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Abstract

In semantic segmentation, the accuracy of models heavily depends on the high-quality anno-
tations. However, in many practical scenarios, such as medical imaging and remote sensing,
obtaining true annotations is not straightforward and usually requires significant human
labor. Relying on human labor often introduces annotation errors, including mislabeling,
omissions, and inconsistency between annotators. In the case of remote sensing, differences
in procurement time can lead to misaligned ground-truth annotations. These label errors
are not independently distributed, and instead usually appear in spatially connected regions
where adjacent pixels are more likely to share the same errors. To address these issues, we
propose an approximate Bayesian estimation based on a probabilistic model that assumes
training data include label errors, incorporating the tendency for these errors to occur with
spatial correlations between adjacent pixels. However, Bayesian inference for such spa-
tially correlated discrete variables is notoriously intractable. To overcome this fundamental
challenge, we introduce a novel class of probabilistic models, which we term the ELBO-
Computable Correlated Discrete Distribution (ECCD). By representing the discrete
dependencies through a continuous latent Gaussian field with a Kac-Murdock-Szegö (KMS)
structured covariance, our framework enables scalable and efficient variational inference for
problems previously considered computationally prohibitive. Through experiments on mul-
tiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors
significantly improves performance. Notably, in specific tasks such as lung segmentation,
the proposed method achieves performance comparable to training with clean labels under
moderate noise levels. Code is included in the supplementary materials.

1 Introduction

Semantic segmentation, which involves classifying each pixel in an image into one of several classes, is a crucial
task in computer vision. In supervised learning, the accuracy of segmentation models critically depends on
the quality of the annotations in the training data. However, obtaining truly accurate pixel-level annotations
is challenging in many practical applications. Even when expert annotators are employed, errors, omissions,
and subjectivity in interpretation are inevitable, leading to inconsistencies in the datasets. In particular,
high inter- and intra-annotator variability is widely reported in medical imaging, where experts may have
differing interpretations of the same structures. For instance, several studies Zhang et al. (2020a); Lampert
et al. (2016); Rädsch et al. (2023); Yang et al. (2023) highlight significant discrepancies among expert
annotators; some delineate structures more generously, while others prefer more conservative annotations.
Observer-dependent annotations exacerbate label noise in supervised learning. Label noise is also a critical
issue in remote sensing, where determining ground truth labels often requires field surveys over large and
sometimes inaccessible regions Frénay & Verleysen (2013); Pelletier et al. (2017); Foody (2002). Due to
the logistical and economic challenges of large-scale ground truth collection, researchers frequently rely on
automatic labeling systems, which may introduce systematic errors. Additionally, high-quality annotated
datasets remain a critical bottleneck for supervised learning, particularly in remote sensing applications where
annotations are often repurposed across different types of satellite images. For example, the OpenEarthMap
dataset Xia et al. (2023) was created by manually annotating high-resolution optical satellite images for
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semantic segmentation. However, these annotations are sometimes reused for synthetic aperture radar (SAR)
imagery, despite differences in resolution and capture conditions Huang et al. (2021); Zhang et al. (2021);
Liu et al. (2023). Additionally, changes in artificial structures or variations in land cover further contribute
to label inconsistencies Fritz et al. (2009); Huang et al. (2021).

Various approaches have been proposed to mitigate the adverse effects of noisy labels. Some methods at-
tempt to stop training early to prevent the network from overfitting to noise and generating unreliable
pseudo-labels Liu et al. (2024; 2022), while others modify the loss function to be more robust against large
errors Gonzalez-Jimenez et al. (2025). Although these techniques can reduce the influence of noisy annota-
tions, they do not fundamentally address the core reason why the standard supervised learning framework
fails in the presence of noisy labels.

We propose a method that directly tackles the root cause of this issue. To understand this root cause, we first
revisit the probabilistic assumptions underlying the standard cross-entropy loss. In supervised learning for
segmentation models, training typically reduces to optimizing this loss function. This optimization implicitly
follows a maximum likelihood estimation (MLE) framework under the assumption that the training data
consists of independent and identically distributed samples drawn from the joint distribution of images and
clean labels. However, when labels are noisy, the assumption of identically distributed assumption no longer
holds, as the observed labels systematically deviate from clean labels, leading to performance degradation
in the trained model.

To address this issue, we maintain the MLE framework but generalize the underlying probabilistic model
to make it more suitable for real-world scenarios with noisy labels. Specifically, we introduce a model
that explicitly accounts for the presence of noisy labels, which differ from the clean labels due to labeling
errors. In practice, annotation errors tend to exhibit strong spatial correlations - mislabeling often occurs
in contiguous regions. Variations in annotation criteria among experts, as well as changes in the underlying
scene — such as the construction or demolition of buildings or alterations in vegetation — further reinforce
this spatial dependency. Given this, we assume that label errors are not independent but instead exhibit
spatial correlations among pixels.

