimization challenge, and 2) the positional information in the
learned queries is not encoded in the same way as the sinusoidal positional encoding used for image
features. To see if it is the first reason, we reuse the well-learned queries from DETR (keep them
fixed) and only train the other modules. The training curves in Fig. 3(a) show that the fixed queries
only slightly improve the convergence in very early epochs, e.g., the first 25 epochs. Hence the
query learning (or optimization) is likely not the key concern.

Then we turn to the second possibility and try to find out if the learned queries have some undesir-
able properties. As the learned queries are used to filter objects in certain regions, we visualize a
few positional attention maps between the learned queries and the positional embeddings of image
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(a) (b)
Figure 3: a): Training curves of the original DETR and DETR with fixed queries. b): Training
curves of the original DETR and DETR+DAB. We run each experiment 3 times and plot the mean
value and the 95% confidence interval of each item.

(a) DETR (b) Conditional DETR (c) DAB-DETR

Figure 4: We visualize the positional attention between positional queries and positional keys for
DETR, Conditional DETR, and our proposed DAB-DETR. Four attention maps in (a) are randomly
sampled, and we select figures with similar query positions as in (a) for (b) and (c). The darker
the color, the greater the attention weight, and vice versa. (a) Each attention map in DETR is
calculated by performing dot product between a learned query and positional embeddings from a
feature map, and can have multiple modes and unconcentrated attentions. (b) The positional queries
in Conditional DETR are encoded in the same way as the image positional embeddings, resulting
in Gaussian-like attention maps. However, it cannot adapt to objects of different scales. (c) DAB-
DETR explicitly modulates the attention map using the width and height information of an anchor,
making it more adaptive to object size and shape. The modulated attentions can be regarded as
helping perform soft ROI pooling.

features in Fig. 4(a). Each query can be regarded as a positional prior to let decoders focus on a
region of interest. Although they serve as a positional constraint, they also carry undesirable prop-
erties: multiple modes and nearly uniform attention weights. For example, the two attention maps
at the top of Fig. 4(a) have two or more concentration centers, making it hard to locate objects when
multiple objects exist in an image. The bottom maps of Fig. 4(a) focus on areas that are either too
large or too small, and hence cannot inject useful positional information into the procedure of fea-
ture extraction. We conjecture that the multiple mode property of queries in DETR is likely the root
cause for its slow training and we believe introducing explicit positional priors to constrain queries
on a local region is desirable for training. To verify this assumption, we replace the query formula-
tion in DETR with dynamic anchor boxes, which can enforce each query to focus on a specific area,
and name this model DETR+DAB. The training curves in Fig. 3(b) show that DETR+DAB leads to
much better performance compared with DETR, in terms of both detection AP and training/testing
loss. Note that the only difference between DETR and DETR+DAB is the formulation of queries
and no other techniques like 300 queries or focal loss are introduced. It shows that after addressing
the multi-mode issue of DETR queries, we can achieve both a faster training convergence and a
higher detection accuracy.

Some previous works also have similar analyses and confirmed this. For example, SMCA (Gao
et al., 2021) speeds up the training by applying pre-defined Gaussian maps around reference points.
Conditional DETR (Meng et al., 2021) uses explicit positional embedding as positional queries for
training, yielding attention maps similar to Gaussian kernels as shown in Fig. 4(b). Although explicit
positional priors lead to good performance in training, they ignore the scale information of an object.
In contrast, our proposed DAB-DETR explicitly takes into account the object scale information to
adaptively adjust attention weights, as shown in Fig. 4(c).
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4 DAB-DETR

Anchor Boxes

(𝑥, 𝑦, 𝑤, ℎ)

Anchor Sine 

Encodings

Decoder

Embeddings

Multi-Head 

Self-

Attention

Width & Height-

Modulated 

Multi-Head 

Cross-Attention

Add & Norm

FFN

Add & Norm

Add & Norm

MLP

Output

New Anchor boxes

(𝑥′, 𝑦′, 𝑤′, ℎ′)

Spatial Positional 

Encodings

Nx

Image 

Spatial 

Features

Variables

Modules

MLP
QKV

QKV

(
1

𝑤
,
1

ℎ
)

(𝑥, 𝑦)

(𝑥, 𝑦,
𝑤, ℎ)

(𝑥, 𝑦, 𝑤, ℎ)

(Δ𝑥, Δ𝑦,
Δ𝑤, Δℎ)

MLP MLP

(𝑤ref, ℎref)

Figure 5: Framework of our proposed DAB-DETR.

