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ABSTRACT
With the progressive advancements in deep graph learning, out-
of-distribution (OOD) detection for graph data has emerged as a
critical challenge. While the efficacy of auxiliary datasets in en-
hancing OOD detection has been extensively studied for image and
text data, such approaches have not yet been explored for graph
data. Unlike Euclidean data, graph data exhibits greater diversity
but lower robustness to perturbations, complicating the integration
of outliers. To tackle these challenges, we propose the introduction
of Hybrid External and Internal Graph Outlier Exposure (HGOE)
to improve graph OOD detection performance. Our framework in-
volves using realistic external graph data from various domains and
synthesizing internal outliers within ID subgroups to address the
poor robustness and presence of OOD samples within the ID class.
Furthermore, we develop a boundary-aware OE loss that adaptively
assigns weights to outliers, maximizing the use of high-quality
OOD samples while minimizing the impact of low-quality ones.
Our proposed HGOE framework is model-agnostic and designed to
enhance the effectiveness of existing graph OOD detection models.
Experimental results demonstrate that our HGOE framework can
significantly improve the performance of existing OOD detection
models across all 8 real datasets.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; Machine learning algorithms; •Mathematics of
computing → Graph theory.

KEYWORDS
OOD Detection, Attributed Networks, Graph Neural Networks.

1 INTRODUCTION
Nowadays, graph-structured data have shown significant success
in handling non-Euclidean relationships, prevalent in multimedia
systems such as social networks [38, 56], knowledge graphs [31, 36],
citation networks [6, 62], These capabilities facilitate advanced
applications like scene graph generation [5, 10], fraud detection
[17], and video captioning [2], by modeling complex relationships
between heterogeneous data types[28, 30, 33, 39, 49, 50, 55, 58, 61].
However, a significant challenge arises from the i.i.d. assumption
on which the mainstream graph learning methods depend, i.e., the
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Phenol

Benzene

Figure 1: Illustration of the distribution differences between
images (left) and graphs (right). Blue samples are from ID
classes, while orange ones are from OOD classes. Notably, ID
classes form clusters in images, while in graphs, they split
into subgroupswith potential OOD samples in between them.

training and testing graph data are from the same distribution.
This assumption often fails in real-world scenarios, particularly in
domains where data is complex and lacks sufficient labeling, such as
in the case of drug molecules and proteins. For example, a new drug
might not be any part of the already annotated data. Consequently,
this gives rise to an interesting issue: how to determine whether such
a new drug is present in the annotated drug library? This problem,
known as Graph Out-Of-Distribution (GOOD) detection, is crucial
in advancing the use of graph learning in real-world scenarios.

Although several methods for graph OOD detection have been
developed [27, 32, 59], they only utilize ID graph data. When the full
data distribution is complicated, merely modeling the ID data might
be insufficient to capture the essential clues for OOD detection.
In fact, auxiliary public OOD data is often accessible to help the
detector discover such clues. Exposing such auxiliary OOD data to
the model, also known as Outlier Exposure (OE), is widely studied
for image data [9, 16]. However, the application of OE for graph
samples has not yet been explored. To bridge this gap, we attempt
to investigate the incorporation of OE into graph OOD detection.

Unlike image data, introducing outliers to assist in the OOD
detection of graph data presents two significant challenges.

Firstly, since graphs are abstractions of patterns from the natural
world, they exhibit inherent diversity. For instance, various non-
Euclidean structures ranging from water molecules to complex
social networks can be represented using graphs, yet these graphs
can significantly differ in structure and properties. In contrast,
images possess a Euclidean structure, which facilitates easier feature
transfer. Therefore, utilizing existing graphs as outliers directly is
often not effective.

Secondly, graph data exhibits less robustness to perturbations,
resulting in the possibility of OOD samples existing within the
boundary of ID classes. For example, as illustrated in Figure 1, phe-
nol and benzene differ only by a hydrogen atom and an oxygen
atom, yet exhibit vastly different properties; phenol is solid at room

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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temperature, while benzene is liquid. This suggests that slight per-
turbations could transform ID graph sample into an OOD sample.
In contrast, image data typically exhibit a more compact intra-class
distribution and more well-separated classes (e.g., dogs and cats),
where minor perturbations often do not change their categories.
Therefore, merely incorporating some external outliers for expo-
sure could be effective for image data. But considering that outliers
may exist even within the same class of graphs, the external outlier
exposure remedy is insufficient for graph OOD detection.

To address the first challenge, existing studies suggest that intro-
ducing diverse outliers closer to the in-distribution data is beneficial.
Therefore, given the inherent diversity of graph data, we propose
incorporating cross-domain external outliers into training. More-
over, in addition to these external outliers, we aim to synthesize
outliers that are nearer to in-distribution data. Regarding the second
challenge, since there exist subgroups within a class, and outliers
also exist between these subgroups, we consider synthesizing some
internal outliers between subgroups to assist in OOD detection.
Because these samples are close to In-Distribution samples, if the
model can accurately identify these samples, it would further en-
hance the OOD detection performance.

