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ABSTRACT

Parameter space symmetries, or loss-invariant transformations, are important for
understanding neural networks’ loss landscape, training dynamics, and generaliza-
tion. However, identifying the full set of these symmetries remains a challenge.
In this paper, we formalize data-dependent parameter symmetries and derive their
infinitesimal form, which enables an automated approach to discover symmetry
across different architectures. Our framework systematically uncovers parameter
symmetries, including previously unknown ones. We also prove that symmetries
in smaller subnetworks can extend to larger networks, allowing the discovery of
symmetries in small architectures to generalize to more complex models.

1 INTRODUCTION

Parameter space symmetry, or loss-invariant transformation of parameters, influences various as-
pects of deep learning theory. Continuous symmetry connects groups to their orbits, revealing im-
portant topological properties such as the dimension (Zhao et al., 2023b) and connectedness (Zhao
et al., 2023a) of the minimum. Parameter symmetry also influences training dynamics through the
associated conserved quantities of gradient flow (Kunin et al., 2021) and by steering stochastic gra-
dient descent towards certain favored solutions (Ziyin, 2024). Additionally, symmetry provides a
tool to perform optimization within a loss level set, with successful applications in accelerating opti-
mization (Armenta et al., 2023; Zhao et al., 2022) and improving generalization (Zhao et al., 2024).
Other applications of parameter space symmetry include model compression (Ganev et al., 2022;
Sourek et al., 2021) and reducing the search space for more efficient sampling in Bayesian neural
networks (Wiese et al., 2023).

Despite the wide range of applications, our knowledge of parameter space symmetries is limited. In
particular, known symmetries often cannot account for all loss-invariant parameter transformations.
While several frameworks have been developed to unify known symmetries, whether the symmetries
in current literature are complete remains an open question. Due to the lack of a systematic approach,
current practice typically requires deriving symmetries from scratch for every new architecture,
creating barriers for wider applications that leverage parameter symmetries.

In this paper, we present an automated approach to learn the symmetry groups and their group
actions on the parameter space of neural networks. To define the search space, we formalize the
definition for data-dependent symmetries and derive an infinitesimal version, which simplifies the
automatic discovery architectures. Additionally, we learn the action maps directly using a neural
network, which allows for learning nonlinear group actions. By including data-dependent and non-
linear group actions, our framework is capable of capturing a broader range of symmetries than
previously considered.

While directly searching for symmetries in modern architectures with billions of parameters is pro-
hibitively expensive, we show that large networks often inherit symmetries from their components
or subnetworks. Identifying symmetries in small networks offers an efficient approach to uncovering
many symmetries in larger networks. By analyzing small networks and extending their symmetries
to larger ones, we sidestep the complexity of handling high-dimensional parameter spaces directly.
This method not only reduces the computational cost of symmetry identification in large networks
but also provides a systematic framework for leveraging small-scale symmetries to better understand
more complex architectures.
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In summary, our main contributions are:

• Formal definitions of data-dependent parameter symmetries and their infinitesimal form.
• An approach to identify symmetries in the parameter space of large networks from known

symmetries in smaller subnetworks.
• A framework that discovers symmetry in neural network parameter spaces.
• Preliminary evidence of previously unknown symmetries that are data-dependent or act on

non-contiguous layers.

2 RELATED WORK

Parameter space symmetry. Parameter symmetries are loss-invariant transformations on neural
network parameters, often in the form of group actions. Symmetry is present in many neural net-
works. Known symmetries include invertible linear transformations in linear networks, rescaling
in homogeneous networks (Badrinarayanan et al., 2015; Du et al., 2018), radial rescaling in radial
neural networks (Ganev et al., 2022), and translation in softmax and scaling in batchnorm functions
(Kunin et al., 2021). In tanh neural networks (Chen et al., 1993), only permutation and sign flip
symmetries preserve the loss function. ReLU networks, however, possess symmetries beyond the
well-known rescaling (Grigsby et al., 2023). The existence and number of symmetries in most other
architectures remain an open question.

Data-dependent symmetry. While the above symmetries leave the loss unchanged on all data,
a relaxed definition, data-dependent symmetry, only requires loss invariance on a subset of data.
Zhao et al. (2023b) found examples of such symmetries with nontrivial data dependency, although
these symmetries are complicated, limited to minibatches of size one, and difficult to generalize
across different architectures. This motivates an automated symmetry discovery framework, which,
in principle, can find symmetries of arbitrary form in arbitrary architectures. The concept of a
symmetry dependent on data has also appeared in adjacent fields. For example, (Moskalev et al.,
2023) observe that learned data invariance in neural networks is strongly conditioned on data and
breaks under data distribution drift; Sonoda et al. (2023) define a joint group action on data and
parameters as part of a new proof of universal approximation theory.