4.1 OVERVIEW

Following DETR (Carion et al., 2020), our model is an end-to-end object detector which includes
a CNN backbone, Transformer (Vaswani et al., 2017) encoders and decoders, and prediction heads
for boxes and labels. We mainly improve the decoder part, as shown in Fig. 5.

Given an image, we extract image spatial features using a CNN backbone followed with Transformer
encoders to refine the CNN features. Then dual queries, including positional queries (anchor boxes)
and content queries (decoder embeddings), are fed into the decoder to probe the objects which
correspond to the anchors and have similar patterns with the content queries. The dual queries are
updated layer by layer to get close to the target ground-truth objects gradually. The outputs of the
final decoder layer are used to predict the objects with labels and boxes by prediction heads, and
then a bipartite graph matching is conducted to calculate loss as in DETR.

To illustrate the generality of our dynamic anchor boxes, we also design a stronger DAB-
Deformable-DETR, which is available in Appendix.

4.2 LEARNING ANCHOR BOXES DIRECTLY

As discussed in Sec. 1 regarding the role of queries in DETR, we propose to directly learn query
boxes or say anchor boxes and derive positional queries from these anchors. There are two atten-
tion modules in each decoder layer, including a self-attention module and a cross-attention module,
which are used for query updating and feature probing, respectively. Each module needs queries,
keys, and values to perform attention-based value aggregation, yet the inputs of these triplets differ.

We denote Aq = (xq, yq, wq, hq) as the q-th anchor, xq, yq, wq, hq ∈ R, and Cq ∈ RD and Pq ∈
RD as its corresponding content query and positional query, where D is the dimension of decoder
embeddings and positional queries.

Given an anchor Aq , its positional query Pq is generated by:

Pq = MLP(PE(Aq)), (1)

where PE means positional encoding to generate sinusoidal embeddings from float numbers and the
parameters of MLP are shared across all layers. As Aq is a quaternion, we overload the PE operator
here:
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PE(Aq) = PE(xq, yq, wq, hq) = Cat(PE(xq),PE(yq),PE(wq),PE(hq)). (2)

The notion Cat means concatenation function. In our implementations, the positional encoding
function PE maps a float to a vector with D/2 dimensions as: PE: R → RD/2. Hence the function
MLP projects a 2D dimensional vector into D dimensions: MLP: R2D → RD. The MLP module
has two submodules, each of which is composed of a linear layer and a ReLU activation, and the
feature reduction is conducted at the first linear layer.

In the self-attention module, all three of queries, keys, and values have the same content items, while
the queries and keys contain extra position items:

Self-Attn: Qq = Cq + Pq, Kq = Cq + Pq, Vq = Cq, (3)

Inspired by Conditional DETR (Meng et al., 2021), we concatenate the position and content in-
formation together as queries and keys in the cross-attention module, so that we can decouple the
content and position contributions to the query-to-feature similarity computed as the dot product be-
tween a query and a key. To rescale the positional embeddings, we leverage the conditional spatial
query (Meng et al., 2021) as well. More specifically, we learn a MLP(csq) : RD → RD to obtain a
scale vector conditional on the content information and use it perform element-wise multiplication
with the positional embeddings:

Cross-Attn: Qq = Cat(Cq,PE(xq, yq) · MLP(csq)(Cq)),

Kx,y = Cat(Fx,y,PE(x, y)), Vx,y = Fx,y,
(4)

where Fx,y ∈ RD is the image feature at position (x, y) and · is an element-wise multiplication.
Both the positional embeddings in queries and keys are generated based on 2D coordinates, making
it more consistent to compare the positional similarity, as in previous works (Meng et al., 2021;
Wang et al., 2021).

4.3 ANCHOR UPDATE

Using coordinates as queries for learning makes it possible to update them layer by layer. In contrast,
for queries of high dimensional embeddings, such as in DETR (Carion et al., 2020) and Conditional
DETR (Meng et al., 2021), it is hard to perform layer-by-layer query refinement, because it is unclear
how to convert an updated anchor back to a high-dimensional query embedding.

Following the previous practice (Zhu et al., 2021; Wang et al., 2021), we update anchors in each
layer after predicting relative positions (∆x,∆y,∆w,∆h) by a prediction head, as shown in Fig. 5.
Note that all prediction heads in different layers share the same parameters.

4.4 WIDTH & HEIGHT-MODULATED GAUSSIAN KERNEL

H=1, W=1 H=1, W=3 H=3, W=1

Figure 6: Positional attention maps modu-
lated by width and height.

