
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FINDING SYMMETRY IN NEURAL NETWORK PARAME-
TER SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter space symmetries, or loss-invariant transformations, are important for
understanding neural networks’ loss landscape, training dynamics, and generaliza-
tion. However, identifying the full set of these symmetries remains a challenge.
In this paper, we formalize data-dependent parameter symmetries and derive their
infinitesimal form, which enables an automated approach to discover symmetry
across different architectures. Our framework systematically uncovers parameter
symmetries, including previously unknown ones. We also prove that symmetries
in smaller subnetworks can extend to larger networks, allowing the discovery of
symmetries in small architectures to generalize to more complex models.

1 INTRODUCTION

Parameter space symmetry, or loss-invariant transformation of parameters, influences various as-
pects of deep learning theory. Continuous symmetry connects groups to their orbits, revealing im-
portant topological properties such as the dimension (Zhao et al., 2023b) and connectedness (Zhao
et al., 2023a) of the minimum. Parameter symmetry also influences training dynamics through the
associated conserved quantities of gradient flow (Kunin et al., 2021) and by steering stochastic gra-
dient descent towards certain favored solutions (Ziyin, 2024). Additionally, symmetry provides a
tool to perform optimization within a loss level set, with successful applications in accelerating opti-
mization (Armenta et al., 2023; Zhao et al., 2022) and improving generalization (Zhao et al., 2024).
Other applications of parameter space symmetry include model compression (Ganev et al., 2022;
Sourek et al., 2021) and reducing the search space for more efficient sampling in Bayesian neural
networks (Wiese et al., 2023).

Despite the wide range of applications, our knowledge of parameter space symmetries is limited. In
particular, known symmetries often cannot account for all loss-invariant parameter transformations.
While several frameworks have been developed to unify known symmetries, whether the symmetries
in current literature are complete remains an open question. Due to the lack of a systematic approach,
current practice typically requires deriving symmetries from scratch for every new architecture,
creating barriers for wider applications that leverage parameter symmetries.

In this paper, we present an automated approach to learn the symmetry groups and their group
actions on the parameter space of neural networks. To define the search space, we formalize the
definition for data-dependent symmetries and derive an infinitesimal version, which simplifies the
automatic discovery architectures. Additionally, we learn the action maps directly using a neural
network, which allows for learning nonlinear group actions. By including data-dependent and non-
linear group actions, our framework is capable of capturing a broader range of symmetries than
previously considered.

While directly searching for symmetries in modern architectures with billions of parameters is pro-
hibitively expensive, we show that large networks often inherit symmetries from their components
or subnetworks. Identifying symmetries in small networks offers an efficient approach to uncovering
many symmetries in larger networks. By analyzing small networks and extending their symmetries
to larger ones, we sidestep the complexity of handling high-dimensional parameter spaces directly.
This method not only reduces the computational cost of symmetry identification in large networks
but also provides a systematic framework for leveraging small-scale symmetries to better understand
more complex architectures.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In summary, our main contributions are:

• Formal definitions of data-dependent parameter symmetries and their infinitesimal form.
• An approach to identify symmetries in the parameter space of large networks from known

symmetries in smaller subnetworks.
• A framework that discovers symmetry in neural network parameter spaces.
• Preliminary evidence of previously unknown symmetries that are data-dependent or act on

non-contiguous layers.

2 RELATED WORK

Parameter space symmetry. Parameter symmetries are loss-invariant transformations on neural
network parameters, often in the form of group actions. Symmetry is present in many neural net-
works. Known symmetries include invertible linear transformations in linear networks, rescaling
in homogeneous networks (Badrinarayanan et al., 2015; Du et al., 2018), radial rescaling in radial
neural networks (Ganev et al., 2022), and translation in softmax and scaling in batchnorm functions
(Kunin et al., 2021). In tanh neural networks (Chen et al., 1993), only permutation and sign flip
symmetries preserve the loss function. ReLU networks, however, possess symmetries beyond the
well-known rescaling (Grigsby et al., 2023). The existence and number of symmetries in most other
architectures remain an open question.

Data-dependent symmetry. While the above symmetries leave the loss unchanged on all data,
a relaxed definition, data-dependent symmetry, only requires loss invariance on a subset of data.
Zhao et al. (2023b) found examples of such symmetries with nontrivial data dependency, although
these symmetries are complicated, limited to minibatches of size one, and difficult to generalize
across different architectures. This motivates an automated symmetry discovery framework, which,
in principle, can find symmetries of arbitrary form in arbitrary architectures. The concept of a
symmetry dependent on data has also appeared in adjacent fields. For example, (Moskalev et al.,
2023) observe that learned data invariance in neural networks is strongly conditioned on data and
breaks under data distribution drift; Sonoda et al. (2023) define a joint group action on data and
parameters as part of a new proof of universal approximation theory.

Discovering and measuring symmetry. Various work explores learning continuous symmetries
by identifying generators of Lie groups (Krippendorf & Syvaeri, 2020; Moskalev et al., 2022;
Dehmamy et al., 2021; Yang et al., 2023b; Gabel et al., 2023), including cases with nonlinear group
actions (Yang et al., 2023a; Shaw et al., 2024). We build on this approach to discover data-dependent
group action in high-dimensional parameter spaces. While learning discrete symmetry (Zhou et al.,
2021; Karjol et al., 2024) and distributions of symmetry (Benton et al., 2020; Romero & Lohit,
2022; Urbano & Romero, 2023) are also relevant, they are not the primary focus of this paper.

Extracted symmetry is often evaluated locally, by measuring function changes under infinitesimal
symmetry transformations (Gruver et al., 2022) or by comparing tangent spaces of orbits under the
learned group and the true symmetry group (Portilheiro, 2023). We adopt the local invariance of loss
functions under symmetry transformation, similar to that defined in (Gruver et al., 2022; Moskalev
et al., 2022), as the minimization objective in learning data-dependent group actions.