Discovering and measuring symmetry. Various work explores learning continuous symmetries
by identifying generators of Lie groups (Krippendorf & Syvaeri, 2020; Moskalev et al., 2022;
Dehmamy et al., 2021; Yang et al., 2023b; Gabel et al., 2023), including cases with nonlinear group
actions (Yang et al., 2023a; Shaw et al., 2024). We build on this approach to discover data-dependent
group action in high-dimensional parameter spaces. While learning discrete symmetry (Zhou et al.,
2021; Karjol et al., 2024) and distributions of symmetry (Benton et al., 2020; Romero & Lohit,
2022; Urbano & Romero, 2023) are also relevant, they are not the primary focus of this paper.

Extracted symmetry is often evaluated locally, by measuring function changes under infinitesimal
symmetry transformations (Gruver et al., 2022) or by comparing tangent spaces of orbits under the
learned group and the true symmetry group (Portilheiro, 2023). We adopt the local invariance of loss
functions under symmetry transformation, similar to that defined in (Gruver et al., 2022; Moskalev
et al., 2022), as the minimization objective in learning data-dependent group actions.

3 PARAMETER SPACE SYMMETRY

In this section, we provide a formal definition for data-dependent parameter symmetries. We then
derive an alternative definition using Lie algebras, which is used to construct an automated frame-
work for discovering parameter space symmetries in Section 5. Lastly, we provide examples of
symmetries in common neural networks.

3.1 DATA-DEPENDENT GROUP ACTION AND SYMMETRY

Let Θ be the space of parameters and D be the space of data. In this paper, we consider loss functions
of the form L : Θ × D → R, which map parameters and a single data point to a real number. By
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abuse of notation, we allow L to simultaneously process multiple data points. Specifically, we
sometimes define L : Θ×Dd → Rd for d ∈ N data points.

Let G be a group. Consider a map a, which defines a map for every data batch of size d ∈ Z+:

a : Dd → (G×Θ → Θ)

X 7→ (aX : g, θ 7→ θ′). (1)

The map a is a generalized group action on Θ if aX is a group action for every data batch X ,
meaning that it satisfies the following axioms:

identity: aX(I, θ) = θ, ∀X ∈ Dd, ∀θ ∈ Θ.

associative law: aX(g2, aX(g1, θ)) = aX(g2g1, θ), ∀g1, g2 ∈ G, ∀X ∈ Dd, ∀θ ∈ Θ.

We introduce our first definition to formalize data-dependent symmetry. A group action a is param-
eter space symmetry of L if it additionally satisfies

loss invariance: L(aX(g, θ), X) = L(θ,X), ∀g ∈ G, ∀X ∈ Dd, ∀θ ∈ Θ.

A function L has a G-symmetry if there exists a loss-invariant group action a. We refer to G as
a symmetry group of L. Additionally, the action a is termed a data-dependent group action or
symmetry if the map (1) has a non-trivial dependency on X . That is, a is data-dependent if there
exists X1, X2 ∈ Dd, such that aX1

̸= aX2
.

3.2 INFINITESIMAL SYMMETRY

Next, we derive an infinitesimal version of parameter space symmetries. For the automatic sym-
metry discovery framework in Section 5, this definition allows us to learn the group elements and
actions without computing the matrix exponential, which is expensive, during training. Proofs and
additional examples can be found in Appendix A.

In this paper, we restrict the symmetry group G to be a linear group. That is, we assume there is a
faithful representation ρ : G → GL(n). The corresponding Lie algebra representation dρ : g →
gl(n) is the differential of ρ, mapping elements of the Lie algebra g of G to the Lie algebra gl(n)
of GL(n). If G is a subgroup of GL(n), then ρ is the inclusion map, and consequently, dρ is the
inclusion of g into gl(n).

The following theorem shows that the derivative of the loss function L with respect to the parameters
θ vanishes in the directions generated by the symmetry group’s infinitesimal transformations. In
other words, the loss function is invariant to small changes along these symmetric directions in
parameter space.
Theorem 3.1. Let a : Dd → (G × Θ → Θ) be a parameter space symmetry of a loss function
L : Θ × Dd → Rd. Let DθL|θ,X : TθΘ → Rd be the derivative of L with respect to θ, and
DgaX |I,θ : g → TθΘ be the derivative of aX(g, θ) with respect to g. Then, for all θ ∈ Θ, X ∈ Dd,
and h ∈ g,

(DθL|θ,X ◦DgaX |I,θ)(h) = 0. (2)

Proof sketch. Consider a smooth curve γ(t) = aX(exp(ht), θ) in Θ, where h ∈ g and t ∈ R. Then,
since L is invariant under a, L(γ(t), X) = L(θ,X),∀t ∈ R. The result follows from differentiating
both sides with respect to t at t = 0 and applying the chain rule.