Temperature=1 Temperature=10 Temperature=10000

Figure 7: Positional attention maps with dif-
ferent temperatures.

Traditional positional attention maps are used as a Gaussian-like prior, as shown in Fig. 6 left. But
the prior is simply assumed isotropic and fixed size for all objects, leaving their scale information
(width and height) ignored. To improve the positional prior, we propose to inject the scale informa-
tion into the attention maps.
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The query-to-key similarity in the original positional attention map is computed as the sum of dot
products of two coordinate encodings:

Attn((x, y), (xref, yref)) = (PE(x) · PE(xref) + PE(y) · PE(yref))/
√
D, (5)

where 1/
√
D is used to rescale the value as suggested in Vaswani et al. (2017). We modulate the

positional attention maps (before softmax) by dividing the relative anchor width and height from its
x part and y part separately to smooth the Gaussian prior to better match with objects of different
scales:

ModulateAttn((x, y), (xref, yref)) = (PE(x) · PE(xref)
wq,ref

wq
+ PE(y) · PE(yref)

hq,ref

hq
)/
√
D, (6)

where wq and hq are the width and height of the anchor Aq , and wq,ref and hq,ref are the reference
width and height that are calculated by:

wq,ref, hq,ref = σ(MLP(Cq)). (7)

This modulated positional attention helps us extract features of objects with different widths and
heights, and the visualizations of modulated attentions are shown in Fig. 6.

4.5 TEMPERATURE TUNING

For position encoding, we use the sinusoidal function (Vaswani et al., 2017), which is defined as:

PE(x)2i = sin(
x

T 2i/D
), PE(x)2i+1 = cos(

x

T 2i/D
), (8)

where T is a hand-design temperature, and the superscript 2i and 2i + 1 denote the indices in the
encoded vectors. The temperature T in Eq. (8) influences the size of positional priors, as shown
in Fig. 7. A larger T results in a more flattened attention map, and vice versa. Note that the
temperature T is hard-coded in (Vaswani et al., 2017) as 10000 for natural language processing,
in which the values of x are integers representing each word’s position in a sentence. However, in
DETR, the values of x are floats between 0 and 1 representing bounding box coordinates. Hence a
different temperature is highly desired for vision tasks. In this work, we empirically choose T = 20
in all our models.

5 EXPERIMENTS

We provide the training details in Appendix A.

5.1 MAIN RESULTS

Table 2 shows our main results on the COCO 2017 validation set. We compare our proposed DAB-
DETR with DETR (Carion et al., 2020), Faster RCNN (Ren et al., 2017), Anchor DETR (Wang et al.,
2021), SMCA (Gao et al., 2021), Deformable DETR (Zhu et al., 2021), TSP (Sun et al., 2020), and
Conditional DETR (Meng et al., 2021). We showed two variations of our model: standard models
and models marked with superscript ∗ that have 3 pattern embeddings (Wang et al., 2021). Our
standard models outperform Conditional DETR with a large margin. We notice that our model
introduces a slight increase of GFLOPs. GFLOPs may differ depending on the calculation scripts
and we use the results reported by the authors in Table 2. Actually, we find in our tests that the
GFLOPs of our standard models are nearly the same as the corresponding Conditional DETR models
based on our GFLOPs calculation scripts, hence our model still has advantages over previous work
under the same settings. When using pattern embeddings, our DAB-DETR with ∗ outperforms
previous DETR-like methods on all four backbones with a large margin, even better than multi-
scale architectures. It verifies the correctness of our analysis and the effectiveness of our design.

5.2 ABLATIONS

Table 3 shows the effectiveness of each component in our model. We find that all modules we
proposed contribute remarkably to our final results. The anchor box formulation improves the per-
formance from 44.0% AP to 45.0% AP compared with the anchor point formulation (compare Row