However, directly modeling spatial correlations among discrete labels leads to an intractable marginal like-
lihood, a long-standing challenge in probabilistic modeling Koller & Friedman (2009); Sutton & McCallum
(2012). Our core contribution is to resolve this challenge by proposing a novel class of tractable models, the
ELBO-Computable Correlated Discrete Distribution (ECCD). This discrete distribution is repre-
sented through continuous variables that follow a Gaussian distribution, where spatial correlations between
pixels are expressed via a covariance matrix. Representing discrete variables through a Gaussian distri-
bution successfully circumvents the intractability of summing over all possible realizations of the discrete
variables. While the covariance matrix, whose number of elements scales quadratically with the number of
pixels, introduces additional computational challenges in evaluating the ELBO, particularly in computing
second-order statistics, its inverse, and its determinant. To overcome these computational intractabilities,
we leverage the Kac-Murdock-Szegö (KMS) matrix Fikioris (2018); Kac et al. (1953), which enables efficient
computations necessary for ELBO evaluation. To validate the effectiveness of our approach, we conduct
extensive empirical evaluations on multiple segmentation tasks. Our experimental results demonstrate that
our method significantly improves robustness against label noise, particularly in scenarios with moderate to
high levels of spatially correlated label noise. In summary, our contributions are as follows:

1. A Novel Class of Tractable Distributions for Correlated Discrete Variables:
We introduce the ECCD, a new class of probabilistic models for tractable inference on high-
dimensional discrete variables with stationary, exponentially decaying correlations—a structure com-
mon to spatial grids and temporal sequences. In this work, we apply the ECCD to learn from spatially
correlated label noise in medical and remote sensing, where the model circumvents computational
intractability by representing discrete dependencies via a continuous latent Gaussian field.

2. Efficient ELBO optimization via the KMS matrix:
The ECCD’s covariance matrix introduces computational challenges that scale quadratically with
the number of pixels. We overcome this by leveraging the Kac-Murdock-Szegö (KMS) matrix. To the
best of our knowledge, this is the first work to introduce the KMS matrix as a scalable computational
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tool for variational inference with correlated latent variables, enabling efficient computation of the
key operations necessary for optimizing the ELBO of the ECCD.

3. Extensive empirical validation:
We perform comprehensive experiments on multiple segmentation tasks, demonstrating that our
method significantly improves robustness to label noise. Our approach outperforms existing tech-
niques, particularly in scenarios with moderate to high levels of spatially correlated label noise,
validating the effectiveness of our probabilistic formulation.

2 Related Work

Learning with noisy labels has been a significant focus in the field of machine learning, particularly clas-
sification tasks Patrini et al. (2017); Yao et al. (2020); Han et al. (2018); Wei et al. (2020). One research
direction models the relationship between the clean label y∗ and the noisy label y through a transition ma-
trix Patrini et al. (2017); Yao et al. (2020) that characterizes the probabilities from the clean label to the
noisy label. For example, the transition probability from a clean label of k to a noisy label of j is repre-
sented as p(y = j|y∗ = k). Additionally, methods have been proposed to estimate an instance-dependent
transition matrix Xia et al. (2020); Berthon et al. (2021), where the transition probabilities depend on the
instance x also, denoted as p(y = j|y∗ = k, x). These classification methods can be adapted for semantic
segmentation tasks; however, they treat label errors as being independent to each pixel, thereby ignoring
the spatial correlations in label errors that may be present in annotations. This limitation is particularly
critical in applications such as medical imaging Zhang et al. (2020a); Shi & Wu (2021); Zhang et al. (2020b)
and remote sensing Mnih & Hinton (2012); Song et al. (2022); Liu et al. (2024); Henry et al. (2021), where
different types of noise may occur.

Other lines of research includes work by Zhang et al. Zhang et al. (2020c), which proposed a Tri-Network
framework that trains three networks simultaneously, with each pair selecting reliable pixels based on their
loss maps, thereby achieving robust learning even with coarse annotations. Liu et al. Liu et al. (2022)
introduced a mechanism to detect the moment when a network begins to overfit noisy labels. Gonzalez et
al. Gonzalez-Jimenez et al. (2025) designed T-Loss based on a Student-t distribution to apply a logarithmic
penalty on large errors, reducing undue influence from outlier pixels. Nonetheless, these methods do not
take into account the spatial correlations in label errors that may occur within annotations.

Unlike the aforementioned related works, there are few studies that consider spatial correlations. Li et al. Li
et al. (2021) leveraged superpixel segmentation to group pixels and smooth the network outputs within each
superpixel, thereby indirectly incorporating spatial context. This method, however, relies heavily on the
quality of the generated superpixels. More recently, Yao et al. Yao et al. (2023) proposed an approach that
explicitly models spatial correlations by applying a Markov process that consists of expansion and shrinkage
steps of the annotation masks. Although this method achieves better performance, it is mainly limited to
addressing noise along the boundaries. In real-world scenarios, segmentation labels are often corrupted by
a diverse range of noise types, including omission noise, misalignment noise, boundary uncertainties, and
other systematic labeling errors Jiménez & Decaestecker (2024); Vădineanu et al. (2022); Liu et al. (2024);
Mnih & Hinton (2012); Jiang et al. (2021).

Our proposed probabilistic model can incorporate spatial correlations in label errors without making as-
sumptions about the noise types, thereby handling a wide range of noise types.