Equation 2 states that the gradient of the loss function L with respect to the parameters θ is orthog-
onal to the directions in parameter space generated by the infinitesimal symmetry transformations
DgaX

∣∣
I,θ

(h). This orthogonality implies that moving along these symmetric directions does not
change the loss to first order, reflecting the invariance of L under the group action.

Assuming that Θ = Rn, then for a single data point (d = 1), we can write (2) in coordinates as

DθL|θ,X (DgaX |I,θ(h)) =
n∑

i=1

dim(g)∑
k=1

∂L

∂θi

(
DgaX |I,θ

)
ik
hk = 0. (3)
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3.3 EXAMPLES

3.3.1 LINEAR ACTION OF MATRIX GROUPS

When Θ = Rn and G is a subgroup of GL(n) with a linear, data-independent symmetry ax(g, θ) =
gθ for all x ∈ X , (3) reduces to the equation in Theorem 3.1 in Moskalev et al. (2022). With
(Dga)ijk = ∂ai

∂gjk
= δijθk, we have

dL(exp(h · t) · θ)
dt

∣∣∣∣
t=0

=

n∑
i=1

n∑
j=1

n∑
k=1

∂L

∂θi

(
Dga|I,θ

)
ijk

hjk =

n∑
i=1

n∑
k=1

∂L

∂θi
θkhik. (4)

Our symmetry acts on parameters instead of data, but otherwise this matches Theorem 3.1 in
(Moskalev et al., 2022).

3.3.2 HOMOGENEOUS TWO-LAYER NEURAL NETWORK

We consider a homogeneous two-layer neural network with scalar weights for simplicity. Let pa-
rameter space Θ = R2 and data space X ∈ R. Consider the loss function

L : Θ×X → R, (w1, w2), x 7→ w2σ(w1x)

with a homogeneous activation function σ : R → R, i.e. σ(αx) = αcx for all α ∈ R>0 and x ∈ R,
for some c > 0.

Let G = (R×,×), and ρ : G → GL2, α 7→
(
α 0
0 α−c

)
. Then a : GL(2) × R2 →

R2,

(
ρ(g),

(
w1

w2

))
7→ ρ(g)

(
w1

w2

)
is a symmetry of L.

4 BUILDING NEW SYMMETRIES FROM KNOWN ONES

One way to identify symmetries in a large network is by examining its components or subnetworks.
Despite often having billions of parameters, neural networks typically consist of a limited set of
functional families, such as fully connected layers, attention mechanisms, and activation functions.
This modular view suggests a mechanism by which symmetries in networks with fewer layers might
extend to those in deeper networks. Additionally, within similar types of networks, it may be possi-
ble to extrapolate symmetries found in narrower layers to wider ones.

By focusing on symmetries in small architectures and using them to infer symmetries in larger
ones, we circumvent the complexity associated with direct handling of high-dimensional parame-
ter spaces. This approach not only simplifies the discovery of symmetries in large-scale networks
but also provides a systematic method for using symmetries in smaller subnetworks to understand
those in more extensive architectures. We formalize this approach and discuss its limitations in the
remainder of this section. Proofs can be found in Appendix B.

When the loss function L depends on a subset of the parameters solely through a subnetwork f , any
symmetries that preserve f will also preserve the original network L:
Proposition 4.1. Let L : Θ × Dd → Rd where the parameter space Θ is a product space Θ =
Θ1 × Θ2. Suppose for some spaces S and T , there exist functions h : Θ1 × Dd → S, f : Θ2 ×
S → T and j : (Θ1 × T ) × Dd → Rd, such that for every θ = (θ1, θ2) ∈ Θ and X ∈ Dd,
L(θ,X) = j

(
(θ1, f

(
θ2, h(θ1, X)

)
), X

)
. If a : S → (G × Θ2 → Θ2) is a G-symmetry of f , then

there is an induced G-symmetry of L, a′ : Dd → (G × Θ → Θ), defined by a′X(g, (θ1, θ2)) =(
θ1, ah(θ1,X)(g, θ2)

)
.

The relationship between the functions in the proposition is described by the commutative diagram
below, where p1 : Θ → Θ1, p2 : Θ → Θ2 are projections onto Θ1 and Θ2, id1 : Θ1 → Θ1 and
id2 : Θ2 → Θ2 are identity maps, and X ∈ Dd represents a batch of data. Space S and T can
be interpreted as intermediate feature spaces in the neural network. When L can be decomposed
in this way, the function h does not depend on Θ2, and the function j depends on Θ2 only through
the output of f . This effectively confines L’s dependency on Θ2 to the transformation defined by

4
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Figure 1: If a large network contains substructures with known symmetry, we can infer the same
symmetry for the large network. (a) Symmetry from narrower networks. (b) Symmetry from shal-
lower networks.

f , ensuring that any transformation on Θ2 not altering the output of f will not affect the output of
L. Consequently, symmetries identified in the smaller network f can be extrapolated to the larger
network L.