Motivated by this, we propose a general hybrid graph outlier
exposure (HGOE) framework for graph OOD detection which in-
tegrates both external and internal outliers. The external outliers
are easily collected from public database. As for internal graph
outliers, we design a graphon-based ID-mixup strategy to simulate
the OOD region among subgroups and synthesize OOD samples.
Given these outliers, we further propose a boundary-aware OE loss
to adaptively learn from true outliers and prevent the unintended
bias.

In summary, the contributions of this paper are as follows:

• Wepropose a novel hybrid graph outlier exposure framework
for graph OOD detection. It simultaneously utilizes external
outliers and internal outliers to enhance the diversity. To
the best of our knowledge, this is the first trial of outlier
exposure in graph-level OOD detection tasks.

• To synthesize internal outliers, we design an ID-mixupmethod
that can effectively generate outlier graph samples between
ID subgroups based on graphons.

• We further introduce a novel boundary-aware loss. By instan-
tiating the HGOE framework with a SOTA detector, we have
surpassed the competitors on 8 real-world graph datasets.

2 RELATEDWORK
Graph Neural Networks. Graph neural networks (GNNs) have
been widely adopted in various deep learning tasks due to their abil-
ity to process graph-structured data, which can effectively extract
both the structural and attribute information of graphs [12, 20, 44].
GNNs have achieved remarkable results in various deep learning
tasks in recent years, such as recommendation systems, natural
language processing and computer vision [46, 62]. GNNs can be
broadly categorized into two distinct classes, which encompass
spectral-based GNNs and spatial-based GNNs [63].

Existing Spectral-based Graph Neural Networks leverage spec-
tral graph theory for graph analysis, offering the advantage of
incorporating global graph topology information. However, they

also exhibit certain limitations, including high computational com-
plexity, challenges in handling dynamic or heterogeneous graphs,
and a deficiency in local perception ability[48]. For instance, Cheb-
Net approximates spectral graph convolutions using Chebyshev
polynomials of arbitrary order, while GCN simplifies this by em-
ploying only the first two Chebyshev polynomials as the graph
convolution, effectively creating a fixed low-pass filter[37].

Spatial-based Graph Neural Networks leverage the spatial infor-
mation of nodeswithin the graph to perform graph convolutions[19].
These networks are rooted in message-passing mechanisms[20, 53],
wherein each node updates its features based on the features of its
neighboring nodes. Notably, Graph Attention Networks (GAT)[45]
introduce a self-attention mechanism to compute node neighbor
weights, allowing for dynamic and adaptive aggregation within
neighborhoods. GAT further enhances model capacity by employ-
ing multi-head attention. Meanwhile, GraphSAGE[13] learns how
to aggregate node features from various sources using diverse func-
tions like mean, max-pooling, or LSTM, making it suitable for in-
ductive learning tasks that involve new nodes or graphs during
testing. Graph Isomorphism Networks (GIN)[53], another class of
graph convolutional network, employ sum and MLP operations
to aggregate node features. Additionally, Graph Structural Neu-
ral Networks[51] provide a versatile solution for incorporating
structural graph properties into the message-passing aggregation
scheme of GNNs.
Out-of-distribution (OOD) Detection. Existing deep learning-
based classification methods often exhibit overconfidence on un-
seen classes [15]. To address this issue, out-of-distribution (OOD)
detection [15] involves the task of distinguishing test samples
from distributions different from the seen training data. It com-
prises post-hoc and fine-tuning approaches [54]. Post-hoc methods
[21, 23, 43, 47] leverage the logit space and output scores of models
that trained on in-distribution data to classify ID and OOD data.
Fine-tuning approaches [9, 16] introduce extra regularization terms
during training or incorporate auxiliary training data, referred to
as outlier exposure, which can be either real, synthetic, or sampled
from the feature space. Outlier exposure has proven effective in
enhancing OOD detection performance.

However, these methods are typically applied to image or text
data. OOD detection in graph data remains an under-explored area.
Graph OOD detection [27] aims to determine whether test graphs
originate from within the in-distribution relative to the training
set or are out-of-distribution. Some studies [32, 59] focus on graph
anomaly detection, where the training data comprises both in-
distribution and anomalous data, positioning it as a subset of graph
OOD detection. OCGIN [59] utilizes a GIN as its encoder and cap-
italizes on an SVDD [60] objective for one-class graph anomaly
detection. GLocalKD [32] employs joint random distillation to pin-
point anomalous graphs on both local and global scales. GOOD-D
[27] differentiates between ID and OOD graph data through hi-
erarchical contrastive learning and perturbation-free graph data
augmentation, having been exposed only to ID data during train-
ing. AAGOD [11] introduces a novel learnable amplifier generator,
designed to generate graph-specific amplifiers, thereby enhancing
the detection of OOD graphs on trained GNNs. GraphDE [22] in-
troduces a generative framework for debiased learning and OOD
detection in graph data.
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Graph Data Augmentation. Graph data augmentation, involv-
ing transformations to enrich or enhance information in the given
graph, has been extensively explored. Non-learnable augmentation
methods [8, 57] achieve this through perturbation or random sam-
pling of edges, nodes, or subgraphs. In contrast, learnable augmen-
tation methods [7] train an Augmenter with learnable parameters
using techniques like Decoupled Training, Joint Training, or Bi-
level Optimization [8]. Among these methods, some utilize graph
mixup [14, 25] to generate new graphs. G-mixup [14] enhances clas-
sification performance by generating new graphs through mixup
based on estimating graphons of the same class. S-Mixup [25] em-
ploys soft alignments for node matching to achieve instance-level
graph mixup.