8



Published as a conference paper at ICLR 2022

Model MultiScale #epochs AP AP50 AP75 APS APM APL GFLOPs Params

DETR-R50 500 42.0 62.4 44.2 20.5 45.8 61.1 86 41M
Faster RCNN-FPN-R50 108 42.0 62.1 45.5 26.6 45.5 53.4 180 42M
Anchor DETR-R50∗ 50 42.1 63.1 44.9 22.3 46.2 60.0 − 39M
Conditional DETR-R50 50 40.9 61.8 43.3 20.8 44.6 59.2 90 44M
DAB-DETR-R50 50 42.2 63.1 44.7 21.5 45.7 60.3 94 44M
DAB-DETR-R50∗ 50 42.6 63.2 45.6 21.8 46.2 61.1 100 44M
DETR-DC5-R50 500 43.3 63.1 45.9 22.5 47.3 61.1 187 41M
Deformable DETR-R50 ✓ 50 43.8 62.6 47.7 26.4 47.1 58.0 173 40M
SMCA-R50 ✓ 50 43.7 63.6 47.2 24.2 47.0 60.4 152 40M
TSP-RCNN-R50 ✓ 96 45.0 64.5 49.6 29.7 47.7 58.0 188 −
Anchor DETR-DC5-R50∗ 50 44.2 64.7 47.5 24.7 48.2 60.6 151 39M
Conditional DETR-DC5-R50 50 43.8 64.4 46.7 24.0 47.6 60.7 195 44M
DAB-DETR-DC5-R50 50 44.5 65.1 47.7 25.3 48.2 62.3 202 44M
DAB-DETR-DC5-R50∗ 50 45.7 66.2 49.0 26.1 49.4 63.1 216 44M
DETR-R101 500 43.5 63.8 46.4 21.9 48.0 61.8 152 60M
Faster RCNN-FPN-R101 108 44.0 63.9 47.8 27.2 48.1 56.0 246 60M
Anchor DETR-R101∗ 50 43.5 64.3 46.6 23.2 47.7 61.4 − 58M
Conditional DETR-R101 50 42.8 63.7 46.0 21.7 46.6 60.9 156 63M
DAB-DETR-R101 50 43.5 63.9 46.6 23.6 47.3 61.5 174 63M
DAB-DETR-R101∗ 50 44.1 64.7 47.2 24.1 48.2 62.9 179 63M
DETR-DC5-R101 500 44.9 64.7 47.7 23.7 49.5 62.3 253 60M
TSP-RCNN-R101 ✓ 96 46.5 66.0 51.2 29.9 49.7 59.2 254 −
SMCA-R101 ✓ 50 44.4 65.2 48.0 24.3 48.5 61.0 218 50M
Anchor DETR-R101∗ 50 45.1 65.7 48.8 25.8 49.4 61.6 − 58M
Conditional DETR-DC5-R101 50 45.0 65.5 48.4 26.1 48.9 62.8 262 63M
DAB-DETR-DC5-R101 50 45.8 65.9 49.3 27.0 49.8 63.8 282 63M
DAB-DETR-DC5-R101∗ 50 46.6 67.0 50.2 28.1 50.5 64.1 296 63M

Table 2: Results for our DAB-DETR and other detection models. All DETR-like models except
DETR use 300 queries, while DETR uses 100. The models with superscript ∗ use 3 pattern embed-
dings as in Anchor DETR (Wang et al., 2021). We also provide stronger results of our DAB-DETR
in Appendix G and Appendix C.

#Row Anchor Box (4D) vs. Point (2D) Anchor Update wh-Modulated Attention Temperature Tuning AP
1 4D ✓ ✓ ✓ 45.7

2 4D ✓ ✓ 44.0

3 4D ✓ ✓ 45.0

4 2D ✓ ✓ 44.0

5 4D ✓ ✓ 44.4

Table 3: Ablation results for our DAB-DETR. All models are tested over ResNet-50-DC5 backbone
and the other parameters are the same as our default settings.

3 and Row 4) and the anchor update introduces 1.7% AP improvement (compare Row 1 and Row
2), which demonstrates the effectiveness of dynamic anchor box design.

After removing modulated attention and temperature tuning, the model performance drops to 45.0%
(compare Row 1 and Row 3) and 44.4% (compare Row 1 and Row 5), respectively. Hence fine-
grained tuning of positional attentions is of great importance for improving the detection perfor-
mance as well.

6 CONCLUSION

We have presented in this paper a novel query formulation using dynamic anchor boxes for DETR
and offered a deeper understanding of the role of queries in DETR. Using anchor boxes as queries
leads to several advantages, including a better positional prior with temperature tuning, size-
modulated attention to account for objects of different scales, and iterative anchor update for im-
proving anchor estimate gradually. Such a design makes it clear that queries in DETR can be imple-
mented as performing soft ROI pooling layer by layer in a cascade manner. Extensive experiments
were conducted and effectively confirmed our analysis and verified our algorithm design.
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Appendix for DAB-DETR

A TRAINING DETAILS

Architecture. Our model is almost the same as DETR which includes a CNN backbone, multiple
Transformer (Vaswani et al., 2017) encoders and decoders, and two prediction heads for boxes and
labels. We use ImageNet-pretrained ResNet (He et al., 2016) as our backbones, and 6 Transformer
encoders and 6 Transformer decoders in our implementations. We follow previous works to report
results over four backbones: ResNet-50, ResNet-101, and their 16×-resolution extensions ResNet-
50-DC5 and ResNet-101-DC5. As we need to predict boxes and labels in each decoder layer, the
MLP networks for box and label predictions share the same parameters across different decoder
layers. As inspired by Anchor DETR, we also leverage multiple pattern embeddings to perform
multiple predictions at one position and the number of patterns is set as 3 which is the same as
Anchor DETR. We also leverage PReLU (He et al., 2015) as our activations.

