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Abstract. Early diagnosis of lung cancer largely relies on the interpre-
tation of bronchoscopic images, a complex task that strongly depends on
clinical expertise. Deep learning has shown potential in computer-aided
detection of lung cancer, but its performance remains limited by the
scarcity of annotated data in endoscopic imaging. To address this con-
straint, we explore the use of synthetic data generated with SinGAN-Seg,
a model capable of producing realistic images from a single example.
In this study, 257 bronchoscopic images from 64 patients were used to
train 257 individual SinGAN-Seg models. The generated images were
filtered using quantitative similarity metrics and integrated in increas-
ing proportions (5% to 100%) into the training sets of three convolu-
tional classifiers (ResNet-18, ResNet-50, EfficientNet-B7). Performance
was evaluated through five-fold cross-validation on an independent vali-
dation set.
The results show that a moderate addition of synthetic data (up to 33%
for ResNet-18 and 66% for EfficientNet-B7) led to small yet consistent
improvements in accuracy and sensitivity, with gains ranging from +1%
to +3% depending on the architecture. However, an excess of artificial
data degraded precision and overall performance. These findings confirm
the potential of generation-based augmentation to enhance generaliza-
tion in data-scarce medical contexts, while emphasizing the importance
of balanced integration and rigorous evaluation.
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1 Introduction

Lung cancer remains the major cause of cancer-related mortality worldwide [3,
20]. It accounts for approximately 2.5 million new cases and 1.8 million deaths
each year, representing about 12% of all cancers and nearly 19% of all cancer-
related deaths [3]. Despite advances in screening and targeted therapies, survival
outcomes remain unsatisfactory, largely due to late diagnosis and the complexity
of the disease [20]. When detected at an early stage, however, the five-year
survival rate can exceed 60%, compared to less than 15% for advanced stages [25].
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Bronchoscopy is a medical procedure where physicians examine the inside of
the airways with a flexible or rigid endoscope. It allows the clinician to directly
visualize the lungs and identify abnormalities such as inflammation, obstructions,
or tumoral lesions, and perform biopsies [5, 15]. In the context of lung cancer
diagnosis, bronchoscopy is performed after suspicious nodules have been detected
on a chest CT scan, in order to confirm or rule out their pathological nature.

The majority of lung cancers develop in the peripheral regions of the lungs,
which are difficult to access with a conventional endoscope. Navigating to these
areas requires crossing numerous increasingly narrow bifurcations of the bronchial
tree. This anatomical complexity, combined with the physical size of the instru-
ments, makes the procedure prone to navigation errors, which can result in
blind biopsies with limited success rates [5]. Although ultra-thin bronchoscopy
improves access to small bronchi, its use remains technically complex and not
widely standardized.

Despite the usefulness of navigational bronchoscopies in diagnosing lung can-
cer, their interpretation remains a complex task that is highly dependent on the
clinician’s expertise. This limits the effectiveness of the procedure.

In this context, deep learning has emerged as a promising tool for computer-
aided detection systems. Its performance, however, relies on the availability of
large annotated datasets, which is a challenge in endoscopic image analysis,
where data collection and annotation remain costly and limited. Moreover, the
low inter-patient variability and visual redundancy of video sequences further
exacerbate this issue, reducing the generalization capacity of models [18, 23].

To overcome these limitations, one option is to use synthetic image gener-
ation in order to increase the size and diversity of training datasets. To do so,
there exist many deep learning models, such as Generative Adversarial Networks
(GANs), Variational Autoencoders (VAEs), or diffusion-based approaches [6, 13,
9]. They typically require important computational resources and large volumes
of training data. The SinGAN-Seg [22] architecture does not exhibit those con-
straints and has the ability to generate diverse images from single examples.

The objective of this work is to assess the contribution of synthetic bron-
choscopic data generated by SinGAN-Seg in a supervised classification setting.
We investigate the effect of different proportions of artificial images on the per-
formance of several convolutional network architectures, in order to determine
whether this strategy can help improve the robustness and sensitivity of models
in the context of early detection of lung tumors.