As an orthogonal direction to existing graph-level OOD detec-
tion approaches, our approach focuses on introducing outlier sam-
ples that assist in OOD detection training. Our framework relies
on utilizing in-distribution graphons to generate internal outliers
within them, rather than directly performing augmentations on the
original graph structure.

3 PRELIMINARIES
In this section, we provide definitions for key terms and concepts
utilized throughout this paper.

3.1 Problem Setting
Denote a graph by 𝐺 = (V, E,𝑿 ), where V denotes the set of
nodes, E denotes the set of edges, and 𝑿 ∈ R𝑛×𝑑 is the node
feature matrix. The adjacency matrix is denoted as 𝑨 ∈ {0, 1}𝑛×𝑛 ,
where 𝑨𝑖 𝑗 = 1 indicates a connection between nodes 𝑣𝑖 and 𝑣 𝑗 and
𝑨𝑖 𝑗 = 0 otherwise.

In this paper, we focus on the unsupervised graph-level OOD de-
tection problem. Specifically, given a set of unlabeled in-distribution
graphs D𝑖𝑛 = {𝐺𝑖 }𝑁𝑖=1 drawn from the distribution P𝑖𝑛 , the aim of
unsupervised graph-level OOD detection is to learn a graph OOD
scoring function 𝑓 (·) based on the ID data D𝑖𝑛 . A higher score
𝑠 = 𝑓 (𝐺) indicates a higher probability to be an OOD graph. The
scoring function is evaluated on a test set D𝑡𝑒𝑠𝑡 = D𝑖𝑛

𝑡𝑒𝑠𝑡 ∪ D𝑜𝑜𝑑
𝑡𝑒𝑠𝑡

(D𝑖𝑛
𝑡𝑒𝑠𝑡 ∩ D𝑜𝑜𝑑

𝑡𝑒𝑠𝑡 = ∅) where D𝑖𝑛
𝑡𝑒𝑠𝑡 ∼ P𝑖𝑛 and D𝑜𝑜𝑑

𝑡𝑒𝑠𝑡 ∼ P𝑜𝑜𝑑 . It
should be emphasized that graph data sourced from P𝑖𝑛 and P𝑜𝑢𝑡

might fall into multiple categories. However, in the unsupervised
graph-level OOD task, the model is not provided with any category-
specific labels.

3.2 Graphon
A graphon, denoted by the function W : [0, 1]2 → [0, 1], is a
continuous, bounded, and symmetric function in graph theory, ex-
tensively used to describe graph generation [1]. The value W(𝑖, 𝑗)
approximates the probability of an edge between nodes 𝑖 and 𝑗 in
a specific graph. A graphon can be considered as a function that
embodies the characteristics of a class of graphs, allowing for the
sampling of graphs from the graphon. These sampled graphs share
similar topological features. Distinct graphons represent different
graph classes, enabling comparative analysis of their structural
features. These graphons are estimated using step function approxi-
mations [29]. Graphons are particularly useful in synthesizing new

graphs that reflect patterns found in real-world data, offering in-
sights into the underlying structure of complex networks. However,
there is no closed-form expression for graphons. Previous studies
[14, 52] have employed a two-dimensional step function to esti-
mate graphons, which can be considered a matrix representing
the probability of edge existence. In this paper, we denote it as
𝑊 ∈ [0, 1]𝐷×𝐷 , where 𝐷 is the dimensionality of the graphon. This
matrix𝑊 can then be used to generate graphs with a number of
nodes less than 𝐷 .

4 METHODOLOGY
4.1 Overall Framework
In general, with a graph OOD score function 𝑓 (𝐺), the basic learn-
ing objective for unsupervised graph OOD detection can be de-
scribed as:

min
𝑓
E𝐺∼Din [Lood (𝑓 (𝐺))], (1)

where Lood is the loss function.
By integrating the hybrid graph outlier exposure (HGOE) pro-

cedure, we hope the exposed OOD data have higher OOD scores
than ID data. Subsequently, we simultaneously minimize the OOD
score of ID data and maximize that of OOD data:

min
𝑓
E𝐺∼Din [Lood (𝑓 (𝐺))+

𝛽 · E𝐺 ′∼DOE [LGOE (𝑓 (𝐺), 𝑓 (𝐺 ′))]
]
.

(2)

Apparently, such an introduction of HGOE is independent of the
basic graph OOD model and thus can be applied to most existing
models.

In deploying the GOE framework, we identify two pivotal chal-
lenges: (C1) How to acquire high-quality graph outlier data? (C2)
How to design a LGOE to effectively utilize these OE data? To
tackle (C1), we introduce both internal and external outliers. To ad-
dress (C2), we develop a boundary-aware loss function. The overall
pipeline of HGOE is illustrated in Figure 2. To facilitate the genera-
tion of internal outliers, we start with the division of graphs into
distinct subgroups, wherein each subgroup is defined by the simi-
larity in properties among its constituent graphs. This is followed
by the estimation of the graphon for each subgroup. Thereafter, we
deploy an ID-mixup technique that combines the graphons from
these subgroups to obtain internal outliers, incorporating node
feature information from external outliers into this process. The
resulted internal and external outliers are then fed into the OOD
detector, which is further optimized through the implementation
of an innovatively designed boundary-aware loss. In subsequent
sections, we will introduce the HGOE framework in detail.