3 PARAMETER SPACE SYMMETRY

In this section, we provide a formal definition for data-dependent parameter symmetries. We then
derive an alternative definition using Lie algebras, which is used to construct an automated frame-
work for discovering parameter space symmetries in Section 5. Lastly, we provide examples of
symmetries in common neural networks.

3.1 DATA-DEPENDENT GROUP ACTION AND SYMMETRY

Let Θ be the space of parameters and D be the space of data. In this paper, we consider loss functions
of the form L : Θ × D → R, which map parameters and a single data point to a real number. By

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

abuse of notation, we allow L to simultaneously process multiple data points. Specifically, we
sometimes define L : Θ×Dd → Rd for d ∈ N data points.

Let G be a group. Consider a map a, which defines a map for every data batch of size d ∈ Z+:

a : Dd → (G×Θ → Θ)

X 7→ (aX : g, θ 7→ θ′). (1)

The map a is a generalized group action on Θ if aX is a group action for every data batch X ,
meaning that it satisfies the following axioms:

identity: aX(I, θ) = θ, ∀X ∈ Dd, ∀θ ∈ Θ.

associative law: aX(g2, aX(g1, θ)) = aX(g2g1, θ), ∀g1, g2 ∈ G, ∀X ∈ Dd, ∀θ ∈ Θ.

We introduce our first definition to formalize data-dependent symmetry. A group action a is param-
eter space symmetry of L if it additionally satisfies

loss invariance: L(aX(g, θ), X) = L(θ,X), ∀g ∈ G, ∀X ∈ Dd, ∀θ ∈ Θ.

A function L has a G-symmetry if there exists a loss-invariant group action a. We refer to G as
a symmetry group of L. Additionally, the action a is termed a data-dependent group action or
symmetry if the map (1) has a non-trivial dependency on X . That is, a is data-dependent if there
exists X1, X2 ∈ Dd, such that aX1

̸= aX2
.

3.2 INFINITESIMAL SYMMETRY

Next, we derive an infinitesimal version of parameter space symmetries. For the automatic sym-
metry discovery framework in Section 5, this definition allows us to learn the group elements and
actions without computing the matrix exponential, which is expensive, during training. Proofs and
additional examples can be found in Appendix A.

In this paper, we restrict the symmetry group G to be a linear group. That is, we assume there is a
faithful representation ρ : G → GL(n). The corresponding Lie algebra representation dρ : g →
gl(n) is the differential of ρ, mapping elements of the Lie algebra g of G to the Lie algebra gl(n)
of GL(n). If G is a subgroup of GL(n), then ρ is the inclusion map, and consequently, dρ is the
inclusion of g into gl(n).

The following theorem shows that the derivative of the loss function L with respect to the parameters
θ vanishes in the directions generated by the symmetry group’s infinitesimal transformations. In
other words, the loss function is invariant to small changes along these symmetric directions in
parameter space.
Theorem 3.1. Let a : Dd → (G × Θ → Θ) be a parameter space symmetry of a loss function
L : Θ × Dd → Rd. Let DθL|θ,X : TθΘ → Rd be the derivative of L with respect to θ, and
DgaX |I,θ : g → TθΘ be the derivative of aX(g, θ) with respect to g. Then, for all θ ∈ Θ, X ∈ Dd,
and h ∈ g,

(DθL|θ,X ◦DgaX |I,θ)(h) = 0. (2)

Proof sketch. Consider a smooth curve γ(t) = aX(exp(ht), θ) in Θ, where h ∈ g and t ∈ R. Then,
since L is invariant under a, L(γ(t), X) = L(θ,X),∀t ∈ R. The result follows from differentiating
both sides with respect to t at t = 0 and applying the chain rule.

Equation 2 states that the gradient of the loss function L with respect to the parameters θ is orthog-
onal to the directions in parameter space generated by the infinitesimal symmetry transformations
DgaX

∣∣
I,θ

(h). This orthogonality implies that moving along these symmetric directions does not
change the loss to first order, reflecting the invariance of L under the group action.

Assuming that Θ = Rn, then for a single data point (d = 1), we can write (2) in coordinates as

DθL|θ,X (DgaX |I,θ(h)) =
n∑

i=1

dim(g)∑
k=1

∂L

∂θi

(
DgaX |I,θ

)
ik
hk = 0. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.3 EXAMPLES

3.3.1 LINEAR ACTION OF MATRIX GROUPS

When Θ = Rn and G is a subgroup of GL(n) with a linear, data-independent symmetry ax(g, θ) =
gθ for all x ∈ X , (3) reduces to the equation in Theorem 3.1 in Moskalev et al. (2022). With
(Dga)ijk = ∂ai

∂gjk
= δijθk, we have

dL(exp(h · t) · θ)
dt

∣∣∣∣
t=0

=

n∑
i=1

n∑
j=1

n∑
k=1

∂L

∂θi

(
Dga|I,θ

)
ijk

hjk =

n∑
i=1

n∑
k=1

∂L

∂θi
θkhik. (4)

Our symmetry acts on parameters instead of data, but otherwise this matches Theorem 3.1 in
(Moskalev et al., 2022).

3.3.2 HOMOGENEOUS TWO-LAYER NEURAL NETWORK

We consider a homogeneous two-layer neural network with scalar weights for simplicity. Let pa-
rameter space Θ = R2 and data space X ∈ R. Consider the loss function

L : Θ×X → R, (w1, w2), x 7→ w2σ(w1x)

with a homogeneous activation function σ : R → R, i.e. σ(αx) = αcx for all α ∈ R>0 and x ∈ R,
for some c > 0.