Our contributions are as follows:

– Introduction of a new medical use case for the SinGAN-Seg architecture.
– A study of the evolution of carefully selected performance metrics with in-

creasing proportion of synthetic elements in a dataset.

2 Related Works

A first study by Amante et al. [2] used a ResNet-50 [14] trained on frames ex-
tracted from 41 patients and tested on frames from 20 patients based on a total
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of over 60, 000 images. In their approach, they first made per-frame predictions
(cancer probability) with a ResNet-50, then applied post-processing techniques
(ARIMA) to smooth the probabilities. Finally, they choose window sizes (be-
tween 30 to 60 frames) to make a unique prediction of the tumoral aspect per
patient. If there was one window size where all the smoothed probabilities were
over 50%, then the patient was marked as having cancer. Their model achieved
65.6% accuracy and 61.5% F1-score on the task of predicting lung cancer per
patient, performing better than junior physicians but still below expert-level
accuracy. These architectures were chosen as representative convolutional back-
bones of increasing depth and complexity, allowing a fair comparison of model
capacity versus dataset scale (see section 4.1 for metric definitions).

To mitigate the lack of annotated data, generative models are widely investi-
gated for data augmentation in medical imaging tasks [4]. VAEs and their vari-
ants have been used for representation learning and synthesis under constrained
data regimes, despite sometimes yielding over-smooth samples [11, 16]. GANs
have been used for realistic texture synthesis and domain transfer; in endoscopy,
reported applications include capsule endoscopy augmentation (WCE-DCGAN)
and navigation or feature enhancement (EndoL2H), as well as texture-focused
adversarial schemes [24, 1, 7]. More recently, diffusion-based generative models
have demonstrated high fidelity and controllability in image generation, albeit
at higher computational costs [9]. Several studies caution that synthetic data
must be validated carefully: while it can improve sensitivity and address class
imbalance, excessive reliance on artificial samples may degrade precision and
clinical fidelity [10, 12].

Beyond augmentation, recent research has also explored synthetic data for
pre-training models before fine-tuning on limited real datasets. For instance, the
Task2Sim framework [17] investigated the transferability of models pre-trained
on fully synthetic data generated via controllable simulators, demonstrating that
such pre-training could yield competitive downstream performance compared to
ImageNet-based initialization. These approaches highlight that synthetic pre-
training could serve as a viable alternative when real large-scale datasets are
unavailable.

SinGAN-Seg is an extension of the SinGAN model, initially proposed by
Shaham et al. for generating realistic images from a single example [19]. While
SinGAN relies on a hierarchical architecture of Generative Adversarial Networks
trained at multiple resolution scales, SinGAN-Seg adapts this principle to the
medical domain by simultaneously incorporating the original image and its seg-
mentation mask [22]. This approach makes it possible to generate not only di-
verse synthetic images but also their corresponding masks, which is an important
advantage for supervised tasks such as classification or segmentation.

The training process follows a multi-scale strategy: at each level, the gen-
erator learns to reproduce the structure and local textures of the input image,
while the discriminator evaluates fidelity against real samples. Adding the mask
as an additional channel allows the model to preserve the anatomical consistency
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between the image and the annotated regions, unlike the original SinGAN which
only accounted for visual appearance.

The main strength of SinGAN-Seg lies in its ability to operate with a lim-
ited number of data samples. Whereas other generative models (GANs, VAEs,
Diffusion Models) require thousands of annotated examples, SinGAN-Seg can
be trained on a single image–mask pair to produce a large number of synthetic
variations. This property makes it well suited for medical contexts, where data
collection and annotation are particularly costly and restricted.