4.2 Mixture Outlier Training Strategy
Our mixture outlier training strategy incorporates outliers from
two sources: real-world external outliers and synthesized internal
outliers. External outliers are derived from public graph datasets
similar to the training graphs, while internal outliers are generated
from ID graphs.
External Outliers. In contrast to image data, graph data in the
real world display significantly more complex structures, with no-
table gaps in characteristics between fields like social networks
and protein networks. To investigate the role of real-world outliers,
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Figure 2: Overview of the proposed HGOE framework. We collect external outliers via public graph database. Given ID graphs,
we perform feature extraction using GraphCL and cluster them to obtain multiple ID subgroups. Then we estimate graphons
for these subgroups and mix them up to obtain graphons for internal outliers. Sampled graph structures are further used to
generate node features by aligning features from external outliers. Finally, the synthesized internal outliers and real-world
external outliers are jointly optimized using a boundary-aware loss.

we sample from several graph datasets to create a real-world OE
dataset. During the training of different ID data, we select graphs
from the OE dataset that are consistent with them in feature dimen-
sions, ensuring no overlap between the OE graphs and the training
and test sets. This process results in an external outlier dataset,
denoted as D𝑒𝑥𝑡

𝑜𝑒 .
Internal Outliers. The quality and diversity of external outliers
data are crucial for outlier exposure, but are limited by the scope and
quality of the existing auxiliary dataset. Synthesizing additional
outliers then emerges as a solution, offering tailored, abundant,
and diverse graph data for training. However, the challenge lies
in ensuring that the synthesized data resonates with real-world
outlier scenarios and does not introduce unintended biases. As dis-
cussed in the introduction, there exist internal outliers among the
in-distribution graph data, which are distributed near the bound-
aries of subgroups. To obtain these internal outlier samples, we
design an internal outlier generation strategy, which will be de-
scribed in the next subsection.

4.3 Internal Outlier Synthesis
A straightforward way to generate graphs is to interpolate each
pair of samples in the dataset directly. However, unlike Euclidean
data such as images, different graphs usually have different sizes
(i.e., different numbers of nodes) and have unique topology in Non-
Euclidean spaces. Therefore, we propose to mix up the graph gen-
erators instead of graph samples themselves to synthesize more
realistic graph data.

To find internal outliers for input graphs, it is imperative to
first divide the graphs into subgroups. For the input ID graphs, we
adopt graph contrastive learning techniques (e.g., GraphCL [57])
for feature extraction, and then perform 𝑘-means clustering to

obtain 𝑘 subgroups C𝑖 , where D𝑖𝑛 =
⋃𝑘

𝑖=1 C𝑖 . Since the members
in each subgroup often share similar properties, we assume that
each subgroup within the ID data is generated by a specific graphon.
And we use the widely-used universal singular value thresholding
(USVT) method [4] to estimate the graphon𝑊𝑖 for each C𝑖 in D𝑖𝑛 .

For each pair of non-overlapping subgroups C𝑖 and C𝑗 in D𝑖𝑛 ,
we perform a mixup operation over the corresponding graphons
𝑊𝑖 and𝑊𝑗 as follows:

M = 𝜆𝑊𝑖 + (1 − 𝜆)𝑊𝑗 , (3)

where 𝜆 ∈ [0, 1] is the balancing hyperparameter. The mixup result
M combines the structural features of subgroups C𝑖 and C𝑗 , and
can be considered a new graph generator positioned between the
two subgroups. By sampling based on this graphon, we could obtain
graphs lying in the interpolated regions between these subgroups,
preserving the subgroups’s topologies.
Random Size Based Sampling. The interpolated graphonM ∈
[0, 1]𝑁×𝑁 has the capability to generate infinitely many graphs.
However, the naive generated graphs are very likely to have a
size around 𝑁 . This limits the diversity of the synthesized outliers,
which does not meet our goal in the HGOE framework to synthe-
size outliers broadly distributed near the original subgroups, with
various sizes of graphs. In order to increase the diversity of outliers,
we employ a random size based sampling strategy, i.e., we first
randomly sample the size of the graph 𝑟 ∈ [2, 𝑁 ] and then generate
the graph from the sampled graphonM′ ∈ [0, 1]𝑟×𝑟 . The existence
of an edge between nodes 𝑖 and 𝑗 is determined by sampling from
a Bernoulli distribution with the parameterM′ (𝑖, 𝑗).
External Feature Alignment. Merely sampling from the interpo-
lated graphons could only produce pure structure graph outliers
with the structure information (denoted as 𝑨′). Therefore, we fur-
ther propose to generate node features based on external outlier
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features. Specifically, we calculate the structural features of both
the generated internal outlier structure𝑨′ and the external outliers.
And then we construct the node features for the generated internal
outliers based on that of the external outliers with the most similar
structure features. Here, the structural features 𝑠diff