Let G = (R×,×), and ρ : G → GL2, α 7→
(
α 0
0 α−c

)
. Then a : GL(2) × R2 →

R2,

(
ρ(g),

(
w1

w2

))
7→ ρ(g)

(
w1

w2

)
is a symmetry of L.

4 BUILDING NEW SYMMETRIES FROM KNOWN ONES

One way to identify symmetries in a large network is by examining its components or subnetworks.
Despite often having billions of parameters, neural networks typically consist of a limited set of
functional families, such as fully connected layers, attention mechanisms, and activation functions.
This modular view suggests a mechanism by which symmetries in networks with fewer layers might
extend to those in deeper networks. Additionally, within similar types of networks, it may be possi-
ble to extrapolate symmetries found in narrower layers to wider ones.

By focusing on symmetries in small architectures and using them to infer symmetries in larger
ones, we circumvent the complexity associated with direct handling of high-dimensional parame-
ter spaces. This approach not only simplifies the discovery of symmetries in large-scale networks
but also provides a systematic method for using symmetries in smaller subnetworks to understand
those in more extensive architectures. We formalize this approach and discuss its limitations in the
remainder of this section. Proofs can be found in Appendix B.

When the loss function L depends on a subset of the parameters solely through a subnetwork f , any
symmetries that preserve f will also preserve the original network L:
Proposition 4.1. Let L : Θ × Dd → Rd where the parameter space Θ is a product space Θ =
Θ1 × Θ2. Suppose for some spaces S and T , there exist functions h : Θ1 × Dd → S, f : Θ2 ×
S → T and j : (Θ1 × T) × Dd → Rd, such that for every θ = (θ1, θ2) ∈ Θ and X ∈ Dd,
L(θ,X) = j

(
(θ1, f

(
θ2, h(θ1, X)

)
), X

)
. If a : S → (G × Θ2 → Θ2) is a G-symmetry of f , then

there is an induced G-symmetry of L, a′ : Dd → (G × Θ → Θ), defined by a′X(g, (θ1, θ2)) =(
θ1, ah(θ1,X)(g, θ2)

)
.

The relationship between the functions in the proposition is described by the commutative diagram
below, where p1 : Θ → Θ1, p2 : Θ → Θ2 are projections onto Θ1 and Θ2, id1 : Θ1 → Θ1 and
id2 : Θ2 → Θ2 are identity maps, and X ∈ Dd represents a batch of data. Space S and T can
be interpreted as intermediate feature spaces in the neural network. When L can be decomposed
in this way, the function h does not depend on Θ2, and the function j depends on Θ2 only through
the output of f . This effectively confines L’s dependency on Θ2 to the transformation defined by

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(&## = $ & ((##)(&## = ((##)

(a) (b) (c)

ℎ

,

ℎ ! ∘+ ℎ !, = ℎ ! ∘- !,

-!

Θ ℝ

0Θ!

-"
Θ" !1"

1!
S×Θ"

Θ"Θ!Θ"

Θ!
Figure 1: If a large network contains substructures with known symmetry, we can infer the same
symmetry for the large network. (a) Symmetry from narrower networks. (b) Symmetry from shal-
lower networks.

f , ensuring that any transformation on Θ2 not altering the output of f will not affect the output of
L. Consequently, symmetries identified in the smaller network f can be extrapolated to the larger
network L.

Θ Rd

Θ1 ×Θ2 ×Θ1 Θ1 ×Θ2 × S Θ1 × T

L(·, X)

p1 × p2 × p1
id1 × id2 × h(·, X) id1 × f(·, ·)

j(·, X)

We apply Proposition 4.1 to construct symmetries in larger networks from those in smaller ones
in the next two corollaries. Specifically, we show that some symmetries are preserved as networks
scale up through increasing the dimensionality of a layer or adding additional layers.

The first corollary describes how symmetries identified in narrower networks also apply to wider
networks. A function σ : Rh×k → Rh×k is row-wise if, for any matrix A ∈ Rh×k with rows
{ai ∈ Rk}hi=1, the output matrix σ(A) has rows {σrow(ai) ∈ Rk}hi=1, where σrow : Rk → Rk

applies independently on each row of A. Element-wise functions are a special case of row-wise
functions. For fully connected networks with row-wise activation functions, identifying a symmetry
in one architecture suggests that the same symmetry will apply to wider versions of that architecture.

Corollary 4.2. Consider a network parameter space Θ(m,h, n) = Rm×h × Rh×n and data space
D(n, k) = Rn×k. Let σ : Rh×k → Rh×k be a row-wise function. Consider a function Lmnhk :
Θ(m,h, n) × D(n, k) → Rm×k, defined as Lmnhk((U, V), X) = Uσ(V X) for U ∈ Rm×h,
V ∈ Rh×n, and X ∈ Rn×k. If there is a G-symmetry of Lmnhk, then there is a G-symmetry of
Lmnh′k with any h′ > h.

The next corollary shows that symmetries of a subset of layers are also symmetries in the entire
network.

Corollary 4.3. Let Θ = Θ1 × ... × Θl be a parameter space. Consider a list of spaces V0 = Dd,
Vl = Rd, and V1, ..., Vl−1. Let L : Θ×Dd → Rd be a function defined recursively by {Li}li=1 with
Li : Θi × Vi−1 → Vi, such that L = ϕl where ϕi = Li(θi, ϕi−1) ∈ Vi and ϕ0 = X . If for some
1 ≤ i ≤ l, Li has a G-symmetry, then L has a G-symmetry.

Both corollaries can be proved by factoring the parameter space and defining corresponding func-
tions that compose to L, before applying Proposition 4.1. The explicit forms of h, f , and j are
deferred to Appendix B. Figure 1 shows the subset of parameters (Θ2) that the symmetry applies to
in the corollaries. These are the subnetworks where symmetries are assumed to be known and which
the larger network inherits.