M

3 Problem Formulation

3.1 Probabilistic Foundations of Standard Supervised Segmentation

In standard supervised learning for semantic segmentation, the training process is typically framed as the
minimization of the cross-entropy loss. This objective function is not arbitrary; it is derived from the principle
of Maximum Likelihood Estimation (MLE) under a specific, and often implicit, probabilistic model. This
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Figure 1: (a) Graphical model of our proposed method, the ECCD. The model introduces a latent
Gaussian variable η that encodes spatial correlations of label error among adjacent pixels, thereby enabling
a more realistic modeling of the dependency between pixels.
(b) Conceptual illustration of spatial correlation. Examples 1 and 2 show how varying ρ affects the
correlation strength between the center pixel and its neighbors (top, bottom, sides, and diagonals). When
adjacent pixels are likely to contain label errors and spatial correlation is strong (ρ is high) label errors can
be inferred with high confidence, even if they are rare.

underlying probabilistic model makes two fundamental assumptions: (1) the provided annotations y are the
true, noise-free clean labels y∗, and (2) the label of each pixel yi is conditionally independent of the labels
of other pixels given the input image x.

Under these assumptions, the goal is to find the model parameters θ that maximizes the log-likelihood of
the observed data:

log pθ(y|x) = log
HW∏
i=1

pθ(yi|x) =
HW∑
i=1

log pθ(yi|x), (1)

where HW is the total number of pixels. The segmentation model pθ(yi|x) outputs a probability distribution
over the set of possible classes Y for each pixel i. Let this distribution be represented by a vector of
probabilities {pθ(yik|x)}|Y|

k=1. If we represent the ground-truth label yi as a one-hot vector, where yik = 1
if pixel i belongs to class k and yik = 0 otherwise, the log-likelihood for a single pixel can be written as∑|Y|

k=1 yik log pθ(yik|x). The total log-likelihood for the image is therefore:

LMLE(θ) =
HW∑
i=1

|Y|∑
k=1

yik log pθ(yik|x). (2)

Minimizing the negative of this quantity, −LMLE(θ), is precisely equivalent to minimizing the standard multi-
class cross-entropy loss. This derivation highlights that the validity of the cross-entropy loss is contingent
on the assumption that the training labels are clean and pixel-wise independent samples from the true data
distribution.
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3.2 A General Probabilistic Model for Learning with Noisy Labels

In many practical scenarios, particularly in medical imaging and remote sensing, the assumption that ob-
served labels y are identical to the true clean labels y∗ does not hold. Annotations are often corrupted by
noise, which can be spatially correlated. To address this, we generalize the probabilistic model by explicitly
distinguishing between the observed labels y and the unobserved (latent) clean labels y∗. This leads to the
objective of maximizing the marginal log-likelihood, which integrates out the uncertainty over the unknown
clean labels y∗:

log pθ(y|x) = log
(∑

y∗

pθ(y, y∗|x)
)

= log
(∑

y∗

p(y|y∗)pθ(y∗|x)
)

. (3)

Here, pθ(y∗|x) is the probability of the clean labels y∗ given the image x, which is modeled by the segmen-
tation network, and p(y|y∗) represents the label noise process.

This formulation is a direct generalization of the standard MLE objective described in Section 3.1. To see this,
consider the noise-free case where the noise model p(y|y∗) collapses to a Kronecker delta function δ(y∗, y),
which equals 1 if and only if y∗ = y, and is zero otherwise. In this scenario, the summation in Eq. (3) contains
only one non-zero term, and the objective reduces precisely to maximizing log pθ(y|x), which is the basis for
the standard cross-entropy loss as shown in Eq. (1). However, the summation over all possible configurations
of y∗ is computationally intractable, as the number of terms (|Y|HW ) grows exponentially with the number
of pixels. One way to overcome this is to assume a pixel-independent noise process, p(y|y∗) =

∏
i p(yi|y∗

i ),
but this fails to capture real-world spatially correlated label noise, as mentioned in Section 1.

4 The Proposed ECCD Framework

4.1 A Tractable Variational Objective via the ECCD

To overcome the intractability of the marginal likelihood while modeling spatial correlations, we resort to
variational inference and maximize its Evidence Lower Bound (ELBO). We introduce a continuous latent
variable, η ∈ RHW , which represents the logit of the label error probability for each pixel. This variable
captures spatial correlations and indirectly imposes spatial dependencies on the labels as follows:

p(y|y∗) =
∫

p(y|y∗, η)p(η)dη =
∫ {∏

i

p(yi|y∗
i , ηi)

}
p(η)dη. (4)

Figure 1a depicts the graphical model illustrating this assumption. To fully specify this generative model,
which is the central component of the ECCD, we define its constituent distributions. The prior p(η) is
modeled as a Gaussian, p(η) = N (η|µ, Σ), with its covariance matrix structured using a Kac-Murdock-
Szegö (KMS) matrix Fikioris (2018); Kac et al. (1953), which we detail in Section 4.2. The conditional noise
model p(yi|y∗

i , ηi) is defined as:

p(yik = 1|y∗
ic = 1, ηi) = δkc(1− r(ηi)) + (1− δkc)r(ηi)Wkc, (5)

where δkc is the Kronecker delta, r(·) is the sigmoid function that maps the latent variable ηi to a label
error probability, and W is a learnable class transition matrix that specifies the probability distribution
over incorrect labels when an error occurs, with its elements satisfying W ∈ [0, 1]|Y|×|Y|, Wcc = 0 and∑|Y|

k=1 Wkc = 1, for each true class c ∈ Y.