Following Deformable DETR and Conditional DETR, we use 300 anchors as queries. We select 300
predicted boxes and labels with the largest classification logits for evaluation as well. We also use
focal loss (Lin et al., 2020) with α = 0.25, γ = 2 for classification. The same loss terms are used in
bipartite matching and final loss calculating, but with different coefficients. Classification loss with
coefficient 2.0 is used in bipartite matching but 1.0 in the final loss. L1 loss with coefficient 5.0 and
GIOU loss (Rezatofighi et al., 2019) with coefficient 2.0 are consistent in both the matching and the
final loss calculation procedures. All models are trained on 16 GPUs with 1 image per GPU and
AdamW (Loshchilov & Hutter, 2018) is used for training with weight decay 10−4. The learning
rates for backbone and other modules are set to 10−5 and 10−4, respectively. We train our models
for 50 epochs and drop the learning rate by 0.1 after 40 epochs. All models are trained on Nvidia
A100 GPU. We search hyperparameters with batch size 64 and all results in our paper are reported
with batch size 16. For better reproducing our results, we provide the memory needed and batch
size/GPU in Table 4.

Dataset. We conduct the experiments on the COCO (Lin et al., 2014) object detection dataset. All
models are trained on the train2017 split and evaluated on the val2017 split.

Model Batch Size/GPU GPU Memory (MB)
DAB-DETR-R50 2 6527
DAB-DETR-R50* 1 3573
DAB-DETR-R50-DC5 1 13745
DAB-DETR-R50-DC5* 1 15475
DAB-DETR-R101 2 6913
DAB-DETR-R101* 1 4369
DAB-DETR-R101-DC5 1 13148
DAB-DETR-R101-DC5* 1 16744

Table 4: GPU memory usage of each model.

B COMPARISON OF DETR-LIKE MODELS

In this section, we provide a more detailed comparison of DETR-like models, including DETR (Car-
ion et al., 2020), Conditional DETR (Meng et al., 2021), Anchor DETR (Wang et al., 2021), De-
formable DETR (Zhu et al., 2021), our proposed DAB-DETR, and DAB-Deformable-DETR. Their
model designs are illustrated in Fig. 8. We will discuss the difference between previous models and
our models.

Anchor DETR (Wang et al., 2021) improves DETR by introducing 2D anchor points, which are
updated layer by layer. It shares a similar motivation with our work. But it leaves the object scale
information unconsidered and thus cannot modulate the cross-attention to make it adapt to objects of
different scales. Moreover, the positional queries in its framework are of high dimension and passed
to the self-attention modules in all layers without any adaptation. See the brown-colored part in Fig.
8 (d) for details. This design might be sub-optimal as the self-attention modules cannot leverage the
refined anchor points in different layers.
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Deformable DETR (Zhu et al., 2021) introduces 4D anchor boxes and updates them layer by layer,
which is called iterative bounding box refinement in its paper. Its algorithm is mainly developed
based on deformable attention, which requires reference points to sample attention points and mean-
while utilizes box width and height to modulate attention areas. However, as iterative bounding box
refinement is closely coupled with the special design of deformable attention, it is nontrivial to apply
it to general Transformer decoder-based DETR models. This is probably the reason why few works
after Deformable DETR adopt this idea. Moreover, the position queries in Deformable DETR are
passed to both the self-attention modules and the cross-attention modules in all layers without any
adaptation. See the brown-colored part in Fig. 8 (e) for details. As a result, both its self-attention
modules and cross-attention modules cannot fully leverage the refined anchor boxes in different
layers.

To verify our analysis, we develop a variant of Deformable-DETR by formulating its queries as
dynamic anchor boxes as in DAB-DETR. We call this variant as DAB-Deformable-DETR, which
is illustrated in Fig. 8 (f). Under exactly the same setting using R50 as the backbone, DAB-
Deformable-DETR improves Deformable-DETR by 0.5 AP (46.3 to 46.8) on COCO. See Table
5 for the performance comparison and Sec. C for more implementation details.