Θ Rd

Θ1 ×Θ2 ×Θ1 Θ1 ×Θ2 × S Θ1 × T

L(·, X)

p1 × p2 × p1
id1 × id2 × h(·, X) id1 × f(·, ·)

j(·, X)

We apply Proposition 4.1 to construct symmetries in larger networks from those in smaller ones
in the next two corollaries. Specifically, we show that some symmetries are preserved as networks
scale up through increasing the dimensionality of a layer or adding additional layers.

The first corollary describes how symmetries identified in narrower networks also apply to wider
networks. A function σ : Rh×k → Rh×k is row-wise if, for any matrix A ∈ Rh×k with rows
{ai ∈ Rk}hi=1, the output matrix σ(A) has rows {σrow(ai) ∈ Rk}hi=1, where σrow : Rk → Rk

applies independently on each row of A. Element-wise functions are a special case of row-wise
functions. For fully connected networks with row-wise activation functions, identifying a symmetry
in one architecture suggests that the same symmetry will apply to wider versions of that architecture.

Corollary 4.2. Consider a network parameter space Θ(m,h, n) = Rm×h × Rh×n and data space
D(n, k) = Rn×k. Let σ : Rh×k → Rh×k be a row-wise function. Consider a function Lmnhk :
Θ(m,h, n) × D(n, k) → Rm×k, defined as Lmnhk((U, V ), X) = Uσ(V X) for U ∈ Rm×h,
V ∈ Rh×n, and X ∈ Rn×k. If there is a G-symmetry of Lmnhk, then there is a G-symmetry of
Lmnh′k with any h′ > h.

The next corollary shows that symmetries of a subset of layers are also symmetries in the entire
network.

Corollary 4.3. Let Θ = Θ1 × ... × Θl be a parameter space. Consider a list of spaces V0 = Dd,
Vl = Rd, and V1, ..., Vl−1. Let L : Θ×Dd → Rd be a function defined recursively by {Li}li=1 with
Li : Θi × Vi−1 → Vi, such that L = ϕl where ϕi = Li(θi, ϕi−1) ∈ Vi and ϕ0 = X . If for some
1 ≤ i ≤ l, Li has a G-symmetry, then L has a G-symmetry.

Both corollaries can be proved by factoring the parameter space and defining corresponding func-
tions that compose to L, before applying Proposition 4.1. The explicit forms of h, f , and j are
deferred to Appendix B. Figure 1 shows the subset of parameters (Θ2) that the symmetry applies to
in the corollaries. These are the subnetworks where symmetries are assumed to be known and which
the larger network inherits.

Note that this approach does not explore the emergence of new, more complex symmetries that
may arise as the neural network scale up in size. Notably, there are cases where there exists a G
symmetry over its input space, but group actions on individual layers are not loss-invariant (Kvinge
et al. (2022)). Nevertheless, studying smaller and simpler networks remains a effective strategy to
obtain a significant number of symmetries in larger networks, and is a first step in characterizing the
complete set of symmetries in modern architectures.
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In addition to obtaining symmetries from those in smaller networks, we can also get symmetries for
a loss function over data batches with a certain size, if we know there is a symmetry for this function
over larger data batches. Concretely, if there exists a group action that preserves loss for all data
batches of size d ∈ Z+, then that group action preserves loss for all data batches of size d′ < d.
Proposition 4.4. Let Ld : Θ×Dd → Rd be a function that is applied pointwise on each of d data
points in a data batch. If Ld admits a G-symmetry, then Ld′ admits a G-symmetry for all d′ < d.

5 AUTOMATIC DISCOVERY OF PARAMETER SYMMETRIES

Formulating symmetries in the infinitesimal form makes them easier to learn using an automatic
framework, as it defines a set of local conditions for a function to be a symmetry. Using the in-
finitesimal symmetry derived in Section 3.2, we construct an automated framework for discovering
parameter space symmetries.

5.1 ENFORCING LOSS INVARIANCE AND GROUP AXIOMS

Given a function L, our goal is to find a symmetry a and a set of Lie algebra elements h correspond-
ing to a symmetry group of L. We parameterize a using a neural network with learnable parameters,
and set h to be learnable as well. We define the following loss terms that quantify the deviation from
loss invariance and the group axioms (identity and associativity law):

Linvariance = Ex,θ|DθL|θ,X ◦DgaX |I,θ(h)| (5)
Lid = Ex,θ∥ax(I, θ)− θ∥2 (6)

Lassoc =
∑

h1,h2∈g

Ex,θ

∥∥∥∥DgaX
∣∣
I,θ

(h2)DgaX
∣∣
I,θ

(h1)−
1

2
DgaX

∣∣
I,θ

([h1, h2])

∥∥∥∥ . (7)

The three loss terms bias the action towards being loss-invariant, preserving identity, and satisfying
the associativity property. By minimizing LLie deriv, we ensure that the learned symmetry a and the
Lie algebra element h satisfy the infinitesimal symmetry condition (Theorem 3.1). Minimizing Lid
enforces the identity axiom, ensuring that the action of the identity element leaves the parameters
unchanged. Minimizing Lassoc enforces the associative axiom (derivation in Appendix A.2).