To derive a tractable objective for this model, we introduce a variational distribution q(y∗, η|y) to approx-
imate the true posterior. We assume a factorized form symmetric to the generative model: q(y∗, η|y) =
q(η)

∏
i q(y∗

i |yi, ηi). The variational posterior for η is also a Gaussian, q(η) = N (η|m, Γ), and the conditional
posterior for the clean labels is parameterized as:

q(y∗
ik = 1|yic = 1, ηi) = δkc(1− r(ηi)) + (1− δkc)r(ηi)Vkc, (6)

where V ∈ [0, 1]|Y|×|Y| is another learnable class transition matrix modeling the inverse noise process (i.e.,
inferring the clean label from the noisy one), with analogous constraints (Vcc = 0 and

∑|Y|
k=1 Vkc = 1 for each

5



Under review as submission to TMLR

noisy class c ∈ Y). With the generative model and variational posterior fully defined, we can derive the
Evidence Lower Bound (ELBO) as follows (see Appendix A.2 for details):

log p(y|x, θ) ≥ Eq(y∗,η|y) [log p(y|y∗, η, x, θ)]−KL [q(y∗, η|y) ∥ p(η, y∗|x, θ)]

=
∑

i

Eq(ηi)q(y∗
i

|yi,ηi) [log pθ(y∗
i |x)]− Eq(η) [log q(η)] + Eq(η) [log p(η)]

−
∑

i

Eq(ηi)q(y∗
i

|yi,ηi) [log q(y∗
i |yi, ηi)] +

∑
i

Eq(ηi)q(y∗
i

|yi,ηi) [log p(yi|y∗
i , ηi)] . (7)

A key advantage of this formulation is that the expectations over the discrete latent labels y∗ in Eq.(7)
are now decomposed into a sum over individual pixels. This avoids the intractable summation over all
possible label map configurations that hindered the direct optimization of the marginal likelihood in Eq.(3),
rendering the objective tractable. The overall goal is to optimize the model parameters θ and the variational
parameters of q(η) and q(y∗

i |yi, ηi) to maximize this lower bound. The ELBO in Eq.(7) has an important
interpretation as a principled generalization of the standard cross-entropy loss. To see this, we can analyze
its components.

The first term in this ELBO (7) can be interpreted as an expected reconstruction term. By expanding the
expectation over the discrete clean label y∗

i , it becomes a cross-entropy loss with soft labels:

∑
i

Eq(y∗
i

|yi,ηi)q(ηi) [log pθ(y∗
i |x)] =

HW∑
i=1

|Y|∑
k=1

q(y∗
ik = 1|yi) log pθ(y∗

ik = 1|x), (8)

where q(y∗
ik = 1|yi) = Eq(ηi)[q(y∗

ik = 1|yi, ηi)] is the marginal posterior probability that the clean label
for pixel i is class k. This replaces the hard, fixed one-hot observed labels with soft, inferred posterior
probabilities. Building on this interpretation of the first term, we can now demonstrate more formally
that our entire objective is a principled generalization of the standard cross-entropy loss. This is shown by
examining the conditions under which the remaining terms in the ELBO vanish.

The second and third terms together constitute the negative Kullback-Leibler (KL) divergence,
−KL[q(η)||p(η)]. This term vanishes when the variational posterior is identical to the prior, i.e., q(η) = p(η).
Similarly, the fourth and fifth terms represent the expected log-likelihood of the observed labels under the
noise model, regularized by the entropy of the label posterior. These terms also cancel each other out under
the assumption of a symmetric noise process, where V = W in Eqs. (6) and (5). This condition is met in
non-trivial noisy scenarios, for instance, with a uniform noise model where an error from any class is equally
likely to transition to any other incorrect class (i.e., Wkc = Vkc = 1/(|Y| − 1) for k ̸= c).

In such a setting, maximizing the ELBO is equivalent to maximizing only the first term. As we saw, if we
assume a noise-free setting, the posterior distribution q(y∗

i |yi, ηi) collapses to a point mass (i.e., a Kronecker
delta function centered at the observed label yi), making the soft labels q(y∗

ik|yi) identical to the observed
one-hot labels. Consequently, our objective function reduces precisely to the standard cross-entropy loss.
Therefore, our method provides a principled generalization of the standard supervised learning framework,
where the additional terms in the ELBO serve to regularize the posterior and enforce spatial correlation in
the inferred label errors.

While the expectations over the discrete labels y∗
i are tractable, the terms involving the continuous variable

η pose a significant computational challenge. The number of elements in η equals the number of image pixels
(HW ), which can be in the hundreds of thousands, and these elements are spatially correlated. For instance,
the negative KL divergence term, −KL[q(η)||p(η)], is analytically computable since both p(η) = N (η|µ, Σ)
and q(η) = N (η|m, Γ) are Gaussians. Its value is given by:

−KL[q(η)||p(η)] = 1
2

(
log |Γ|
|Σ| + HW − Tr

(
Σ−1Γ

)
− (m− µ)T Σ−1(m− µ)

)
. (9)

However, evaluating this term is computationally prohibitive for large images, as it requires computing the
determinants and inverses of the HW × HW covariance matrices, in addition to the trace and quadratic
form terms. These challenges are efficiently addressed by leveraging the properties of the KMS-structured
covariance, as we describe next.
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4.2 KMS-structured covariance

An n × n KMS matrix Rρ is a type of symmetric Toeplitz matrix, where each element is defined using the
parameter ρ ∈ (−1, 1). Its inverse, R−1

ρ , is a tridiagonal matrix. The explicit forms of Rρ and R−1
ρ are given

by:

Rρ :=


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

...
. . .

