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Abstract. Skin lesion segmentation is a challenging task due to the large varia-
tion of anatomy across different cases. In the last few years, deep learning frame-
works have shown high performance in image segmentation. In this paper, we
propose Attention Deeplabv3+, an extended version of Deeplabv3+ for skin le-
sion segmentation by employing the idea of attention mechanism in two stages.
We first capture the relationship between the channels of a set of feature maps
by assigning a weight for each channel (i.e., channels attention). Channel atten-
tion allows the network to emphasize more on the informative and meaningful
channels by a context gating mechanism. We also exploit the second level atten-
tion strategy to integrate different layers of the atrous convolution. It helps the
network to focus on the more relevant field of view to the target. The proposed
model is evaluated on three datasets ISIC 2017, ISIC 2018, and PH2, achieving
state-of-the-art performance 1.

Keywords: Medical Image Segmentation, Deeplabv3+ , Attention Mechanism

1 Introduction

With the development of computer vision, medical image segmentation has become an
important part of computer-aided diagnosis. These years the computer-aided diagnosis
(CAD) systems are required to assist the experts by providing accurate interpretation of
medical images. Among many medical image processing tasks, automatic image seg-
mentation is an important and effective step toward the analysis phase. Medical image
segmentation is included in a large number of application domains like skin cancer
segmentation. Skin cancer is one of the most widespread and deadly forms of cancer.

The human skin includes three types of tissues, i.e., dermis, epidermis, and hypo-
dermis. The epidermis has melanocytes and under some conditions (like the strong ul-
traviolet radiation from sunshine), it produces melanin at a greatly unusual rate. A lethal
type of skin cancer is melanoma which is the result of unusual growth of melanocytes
[14]. With a mortality rate of 1.62%, melanoma is reported as the most lethal skin
cancer [32]. In 2019, the American Cancer Society reported there are approximately
96,480 new cases of melanoma and about 7230 will die from this cancer [30]. The non-
melanoma cancers are also the reason for a large number of deaths. The World Health
Organization reported that between 2 and 3 million non-melanoma skin cancers and
132,000 melanoma skin cancers are recorded every year in the world [1].

1 Code and trained models will be released in a public github page after publication of the paper
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Although the dermatologists detect melanoma in medical images, their detection
may be inaccurate. On the other hand, early diagnosis of the melanoma is critical in
terms of treatment. The early detection and diagnosis of melanoma helps to have the
proper treatment and ensure a complete recovery. It is reported that early detection in-
creases the five-year relative survival rate to 92% [29]. As a result, skin lesion segmen-
tation (Figure 1) has a critical role in the early and accurate diagnosis of skin cancer
by computerized systems. During the last decade, automatic detection of skin cancer
has been significantly taken into account. It is applied for different kinds of skin prob-
lems like three main types of abnormal skin cells are noticed i.e. Basic cell carcinoma,
Squamous cell carcinoma and Melanoma .

Fig. 1. Some samples of skin lesion segmentation.

Skin cancer segmentation is a challenging task due to several factors like low con-
trast of the images, differences in texture, position, color, and size of skin lesions
in medical images. Moreover, the existence of air bubbles, hair, ebony frames, ruler
marks, blood vessels, and color illumination make the lesion segmentation task ex-
tremely difficult. Various approaches have been proposed for the skin lesion segmen-
tation. Different types of deep convolutional neural networks have been proposed for
image segmentation, and like other fields of research in computer vision, deep learning
approaches have achieved outstanding results in this field. Fully convolutional neural
network (FCN) [21] was one of the first deep networks proposed for segmentation.
This network was then extended to U-Net [27], consisting of an encoding and a de-
coding path. U-Net achieved good segmentation performance alongside leveraging the
need of a large amount of training data.

CNN allows to learn increasingly abstract data representation which yields the net-
work robust to local image transformation. Abstraction of spatial information may
be undesirable for semantic segmentation. To solve that, Deeplab [7] was proposed
by utilizing “atrous spatial pyramid pooling” (ASPP). Deeplabv3 [8] was then pro-
posed to capture contextual information at multiple scales by employing several paral-
lel ASPPs. Chen et al. [9] proposed DeepLabv3+ by combing the idea of both U-Net
and Deeplabv3, as an extension of Deeplabv3 by adding a decoder module to recover
the object boundaries. Recently, attention-based networks have been widely utilized in
different tasks of computer vision [31]. The attention strategy helps the network by
avoiding the use of multiple similar feature maps and focusing on the most salient and



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV
#100

ECCV
#100

ECCV-20 submission ID 100 3

informative features for a given task without additional supervision. It has been proved
that attention enhances the result of semantic segmentation networks [35, 25, 31].