By focusing on the Lie algebras, we enforce the loss invariance and group structure at the infinitesi-
mal level. This formulation allows us to avoid computing exponential maps.

5.2 REGULARIZATIONS

To prevent the learned group action from becoming trivial, we encourage the infinitesimal action
to be nonzero. On the other hand, we do not want it to grow infinitely large for training stability.
Therefore, in implementation, we include the following regularization term to encourage the norm
of the infinitesimal action to be around a fixed positive real number β:

Lreg id = min
a,h

Eθ|β − ∥DgaX |I,θ(h)∥|. (8)

When learning multiple generators simultaneously, we want them to be orthogonal. Following Yang
et al. (2023b), we do this by including the following cosine similarity between each pair of the k
generators in the loss function:

Lreg h orth =
∑

1≤i<j≤k

hi · hj

∥hi∥∥hj∥
. (9)

Finally, we encourage sparsity of h for easier interpretation, with the regularization term

Lreg h sparse =
∑
k,j

|hkj |. (10)

The final training objective is a weighted average of (6)-(11), with hyperparameters γ1, ..., γ6 ∈ R+:

min
h,a

(γ1Linvariance + γ2Lid + γ3Lassoc + γ4Lreg id + γ5Lreg h orth + γ6Lreg h sparse) . (11)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.3 LEARNED DATA-INDEPENDENT SYMMETRIES
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Figure 2: Generator for a two-
layer linear MLP with scalar pa-
rameters and data.

In the first set of tasks, we see if our method can learn gen-
erators for architectures with already known data-independent
symmetries. We consider two-layer networks in the form
of L(W1,W2, X, Y ) = ∥W2σ(W1X) − Y ∥2, where W2 ∈
Rm×h,W1 ∈ Rh×n are parameters, X ∈ Rn×k, Y ∈ Rm×k

are data, and σ is a homogeneous activation function.

During training, we train the generators h and the group ac-
tion a under objective (11). We parametrize a using a 4-layer
MLP with hidden dimensions 64, 64, 64. The group aciton a
takes a group element, parameter, and data as input and out-
puts transformed parameters. We use 10000 training samples,
each containing a randomly generated set of parameters and data.
We set the learning rate as 10−3 with decay 0.6 every 1000
steps, and the weights for the multi-objective loss as γ1 = 10,
γ2 = γ4 = γ5 = 1, and γ6 = 0.1.

As a proof of concept, we training a group action and a single generator h ∈ R2×2 for the two-layer
architecture with m = h = n = k = 1 and σ being the identity function. Figure 2 visualizes the
learned generator, which matches the expected generator that generates the rescaling group.

Note that, however, we do not impose constraints on the group action (in particular, not enforcing
linear actions). Hence we do not expect the learned generators to look similar to the elements
of the Lie algebra infinitesimal generators of the symmetry group in general. For example, the
action a can be a composition of two function, the first transforming learned generators to the set of
actual generators, and the second performing the group action. We find that our method can learn
the generators and group actions for wider two-layer homogeneous architectures as well. More
examples of learned generators for larger architectures can be found in Appendix C.

5.4 LEARNED DATA-DEPENDENT SYMMETRIES

As a more practical application of our framework, we attempt to uncover data-dependent symmetries
from architectures where no continuous symmetry is known before. We apply our framework to
learn generators and loss-invariant group actions for two-layer neural network with sigmoid and
tanh activation function, as well as a three-layer neural network with skip connection.

Specifically, we aim to learn symmetries in the two-layer networks defined in the previous section,
but replacing σ by sigmoid or tanh. Our objective is again to find a set of generators h and a group
action a that minimizes (11). We use 10000 training samples, each containing a randomly generated
set of parameters and data. We set the learning rate as 10−3 and the weights for the multi-objective
loss as γ1 = 1, γ2 = γ4 = 10, γ5 = 1, and γ6 = 0.1.

Figure 3 shows the learned generators for data-dependent symmetries in a two-layer sigmoid MLP
with parameters dimensions W1 ∈ R3×3,W2 ∈ R3×1 and data X ∈ R3×1, Y ∈ R1×1. Figure 6 in
the Appendix shows the training curve. Since sigmoid networks have no data-independent contin-
uous symmetry, this set of symmetries are data-dependent, indicating that our method successfully
learns data-dependent symmetries for this architecture.