Note that this approach does not explore the emergence of new, more complex symmetries that
may arise as the neural network scale up in size. Notably, there are cases where there exists a G
symmetry over its input space, but group actions on individual layers are not loss-invariant (Kvinge
et al. (2022)). Nevertheless, studying smaller and simpler networks remains a effective strategy to
obtain a significant number of symmetries in larger networks, and is a first step in characterizing the
complete set of symmetries in modern architectures.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In addition to obtaining symmetries from those in smaller networks, we can also get symmetries for
a loss function over data batches with a certain size, if we know there is a symmetry for this function
over larger data batches. Concretely, if there exists a group action that preserves loss for all data
batches of size d ∈ Z+, then that group action preserves loss for all data batches of size d′ < d.
Proposition 4.4. Let Ld : Θ×Dd → Rd be a function that is applied pointwise on each of d data
points in a data batch. If Ld admits a G-symmetry, then Ld′ admits a G-symmetry for all d′ < d.

5 AUTOMATIC DISCOVERY OF PARAMETER SYMMETRIES

Formulating symmetries in the infinitesimal form makes them easier to learn using an automatic
framework, as it defines a set of local conditions for a function to be a symmetry. Using the in-
finitesimal symmetry derived in Section 3.2, we construct an automated framework for discovering
parameter space symmetries.

5.1 ENFORCING LOSS INVARIANCE AND GROUP AXIOMS

Given a function L, our goal is to find a symmetry a and a set of Lie algebra elements h correspond-
ing to a symmetry group of L. We parameterize a using a neural network with learnable parameters,
and set h to be learnable as well. We define the following loss terms that quantify the deviation from
loss invariance and the group axioms (identity and associativity law):

Linvariance = Ex,θ|DθL|θ,X ◦DgaX |I,θ(h)| (5)
Lid = Ex,θ∥ax(I, θ)− θ∥2 (6)

Lassoc =
∑

h1,h2∈g

Ex,θ

∥∥∥∥DgaX
∣∣
I,θ

(h2)DgaX
∣∣
I,θ

(h1)−
1

2
DgaX

∣∣
I,θ

([h1, h2])

∥∥∥∥ . (7)

The three loss terms bias the action towards being loss-invariant, preserving identity, and satisfying
the associativity property. By minimizing LLie deriv, we ensure that the learned symmetry a and the
Lie algebra element h satisfy the infinitesimal symmetry condition (Theorem 3.1). Minimizing Lid
enforces the identity axiom, ensuring that the action of the identity element leaves the parameters
unchanged. Minimizing Lassoc enforces the associative axiom (derivation in Appendix A.2).

By focusing on the Lie algebras, we enforce the loss invariance and group structure at the infinitesi-
mal level. This formulation allows us to avoid computing exponential maps.

5.2 REGULARIZATIONS

To prevent the learned group action from becoming trivial, we encourage the infinitesimal action
to be nonzero. On the other hand, we do not want it to grow infinitely large for training stability.
Therefore, in implementation, we include the following regularization term to encourage the norm
of the infinitesimal action to be around a fixed positive real number β:

Lreg id = min
a,h

Eθ|β − ∥DgaX |I,θ(h)∥|. (8)

When learning multiple generators simultaneously, we want them to be orthogonal. Following Yang
et al. (2023b), we do this by including the following cosine similarity between each pair of the k
generators in the loss function:

Lreg h orth =
∑

1≤i<j≤k

hi · hj

∥hi∥∥hj∥
. (9)

Finally, we encourage sparsity of h for easier interpretation, with the regularization term

Lreg h sparse =
∑
k,j

|hkj |. (10)

The final training objective is a weighted average of (6)-(11), with hyperparameters γ1, ..., γ6 ∈ R+:

min
h,a

(γ1Linvariance + γ2Lid + γ3Lassoc + γ4Lreg id + γ5Lreg h orth + γ6Lreg h sparse) . (11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.3 LEARNED DATA-INDEPENDENT SYMMETRIES

-0.34 -1.3e-08

1.5e-08 0.28

0.4
0.3
0.2
0.1

0.0
0.1
0.2
0.3
0.4

Figure 2: Generator for a two-
layer linear MLP with scalar pa-
rameters and data.

In the first set of tasks, we see if our method can learn gen-
erators for architectures with already known data-independent
symmetries. We consider two-layer networks in the form
of L(W1,W2, X, Y) = ∥W2σ(W1X) − Y ∥2, where W2 ∈
Rm×h,W1 ∈ Rh×n are parameters, X ∈ Rn×k, Y ∈ Rm×k

are data, and σ is a homogeneous activation function.

During training, we train the generators h and the group ac-
tion a under objective (11). We parametrize a using a 4-layer
MLP with hidden dimensions 64, 64, 64. The group aciton a
takes a group element, parameter, and data as input and out-
puts transformed parameters. We use 10000 training samples,
each containing a randomly generated set of parameters and data.
We set the learning rate as 10−3 with decay 0.6 every 1000
steps, and the weights for the multi-objective loss as γ1 = 10,
γ2 = γ4 = γ5 = 1, and γ6 = 0.1.

As a proof of concept, we training a group action and a single generator h ∈ R2×2 for the two-layer
architecture with m = h = n = k = 1 and σ being the identity function. Figure 2 visualizes the
learned generator, which matches the expected generator that generates the rescaling group.

Note that, however, we do not impose constraints on the group action (in particular, not enforcing
linear actions). Hence we do not expect the learned generators to look similar to the elements
of the Lie algebra infinitesimal generators of the symmetry group in general. For example, the
action a can be a composition of two function, the first transforming learned generators to the set of
actual generators, and the second performing the group action. We find that our method can learn
the generators and group actions for wider two-layer homogeneous architectures as well. More
examples of learned generators for larger architectures can be found in Appendix C.