𝑖
of the 𝑖-th node

in a 𝑑𝑠 -dimensional space is obtained through a 𝑑𝑠 -step random
walk-based diffusion process on the graph:

𝑠diff𝑖 =

[
𝑻𝑖𝑖 , 𝑻

2
𝑖𝑖 , . . . , 𝑻

𝑑𝑠
𝑖𝑖

]
∈ R𝑑𝑠 , (4)

where 𝑻 = 𝑨′𝑫−1 denotes the transition matrix for the random
walk on the graph, and 𝑫 is the degree matrix of 𝑨′. After com-
puting the structural features of 𝑨′, we compare them with the
structural features of external outliers. For each node in the syn-
thesized internal outlier 𝐺 ′, we assign node features that are most
closely aligned with the structural features of nodes in the exter-
nal outliers. Note that our external feature alignment approach
is training-free. By performing structural searches on nodes with
existing features, we can effectively assign outlier features to nodes
that initially lack features.

Through the aforementioned ID-mixup based procedure, we
can generate an arbitrary number of internal outliers, denoted as
D𝑖𝑛𝑡

𝑜𝑒 . Compared to real-world outliers, these synthetic outliers
are not limited in quantity or source. Furthermore, being located
near in-distribution samples, they effectively compensate for the
uncontrolled quality issue of external outliers.

4.4 Boundary-Aware OE Loss
The introduced outliers further present two critical issues: How
can we ensure that the introduced outliers do not fall within the
in-distribution area, and how to find those more important outliers?
Take the social graph ID data as an example. Intermixing social
graphs could still result in a social graph, so the generated samples
are not OOD data and should be excluded from the outlier dataset.
At the same time, different outliers can have varying levels of
importance, with points on the boundary potentially being critical
points where a change in properties is about to occur.

To solve these problems, we design the following boundary-
aware OE Loss ℓ𝑏𝑎 which is adaptively aware of whether the sample
is in ID or OOD space. For an input outlier graph 𝐺 ′, the loss is
calculated as:

ℓ𝑏𝑎 (𝑠𝐺 ′ , 𝜏) = −(𝑙 − 𝑠𝐺 ′ )𝛾 max(log(𝑠𝐺 ′ ), 𝜏), (5)

where 𝑠𝐺 ′ = sigmoid(𝑓 (𝐺 ′)) is the OOD score scaled by a sigmoid
function, 𝑙 and𝛾 are hyperparameters. Note that 𝜏 is an ID-boundary
threshold, which we adaptively set as the smallest 𝑠 among the ID
samples:

𝜏 = min
𝐺∈D𝑖𝑛

sigmoid(𝑓 (𝐺)) . (6)

To better understand Eq. (5), we rewrite it in the following form:

ℓ𝑏𝑎 (𝑠𝐺 ′ , 𝜏) =
{
−(𝑙 − 𝑠𝐺 ′ )𝛾 log(𝑠𝐺 ′ ), if log(𝑠𝐺 ′ ) > 𝜏

−𝜏 (𝑙 − 𝑠𝐺 ′ )𝛾 , if log(𝑠𝐺 ′ ) ≤ 𝜏
. (7)

From this formulation, we have the following observations:

• When log(𝑠𝐺 ′ ) > 𝜏 , it indicates that 𝐺 ′ is a valid outlier.
In this case, the smaller 𝑠𝐺 ′ is, the closer it is to the in-
distribution boundary. Apparently, such near-boundary out-
liers are important in guiding the detector to distinguish
OOD samples from ID ones. Therefore, we weigh it by the
term (𝑙 − 𝑠𝐺 ′ )𝛾 , giving higher weights to these boundary
samples. As 𝛾 increases, the model pays more attention to
samples nearer to the ID boundary.

• When log(𝑠𝐺 ′ ) < 𝜏 , it means that the outlier𝐺 ′ is very likely
invalid and fall into in-distribution space. Blindly treating it
as an outlier might be harmful to the learning. Therefore, by
minimizing −𝜏 (𝑙 − 𝑠𝐺 ′ )𝛾 , the OOD score is reduced, which
enhances the recognition ability for in-distribution samples.

Then, considering both external and internal outliers, the total
graph outlier exposure loss is formulated as:

LGOE =
∑︁

𝐺 ′∈D𝑖𝑛𝑡
𝑂𝐸

∪D𝑒𝑥𝑡
𝑂𝐸

ℓ𝑏𝑎 (𝑠𝐺 ′ , 𝜏). (8)

Finally, we can instantiate the overall training objective L as
follows:

L =
∑︁

𝐺∈Din

[
Lood (𝑓 (𝐺)) + 𝛽

∑︁
𝐺 ′∈D𝑂𝐸

ℓ𝑏𝑎 (𝑠𝐺 ′ , 𝜏)
]

=
∑︁

𝐺∈Din

Lood (𝑓 (𝐺)) + 𝛽
∑︁

𝐺 ′∈D𝑖𝑛𝑡
𝑂𝐸

∪D𝑒𝑥𝑡
𝑂𝐸

ℓ𝑏𝑎 (𝑠𝐺 ′ , 𝜏) .
(9)

In practice, our LGOE can be added as a regularization term to most
existing OOD detection models, without modifying their network
architectures.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. We select three pairs of datasets from the TU
dataset [35] and five pairs from the OGB dataset [18]. Each pair of
datasets belongs to the same field and shares similar features, but
exhibits distribution shifts between the two datasets in the pair. 90%
of the In-Distribution (ID) samples are used for training, while 10%
of the ID samples and an equivalent number of OOD samples are
used for testing. For more detailed information about these datasets,
refer to Table 1.