Figure 4 shows the learned generators for data-dependent symmetries in a three-layer tanh MLP
with parameters dimensions W1 ∈ R2×2,W2 ∈ R2×2,W3 ∈ R2×1 and data X ∈ R1×2, Y ∈ R1×1.
The generators indicate the existence of symmetries that act on non-contiguous layers, which has
not been discovered in previous literature.

6 DISCUSSION

While our discovery framework suggests that there are previously unknown data-dependent sym-
metries in various neural network architectures, the existence and number of symmetries in neural
network parameter spaces remain open questions. Whether the number of symmetries is affected

7
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Figure 3: Learned generators for data-dependent symmetries in a two-layer sigmoid MLP with
parameters dimensions W2 ∈ R3×1,W1 ∈ R3×3 and data X ∈ R1×3, Y ∈ R1×1.
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by existence of symmetry in data or changes during training are also interesting directions. Future
work will examine the structure of learned symmetry, such as the dimension of Lie algebras.
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APPENDIX

A INFINITESIMAL SYMMETRY AND EXAMPLES

A.1 INFINITESIMAL FORMULATION FOR LOSS INVARIANCE

Theorem 3.1. Let a : Dd → (G × Θ → Θ) be a parameter space symmetry of a loss function
L : Θ × Dd → Rd. Let DθL|θ,X : TθΘ → Rd be the derivative of L with respect to θ, and
DgaX |I,θ : g → TθΘ be the derivative of aX(g, θ) with respect to g. Then, for all θ ∈ Θ, X ∈ Dd,
and h ∈ g,

DθL|θ,X ◦DgaX |I,θ ◦ h = 0.

Proof. Since a is a symmetry of L, we have

L(aX(g, θ), X) = L(θ,X), ∀g ∈ G, ∀θ ∈ Θ, ∀X ∈ Dd.

Consider a smooth curve γ(t) = aX(exp(ht), θ) in Θ, where h ∈ g and t ∈ R. Then, since L is
invariant under a,

L(γ(t), X) = L(θ,X), ∀t ∈ R.

Differentiating both sides with respect to t at t = 0, we get

d

dt
L(γ(t), X)

∣∣∣∣
t=0

= 0.

Applying the chain rule,

d

dt
L(γ(t), X)

∣∣∣∣
t=0

= DθL|θ,X
(
dγ(t)

dt

∣∣∣∣
t=0

)
.

Now, compute dγ(t)
dt

∣∣∣
t=0

using the chain rule:

dγ(t)

dt

∣∣∣∣
t=0

=
d

dt
aX(exp(ht), θ)

∣∣∣∣
t=0

= DgaX |I,θ
(

d

dt
exp(ht)

∣∣∣∣
t=0

)
.

Since exp is the exponential map from gl(n) to GL(n), and h ∈ gl(n), we have

d

dt
exp(ht)

∣∣∣∣
t=0

= h.

Therefore,
dγ(t)

dt

∣∣∣∣
t=0

= DgaX |I,θ(h).

Putting it all together,
DθL|θ,X (DgaX |I,θ(h)) = 0.

A.2 INFINITESIMAL FORMULATION FOR ASSOCIATIVITY AXIOM

In this section, we rewrite the associative axiom,

aX(g2, aX(g1, θ)) = aX(g2g1, θ), (12)

into an infinitesimal form that uses Lie algebras but avoids the use of exponential maps. Below is a
detailed derivation.

First, we consider infinitesimal group elements. Let g1 = exp(εh1) and g1 = exp(εh2), where ε is
an infinitesimally small scalar, and h1, h2 ∈ g.

11
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Expand the group multiplication to second order in ε using the Baker-Campbell-Hausdorff (BCH)
formula:

g2g1 ≈ I + ε(h1 + h2) +
1
2ε

2[h1, h2].

Expand the right side of (12) to second order:

aX(g2g1, θ) ≈ θ + εDgaX
∣∣
I,θ

(h1 + h2) +
1
2ε

2DgaX
∣∣
I,θ

([h1, h2]).

Expand the left side of (12) to second order:

aX(g2, aX(g1, θ)) ≈ aX(I + εh2, θ + εDgaX |I,θ(h1))

≈ θ + εDgaX
∣∣
I,θ

(h2) + εDgaX
∣∣
I,θ

(h1) + ε2DgaX
∣∣
I,θ

(h2)DgaX
∣∣
I,θ

(h1).

By associativity axiom, we expect the two sides to be equal. Since the first-order terms from both
sides match, we equate the second-order terms. To enforce the associative axiom, we define the
infinitesimal associative loss as the difference between the second-order terms from two sides:

Lassoc =
∑

h1,h2∈g

Ex,θ

∥∥∥∥DgaX
∣∣
I,θ

(h2)DgaX
∣∣
I,θ

(h1)−
1

2
DgaX

∣∣
I,θ

([h1, h2])

∥∥∥∥ .
This loss enforces that the commutator of the infinitesimal actions matches the Lie bracket of the
Lie algebra, satisfying the associative property at the infinitesimal level.