5.4 LEARNED DATA-DEPENDENT SYMMETRIES

As a more practical application of our framework, we attempt to uncover data-dependent symmetries
from architectures where no continuous symmetry is known before. We apply our framework to
learn generators and loss-invariant group actions for two-layer neural network with sigmoid and
tanh activation function, as well as a three-layer neural network with skip connection.

Specifically, we aim to learn symmetries in the two-layer networks defined in the previous section,
but replacing σ by sigmoid or tanh. Our objective is again to find a set of generators h and a group
action a that minimizes (11). We use 10000 training samples, each containing a randomly generated
set of parameters and data. We set the learning rate as 10−3 and the weights for the multi-objective
loss as γ1 = 1, γ2 = γ4 = 10, γ5 = 1, and γ6 = 0.1.

Figure 3 shows the learned generators for data-dependent symmetries in a two-layer sigmoid MLP
with parameters dimensions W1 ∈ R3×3,W2 ∈ R3×1 and data X ∈ R3×1, Y ∈ R1×1. Figure 6 in
the Appendix shows the training curve. Since sigmoid networks have no data-independent contin-
uous symmetry, this set of symmetries are data-dependent, indicating that our method successfully
learns data-dependent symmetries for this architecture.

Figure 4 shows the learned generators for data-dependent symmetries in a three-layer tanh MLP
with parameters dimensions W1 ∈ R2×2,W2 ∈ R2×2,W3 ∈ R2×1 and data X ∈ R1×2, Y ∈ R1×1.
The generators indicate the existence of symmetries that act on non-contiguous layers, which has
not been discovered in previous literature.

6 DISCUSSION

While our discovery framework suggests that there are previously unknown data-dependent sym-
metries in various neural network architectures, the existence and number of symmetries in neural
network parameter spaces remain open questions. Whether the number of symmetries is affected

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1.0

0.5

0.0

0.5

1.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2

1

0

1

2

Figure 3: Learned generators for data-dependent symmetries in a two-layer sigmoid MLP with
parameters dimensions W2 ∈ R3×1,W1 ∈ R3×3 and data X ∈ R1×3, Y ∈ R1×1.

1.0

0.5

0.0

0.5

1.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

2

1

0

1

2

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 4: Learned generators for data-dependent symmetries in a three-layer tanh MLP with param-
eters dimensions W1 ∈ R2×2,W2 ∈ R2×2,W3 ∈ R2×1 and data X ∈ R1×2, Y ∈ R1×1.

by existence of symmetry in data or changes during training are also interesting directions. Future
work will examine the structure of learned symmetry, such as the dimension of Lie algebras.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

REFERENCES

Marco Armenta, Thierry Judge, Nathan Painchaud, Youssef Skandarani, Carl Lemaire, Gabriel
Gibeau Sanchez, Philippe Spino, and Pierre-Marc Jodoin. Neural teleportation. Mathematics,
11(2):480, 2023.

Vijay Badrinarayanan, Bamdev Mishra, and Roberto Cipolla. Symmetry-invariant optimization in
deep networks. arXiv preprint arXiv:1511.01754, 2015.

Gregory Benton, Marc Finzi, Pavel Izmailov, and Andrew G Wilson. Learning invariances in neural
networks from training data. Advances in neural information processing systems, 33:17605–
17616, 2020.

An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural
network error surfaces. Neural computation, 5(6):910–927, 1993.

Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun Wang, and Rose Yu. Automatic symmetry
discovery with lie algebra convolutional network. Advances in Neural Information Processing
Systems, 34:2503–2515, 2021.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. Neural Information Processing Systems, 2018.

Alex Gabel, Victoria Klein, Riccardo Valperga, Jeroen SW Lamb, Kevin Webster, Rick Quax, and
Efstratios Gavves. Learning lie group symmetry transformations with neural networks. In Topo-
logical, Algebraic and Geometric Learning Workshops 2023, pp. 50–59. PMLR, 2023.

Iordan Ganev, Twan van Laarhoven, and Robin Walters. Universal approximation and model com-
pression for radial neural networks. arXiv preprint arXiv:2107.02550v2, 2022.

Elisenda Grigsby, Kathryn Lindsey, and David Rolnick. Hidden symmetries of relu networks. In
International Conference on Machine Learning, pp. 11734–11760. PMLR, 2023.

Nate Gruver, Marc Anton Finzi, Micah Goldblum, and Andrew Gordon Wilson. The lie deriva-
tive for measuring learned equivariance. In The Eleventh International Conference on Learning
Representations, 2022.

Pavan Karjol, Rohan Kashyap, Aditya Gopalan, and A. P. Prathosh. A unified framework for dis-
covering discrete symmetries. In Proceedings of The 27th International Conference on Artificial
Intelligence and Statistics, volume 238 of Proceedings of Machine Learning Research, pp. 793–
801. PMLR, 2024.

Sven Krippendorf and Marc Syvaeri. Detecting symmetries with neural networks. Machine Learn-
ing: Science and Technology, 2(1):015010, 2020.

Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka.
Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics. In Inter-
national Conference on Learning Representations, 2021.

Henry Kvinge, Tegan Emerson, Grayson Jorgenson, Scott Vasquez, Tim Doster, and Jesse Lew. In
what ways are deep neural networks invariant and how should we measure this? Advances in
Neural Information Processing Systems, 35:32816–32829, 2022.

Artem Moskalev, Anna Sepliarskaia, Ivan Sosnovik, and Arnold Smeulders. Liegg: Studying
learned lie group generators. Advances in Neural Information Processing Systems, 35:25212–
25223, 2022.