There remains a gap in understanding how far single-image generative aug-
mentation can push classification robustness in bronchoscopy, and how much
synthetic proportion is beneficial before precision degrades. This paper addresses
this gap by systematically varying the synthetic ratio across three classifier fam-
ilies and quantifying the trade-offs on an independent validation set.

3 Methodology

3.1 Dataset

The dataset used in this study originates from anonymized bronchoscopic video
recordings of 64 patients, yielding 62,072 frames (30 fps, 400× 400 pixels). Each
frame was annotated by an expert pulmonologist to indicate the presence or
absence of a tumor, following the descriptors of tumoral and benign endoscopic
patterns defined in previous work.

Patients were divided into a training set (41 patients, including 25 cancer
cases) and a validation set (20 patients, including 14 cancer cases). Overall,
37 out of 64 patients (≈ 61%) had a final diagnosis of lung cancer, while 24
(≈ 39%) presented benign lesions such as inflammatory nodules, aspergillomas,
hamartomas, or cryptogenic organizing pneumonia. This distribution reflects a
realistic clinical imbalance, with non-tumoral cases being more frequent at the
frame level.

In the validation set, approximately 75% of frames corresponded to non-
cancerous regions and 25% to tumoral ones, mirroring the real-world prevalence
of visible malignant tissue during bronchoscopy. To mitigate this imbalance, both
a class-weighted loss and oversampling were applied during training. Oversam-
pling ensured that each mini-batch contained an equal proportion of positive
(tumoral) and negative (non-tumoral) samples. Evaluation metrics (defined in
Section 4.1) were prioritized to prevent bias toward the majority (non-tumoral)
class. The validation set contained both malignant and benign lesions with het-
erogeneous endoscopic appearances, ensuring that generalization capacity was
properly assessed.

3.2 Synthetic Data Generation

A total of 257,000 synthetic images were generated, representing a thousand-
fold increase compared to the 257 manually selected originals, cold references
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images here after. These reference images were chosen from the 64 available pa-
tients based on visual quality, sharpness, and the presence of relevant bronchial
structures. Each was used to train an independent SinGAN-Seg model under con-
trolled hyperparameters (five scales, scale factor 0.75, noise amplitude 0.1, 2000
iterations per scale, learning rate 5× 10−4), with an average training time of 50
minutes per image on an NVIDIA A100 GPU (40 GB RAM). To select the most
relevant synthetic images, the following process was used. All generated sam-
ples were post-processed and filtered using quantitative similarity metrics (full
definition given in appendix) —Structural Similarity Index Measure (SSIM),
Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error (MSE)—as well
as distance-based thresholds (cosine similarity 0.80–0.95, Euclidean distance
49k–70k). Each synthetic image was compared to its corresponding reference
frame to discard both almost equivalent (SSIM > 0.95) and unrealistic outliers
(SSIM < 0.80 or PSNR < 25). This filtering step automatically removed visually
redundant or implausible samples, while retaining diverse yet clinically coherent
variations. The selected synthetic images were integrated exclusively into the
training set, with consistent labels, while the validation set remained untouched
to prevent data leakage.

These enhanced datasets, combining real and filtered synthetic images in
varying proportions (0%, 5%, 33%, 50%, 66%, and 100%), were subsequently
used to train convolutional neural networks for binary lesion classification.

3.3 Generated Images

Figure 1 illustrated examples of synthetic bronchoscopic frames generated by
SinGAN-Seg. For each case, the original image was compared with its synthetic
variants, and the effect of style transfer post-processing was highlighted. Differ-
ences introduced by the generator were visualized in red in the last column.

Qualitatively, the model preserved the global bronchial anatomy (bifurca-
tions, carina, mucosal texture) while introducing controlled variability in illumi-
nation, local texture, and edge definition. This variability mimicked the natural
heterogeneity observed in clinical video sequences and helped to reduce redun-
dancy within the training set. The style transfer step further enhanced realism,
aligning synthetic samples more closely with the appearance of real broncho-
scopic videos.