For external outlier data, we grouped datasets with identical
feature counts into a unified external dataset. Based on the feature
counts of our selected datasets, as detailed in Table 1, this organiza-
tion resulted in two distinct external dataset collections, with node
feature numbers being 1 and 9, respectively. In this configuration,
for each In-Distribution dataset, we utilized other datasets from
the corresponding external dataset collection for training purposes,
deliberately excluding both the OOD dataset for testing and the ID
dataset itself.

5.1.2 Competitors. We adopt the following three categories of
graph OOD detection methods as our competitors:

• Non-deep Two-step Methods. We use WL [41] graph ker-
nels as feature extractors and employ local outlier factor
(LOF) [3], one-class SVM (OCSVM) [34], and isolation forest
(iF) [26] as detectors to perform OOD detection.
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Table 1: Statistics of datasets

Dataset #Feature #Graphs #Avg.Nodes #Avg.Edges #Avg.deg
AIDS 1 2000 15.69 16.2 1.03
DHFR 1 756 42.43 44.54 1.05

ENZYMES 1 600 32.63 62.13 1.90
PROTEIN 1 1113 39.06 72.82 1.86
IMDB-M 1 1500 13 65.93 5.07
IMDB-B 1 1000 19.77 96.53 4.88
Tox21 9 7831 18.57 19.29 1.04
SIDER 9 1427 33.64 35.35 1.05
FreeSolv 9 642 8.72 8.38 0.96
ToxCast 9 8576 18.78 19.26 1.03
BBBP 9 2039 24.06 25.95 1.08
BACE 9 1513 34.08 36.85 1.08
ClinTox 9 1477 26.15 27.88 1.07
LIPO 9 4200 27.04 29.49 1.09
Esol 9 1128 13.28 13.67 1.03
MUV 9 93087 24.23 26.27 1.08
BZR 1 405 35.75 38.36 1.07
COX2 1 467 41.22 43.45 1.05

PTC_MR 1 344 14.28 14.69 1.03
MUTAG 1 188 17.93 19.79 1.10

• Deep Two-step Methods. The process is similar to the
above methods, but the feature extractor is replaced with
graph deep self-supervised methods InfoGraph [42] and
GraphCL [57], and the detectors are replaced with isolation
forest (iF) and Mahalanobis distance (MD) [40]. Compared to
graph kernels, self-supervised methods can extract features
of graphs better.

• End-to-end Methods. We utilize three popular end-to-end
learning methods, including OCGIN [59], which uses graph
neural networks for feature extraction and is optimized with
SVDD. GLocalKD [32] uses distillation learning for graph
anomaly detection, and GOOD-D [27] employs multi-level
contrastive learning for end-to-end OOD detection.

For the proposed framework, we instantiate it on the SOTA graph
OOD detector baseline GOOD-D [27]. Besides, we also implement
two ablated variants to show the impact of internal and external
outliers. Specifically, HGOE w/o IO and HGOE w/o EO denote the
variants without internal and external outliers, respectively.

5.1.3 Implementation Details. For HGOE, the ratio of external to
internal outliers was set to 1:1, with the total number equal to
the number of in-distribution samples seen during training. The
hyperparameter 𝜆 was set to 2, and 𝛾 was set to 2. The dimension of
the structural features 𝑠diff

𝑖
was set to 16, and the number of clusters

for all datasets was determined to be 3. GraphCL was run for 50
iterations with an embedding dimension of 32, and the probabilities
for node dropping, feature masking, and edge removing were all
set to 0.1. During ID-mixup, 𝜆 was randomly chosen from the range
[0.01, 1]. AUC (Area under the ROC Curve) [24] is used as the
performance metric. A higher AUC value indicates better detection
performance.

5.2 Main Results
We evaluate the performance of HGOE and other competitors, with
the results presented in Table 2. Our findings include:

(1) Two-step detection methods do not perform as well as end-to-
end detection methods, especially where non-deep learning meth-
ods are inferior to deep learning-based feature extraction methods.
Within self-supervised methods, GraphCL-MD demonstrates the
best performance, showing GraphCL’s capability in extracting fea-
tures for graph OOD detection. This also explains why we chose to
utilize GraphCL features for clustering.

(2) For our HGOE framework, compared to GOOD-D without
the use of graph outliers, there was an enhancement in performance
across all 7 datasets. On the ENZYMES+PROTEIN dataset, the av-
erage performance improve from 60.15 to 64.44. On Tox21+SIDER,
it increased from 64.98 to 68.24, and on FreeSolv+ToxCast, the
performance increase from 78.79 to 83.36.

(3) The performance improvement on IMDB-M+IMDB-B was
not substantial because both are social datasets, and the outliers
we introduce were from molecular and protein datasets, which
are biologically oriented. However, using these as outliers still con-
tributed to enhanced detection on IMDB-M+IMDB-B. This indicates
that selecting outliers similar to the ID distribution, as opposed to
introducing outliers completely unrelated to the ID data, is more
effective.