In this paper, we propose Att-Deeplabv3+ (attention Deeplabv3+) for skin lesion
segmentation. In particular, we improve Deeplabv3+ by inserting two attention modules
in the atrous convolution. The first attention module is a kind of channel wise attention
and it is employed to recalibrate the feature map in each layer of the atrous convolu-
tion to pay more attention to more informative channels. That is to say, the network
concentrates more on channel features with more useful information (based on their
relationship) by assigning different weights to various channels of feature maps.

The second attention module is exploited to aggregate the features extracted by
different layers of the atrous convolution through a multi-scale attention mechanism.
Different layers of an atrous convolution extract features from the input features map
at different sizes of field of view. Utilizing a small field of view for extracting features
results in lower-level resolution which encodes local information. The local representa-
tion is important to discriminate the input image details. On the other hand, by enlarg-
ing the field of view, a larger image context is taken into account for extracting features,
and therefore, more global information is taken to account. Especially, with large scales
of receptive fields, the layer extracts long range features. The utilized scale attention
module yields the network to emphasize the extracted features of the layers which are
more relevant to the scale of the targets. We evaluate the proposed network on three
datasets ISIC 2017, ISIC 2018, and Ph2. The experimental results demonstrate that the
proposed network achieves superior performance than existing alternatives.

The main contributions of the paper are as follows:

– We proposed an extended version of Deeplabv3+, Att-Deeplabv3+ for skin lesion
segmentation.

– A channel wise attention module is utilized in each layer of the atrous convolution
of Deeplabv3+ to focus on the more informative channel features.

– A multi-scale attention module is employed to aggregate the information of all
layers of the atrous convolution.

– The proposed network achieves superior performance than existing alternatives on
three datasets ISIC 2017, ISIC 2018, and PH2.

The rest of the paper is organized as follows. Section 2 reviews related work. The
proposed network is presented in Section 3. The experimental results are described in
Section 4. Finally, Section 5 concludes the paper.

2 Related Work

Semantic segmentation is one of the most important tasks in medical imaging. Before
the revolution of deep learning in computer vision, traditional handcrafted features have
been utilized in semantic segmentation. During the last few years, deep learning-based
approaches have achieved outstanding results in image segmentation. These networks
can be divided into two main groups, i.e., encoder-decoder structures and the models
using spatial pyramid pooling [9].
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2.1 Encoder-Decoder

The encoder-decoder networks have been successfully utilized for semantic segmen-
tation. These networks include encoding and decoding paths. The encoder generates a
large number of feature maps with reduced dimensionality, and the decoder produces
segmentation maps by recovering the spatial information. U-Net [27] is one of the most
popular encoder-decoder networks. A main advantage of this network is that the net-
work works well with few training samples by employing the global location and con-
text information at the same time. Many methods [20, 5, 4, 26] demonstrate the effec-
tiveness of encoder-decoder structure for image segmentation in different applications.

Different extensions of the U-Net have been proposed for image segmentation. V-
Net [23] is proposed to predict segmentation of a given volume. For segmentation of
3D volumes (e.g., MRI volumes), Çiçek et al. propose 3D U-Net [11]. BCDU-Net [5]
improves the performance of the U-Net by utilizing ConvLSTM to combine the fea-
ture maps extracted from the corresponding encoding path and the previous decoding
up-convolutional layer in a non-linear way. In that network, densely connected con-
volutions are also inserted in the last convolutional layer of the encoder to strengthen
feature propagation. Inspired by the effectiveness of the recently proposed squeeze and
excitation modules, Asadi et al. propose MCGU-Net [4] by inserting these modules in
decoder for medical image segmentation.

Alom et al. [3] improve U-Net by using recurrent convolution network and recurrent
residual convolutional network, and propose RU-Net and R2U-Net for medical image
segmentation. While the U-Net uses skip connections to concatenate features from the
encoder, the SegNet [6] passes pooling indices to the decoder to reduce computational
complexities of weight concatenation. SegNet uses VGG-16-like network structure in
the encoder and it works better than U-Net when the image content becomes compli-
cated. Ghiasi et al. [15] propose a multi-resolution reconstruction architecture based on
a Laplacian pyramid. In that network, the segmented boundaries of the low-resolution
maps are reconstructed by the skip connections from the higher resolution maps. U-Net
has been also improved by utilizing different attention-based modules in both encoder
and decoder [25, 28].