Such synthetic diversity did not create new pathological patterns from scratch,
but perturbed the visual domain in a clinically coherent way. This made the gen-
erated images particularly suitable for data augmentation, as they expanded the
variability available to the classifier without drifting outside the medical distri-
bution.
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Fig. 1. Examples of synthetic bronchoscopic images generated by SinGAN-Seg. Each
row shows the original frame, its synthetic counterparts, and the style transfer output.
Differences introduced by the generator are visualized in red in the last column.

3.4 Architectures and Parameters

Three convolutional network architectures were selected for binary classification:

– ResNet-18 and ResNet-50, introduced by He et al. [8], represented shallow
and deep residual networks respectively.

– EfficientNet-B7, proposed by Tan and Le [21], leveraged compound scaling
for optimal accuracy–efficiency trade-offs.

Table 1. Comparison of CNN architectures used in this study.

Model Layers Params Key Features Advantages
ResNet-18 18 11.7M Simple residual blocks Lightweight, fast train-

ing
ResNet-50 50 25.6M Bottleneck residual

blocks
Deeper, higher expres-
siveness

EfficientNet-B71 ∼66 66.3M Compound scaling, MB-
Conv blocks

High accuracy, efficient
design

Those models were chosen because they had demonstrated good perfor-
mances in medical imaging and analysis (see Section 2). It was expected that
they would be almost equivalent in terms of performance despite their different

1 Approximate layer count; EfficientNet-B7 uses composite MBConv blocks with mul-
tiple internal operations.
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structural approaches. Mathematical definitions can be found in the following
references [8, 21].

Each network was trained both on the original dataset and on the augmented
datasets enriched with synthetic data. Training hyperparameters were adjusted
consistently to ensure fair comparison across configurations: learning rate 5 ×
10−5, batch size 32, binary cross-entropy loss, and 15 epochs. The number of
iterations and batches was kept identical across experiments to maintain training
parity. Model selection was based on the highest validation AUC-ROC score
(defined in Section 4.1).

Initially, the loss was a binary cross-entropy weighted by class imbalance.
Moreover, oversampling of the minority class (cancer) was applied to the training
set, such that 50% of the data seen by the models came from the positive class
and 50% from the negative class. Therefore, the binary cross-entropy loss did
not play a significant role in the training process. For the validation process, no
binary cross-entropy function was used.

4 Experiments and Results

4.1 Performance Evaluation

Model performance was assessed on an independent validation set, completely
separated from the data used for training and generation. Several standard met-
rics were employed to capture complementary aspects of classification perfor-
mance:

– Accuracy, measuring the overall proportion of correct predictions;
– AUC-ROC, evaluating the discrimination capability between classes;
– F1-score, balancing precision and recall;
– Precision and Recall, examining false positives and false negatives sepa-

rately.

For binary classification, let TP, TN, FP, and FN denote the number of true
positives, true negatives, false positives, and false negatives, respectively. The
metrics are defined as follows:

Accuracy =
TP+ TN

TP+ TN+ FP + FN
,

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

F1-score = 2× Precision × Recall
Precision + Recall

.

The AUC-ROC (Area Under the Receiver Operating Characteristic curve)
quantifies the trade-off between true positive rate (TPR) and false positive rate
(FPR) across different thresholds, providing a threshold-independent measure of
discriminative performance.



8 Pietro Picchione et al.

Each model was trained for 15 epochs with a batch size of 32 and a learning
rate of 5×10−5. The best checkpoint was selected based on the highest validation
AUC-ROC, ensuring a consistent criterion across all configurations. No test-time
augmentation or external pretraining was applied.

4.2 Data Integration Strategy

To evaluate the contribution of the generated images, three dataset configura-
tions were considered: using exclusively real data (0% synthetic), a mixed dataset
with 33% synthetic samples, and a fully synthetic configuration (100% synthetic).
For each ratio, the required number of generated samples was randomly drawn
from the pool of filtered images, ensuring unbiased integration while keeping
the validation set identical across all experiments. This setup allowed for a fair
comparison of model robustness and sensitivity under controlled synthetic data
proportions.