A.3 ALTERNATIVE OPTION FOR DISCOVERY OBJECTIVES

A more straightforward training objective exponentiates the Lie algebra to obtain group elements,
before enforcing loss invariance and group axioms:

min
h,a

Linvariance int + Lid int + Lassoc int

with

Linvariance int = Ex,θ,t∥L (ax(exp(ht), θ), x)− L(θ, x)∥
Lid int = Ex,θ∥ax(I, θ)− θ∥

Lassoc int =
∑

h1,h2∈g

Ex,θ

∥∥aexp(h1)X(exp(h2), aX(exp(h1), θ))− aX(exp(h2) exp(h1), θ)
∥∥ .

Similarly to the infinitesimal version, this objective also directly enforces the necessary group struc-
tures. We adopt the infinitesimal formulation to avoid the computational overhead of evaluating
exponential maps.

A.4 HOMOGENEOUS FUNCTION PROPERTIES

Proposition A.1 (Euler’s homogeneous function theorem). Let f : R → R be a homogeneous
function, i.e. f(αx) = αcx for all α ∈ R>0 and x ∈ R, for some c > 0. If f is differentiable at x,
then df

dx = cx−1f(x).

Proof. Using the definition of homogeneous function, the derivative of f at x is
df

dx
= lim

t→0

f(x+ t)− f(x)

t

= lim
t→0

f((1 + tx−1)x)− f(x)

t

= lim
t→0

(1 + tx−1)cf(x)− f(x)

t

= lim
t→0

c(1 + tx−1)c−1x−1f(x)

1

= cx−1f(x) (13)

12
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B BUILDING SYMMETRIES FROM KNOWN ONES

This section contains the proofs for results in Section 4.
Proposition 4.1. Let L : Θ × Dd → Rd be a function, where the parameter space Θ is a product
space Θ = Θ1 × Θ2, with spaces Θ1,Θ2. Suppose there exist functions h : Θ1 × Dd → S,
f : Θ2 × S → T , and j : (Θ1 × T ) × Dd → Rd, such that for every θ = (θ1, θ2) ∈ Θ
and X ∈ Dd, L(θ,X) = j

(
(θ1, f

(
θ2, h(θ1, X)

)
), X

)
. If a : S → (G × Θ2 → Θ2) is a G-

symmetry of f , then there is an induced G-symmetry of L, a′ : Dd → (G × Θ → Θ), defined by
a′X(g, (θ1, θ2)) =

(
θ1, ah(θ1,X)(g, θ2)

)
.

Proof. We need to show that a′ satisfies the identity and associative law of a group action and
preserves L.

Since a is a group action on Θ2, it satisfies the identity axiom ah(θ1,X)(I, θ2) = θ2. Applying this
in the definition of a′, we get a′X(I, (θ1, θ2)) = (θ1, ah(θ1,X)(I, θ2)) = (θ1, θ2).

Since a is a group action on Θ2, it satisfies the associative law ah(θ1,X)(g2g1, θ2) =
ah(θ1,X)(g2, ah(θ1,X)(g1, θ2)), for all g1, g2 ∈ G. It follows that a′ also satisfies the associa-
tive law: a′X(g2g1, (θ1, θ2)) = (θ1, ah(θ1,X)(g2g1, θ2)) = (θ1, ah(θ1,X)(g2, ah(θ1,X)(g1, θ2))) =
a′X(g2, a

′
X(g1, (θ1, θ2)))

Finally, since a is a symmetry of f , we have f(ah(θ1,X)(g, θ2), h(θ1, X)) = f(θ2, h(θ1, X)),
for all g ∈ G. It follows that a′ preserves the value of L: L(a′X(g, θ), X) =
j
(
(θ1, f

(
ah(θ1,X)(g, θ2), h(θ1, X)

)
), X

)
= j

(
(θ1, f

(
θ2, h(θ1, X)

)
), X

)
= L(θ,X).

Corollary 4.2. Consider a network parameter space Θ(m,h, n) = Rm×h × Rh×n and data space
D(n, k) = Rn×k. Let σ : Rh×k → Rh×k be a row-wise function. Consider a function Lmnhk :
Θ(m,h, n) × D(n, k) → Rm×k, defined as Lmnhk((U, V ), X) = Uσ(V X) for U ∈ Rm×h,
V ∈ Rh×n, and X ∈ Rn×k. If there is a G-symmetry of Lmnhk, then there is a G-symmetry of
Lmnh′k with any h′ > h.