...
ρn−1 ρn−2 ρn−3 · · · 1

 , R−1
ρ = 1

1−ρ2



1 −ρ 0 · · · 0
−ρ 1 + ρ2 −ρ · · · 0

0 −ρ 1 + ρ2 . . .
...

...
...

. . . . . . −ρ
0 0 · · · −ρ 1

 ,

and the determinant is computed as |Rρ| = (1 − ρ2)n−1. See Appendix A.1 for mathematical deriva-
tions. While the KMS matrix is well-established in fields like signal processing for modeling AR(1) pro-
cesses Grenander & Szegö (1958); Brockwell & Davis (1991), its unique properties — a sparse inverse and
an analytic determinant — have been largely untapped as a computational tool in modern machine learn-
ing. Our work bridges this gap by demonstrating its utility as the key component for making the ECCD
framework computationally tractable.

This matrix is useful for representing correlations among one-dimensional variables, where the correlation
decays exponentially as the index distance between two variables increases regardless of their absolute posi-
tions.

Suppose a one-dimensional random variable x has a covariance structure given by

E[(xi − µi)(xj − µj)] = σiσjρ|i−j|, (10)

where µi is the mean of xi. By utilizing the KMS matrix Rρ, the covariance matrix can be expressed as

Σ = V RρV, Σ−1 = V −1R−1
ρ V −1, (11)

where V is a diagonal matrix whose (i, i)-th element is σi.

In the case of two-dimensional spatial correlations, such as those in images, we utilize the Kronecker product.
Suppose a two-dimensional random variable x has a covariance structure given by

E[(xij − µij)(xuv − µuv)] = σijσuvρ|i−u|+|j−v|, (12)

where µij is the mean of xij . Its matrix form can be expressed as

Σ = V (Rρ ⊗R′
ρ)V, Σ−1 = V −1(R−1

ρ ⊗R′−1
ρ )V −1, (13)

where we assume that the two-dimensional pixel index (i, j) is mapped to a one-dimensional index n. V is
a diagonal matrix whose (n, n)-th element corresponds to σij , and ⊗ denotes the Kronecker product.

Since V is diagonal and R−1
ρ is tridiagonal, the inverse covariance Σ−1 is a sparse matrix. The properties of

the KMS matrix provide an elegant solution to the computational challenges outlined in Section 4.1. First,
the determinant of the covariance matrix can be computed analytically, bypassing the need for expensive
numerical methods. Second, the sparse structure of the inverse matrix is crucial for the remaining terms. It
reduces the complexity of computing the quadratic form and the trace term in the KL divergence (9) from
O((HW )2) to O(HW ), which is linear in the number of pixels.

Beyond this computational speed-up, the sparse structure of the inverse also ensures that the quadratic form

(η − µ)⊤Σ−1(η − µ) (14)

involves only pairs of adjacent pixel variables. This, in turn, makes the conditional distribution p(ηi | η\i)
depend only on the neighboring pixels ηNi , where η\i denotes all variables in η except ηi, and Ni represents
the set of adjacent pixels of i.
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In other words, the KMS-structured covariance ensures that the Gaussian distribution retains a Markov
Random Field property while maintaining the tractability of both the inverse and the determinant of the
covariance matrix. The effect of the correlation parameter ρ is illustrated in Figure 1b. As shown, the
model can confidently infer label errors when adjacent pixels are also likely to contain errors and the spatial
correlation is strong (i.e., ρ is high).

4.3 Optimization

We formulate the optimization problem as follows. Let N be the number of training samples. We denote
the parameters of the prior distribution as ω, the image-specific parameters of the variational posterior as
{ν(n)}N

n=1, and the negative ELBO for the n-th sample (from Eq.(7)) as L(θ, ω, ν(n)).

Our training procedure, outlined in Algorithm 1, employs an alternating optimization scheme. For clarity,
the algorithm is presented for a single sample per step, though this can be generalized to mini-batches.
In each step for a given sample, the model parameters θ are updated K times, while the corresponding
variational posterior parameters ν(n) are updated M times. After training, the optimized model parameters
θ are used for inference on new images. Note that in Algorithm 1, the prior parameters ω are treated as
fixed,but they could also be optimized jointly with a sufficiently large training dataset.

Algorithm 1 Training loop for alternating optimization of model and posterior parameters.

1: θ, ω, {ν(ℓ)
0 }N

ℓ=1 ← Initialize parameters
2: repeat
3: n← Randomly sample an index from {1, . . . , N}
4: for k = 1, . . . , K do
5: Compute L(θ, ω, ν

(n)
0 ) and its gradient w.r.t. θ

6: θ ← Update the model parameters using the gradient
7: end for
8: for m = 0, 1, . . . , M − 1 do
9: Compute L(θ, ω, ν

(n)
m ) and its gradient w.r.t. ν

(n)
m

10: ν
(n)
m+1 ← Update the posterior parameters using the gradient

11: end for
12: ν

(n)
0 ← ν

(n)
M

13: until convergence of parameters θ

5 Experiments

5.1 Dataset

Research on segmentation with noisy labels has been especially active in both medical imaging and satellite
remote sensing. In this work, we focus on two widely used benchmark datasets that represent these do-
mains: the JSRT dataset for medical imaging and the WHU Building dataset for satellite imagery. Detailed
descriptions of each dataset are provided below.