Dynamic DETR (Dai et al., 2021) is another interesting improvement of DETR. It also leverages
anchor boxes to pool features, but it uses ROI pooling for feature extraction, which makes it less
general to DETR-like models compared with our dynamic anchor boxes. Moreover, compared with
cross-attention in Transformer decoders, which performs global feature pooling in a soft manner
(based on attention maps), the ROI pooling operation only performs local feature pooling within a
ROI window. In our opinion, the ROI pooling operation can help faster convergence as it enforces
each query to associate with a specific spatial position. But it may lead to a sub-optimal result due
to its ignorance of the global context outside a ROI window.

C DAB-DEFORMABLE-DETR

To further demonstrate the effectiveness of our dynamic anchor boxes, we develop DAB-
Deformable-DETR by adding our dynamic anchor boxes design to Deformable DETR (Zhu et al.,
2021) 2. The difference between Deformable DETR and DAB-Deformable-DETR is shown in Fig.
8 (e) and (f). The results of Deformable DETR and DAB-Deformable-DETR are shown in Table
5. With no more than 10 lines of code modified, our DAB-Deformable-DETR (row 4) results in
a significant performance improvement (+0.5 AP) compared with the original Deformable DETR
(row 3). All other settings except the query formulation are exactly the same in this experiment.

We also compare the speed of convergence in Fig. 9. It shows that our proposed dynamic anchor
boxes speed up the training as well (left in Fig. 9). We believe one of the reasons for better per-
formance is the update of learned queries. We plot the change of total loss, which is the sum-up of
losses of all decoder layers, during training in the middle figure of Fig. 9. Interestingly, it shows
that the total loss of DAB-Deformable-DETR is larger than Deformable DETR. However, the loss
of the final layer of DAB-Deformable-DETR is lower than that in Deformable DETR (right in Fig.
9), which is a good indicator of the better performance of DAB-Deformable-DETR as the inference
result only takes from the last layer.

D ANCHORS VISUALIZATION

We visualize the learned anchor boxes in Fig. 10. When learning anchor points as queries, the
learned points are distributed evenly around the image, while the centers seem to distribute randomly
when learning anchor boxes directly. This might be because the centers are coupled with anchor
sizes. The right-most figure shows the visualization of the learned anchor boxes. We only show a
partial set for visualization clarity. Most boxes are of medium size and no particular pattern is found
in the distribution of boxes.

2We used the open-source implementation from https://github.com/fundamentalvision/
Deformable-DETR
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Figure 8: Comparison of DETR-like models. For clarity, we only show two layers of Transformer
decoder and omit the FFN blocks. We mark the modules with difference in purple and marked the
learned high-dimensional queries in brown. DAB-DETR (c) is proposed in our paper, and DAB-
Deformable-DETR (f) is a variant of Deformable DETR modified by introducing our dynamic an-
chors boxes. All previous models (a,b,d,e) leverage high-dimensional queries (shaded in brown) to
pass positional information to each layers, which are semantic ambiguous and are not updated layer
by layer. In contrast, DAB-DETR (c) directly uses dynamically updated anchor boxes to provide
both a reference query point (x, y) and a reference anchor size (w, h) to improve the cross-attention
computation. DAB-Deformable-DETR (f) uses dynamically updated anchor boxes to formulate its
queries as well.
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# row Model AP AP50 AP75 APS APM APL Params
1 Deformable DETR 43.8 62.6 47.7 26.4 47.1 58.0 40M
2 Deformable DETR+ 45.4 64.7 49.0 26.8 48.3 61.7 40M
3 Deformable DETR+ (open source) 46.3 65.3 50.2 28.6 49.3 62.1 47M
4 DAB-Deformable-DETR(Ours) 46.8 66.0 50.4 29.1 49.8 62.3 47M

Table 5: Comparison of the results of Deformable DETR and DAB-Deformable-DETR. The models
in row 1 and row 2 are copied from the original paper, and the models in row 3 and row 4 are tested
under the same standard R50 multi-scale setting. Deformable DETR+ means the Deformable DETR
model with iterative bounding box refinement and the result of Deformable DETR+ (open source)
is reported by us using the open-source code. The only difference between row 3 and row 4 is the
formulation of queries.