2.2 Spatial pyramid pooling

The usual deep convolutional networks (DCNNs) have some drawbacks for semantic
image segmentation. The spatial feature resolution is considerably decreased due to a
consecutive max-pooling and down-sampling functions in the network. Moreover, ob-
jects (e.g., skin lesions) can have different scales in the images [7]. To mitigate this
problem, spatial pyramid pooling models capture rich contextual information by pool-
ing features at different resolutions.

PSPNet [34] is a pyramid scene parsing network to embed difficult scenery context
features. In an FCN based pixel prediction framework, global context information is
captured by using different region-based context aggregation through a pyramid pooling
module. Atrous spatial pyramid pooling (ASPP) at several grid scales is performed in
deeplab [7, 8]. In that network, parallel atrous convolution layers with different rates
capture multi-scale information. Multi-scale information helps these models to improve
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the performance of the network on several segmentation benchmarks. Hesamian et al.
[16] utilize the Atrous convolution which increases the field of view of the filters and
helps to improve the performance of the network for segmentation of Lung Nodule.
Recurrent neural networks with LSTM have been also exploited in several methods
[19, 33] to aggregate global context information for semantic segmentation.

Fig. 2. Deeplabv3+ [9].

Chen et al. [9] take into account the advantages of both encoder-decoder networks
and pyramid spatial pooling and introduce Deeplabv3+ shown in Figure 2. In that net-
work, Deeplabv3 is extended by adding a decoder module to recover the object bound-
aries. Atrous convolution extracts rich semantic information in the encoding path and
controls the density of the decoder features. The decoder module helps the network
to recover the object boundaries. Many attention mechanisms have been utilized to im-
prove the performance of the U-Net [25, 28]. In this paper, we improve the performance
of the Deeplabv3+ by inserting two kinds of attentions, i.e, channel-wise attention and
multi-scale attention, in the atrous convolutions.

3 Proposed Method

We propose Att-Deeplabv3+, an attention-based Deeplabv3+ extension, (Figure 3) for
skin lesion segmentation. The network utilizes the strengths of attention mechanism to
focus on the features with more informative data, and avoid the use of multiple similar
feature maps. We highlight different parts of the proposed network in details in the
following subsections.

3.1 Encoder

Xception model [10] works well in object classification with fast computation. This
model has been adopted for the task of image segmentation [9], and achieved promising
results. Therefore, we utilize the modified version of Xception model [9] as the encoder
of the proposed network. In that method, a deeper Xception model is utilized, and extra
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batch normalization and ReLU functions have been used after the 3 × 3 depthwise
convolution. Moreover, all the max pooling layers are replaced by depthwise separable
convolution with striding. By considering this idea, atrous separable convolution can be
applied at an arbitrary resolution to extract features. This model consists of three parts,
i.e., entry flow, middle flow, and exit flow. The entry flow includes 2 convolutional and 9
depthwise separable convolutional layers in four blocks. The middle flow contains one
block consisting of three depthwise separable convolutional layers which is repeated 16
times. The exit flow includes 6 depthwise separable convolutional layers in 2 blocks.
We refer the readers to [9] for more details.

1 × 1 Conv

3 × 3 Conv
Rate 6

3 × 3 Conv
Rate 12

3 × 3 Conv
Rate 18

Image 
Pooling

Channel Attention

Channel Attention

Channel Attention

Channel Attention

Channel Attention

Sc
al

e 
A

tt
en

ti
o

n

1 × 1 
Conv

Fig. 3. Multi-level attention Deeplabv3+.

3.2 Attention-based Atrous Convolution

In usual CNNs, the spatial feature resolution is considerably decreased due to a set
of consecutive max-pooling and down-sampling functions in the network. Moreover,
objects can have different scales in the images. To mitigate this problem, atrous Convo-
lutions with multiple rates [7] have been introduced. In atrous Convolutions, from the
last few max pooling layers, the down-sampling operations have been removed while
the filters have been up-sampled in the subsequent convolutional layers. To up-sample
the filters, the full resolution image is convolved with filters with holes, i.e., zeros have
been inserted between filter's values. Since non-zero filters values are only considered
in the calculations, the number of parameters stay constant. The atrous convolution
yields the method to control the spatial resolution of the feature responses. Moreover,
we can enlarge the field of view of the filters to compute feature responses at any layer
which results in incorporating larger context information. For one-dimensional signal,
the atrous convolution [7] is calculated as