It is common practice in noisy-label segmentation research to artificially introduce label noise for evaluation
because most publicly available datasets come with clean annotations Li et al. (2021); Song et al. (2022);
Yao et al. (2023). Following this convention, we also employ synthetic noise in our experiments, with details
of our noise generation process described in Section 5.2.1.

JSRT Dataset Shiraishi et al. (2000) is a publicly available dataset provided by the Japanese Society of
Radiological Technology (JSRT), which comprises chest radiographs annotated with segmentation labels for
the lung fields, heart, and clavicles. All images are of size 256× 256 pixels, with 199 images designated for
training and 50 for testing. Following the assumption common in noisy-label segmentation research—that
no clean validation data is available—we evaluated our approach using the published split of 199 training
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images and 50 test images. Following a previous study Li et al. (2021), the Clavicle region was cropped to
a fixed 96× 224 area for training and inference.

WHU Building Dataset Ji et al. (2018) is a publicly available dataset for building segmentation containing
satellite images of Christchurch with a resolution of 0.075 m covering an area of 450 km2. Manual annotations
were provided for 22,000 buildings. The satellite images were downsampled to a resolution of 0.3 m and then
divided into 512 × 512 tiles. Among the non-overlapping tiles, 4,736 were used for training, 1,036 for
validation, and 2,416 for testing. Similar to JSRT, we adopted the published split for the training and
testing data.

5.2 Experimental Setup

5.2.1 Noisy Label Settings.

JSRT Lung
Input image Clean label Eroded Dialated Affine

WHU Building
Input image Clean label Omission Comission Eroded & Dialated

Figure 2: Examples of Noisy Labels. In medical imaging, label noise is often simulated using morpho-
logical operations such as erosion, dilation, and affine transformations Li et al. (2021). Conversely, building
segmentation commonly involves omission noise, commission errors, and boundary noise Song et al. (2022).
The pink region indicates labels present in the noisy but absent in the clean label, while the blue region
indicates the opposite.

In the JSRT dataset, we evaluated the impact of noise caused by boundary error, which is a critical issue in the
medical imaging domain Yao et al. (2023); Zhang et al. (2020b). In accordance with previous works Xue et al.
(2020); Zhang et al. (2020c); Xue et al. (2020); Li et al. (2021), we employed morphological transformations
as synthetic noise. As illustrated in Figure 2, the noise settings consider not only boundary ambiguities (i.e.,
dilation or erosion) but also affine transformations. We examined the effect of noise using α to represent the
proportion of affected data and β to determine its strength, setting {(α, β)} = {(0.3, 0.5), (0.5, 0.7), (0.7, 0.7)}.

In the WHU Building dataset, we modeled three types of label noise: omission noise, where labels are
missing in regions that should be labeled Song et al. (2022); Liu et al. (2024); commission error, where labels
are present in regions that should not be due to temporal changes Song et al. (2022); and boundary noise,
which commonly occurs in segmentation tasks Song et al. (2022), as illustrated in Figure 2. We define the
omission ratio (ϕ), the commission ratio (ζ), and the boundary noise probability (λ) as the proportions of
the total instances in the image that are perturbed by noise. Specifically, the noise parameters are set as
{(ϕ, ζ, λ)} = {(0.1, 0.0, 0.3), (0.2, 0.05, 0.5), (0.3, 0.1, 0.7)}.

5.2.2 Baselines.

We compare our method against several baselines, including cross-entropy loss (CE), noisy-label learning
approaches for classification tasks (CoT Han et al. (2018), JoCoR Wei et al. (2020), EM Bekker & Goldberger
(2016)), noise-robust losses for segmentation T-Loss Gonzalez-Jimenez et al. (2025), as well as techniques
that account for partial spatial correlations, namely Superpixel (SP) Li et al. (2021) and SpatialCorrect
(SC) Yao et al. (2023). For each method, we adopted the hyperparameters reported in the publicly available
implementations or original papers, assuming them to be the best practices for their respective approaches.
Although proposed method supports multi-label segmentation, many of the baseline methods are designed
for binary segmentation. Therefore, in JSRT dataset, we conducted experiments by treating each class
(Lung, Heart, Clavicle) as a separate binary segmentation task.
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5.2.3 Implementation Details.

We use a U-Net Ronneberger et al. (2015) with an EfficientNet-B0 Tan & Le (2019) encoder, pre-trained on
ImageNet Deng et al. (2009). The model is optimized using Adam Kingma & Ba (2014) with a learning rate of
0.001 and batch sizes of 16 (JSRT) and 32 (WHU Building). The parameters in the prior p(η) = N (η|µ, Σ)
and the initial values of the parameters in the variational posterior q(η) = N (η|m, Γ) are set as follows.
The parameters µ, the diagonal elements of Σ, initial values of the elements of m and the diagonal elements
of Γ are all same and denoted as µ, σ2, m, and γ2, respectively. These parameters were tuned using 15%
of the WHU Building training set and validation sets, then fixed for all experiments, including JSRT, as
follows: ρ = 0.75, m = −5, γ = 1, µ = −2, and σ = 1.

5.3 Results for JSRT and WHU Building dataset

Figure 3: Segmentation results on JSRT and WHU Building dataset. The first left three columns
show the segmentation results for three classes—Lung, Heart, and Clavicle—in the JSRT dataset, while the
right column presents the binary segmentation results for WHU Building dataset in a bar chart. The rows
correspond to three different noise intensity settings tested on each dataset, with Dice scores reported for
JSRT and IoU scores for WHU Building dataset.