Artem Moskalev, Anna Sepliarskaia, Erik J Bekkers, and Arnold WM Smeulders. On genuine
invariance learning without weight-tying. In Topological, Algebraic and Geometric Learning
Workshops 2023, pp. 218–227. PMLR, 2023.

Vasco Portilheiro. Quantifying lie group learning with local symmetry error. In NeurIPS 2023
Workshop on Symmetry and Geometry in Neural Representations, 2023.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

David W Romero and Suhas Lohit. Learning partial equivariances from data. Advances in Neural
Information Processing Systems, 35:36466–36478, 2022.

Ben Shaw, Abram Magner, and Kevin R Moon. Symmetry discovery beyond affine transformations.
arXiv preprint arXiv:2406.03619, 2024.

Sho Sonoda, Hideyuki Ishi, Isao Ishikawa, and Masahiro Ikeda. Joint group invariant functions
on data-parameter domain induce universal neural networks. In NeurIPS 2023 Workshop on
Symmetry and Geometry in Neural Representations, 2023.

Gustav Sourek, Filip Zelezny, and Ondrej Kuzelka. Lossless compression of structured convolu-
tional models via lifting. In International Conference on Learning Representations, 2021.

Alonso Urbano and David W Romero. Self-supervised detection of perfect and partial input-
dependent symmetries. arXiv preprint arXiv:2312.12223, 2023.

Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann,
and David Rügamer. Towards efficient mcmc sampling in bayesian neural networks by exploiting
symmetry. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML PKDD): Research Track, pp. 459–474, 2023.

Jianke Yang, Nima Dehmamy, Robin Walters, and Rose Yu. Latent space symmetry discovery. arXiv
preprint arXiv:2310.00105, 2023a.

Jianke Yang, Robin Walters, Nima Dehmamy, and Rose Yu. Generative adversarial symmetry dis-
covery. International Conference on Machine Learning, 2023b.

Bo Zhao, Nima Dehmamy, Robin Walters, and Rose Yu. Symmetry teleportation for accelerated
optimization. Advances in Neural Information Processing Systems, 2022.

Bo Zhao, Nima Dehmamy, Robin Walters, and Rose Yu. Understanding mode connectivity via
parameter space symmetry. In UniReps: the First Workshop on Unifying Representations in
Neural Models, 2023a.

Bo Zhao, Iordan Ganev, Robin Walters, Rose Yu, and Nima Dehmamy. Symmetries, flat minima,
and the conserved quantities of gradient flow. International Conference on Learning Representa-
tions, 2023b.

Bo Zhao, Robert M Gower, Robin Walters, and Rose Yu. Improving convergence and generalization
using parameter symmetries. International Conference on Learning Representations, 2024.

Allan Zhou, Tom Knowles, and Chelsea Finn. Meta-learning symmetries by reparameterization.
International Conference on Learning Representations, 2021.

Liu Ziyin. Symmetry leads to structured constraint of learning. In International Conference on
Machine Learning. PMLR, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

APPENDIX

A INFINITESIMAL SYMMETRY AND EXAMPLES

A.1 INFINITESIMAL FORMULATION FOR LOSS INVARIANCE

Theorem 3.1. Let a : Dd → (G × Θ → Θ) be a parameter space symmetry of a loss function
L : Θ × Dd → Rd. Let DθL|θ,X : TθΘ → Rd be the derivative of L with respect to θ, and
DgaX |I,θ : g → TθΘ be the derivative of aX(g, θ) with respect to g. Then, for all θ ∈ Θ, X ∈ Dd,
and h ∈ g,

DθL|θ,X ◦DgaX |I,θ ◦ h = 0.

Proof. Since a is a symmetry of L, we have

L(aX(g, θ), X) = L(θ,X), ∀g ∈ G, ∀θ ∈ Θ, ∀X ∈ Dd.

Consider a smooth curve γ(t) = aX(exp(ht), θ) in Θ, where h ∈ g and t ∈ R. Then, since L is
invariant under a,

L(γ(t), X) = L(θ,X), ∀t ∈ R.

Differentiating both sides with respect to t at t = 0, we get

d

dt
L(γ(t), X)

∣∣∣∣
t=0

= 0.

Applying the chain rule,

d

dt
L(γ(t), X)

∣∣∣∣
t=0

= DθL|θ,X
(
dγ(t)

dt

∣∣∣∣
t=0

)
.

Now, compute dγ(t)
dt

∣∣∣
t=0

using the chain rule:

dγ(t)

dt

∣∣∣∣
t=0

=
d

dt
aX(exp(ht), θ)

∣∣∣∣
t=0

= DgaX |I,θ
(

d

dt
exp(ht)

∣∣∣∣
t=0

)
.

Since exp is the exponential map from gl(n) to GL(n), and h ∈ gl(n), we have

d

dt
exp(ht)

∣∣∣∣
t=0

= h.

Therefore,
dγ(t)

dt

∣∣∣∣
t=0

= DgaX |I,θ(h).

Putting it all together,
DθL|θ,X (DgaX |I,θ(h)) = 0.

A.2 INFINITESIMAL FORMULATION FOR ASSOCIATIVITY AXIOM

In this section, we rewrite the associative axiom,

aX(g2, aX(g1, θ)) = aX(g2g1, θ), (12)

into an infinitesimal form that uses Lie algebras but avoids the use of exponential maps. Below is a
detailed derivation.

First, we consider infinitesimal group elements. Let g1 = exp(εh1) and g1 = exp(εh2), where ε is
an infinitesimally small scalar, and h1, h2 ∈ g.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Expand the group multiplication to second order in ε using the Baker-Campbell-Hausdorff (BCH)
formula:

g2g1 ≈ I + ε(h1 + h2) +
1
2ε

2[h1, h2].