4.3 Results

Table 2 reports the mean Accuracy, AUC-ROC, F1-score, Precision, and Recall
for each architecture on the validation set. The values correspond to the best-
performing checkpoint for each configuration. 100% means full synthetic dataset
(257000) plus the original dataset (57290).

Table 2. Model performance according to the proportion of synthetic data (validation
set).

Model Synthetic Accuracy AUC-ROC F1-score Precision Recall
ResNet-18 0% 0.6908 0.7050 0.4785 0.4051 0.5844

33% 0.7044 0.6989 0.4714 0.4189 0.5389
100% 0.6531 0.6573 0.4242 0.5263 0.3552

ResNet-50 0% 0.7113 0.7550 0.5262 0.4374 0.6605
33% 0.6913 0.7448 0.5126 0.4174 0.6640
100% 0.6363 0.7150 0.4700 0.3636 0.6644

EfficientNet-B7 0% 0.6400 0.6877 0.4613 0.3623 0.6350
50% 0.6836 0.7343 0.4968 0.4074 0.6364
100% 0.6632 0.6923 0.4512 0.3732 0.5704

ResNet-18. An improvement in overall accuracy was observed when adding up to
33% synthetic data, though AUC-ROC and recall slightly decreased. This can be
explained by the fact that the training set was balanced while the validation set
was unbalanced (75% negative and 25% positive). For the same reason precision
did follow the same behaviour as accuracy (slight increase) At 100% synthetic
data, performance dropped across all metrics.
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ResNet-50. This deeper model achieved the best overall performance on real data
alone. Adding synthetic data did not yield measurable gains and instead slightly
reduced accuracy and AUC-ROC, while recall remained stable. This indicates
that the base dataset already provided sufficient diversity for this architecture.

EfficientNet-B7. For this more complex model, moderate synthetic augmenta-
tion (50%) improved accuracy and AUC-ROC compared to the baseline, before
decreasing at 100%. This suggests that higher-capacity models may benefit from
larger synthetic contributions, though excessive artificial data still impairs gen-
eralization.

The evaluation metrics confirm that the most significant improvement con-
cerns sensitivity (accuracy), i.e., the ability to correctly identify positive cases.
This suggests that the inclusion of synthetic data generated by SinGAN-Seg
helps to better capture intra-patient variability while reducing the risk of under-
detection of lesions. However, this is not true for all the models suggesting that
the inclusion of synthetic data should be model dependent.
Conversely, all the metrics tends to deteriorate when the proportion of artifi-
cial data becomes too high, reflecting an increase in false positives. Moreover,
the positive effect is mainly observed for moderate proportions, while an over-
representation of synthetic data compromises the balance between sensitivity
and precision.

5 Discussion

The integration of images generated by SinGAN-Seg showed a differentiated
effect depending on both the proportion of synthetic data and the classifica-
tion architecture considered. In general, a moderate addition of synthetic data
(around one-third of the total corpus) led to small but measurable improve-
ments in robustness, particularly for lighter architectures such as ResNet-18.
For deeper or more complex models such as EfficientNet-B7, the benefits were
consistent with overall good performances. On the other hand, adding synthetic
data with ResNet-50 did not show any performance improvement, regardless of
the metric considered.

Although the original SinGAN-Seg architecture is designed to jointly gen-
erate images and segmentation masks, in this work it was used in RGB-only
mode to ensure compatibility with the original dataset, which did not include
mask annotations. This configuration maintained training stability while lever-
aging the model’s ability to capture structural and textural variability from
single bronchoscopic examples. Consequently, the generated images preserved
the overall bronchial geometry and lighting patterns without explicit anatomi-
cal constraints, resulting in visually coherent yet mask-free samples suitable for
classification tasks.