y[i] =
∑
k

x[i+ r.k]w[k] (1)

where y is the output feature map, i is a spatial location on y, x is the input feature
map, and w is a convolution filter. Moreover, the atrous rate r determines the stride
with which we sample the input signal.
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As it can be seen in Figure 2, the atrous convolution consists of five layers. Each
feature map includes a number of channels. In Deeplabv3+, the output of these lay-
ers are concatenated and passed to the next block of the network. In other words, all
channels of a set of feature map are processed in the network with the same attention
while some of these channels may be informative. Inspired by the squeeze and exci-
tation network [17], we employ a channel-based attention on the output of each layer
of the atrous convolution to capture explicit relationship between channels of the con-
volutional layers (shown in Figure 4). This strategy helps the network to selectively
empathize informative features and suppress less useful ones by utilizing the global in-
formation of the input data. That is to say, it encodes feature maps by assigning a weight
for each channel (i.e. channel attention).

GAP 𝜎
×

⋰ ⋰

⋮ ⋮

Fig. 4. Channel-wise attention for each layer of the atrous convolution.

The model exploits the global context information of the input features to produce
the weight for each input channel. To do that, the global average pooling is calculated
for each channel as

zf =
1

H ×W

H∑
i

W∑
j

xf (i, j) (2)

where xf is the f th channel,H×W is the size of the channel, and zf is the output of the
global average pooling. In the next step, we learn non-mutually-exclusive relationship
and nonlinear interaction between channels. Inspired by [17], two fully connected layers
are then employed to capture the channel-wise dependencies (Figure 4). The output of
these layers is calculated as

sf = σ (W2δ(W1zf )) (3)

where W1 and W2 are the parameters of the two fc layers, δ is ReLU, and the σ refers
to the sigmoid activation, and sf is the learnt scale factor for the fth channel. The final
output of each layer of the attention-based atrous convolution is X = [x̃1, x̃2, ..., x̃F ]
where x̃f = sf .xf is a channel-wise multiplication between the f th channel xf , and
its corresponding scale factor sf .

3.3 Multi-scale Attention-based Depthwise Aggregation in Atrous Convolution

In Deeplabv3+, the output of all layers of atrous convolution are concatenated and then
passed to the depthwise separable convolution. Depthwise separable convolution fac-
torizes the standard convolution into depthwise convolutions followed by a pointwise
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convolution. In particular, a spatial convolution is independently employed for each in-
put channel, and a pointwise convolution is then performed to combine the result of
depthwise convolution for all of the input channels.

Atrous convolution produces multi-scale features with different resolutions con-
taining different semantic information. Lower-level features encode more information
about local representation while higher-level features focus on global representation.
In particular, different layers of a multi-scale strategy contain different semantic infor-
mation, i.e., the layers with lower resolution are responsible for smaller objects and
layers with higher resolution are responsible for objects with a larger scale. In the orig-
inal Deeplabv3+, these features are simply concatenated with the same weight. Since
we have objects with different sizes, it is necessary to process the features of these
layers with a different attention scale. To mitigate this problem, instead of a simple
concatenation of multi-scale features, we integrate multi-scale features by employing a
multi-scale depthwise attention strategy (Figure 5). Especially, the depthwise aggrega-
tion performs the integration independently for the corresponding channels of all five
layers of atrous convolution.

Assume thatXf
s is the f th (f ∈ {1, 2, ..., 256}) channel of the sth (s ∈ {1, 2, ..., 5})

layer (scale) of the atrous convolution. The output of the original Deeplabv3+ is the con-
catenation of feature maps from all layers, i.e, Y = [X1, X2, ...X5]. In Att-Deeplabv3+,
these feature maps are integrated with a multi-scale attention depthwise method. We
learn a weight for each scale, and apply a non-linear depthwise aggregation to combine
these features. The output of the atrous convolution is calculated as

Yf = σ

(
5∑

s=1

wsX
f
s

)
(4)

where theXf
s is the f th channel of the sth scale,ws is the learnt weight for the sth scale,

σ is the sigmoid function, and Yf is the f th output channel of the atrous convolution.