Expand the right side of (12) to second order:

aX(g2g1, θ) ≈ θ + εDgaX
∣∣
I,θ

(h1 + h2) +
1
2ε

2DgaX
∣∣
I,θ

([h1, h2]).

Expand the left side of (12) to second order:

aX(g2, aX(g1, θ)) ≈ aX(I + εh2, θ + εDgaX |I,θ(h1))

≈ θ + εDgaX
∣∣
I,θ

(h2) + εDgaX
∣∣
I,θ

(h1) + ε2DgaX
∣∣
I,θ

(h2)DgaX
∣∣
I,θ

(h1).

By associativity axiom, we expect the two sides to be equal. Since the first-order terms from both
sides match, we equate the second-order terms. To enforce the associative axiom, we define the
infinitesimal associative loss as the difference between the second-order terms from two sides:

Lassoc =
∑

h1,h2∈g

Ex,θ

∥∥∥∥DgaX
∣∣
I,θ

(h2)DgaX
∣∣
I,θ

(h1)−
1

2
DgaX

∣∣
I,θ

([h1, h2])

∥∥∥∥ .
This loss enforces that the commutator of the infinitesimal actions matches the Lie bracket of the
Lie algebra, satisfying the associative property at the infinitesimal level.

A.3 ALTERNATIVE OPTION FOR DISCOVERY OBJECTIVES

A more straightforward training objective exponentiates the Lie algebra to obtain group elements,
before enforcing loss invariance and group axioms:

min
h,a

Linvariance int + Lid int + Lassoc int

with

Linvariance int = Ex,θ,t∥L (ax(exp(ht), θ), x)− L(θ, x)∥
Lid int = Ex,θ∥ax(I, θ)− θ∥

Lassoc int =
∑

h1,h2∈g

Ex,θ

∥∥aexp(h1)X(exp(h2), aX(exp(h1), θ))− aX(exp(h2) exp(h1), θ)
∥∥ .

Similarly to the infinitesimal version, this objective also directly enforces the necessary group struc-
tures. We adopt the infinitesimal formulation to avoid the computational overhead of evaluating
exponential maps.

A.4 HOMOGENEOUS FUNCTION PROPERTIES

Proposition A.1 (Euler’s homogeneous function theorem). Let f : R → R be a homogeneous
function, i.e. f(αx) = αcx for all α ∈ R>0 and x ∈ R, for some c > 0. If f is differentiable at x,
then df

dx = cx−1f(x).

Proof. Using the definition of homogeneous function, the derivative of f at x is
df

dx
= lim

t→0

f(x+ t)− f(x)

t

= lim
t→0

f((1 + tx−1)x)− f(x)

t

= lim
t→0

(1 + tx−1)cf(x)− f(x)

t

= lim
t→0

c(1 + tx−1)c−1x−1f(x)

1

= cx−1f(x) (13)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B BUILDING SYMMETRIES FROM KNOWN ONES

This section contains the proofs for results in Section 4.
Proposition 4.1. Let L : Θ × Dd → Rd be a function, where the parameter space Θ is a product
space Θ = Θ1 × Θ2, with spaces Θ1,Θ2. Suppose there exist functions h : Θ1 × Dd → S,
f : Θ2 × S → T , and j : (Θ1 × T) × Dd → Rd, such that for every θ = (θ1, θ2) ∈ Θ
and X ∈ Dd, L(θ,X) = j

(
(θ1, f

(
θ2, h(θ1, X)

)
), X

)
. If a : S → (G × Θ2 → Θ2) is a G-

symmetry of f , then there is an induced G-symmetry of L, a′ : Dd → (G × Θ → Θ), defined by
a′X(g, (θ1, θ2)) =

(
θ1, ah(θ1,X)(g, θ2)

)
.

Proof. We need to show that a′ satisfies the identity and associative law of a group action and
preserves L.

Since a is a group action on Θ2, it satisfies the identity axiom ah(θ1,X)(I, θ2) = θ2. Applying this
in the definition of a′, we get a′X(I, (θ1, θ2)) = (θ1, ah(θ1,X)(I, θ2)) = (θ1, θ2).

Since a is a group action on Θ2, it satisfies the associative law ah(θ1,X)(g2g1, θ2) =
ah(θ1,X)(g2, ah(θ1,X)(g1, θ2)), for all g1, g2 ∈ G. It follows that a′ also satisfies the associa-
tive law: a′X(g2g1, (θ1, θ2)) = (θ1, ah(θ1,X)(g2g1, θ2)) = (θ1, ah(θ1,X)(g2, ah(θ1,X)(g1, θ2))) =
a′X(g2, a

′
X(g1, (θ1, θ2)))

Finally, since a is a symmetry of f , we have f(ah(θ1,X)(g, θ2), h(θ1, X)) = f(θ2, h(θ1, X)),
for all g ∈ G. It follows that a′ preserves the value of L: L(a′X(g, θ), X) =
j
(
(θ1, f

(
ah(θ1,X)(g, θ2), h(θ1, X)

)
), X

)
= j

(
(θ1, f

(
θ2, h(θ1, X)

)
), X

)
= L(θ,X).

Corollary 4.2. Consider a network parameter space Θ(m,h, n) = Rm×h × Rh×n and data space
D(n, k) = Rn×k. Let σ : Rh×k → Rh×k be a row-wise function. Consider a function Lmnhk :
Θ(m,h, n) × D(n, k) → Rm×k, defined as Lmnhk((U, V), X) = Uσ(V X) for U ∈ Rm×h,
V ∈ Rh×n, and X ∈ Rn×k. If there is a G-symmetry of Lmnhk, then there is a G-symmetry of
Lmnh′k with any h′ > h.