10
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5.3.1 JSRT dataset.

As shown in the first left three columns of Figure 3, we report the Dice scores for each class (Lung, Heart,
Clavicle) under all three noise conditions.

Under the moderate noise condition (α, β) = (0.3, 0.5) , the CE baseline, which lacks explicit noise handling,
experiences a noticeable drop of 6.4%, 2.7%, and 4.5% for each organ compared to learning with clean labels.
On the other hand, most noise-robust methods exhibit only minor declines. Our proposed approach, in
particular, shows a very small performance degradation in Lung (only 0.3%), indicating its strong robustness
to mild noise.

As the noise level increases to (α, β) = (0.5, 0.7), CE undergoes a further 13.9% performance drop, and while
other baselines also suffer more substantial declines, they remain relatively more stable than CE. Notably, our
method continues to perform well on the Lung and Heart classes, demonstrating a limited reduction from the
noise-free scenario. For the Clavicle class—an anatomically smaller and more challenging structure—both
CE and some of the noise-robust methods experience larger drops, underscoring the sensitivity of thin or
complex boundaries to label perturbations.

Under the heavier noise conditions (α, β) = (0.7, 0.7), all methods face considerable accuracy degradation.
Even our approach, which remains competitive or superior for the Lung and Heart, shows more pronounced
drops in Clavicle segmentation. This result highlights that extremely noisy annotations—particularly for
small or intricate regions—pose significant challenges. Nevertheless, compared to the other baselines, our
method tends to retain higher Dice scores and lower variance in most cases.

5.3.2 WHU Building dataset.

In the right column of Figure 3, we report IoU scores under three noise settings characterized by different
omission, commission, and boundary probabilities (ϕ, ζ, λ). For moderate noise (ϕ = 0.1, ζ = 0.0, λ = 0.3)
and (ϕ = 0.2, ζ = 0.05, λ = 0.5), CE’s performance declines by 4.7% and 10.9% from the upper bound,
respectively. Methods like CoT, TriNet, JoCoR, and SP generally fall into the low- to mid-80% range. T-
Loss and EM display a smaller gap from the clean-label upper bound, reflecting their robust design. Notably,
our method reaches 87.4% for (ϕ = 0.1, ζ = 0.0, λ = 0.3), just 2.6% below the upper bound, and continues
to outperform other baselines at the next noise level.

When the noise becomes stronger (ϕ = 0.3, ζ = 0.1, λ = 0.7), all methods exhibit further deterioration,
although CoT, TriNet, JoCoR, and SP still maintain relatively higher IoU scores. Our method remains
competitive, indicating its adaptability even under substantial label corruption.

The results on the JSRT and WHU Building datasets confirm that our method effectively handles various
types of label noise. In our experimental setting, this gives SC a disadvantage, as it is designed specifically
for boundary-related biases.

5.4 Effect of Spatial Correlation Parameter ρ

Figure 4a shows how segmentation accuracy varies with the spatial correlation parameter ρ for JSRT Lung,
JSRT Heart, JSRT Clavicle, and WHU Building datasets. In the Lung, Heart, and WHU Building datasets,
performance peaks around ρ = 0.75, suggesting that moderate correlation effectively captures spatial struc-
ture and improves segmentation. In contrast, both ignoring spatial dependencies (ρ = 0) and assuming
near-complete correlation (ρ = 0.99) result in noticeable accuracy drops. Performance on the Clavicle class
differs, remaining relatively stable from ρ = 0 to 0.75, likely due to its smaller, elongated shape, which
reduces the benefits of spatial correlation. Figure 4b further illustrates the estimated posterior label error
probability in selected noisy regions under different ρ values. At ρ = 0.75, mislabeled pixels are identified
more accurately, indicating that the model’s label-correction mechanism is most effective under moderate
correlation. In contrast, pushing ρ too high (e.g., 0.99) makes optimization unstable, leading to less reliable
noise correction. Overall, these findings suggest that incorporating an appropriate level of spatial correlation
significantly enhances the label correction mechanism.
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Figure 4: (a) Effect of ρ. Segmentation performance was evaluated across datasets based on ρ, which
represents the degree of spatial correlation, affects segmentation performance across datasets. The results
show that incorporating moderate spatial correlation enhances segmentation performance. Dice scores are
reported for the Lung, Heart, and Clavicle, and IoU is used for the WHU Building dataset.
(b) Estimated label error. This figure visualizes the label error probability, computed as the sigmoid of
m, the posterior mean of the logit of label error η. As shown in (a), higher accuracy in estimating η leads
to better segmentation performance.

6 Conclusion

We have proposed a Bayesian framework for segmentation from noisy labels, introducing the logit of the label
error probability as a continuous latent variable, η. By incorporating the KMS matrix into the covariance
structure of both the prior and the variational posterior distributions, our method efficiently computes the
ELBO while capturing spatial correlations among adjacent pixels. This avoids the need to enumerate label
combinations, improving computational efficiency. Our approach overcomes key limitations of conventional
methods that assume pixel-wise independence or only partially model spatial correlation. Experiments on
medical imaging and remote sensing datasets demonstrate superior robustness to noisy annotations when
the spatial correlation parameter is set to a moderate value (e.g., ρ = 0.75).