Figure 9: Comparison of the training of Deformable DETR and DAB-Deformable-DETR models.
We plot the change of AP (left), the loss of all layers (middle), and the loss of the last layer (right)
during training, respectively. With no more than 10 lines of code modified, DAB-Deformable-DETR
results in a better performance compared with the original Deformable DETR model (see the left
figure). While the loss of all layers of DAB-Deformable-DETR is larger than that in Deformable
DETR (see the middle figure), our models have a lower loss of the last layer (see the right figure),
which is the most important as the inference result only takes from the last layer. The two models
are tested under the same standard R50 multi-scale setting.

Figure 10: Learned anchor points when learning 2D coordinates only (left), and anchor center points
(middle) and partial anchor boxes (right) when learning anchor boxes directly.

E RESULTS WITH DIFFERENT TEMPERATURES

Table 6 shows the results of models using different temperatures in the positional encoding function.
As larger temperature generates more flattened attention maps, it leads to better performances for
larger objects. For example, the model with T = 2 and the model with T = 10000 have similar AP
results, but the former has better performances on APS and APM , while the latter works better on
APL, which also validates the role of positional priors in DETR.
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Temperature AP AP50 AP75 APS APM APL

2 39.6 60.7 41.9 19.3 43.3 58.0

5 40.0 61.1 42.1 19.5 43.4 58.9

10 40.0 61.1 42.3 19.7 43.5 59.3

20 40.1 61.1 42.8 19.8 43.7 58.6

50 39.8 61.0 42.2 19.7 43.2 58.8

100 39.8 60.8 42.1 19.3 43.3 58.4

10000 39.5 60.7 41.7 18.9 42.6 58.9

Table 6: Comparison of models with different temperatures. All models are trained with the ResNet-
50 backbone, batch size 64, no multiple pattern embeddings, and no modulated attentions. Default
Settings are used for the rest of the parameters.

F RESULTS WITH LESS DECODER LAYERS

Table 7 shows the results of models with different decoder layers. All models are trained under our
standard ResNet-50-DC setting except the number of decoder layers.

decoder layers GFLOPs Parmas AP AP50 AP75 APS APM APL

2 202 36M 40.2 59.0 42.9 22.2 43.5 55.4

3 206 38M 43.9 63.4 47.4 24.6 47.8 60.5

4 210 40M 44.9 64.5 48.2 25.9 48.5 61.0

5 213 42M 45.2 65.5 48.6 26.6 48.9 62.3

6 216 44M 45.7 66.2 49.0 26.1 49.4 63.1

Table 7: Comparison of models with different number of decoder layers. All models are trained
under our standard ResNet-50-DC setting except the number of decoder layers.

G FIXED x, y FOR BETTER PERFORMANCE

We provide in this section an interesting experiment. As we all know, all box coordinates x, y, h, w
are learned from data. When we fix x, y of the anchor boxes with the random initialization, the
model’s performance increases consistently. The comparison of standard DAB-DETR and DAB-
DETR with fixed x, y coordinates is shown in Table 8. Note that we only fix x, y at the first layer
to prevent them from learning information from data. But x, y will be updated in other layers.
We conjecture that the randomly initialized and fixed x, y coordinates can help to avoid overfitting,
which may account for this phenomenon.

H COMPARISON OF BOX UPDATE

To further demonstrate the effectiveness of our dynamic anchor box design, we plot the layer-by-
layer update result of boxes of DAB-DETR and Conditional DETR in Fig. 11. All DETR-like
models have a stacked layers structure. Hence the outputs of each layer can be viewed as a refining
procedure. However, due to the high-dimensional queries that are shared across all layers, the update
of queries between layers is not stable. As shaded in yellow in Fig. 11 (b), some boxes predicted in
the latter layers are worse than their previous layers.

I ANALYSIS OF FAILURE CASES

Fig. 12 presents some samples where our model does not predict well. We find our model may have
some troubles when facing dense objects, very small objects, or very large objects in an image. To
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Model AP AP50 AP75 APS APM APL