+

⋰

⋰

⋰

⋰

⋰

+

⋮ ⋮

1×1
kernel

3×3
kernel

Image 
pooling

𝑤1
𝑤2𝑤3

𝑤4
𝑤5

𝑤5

𝑤4

𝑤3

𝑤2
𝑤1

𝜎

𝜎

Fig. 5. Attention-based depthwise aggregation in atrous convolution.
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3.4 Decoder

We utilize the same decoder as Deeplabv3+. To reduce the number of channels, a 1 ×
1 convolution is applied on both encoder and decoder features. The encoder features
are bilinearly upsampled and are then concatenated with the corresponding features
(with the same spatial resolution) from the network backbone. To refine the features,
the concatenated features are then passed to a few 3 × 3 convolutions. At the end,
another bilinear upsampling is performed on the features.

4 Experimental Results

The proposed method is evaluated on three datasets ISIC 2017, ISIC 2018, and PH2.
Several performance metrics have been employed for the experimental comparative,
including accuracy (AC), sensitivity (SE), specificity (SP), F1-Score, Jaccard similarity
(JS), and area under the curve (AUC). We stop the training of the network when the
validation loss remains the same in 10 consecutive epochs. For all three datasets, we
finetune the network from a pre-trained model which is learnt on PASCAL VOC dataset.

4.1 ISIC 2017

The ISIC 2017 dataset [13] is designed for skin cancer segmentation published in 2017.
Att-Deeplabv3+ is evaluated on the provided data for skin lesion segmentation. The
dataset consists of 2000 skin lesion images with masks (including cancer or non-cancer
lesions). Like other approaches [3], we use the standard evaluation setting for this
dataset, i.e, 1250 samples for training, 150 samples for validation, and the other 600
samples for test. The original size of each sample is 576 × 767. We resize images to
256× 256.

The segmentation outputs of the proposed network for some samples from this
dataset are depicted in Figure 6. In Table 1, the results of the proposed network are com-
pared with other approaches. By comparing the result of the proposed attention-based
network with the original Deeplabv3+, we can see that the multi-level attention mecha-
nisms enhance the performance of the network. The ROC diagrams of Att-Deeplabv3+
and the original Deeplabv3+ are depicted in Figure 7(a). By comparing the AUC scores
shown on the diagrams, it is demonstrated that Att-Deeplabv3+ improves the perfor-
mance of the original Deeplabv3+.

4.2 ISIC 2018

The International Skin Imaging Collaboration (ISIC) published the ISIC 2018 dataset
[12] as a large-scale dataset of dermoscopy images in 2018. This dataset contains 2594
dermoscopy images. For each sample the original image and corresponding ground
truth annotation (containing cancer or non-cancer lesions) are available. Like other ap-
proaches, we use the standard evaluation setting, and utilize 1815 images for training,
259 for validation and 520 for testing. We resize images to 256× 256.

Figure 8 shows some segmentation outputs of the proposed network on ISIC 2018
dataset. In Table 2, the performance of the proposed method is compared with other
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Table 1. Performance comparison of the proposed network and other methods on ISIC 2017
dataset.

Methods F1-Score Sensitivity Specificity Accuracy Jaccard similarity
U-net [27] 0.8682 0.9479 0.9263 0.9314 0.9314

Melanoma det. [13] - - - o.9340 -
Lesion Analysis [18] - 0.8250 0.9750 0.9340 -

R2U-net [3] 0.8920 0.9414 0.9425 0.9424 0.9421
BCDU-Net [5] 0.8810 0.8647 0.9751 0.9528 0.9528
MCGU-Net [4] 0.8927 0.8502 0.9855 0.9570 0.9570
Deeplabv3+ [9] 0.9162 0.8733 0.9921 0.9691 0.9691
Att-Deeplabv3+ 0.9190 0.8851 0.9901 0.9698 0.9698
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Fig. 6. Segmentation results of Att-Deeplabv3+ on ISIC 2017 dataset.

Table 2. Performance comparison of the proposed network and other methods on ISIC 2018
dataset.

Methods F1-Score Sensitivity Specificity Accuracy Jaccard similarity
U-net [27] 0.647 0.708 0.964 0.890 0.549

Att U-net [25] 0.665 0.717 0.967 0.897 0.566
R2U-net [3] 0.679 0.792 0.928 0.880 0.581