Proof. The function Lmnh′k can be decomposed into
U(σ(V X))ik = Uijσ(V X)jk

=

h∑
j=1

n∑
l=1

Uijσ(VjlXlk)

=

h∑
j=1

n∑
l=1

Uijσ(VjlXlk) +

h′∑
j=h+1

n∑
l=1

Uijσ(VjlXlk) (14)

Note that for all i, k, the first term depends only on the first h columns of U and first h rows of V ,
and the second terms depends only on the rest of the columns and rows of U and V . Denoting the
first h columns of U as U1:h, the rest of the columns of U as Uh+1:h′ , the first h rows of V as V1:h,
and the rest of the rows of V as Vh+1:h′ , we have

Lmnh′k((U, V ), X) = Lmnhk((U1:h, V1:h), X) + Lmn(h′−h)k((Uh+1:h′ , Vh+1:h′), X). (15)

Let Θ1 = Rm×h × Rh×n and Θ2 = Rm×(h′−h) × R(h′−h)×n. Then Θ(m,h′, n) = Θ1 ×Θ2. Let
S = (Rm×k ×Dd) and T = Rm×k × Rm×k. Define the following three functions

h : Θ1 ×Dd → (Rm×k ×Dd)

f : Θ2 × (Rm×k ×Dd) → Rm×k × Rm×k

j : (Θ1 × (Rm×k × Rm×k))×Dd → Rm×k (16)
by

h((U1:h, V1:h), X) = (Lmnhk((U1:h, V1:h), X), X)

f((Uh+1:h′ , Vh+1:h′), (Y,X)) =
(
Lmn(h′−h)k((Uh+1:h′ , Vh+1:h′), X), Y

)
j(
(
(U1:h, V1:h), (Y

′, Y )
)
, X) = Y ′ + Y. (17)
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Then Lmnh′k(θ,X) = j
(
(θ1, f

(
θ2, h(θ1, X)

)
), X

)
for all θ = (θ1, θ2) ∈ Θ and X ∈ Dd. Since

Lmnhk has a symmetry, f has the same symmetry. By Proposition 4.1, Lmnh′k also has the same
symmetry.

Corollary 4.3. Let Θ = Θ1 × ... × Θl be a parameter space. Consider a list of spaces V0 = Dd,
Vl = Rd, and V1, ..., Vl−1. Let L : Θ×Dd → Rd be a function defined recursively by {Li}li=1 with
Li : Θi × Vi−1 → Vi, such that L = ϕl where ϕi = Li(θi, ϕi−1) ∈ Vi and ϕ0 = X . If for some
1 ≤ i ≤ l, Li has a G-symmetry, then L has a G-symmetry.

Proof. Define functions

h : (Θ1 × ...×Θi−1 ×Θi+1 × ...×Θl)×Dd → Vi−1

f : Θi × Vi−1 → Vi

j : (Θ1 × ...×Θi−1 ×Θi+1 × ...×Θl)× Vi ×Dd → Rd (18)

by

h((θ1, ..., θi−1, θi+1, ..., θl), X) = Li−1(θi−1, X), computed using (θ1, ..., θi−1)

f(θi, ϕi−1) = Li(θi, ϕi−1)

j((θ1, ..., θi−1, θi+1, ..., θl), ϕi, X) = Ll(θl, X), computed using (θl, ..., θi+1) and ϕi. (19)

Then L((θ1, ..., θl), X) = j
(
(θ1, ..., θi−1, θi+1, ..., θl), f(θi, h((θ1, ..., θi−1, θi+1, ..., θl), X)), X

)
for all θ = (θ1, θ2) ∈ Θ and X ∈ Dd. By Proposition 4.1, if f = Li has a G-symmetry, L also has
a G-symmetry.

Proposition 4.4. Let Ld : Θ×Dd → Rd be a function that is applied pointwise on each of d data
points in a data batch. If Ld admits a G-symmetry, then Ld′ admits a G-symmetry for all d′ < d.

Proof. Suppose that Ld has a G-symmetry. Let a : Dd → (G×Θ → Θ), Xd 7→ (aXd
: g, θ 7→ θ′)

be the corresponding group action. Define a′ : Dd′ → (G × Θ → Θ) by Xd′ 7→ (at(Xd′ )
: g, θ 7→

θ′), where t : Dd′ → Dd appends d − d′ random data points to its input. Clearly, a′ satisfies the
identity and associate axiom and preserves loss. Therefore, a′ is a G-symmetry of Ld′ .

C ADDITIONAL EXPERIMENT DETAILS
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Figure 5: Learned generators for a two-layer linear MLP with parameters dimensions W2 ∈
R1×2,W1 ∈ R2×1 and data X,Y ∈ R.
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Figure 6: Training curve for learning data-dependent symmetry in a two-layer sigmoid MLP with
parameters dimensions W2 ∈ R3×1,W1 ∈ R3×3 and data X ∈ R1×3, Y ∈ R1×1.
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