DAB-DETR-R50∗ 42.6 63.2 45.6 21.8 46.2 61.1

DAB-DETR-R50∗-fixedx&y 42.9(+0.3) 63.7 45.3 22.0 46.8 60.9

DAB-DETR-DC5-R50 44.5 65.1 47.7 25.3 48.2 62.3

DAB-DETR-DC5-R50-fixedx&y 44.7(+0.2) 65.3 47.9 24.9 48.2 62.0

DAB-DETR-DC5-R50∗ 45.7 66.2 49.0 26.1 49.4 63.1

DAB-DETR-DC5-R50∗-fixedx&y 45.8(+0.1) 66.5 48.9 26.4 49.6 62.7

DAB-DETR-R101∗ 44.1 64.7 47.2 24.1 48.2 62.9

DAB-DETR-R101∗-fixedx&y 44.8(+0.7) 65.4 48.2 25.1 48.9 63.1

DAB-DETR-DC5-R101∗ 46.6 67.0 50.2 28.1 50.5 64.1

DAB-DETR-DC5-R101∗-fixedx&y 46.7(+0.1) 67.3 50.7 27.3 50.9 64.1

Table 8: Comparison of DAB-DETR and DAB-DETR with fixed anchor centers x, y. When fixing
x, y of queries with random values, the performance of the models is improved consistently. The
models with superscript ∗ use 3 pattern embeddings as in Anchor DETR.

layer3 layer4 layer3 layer4

layer2 layer3 layer2 layer3

layer4 layer5 layer4 layer5

a) DAB-DETR b) Conditional DETR

Figure 11: We compare the layer-by-layer update of boxes of DAB-DETR (a) and Conditional
DETR (b). The green boxes are ground truth annotations while the red boxes are model predictions.
The boxes of Conditional DETR have larger variances and we mark some boundaries of boxes with
a large change in yellow.

improve the performance of our model, we will introduce a multi-scale technique into our model to
improve the detection performance on small and large objects.

J COMPARISON OF RUNTIME

We compare the runtime of DETR, Conditional DETR, and our proposed DAB-DETR in Table
9. Their runtime speeds are reported on a single Nvidia A100 GPU. Our DAB-DETR has a simi-
lar inference speed but better performance compared with Conditional DETR, which is our direct
competitor.
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(a) (b) (c)

(d) (e) (f)

Figure 12: We visualize some images where our model does not predict well, including dense ob-
jects (a,b,c), very small objects (d), and very large objects (e,f). The green boxes are ground truth
annotations while red boxes are predictions of models.

Model time(s/img) epoches AP AP50 AP75 APS APM APL Parmas
DETR-R50 0.048 500 42.0 62.4 44.2 20.5 45.8 61.1 41M
Conditional DETR-R50 0.057 50 40.9 61.8 43.3 20.8 44.6 59.2 44M
DAB-DETR-R50 0.059 50 42.2 63.1 44.7 21.5 45.7 60.3 44M
DETR-R101 0.074 500 43.5 63.8 46.4 21.9 48.0 61.8 60M
Conditional DETR-R101 0.082 50 42.8 63.7 46.0 21.7 46.6 60.9 63M
DAB-DETR-R101 0.085 50 43.5 63.9 46.6 23.6 47.3 61.5 63M

Table 9: Comparison of the runtime of DETR, Conditional DETR, and our proposed DAB-DETR.
All speeds are reported on a single Nvidia A100 GPU.

K COMPARISON OF MODEL CONVERGENCE

We present convergence curves of DETR, Conditional DETR, and our DAB-DETR in Fig. 13. All
models are trained under the standard R50 (DC5) setting. The results demonstrate the effectiveness
of our model. Our DAB-DETR is trained with our fix x&y variants. see Appendix G for more
details about the fix x&y results. Both Conditional DETR and DAB-DETR use 300 queries, while
DETR leverages 100 queries.

Our DAB-DETR converges faster than Conditional DETR, especially in early epochs, as shown in
Fig. 13.

L VISUALIZATION RESULTS OF ITERATIVE BOX UPDATE

We present more visualization results of iterative box update in Fig. 14 and Fig. 15. The initial
anchors, anchors updated after the first decoder layer, and the anchors predicted from the last decoder
layer are plotted in the first, the second, and the third columns, respectively.
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Figure 13: Convergence curves of DETR, Conditional DETR, and our DAB-DETR. All models are
trained under the R50 (DC5) setting.

→

Figure 14: Visualizations for layer-by-layer anchor box update. We plot the initial anchor boxes
(left), anchor boxes after the first decoder layer (middle), and the output of the last decoder layer
(right), respectively. The green boxes are ground truth annotations, while the red boxes are predic-
tions of our model. The results are obtained using the ResNet-50 backbone. More visualizations are
available in Fig. 15.
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→

→

→

→

→

Figure 15: More visualizations for layer-by-layer anchor box update. We plot the initial anchor
boxes (left), anchor boxes after the first decoder layer (middle), and the output of the last decoder
layer (right), respectively. The green boxes are ground truth annotations, while the red boxes are
predictions of our model. The results are obtained using the ResNet-50 backbone.
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