These findings confirm that generation-based augmentation can partially
compensate for the limited diversity of real datasets [22], but its effect remains
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bounded. While synthetic data occasionally improved sensitivity, precision often
decreased when the synthetic proportion was too high, revealing a trade-off be-
tween false-positive control and lesion detectability. This aligns with prior studies
showing that excessive artificial content can reduce clinical fidelity [10, 12].

Overall, generation-based augmentation remains a promising yet delicate
strategy for improving deep learning models in data-scarce medical contexts.
Future work could explore adaptive sampling strategies—such as dynamically
varying synthetic subsets per epoch—to better exploit intra-model diversity and
mitigate overfitting to generated features. More recent generative paradigms,
including diffusion-based models [9], could also offer finer control over image
realism and variability, supporting more clinically reliable augmentation in sub-
sequent research.

6 Limitations

While SinGAN-Seg has the advantage of operating from a single example [19],
it still faces certain limitations. The generated images, although diverse, may
introduce noise or visual artifacts that could bias the training process. More-
over, the approach does not guarantee that all clinically relevant features are
faithfully reproduced. More thorough validation by medical experts therefore
remains essential [22].

7 Conclusion

This work examined the contribution of synthetic bronchoscopic data generated
by SinGAN-Seg [22] in a supervised classification setting. By systematically vary-
ing the proportion of generated images across three architectures of increasing
complexity (ResNet-18, ResNet-50, EfficientNet-B7), we assessed their impact
on multiple validation metrics.

Our results show that a moderate integration of synthetic data can strengthen
robustness and sensitivity. For example, Accuracy increased from 0.69 to 0.70
with ResNet-18 at 33% synthetic augmentation, while EfficientNet-B7 reached
its peak with 50% synthetic data (Accuracy 0.68, AUC-ROC 0.73). Beyond these
thresholds, however, an excess of artificial samples systematically reduced sensi-
tivity and F1-score, underlining the risk of over-representation. Taken together,
these findings suggest that SinGAN-Seg helps mitigate intra-patient redundancy
and enrich training variability, but remains a complement rather than a substi-
tute for real annotated data.

In conclusion, this study highlights SinGAN-Seg as a practical one-shot
generative approach for medical endoscopy, especially in contexts where data
scarcity constrains the deployment of deep learning models. Looking forward,
promising directions include extending the evaluation to larger multi-centric
datasets, involving clinicians in the validation of synthetic frames, and testing
more recent generative paradigms such as diffusion-based models [9], which may
provide finer control over variability and realism.
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A Quantitative Evaluation Metrics

For completeness, this appendix summarizes the quantitative metrics used to
assess the similarity between generated and real bronchoscopic images.

Mean Squared Error (MSE). The MSE measures the average squared difference
between corresponding pixel intensities of two images:

MSE =
1

N

N∑
i=1

(xi − yi)
2,

where xi and yi denote pixel values of the generated and reference images, re-
spectively, and N is the total number of pixels. Lower MSE indicates higher
similarity.

Peak Signal-to-Noise Ratio (PSNR). Derived from MSE, PSNR expresses the
ratio between the maximum possible pixel value (MAXI) and the noise power:

PSNR = 10 · log10
(
MAX2

I

MSE

)
.

Higher PSNR values correspond to better image fidelity.

Structural Similarity Index (SSIM). The Structural Similarity Index (SSIM)
measures perceptual similarity between two images by comparing their lumi-
nance, contrast, and structural information. It is defined as:

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)

(µ2
x + µ2

y + C1) (σ2
x + σ2

y + C2)
,

where µx and µy are the local means, σ2
x and σ2

y are the local variances, and
σxy is the covariance between x and y. Constants C1 and C2 are included to
stabilize the division when the denominators are small. SSIM values range from
0 (no similarity) to 1 (perfect similarity), and the metric correlates more closely
with human visual perception than pixel-based measures such as MSE or PSNR.
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