Att R2U-Net [3] 0.691 0.726 0.971 0.904 0.592
BCDU-Net [5] 0.851 0.785 0.982 0.937 0.937
MCGU-Net [4] 0.895 0.848 0.986 0.955 0.955
Deeplab v3+ [9] 0.882 0.856 0.977 0.951 0.951
Att-Deeplab v3+ 0.912 0.875 0.988 0.964 0.964
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approaches. The proposed Att-Deeplabv3+ outperforms state-of-the-art methods. It can
be seen there is a high gap between the result of the proposed method and the original
Deeplabv3+. The ROC diagrams of the Att-Deeplabv3+ and the original Deeplabv3+
for ISIC 2018 dataset are shown in Figure 7(b). The AUC scores show that Att-deeplvabv3+
improves the performance of the original Deeplabv3+. We have also compute the thresh-
old Jaccard index for comparing the performance of two networks of Att-Deeplabv3+
and the original Deeplabv3+. For Deeplabv3+, the threshold Jaccard index is 0.9404,
and for the proposed network is 0.9599.
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(a) ISIC 2017 dataset, (b) ISIC 2018 Dataset, and (c) PH2

Fig. 7. The ROC curves of two networks of Att-Deeplabv3+ and and Deeplabv3+ for ISIC 2017,
ISIC 2018, and PH2 .
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Fig. 8. Segmentation results of Att-Deeplabv3+ on ISIC 2018 dataset.
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4.3 PH2

The PH2 dataset is a dermoscopic image database proposed for segmentation and clas-
sification [22]. The total number of samples for this dataset is 200 melanocytic lesions,
including 80 common nevi, 80 atypical nevi, and 40 melanomas. The manual segmen-
tations of the skin lesions are available as the ground truth. Each input image is a 8-bit
RGB color images with the resolution of 768×560 pixels. There is not a standard eval-
uation setting (test and train sets) for this dataset. We use the same setting as [4] and
randomly split the dataset into two sets of 100 images, and then use one set as the test
data, 80% of the other set for the train, and the remained data for the validation.

Table 3. Performance comparison of the proposed network and other methods on PH2 dataset.

Methods F1-Score Sensitivity Specificity Accuracy Jaccard similarity
FCN [24] 0.8903 0.9030 0.9402 0.9282 0.8022
U-net [27] 0.8761 0.8163 0.9776 0.9255 0.7795
SegNet [6] 0.8936 0.8653 0.9661 0.9336 0.8077
FrCN [2] 0.9177 0.9372 0.9565 0.9508 0.8479

Deeplab v3+ [9] 0.9202 0.8818 0.9832 0.9503 0.9503
Att-Deeplab v3+ 0.9456 0.9161 0.9896 0.9657 0.9657

Some precise and promising segmentation results of the proposed network for this
dataset are shown in Figure 9. Table 3 lists the quantitative results obtained by other
methods and the proposed network onPH2 dataset. It is shown that the Att-Deeplabv3+
outperforms state-of-the-art approaches. Moreover, the proposed method surpasses the
original Deeplabv3+. The ROC curves of the Att-Deeplabv3+ and the original Deeplabv3+
for PH2 dataset are shown in Figure 7(c). By comparing these two curves, we find out
that the multi-level attention idea is successful to enhance the performance of the net-
work.
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Fig. 9. Segmentation results of Att-Deeplabv3+ on PH2 dataset



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV
#100

ECCV
#100

ECCV-20 submission ID 100 13

4.4 Discussion

In this paper, we employ multi-level attention mechanism to improve the performance
of the Deeplabv3+. In Figure 10, the output segmentation results of some samples for
both Att-deeplabv3+ and deeplabv3 networks are compared. It can be seen that Att-
Deeplabv3+ performs better than the original network and its output results are more
precious. The boundary of the segmented lesion of the Att-deeplabv3+ is finer, i.e., the
output of the Att-Deeplabv3+ includes more local details in boundary of the object.
Att-Deeplabv3+ is able to extract more useful and informative features from the input
by employing the attention mechanism. In other words, the attention mechanism helps
the network to focus more on feature maps with higher resolution for the segmentation.

In the proposed network, a channel wise attention is first applied to all the layers
of the atrous convolution. This attention mechanism yields the network to focus on the
more informative channels. The second level of the attention is used as a multi-scale
attention method for aggregating all the layers of the atrous convolution. The multi-
scale attention allows the network to focus on more scale relevant feature to the target.
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Fig. 10. Visual effect of the multi-level attention mechanism in the proposed network.

5 Conclusion

We proposed Att-Deeplabv3+ for skin lesion segmentation. It has been shown that by
including two level attention based mechanism in Deeplabv3+, the network is able to
learn more discriminative information. Compared to the original deeplabv3+, the pro-
posed network has more precise segmentation results. The experimental results on three
public skin cancer benchmark datasets showed high gain in semantic segmentation in
relation to state-of-the-art alternatives.
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