Proof. The function Lmnh′k can be decomposed into
U(σ(V X))ik = Uijσ(V X)jk

=

h∑
j=1

n∑
l=1

Uijσ(VjlXlk)

=

h∑
j=1

n∑
l=1

Uijσ(VjlXlk) +

h′∑
j=h+1

n∑
l=1

Uijσ(VjlXlk) (14)

Note that for all i, k, the first term depends only on the first h columns of U and first h rows of V ,
and the second terms depends only on the rest of the columns and rows of U and V . Denoting the
first h columns of U as U1:h, the rest of the columns of U as Uh+1:h′ , the first h rows of V as V1:h,
and the rest of the rows of V as Vh+1:h′ , we have

Lmnh′k((U, V), X) = Lmnhk((U1:h, V1:h), X) + Lmn(h′−h)k((Uh+1:h′ , Vh+1:h′), X). (15)

Let Θ1 = Rm×h × Rh×n and Θ2 = Rm×(h′−h) × R(h′−h)×n. Then Θ(m,h′, n) = Θ1 ×Θ2. Let
S = (Rm×k ×Dd) and T = Rm×k × Rm×k. Define the following three functions

h : Θ1 ×Dd → (Rm×k ×Dd)

f : Θ2 × (Rm×k ×Dd) → Rm×k × Rm×k

j : (Θ1 × (Rm×k × Rm×k))×Dd → Rm×k (16)
by

h((U1:h, V1:h), X) = (Lmnhk((U1:h, V1:h), X), X)

f((Uh+1:h′ , Vh+1:h′), (Y,X)) =
(
Lmn(h′−h)k((Uh+1:h′ , Vh+1:h′), X), Y

)
j(
(
(U1:h, V1:h), (Y

′, Y)
)
, X) = Y ′ + Y. (17)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Then Lmnh′k(θ,X) = j
(
(θ1, f

(
θ2, h(θ1, X)

)
), X

)
for all θ = (θ1, θ2) ∈ Θ and X ∈ Dd. Since

Lmnhk has a symmetry, f has the same symmetry. By Proposition 4.1, Lmnh′k also has the same
symmetry.

Corollary 4.3. Let Θ = Θ1 × ... × Θl be a parameter space. Consider a list of spaces V0 = Dd,
Vl = Rd, and V1, ..., Vl−1. Let L : Θ×Dd → Rd be a function defined recursively by {Li}li=1 with
Li : Θi × Vi−1 → Vi, such that L = ϕl where ϕi = Li(θi, ϕi−1) ∈ Vi and ϕ0 = X . If for some
1 ≤ i ≤ l, Li has a G-symmetry, then L has a G-symmetry.

Proof. Define functions

h : (Θ1 × ...×Θi−1 ×Θi+1 × ...×Θl)×Dd → Vi−1

f : Θi × Vi−1 → Vi

j : (Θ1 × ...×Θi−1 ×Θi+1 × ...×Θl)× Vi ×Dd → Rd (18)

by

h((θ1, ..., θi−1, θi+1, ..., θl), X) = Li−1(θi−1, X), computed using (θ1, ..., θi−1)

f(θi, ϕi−1) = Li(θi, ϕi−1)

j((θ1, ..., θi−1, θi+1, ..., θl), ϕi, X) = Ll(θl, X), computed using (θl, ..., θi+1) and ϕi. (19)

Then L((θ1, ..., θl), X) = j
(
(θ1, ..., θi−1, θi+1, ..., θl), f(θi, h((θ1, ..., θi−1, θi+1, ..., θl), X)), X

)
for all θ = (θ1, θ2) ∈ Θ and X ∈ Dd. By Proposition 4.1, if f = Li has a G-symmetry, L also has
a G-symmetry.

Proposition 4.4. Let Ld : Θ×Dd → Rd be a function that is applied pointwise on each of d data
points in a data batch. If Ld admits a G-symmetry, then Ld′ admits a G-symmetry for all d′ < d.

Proof. Suppose that Ld has a G-symmetry. Let a : Dd → (G×Θ → Θ), Xd 7→ (aXd
: g, θ 7→ θ′)

be the corresponding group action. Define a′ : Dd′ → (G × Θ → Θ) by Xd′ 7→ (at(Xd′)
: g, θ 7→

θ′), where t : Dd′ → Dd appends d − d′ random data points to its input. Clearly, a′ satisfies the
identity and associate axiom and preserves loss. Therefore, a′ is a G-symmetry of Ld′ .

C ADDITIONAL EXPERIMENT DETAILS

0.10

0.05

0.00

0.05

0.10

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.10

0.05

0.00

0.05

0.10

Figure 5: Learned generators for a two-layer linear MLP with parameters dimensions W2 ∈
R1×2,W1 ∈ R2×1 and data X,Y ∈ R.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000
Number of Training Samples

10 4

10 3

10 2

10 1

100

Lo
ss

L_invariance
L_id
reg_id
reg_h_orth

Figure 6: Training curve for learning data-dependent symmetry in a two-layer sigmoid MLP with
parameters dimensions W2 ∈ R3×1,W1 ∈ R3×3 and data X ∈ R1×3, Y ∈ R1×1.

15

	Introduction
	Related Work
	Parameter Space Symmetry
	Data-dependent group action and symmetry
	Infinitesimal Symmetry
	Examples
	Linear action of matrix groups
	Homogeneous two-layer neural network

	Building New Symmetries from Known Ones
	Automatic Discovery of Parameter Symmetries
	Enforcing Loss Invariance and Group Axioms
	Regularizations
	Learned data-independent symmetries
	Learned data-dependent Symmetries

	Discussion
	Infinitesimal Symmetry and Examples
	Infinitesimal Formulation for Loss Invariance
	Infinitesimal Formulation for Associativity Axiom
	Alternative Option for Discovery Objectives
	Homogeneous function properties

	Building symmetries from known ones
	Additional Experiment Details