5.3 Visualization
5.3.1 ID-mixup Visualization. After obtaining the subgroupswithin
the known distribution, we performed a mixup of the estimated
graphons and visualized the resulting mixed graphons in the form
of heatmaps, as shown in Figure 3. The graphon in the center rep-
resents the result of performing ID-mixup on the two adjacent
graphons. It is evident that the graphon after ID-mixup retains the
structures of the original graphons, forming a new graph gener-
ator. This demonstrates that our ID-mixup can effectively blend
the distributions of subgroups to a certain extent, fulfilling our
hypothesis.

5.3.2 Score Distribution Visualization. Based on the OOD scores
for samples in the test set, we visualize the frequency distribution of
OOD scores for both ID and OOD samples using different colors. As
shown in Figure 4, the left column depicts the score distributions
without using HGOE, while the right column shows the results
after applying the HGOE framework. The less the overlap and the
greater the distance between the ID and OOD areas are, the better
the corresponding model’s performance is. It is observable that our
HGOEmethod has decreased the overlap area between ID and OOD
distributions, which also explains the reason for the performance
improvement.

5.3.3 Visualization of Graph-level Features. We extract features
of each individual graph by the OOD detection model. These ex-
tracted features are then visualized through t-SNE, as demonstrated
in Figure 5. The representation employed in this study is the graph-
level representation acquired from HGOE. It can be observed that,
apart from the visualization result of AIDS+DHFR in 5a, the rep-
resentations of other OOD graphs are distributed among the ID
graphs. This highlights the importance of identifying and analyzing
internal outliers that reside within the distribution of ID graphs for
more effective and accurate OOD Detection.
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Table 2: AUC (mean±std%) results on seven real-world graph datasets. The best and runner-up performances are highlighted.

ID dataset AIDS ENZYMES IMDB-M Tox21 FreeSolv BBBP ClinTox Esol
OOD dataset DHFR PROTEIN IMDB-B SIDER ToxCast BACE LIPO MUV

WL-LOF 50.77±2.87 52.66±2.47 52.28±4.50 51.92±1.58 51.47±4.23 52.80±1.91 51.29±3.40 51.26±1.31
WL-OCSVM 50.98±2.71 51.77±2.21 51.38±2.39 51.08±1.46 50.38±3.81 52.85±2.00 50.77±3.69 50.97±1.65

WL-iF 50.10±0.44 51.17±2.01 51.07±2.25 50.25±0.96 52.60±2.38 50.78±0.75 50.41±2.17 50.61±1.96

InfoGraph-iF 93.10±1.35 60.00±1.83 58.73±1.96 56.28±0.81 56.92±1.69 53.68±2.90 48.51±1.87 54.16±5.14
InfoGraph-MD 69.02±11.67 55.25±3.51 81.38±1.14 59.97±2.06 58.05±5.46 70.49±4.63 48.12±5.72 77.57±1.69
GraphCL-iF 92.90±1.21 61.33±2.27 59.67±1.65 56.81±0.97 55.55±2.71 59.41±3.58 47.84±0.92 62.12±4.01
GraphCL-MD 93.75±2.13 52.87±6.11 79.09±2.73 58.30±1.52 60.31±5.24 75.72±1.54 51.58±3.64 78.73±1.40

OCGIN 86.01±6.59 57.65±2.96 67.93±3.86 46.09±1.66 59.60±4.78 61.21±8.12 49.13±4.13 54.04±5.50
GLocalKD 93.67±1.24 57.18±2.03 78.25±4.35 66.28±0.98 64.82±3.31 73.15±1.26 55.71±3.81 86.83±2.35
GOOD-D 98.70±0.82 60.15±0.46 79.10±1.32 64.98±0.42 78.79±4.22 80.60±2.60 67.41±3.38 90.52±1.54

HGOE w/o IO 99.14±0.43 62.17±1.44 78.56±1.44 66.66±2.02 83.36±1.35 81.52±0.91 70.78±1.84 92.47±2.29
HGOE w/o EO 98.82±0.21 62.12±1.42 80.04±1.63 65.49±1.33 82.73±2.99 81.42±2.83 68.63±2.95 91.37±1.69

HGOE 99.28±0.34 64.44±2.19 81.74±2.25 68.24±0.60 82.89±2.33 83.46±1.79 70.09±1.52 92.64±2.44

Figure 3: Visualization of graphons obtained by ID-mixup.
The rows are from ENZYMES and FreeSolv datasets, respec-
tively. The first and third columns are graphons of two sub-
groups, and the second column shows their mixup results.
Brighter cells indicate a higher probability of edge existence
at that location.

5.4 Ablation Study
5.4.1 Using Only One Type of Outliers. In Table 2, HGOEw/o IO and
HGOE w/o EO represent the results of using only internal outliers
and external outliers, respectively. We observe that using just one
of these types yields better results than not using any OE (Outlier
Exposure) samples at all. Moreover, in most cases, the performance
of using only external outliers is superior to that of using only
internal outliers, but inferior to using both types. This indicates
that the combination of both types of outliers can more effectively
enhance the performance of hybrid graph outlier exposure.

Figure 4: Score distributions on several graph datasets. The
left column shows results without HGOE, while the right
column is with HGOE. It is evident that the overlap area
between ID and OOD samples becomes smaller after intro-
ducing HGOE.

5.4.2 The Strategy for Adaptive Allocation of 𝜏 . In Section 4.4, we
introduce an adaptive parameter 𝜏 in the distribution-aware OE loss,
which is set as the smallest normalized score among the ID samples.
To explore the specific role of 𝜏 , we implement methods setting
𝜏 according to the maximum, average, and minimum normalized
scores. The results, as shown in Figure 3, indicate that the min
strategy for allocating 𝜏 performs the best. However, this strategy
negatively affects performance on the IMDB-M+IMDB-B dataset,
which we believe is due to its significant difference from the other
datasets.
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(a) AIDS+DHFR (b) ENZYMES+PROTEINS

(c) IMDB-M+IMDB-B (d) Tox21+SIDER

Figure 5: t-SNE visualization of graph-level representations.
Red dots represent ID graphs in the training set, green and
blue dots represent ID and OOD graphs in the test set, respec-
tively. It can be observed that OOD samples also exist within
ID classes.

Table 3: Performance gains of differentmethods for choosing
𝜏 relative to not using the threshold 𝜏 .

AIDS ENZYMES IMDB-M Tox21 FreeSolv BBBP ClinTox Esol
DHFR PROTEIN IMDB-B SIDER ToxCast BACE LIPO MUV

min +0.09 +0.38 -0.34 +0.23 +0.62 +0.20 +0.31 +0.45
mean +0.19 +0.24 -0.17 +0.03 +0.44 -0.31 +0.02 -0.30
max -0.03 -0.38 -0.26 -0.46 -0.78 -1.26 -0.12 -0.43

Table 4: Performance of HGOE with only internal outliers at
different 𝜆 ranges.

ENZYMES Tox21 FreeSolv BBBP ClinTox
𝜆 Range PROTEIN SIDER ToxCast BACE LIPO

[0.01, 1.0] 62.12±1.42 65.49±1.33 82.73±2.99 81.42±2.83 68.63±1.33
[0.1, 0.9] 62.07±1.82 65.20±1.58 82.06±2.23 81.01±3.21 68.20±1.58
[0.3, 0.7] 62.03±1.29 65.13±1.41 81.92±2.26 81.20±2.78 68.76±2.65
[0.4, 0.6] 61.98±1.13 65.29±1.34 81.92±1.87 81.34±2.87 68.74±3.00

5.5 Sensitivity Analysis
5.5.1 ID-mixupWeight 𝜆. We explore the sensitivity of HGOEwith
respect to 𝜆 by evaluating its performance during ID-mixup across
different 𝜆 ranges. As seen in Table 4, we progressively narrow the
range of 𝜆 from [0.01, 1.0] to [0.4, 0.6]. In this process, a perfor-
mance decline was observed in most datasets. This suggests that for
ID-mixup, blending two in-distribution samples at varying ratios
can increase the diversity of internal outliers, thereby enhancing
detection effectiveness. However, an opposite trend of performance
increase, rather than decrease, was observed in the CLintox+LIPO

Figure 6: Performance gain of HGOE compared to 𝛾 = 0when
𝛾 varies.

dataset pair. This anomaly may be related to the characteristics
of these datasets, both being molecular graphs from the OGB and
possessing extremely similar average node and edge counts, re-
sulting in closer distributions. If ID-mixup outliers falling within
the in-distribution range, it could lead to a greater performance
decrease compare to other datasets. So when 𝜆 is set to a middle
value, the generated graphon lies between subgroups. This explains
why choosing a 𝜆 value range [0.3, 0.7] yields better results.

5.5.2 Hyperparameter 𝛾 of Boundary-aware OE Loss. As described
in our framework, 𝛾 plays a significant role in the boundary-aware
loss. We vary the value of 𝛾 to {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, and
as observed in Figure 6, as 𝛾 increases, there is a performance
improvement when 𝛾 ∈ [0, 2]. However, performance starts to
decline for some datasets when it exceeds 2 and 2.5. This indicates
that within an appropriate range, introducing 𝛾 can effectively
weight the samples, and this effect improves with the increase
of 𝛾 , up to a point where it begins to decrease. This phenomenon
validates the rationality and effectiveness of our designed boundary-
aware OE loss.

6 CONCLUSION
In this work, we investigate the enhancement of OOD detection
performance on graph-level data through hybrid graph outlier ex-
posure. We demonstrate that not only external outliers are crucial
for graph OOD detection, but internal outliers also play a signifi-
cant role. Based on this, we propose a carefully designed ID-mixup
based method for synthesizing internal outliers by generating OOD
samples between in-distribution subgroups and aligning these with
external outlier features. Upon obtaining these synthesized internal
outliers, we effectively utilize the characteristics of outlier samples
by adaptively allocating learning weights to OE samples using a
well-designed boundary-aware OE loss. Our HGOE framework pro-
vide substantial performance improvements for other graph OOD
detection methods. Extensive experiments on 8 real-world datasets
show its superior performance.
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