The ECCD we introduced provides a new, powerful tool for probabilistic modeling with applications ex-
tending far beyond 2D segmentation. It offers a tractable framework for problems where priors on correlated
discrete variables are defined over structured domains, such as spatial grids or temporal sequences. Potential
avenues for future work include extending this framework to higher-dimensional spatial problems, like 3D
segmentation and volumetric data analysis. Furthermore, as the underlying KMS matrix formulation is
naturally suited for modeling exponentially decaying dependencies, the ECCD holds significant promise for
domains beyond computer vision, particularly for modeling temporal correlations in time-series analysis and
other sequential data.

Our method has some limitations. First, storing and optimizing posterior parameters for each training
sample increases computational overhead though this cost is comparable to methods that require maintaining
multiple models in memory. Second, spatial correlation may be less beneficial when the target structures are
small or elongated, as the spatial dependencies may not contribute effectively.
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Broader Impact Statement

This work introduces the ECCD, a framework designed to enhance the robustness of machine learning
models against spatially correlated label noise. We believe this research has the potential for significant
positive societal impact, particularly in domains where high-quality data annotation is a major bottleneck.
In medical imaging, our method could lower the barrier to developing diagnostic support tools by enabling the
use of larger, more diverse, and imperfectly labeled datasets, potentially accelerating research and improving
healthcare accessibility. Similarly, in remote sensing, the ECCD can facilitate more accurate and large-scale
analysis of satellite imagery for applications such as environmental monitoring, disaster response, and urban
planning, by effectively handling noise inherent in large-scale data collection.

At the same time, we recognize potential negative repercussions that users of this technology should consider.
In high-stakes applications like medical diagnosis, over-reliance on the output of any automated system,
including one trained with our method, can lead to automation bias and potential misdiagnosis if not used
with expert oversight. We emphasize that this technology should be used as a decision-support tool to
assist qualified professionals, not to replace them. Furthermore, like many remote sensing technologies,
improved segmentation capabilities could be repurposed for surveillance or other applications with negative
societal consequences. We advocate for the ethical use of this technology in accordance with established
legal and ethical guidelines. Finally, the performance of our method relies on the assumption of stationary,
exponentially decaying correlations in the label noise. Users should be aware that in scenarios where this
assumption does not hold, the model’s effectiveness may be reduced.
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Appendix

A Derivation details

In this section, we expand on several details that were only briefly mentioned in the main text. First, we
provide a comprehensive explanation of the KMS matrix (see Section A.1). Next, we outline the intermediate
steps in the derivation of the ELBO in our method and the derivation of the ELBO terms that account for
spatial correlation (see Section A.2). We also derive the determinant and inverse of the covariance matrices
Σ and Γ, which are constructed using the KMS covariance (see Section A.3). In particular, Section A.3
details how we exploit the sparse structure of these inverses to achieve efficient computations.

A.1 KMS Matrix

The Kac–Murdock–Szegö (KMS) matrix Fikioris (2018); Kac et al. (1953) is defined for a positive integer
n ∈ N and a parameter ρ ∈ (−1, 1) as

An(ρ) :=



1 ρ ρ2 ρ3 · · · ρn−1

ρ 1 ρ ρ2 · · · ρn−2

ρ2 ρ 1 ρ · · · ρn−3

ρ3 ρ2 ρ 1
. . .

...
...

...
...

. . . . . . ρ
ρn−1 ρn−2 ρn−3 · · · ρ 1


∈ Rn×n. (15)

The (i, j) element of the KMS matrix is given by ρ|i−j|, capturing the idea that the correlation between
elements decays exponentially with the distance between indices.

Determinant of An(ρ)

To derive the determinant, we start with

det An(ρ) =

∣∣∣∣∣∣∣∣∣∣∣

1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

...
. . .

...
ρn−1 ρn−2 ρn−3 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
. (16)
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For i = 2, . . . , n, subtract ρi−1 times the first row from the ith row. This operation zeroes out the first
column (except the first row) and introduces factors of (1 − ρ2) in the diagonal of the resulting submatrix.
Proceeding recursively, one obtains

det An(ρ) = (1− ρ2)n−1. (17)
This compact expression is key for efficient computation.

Inverse of An(ρ)

The inverse is given by
An(ρ)−1 = 1

det An(ρ) adj(An(ρ)), (18)

where the adjugate adj(An(ρ)) is the transpose of the cofactor matrix. Through a series of elementary row
operations and by exploiting the Toeplitz structure, it can be shown that the cofactors also share a patterned
structure. In particular, one finds that

adj(An(ρ)) = (1− ρ2)n−2 Bn, (19)

with

Bn =



1 −ρ 0 · · · 0
−ρ 1 + ρ2 −ρ · · · 0

0 −ρ 1 + ρ2 . . .
...

...
...

. . . . . . −ρ
0 0 · · · −ρ 1

 . (20)

Thus, using det An(ρ) = (1− ρ2)n−1, we obtain

An(ρ)−1 = (1− ρ2)n−2

(1− ρ2)n−1 Bn = 1
1− ρ2 Bn. (21)

These derivations are essential in our framework for efficiently computing the covariance matrix inverse and
determinant used in the Bayesian model.

A.2 Derivation of ELBO (Eq.(3))

We assume the following generative model for our segmentation task:

p(y∗, y, η|x) = p(y∗|x) p(y|y∗, η) p(η) (22)

=
{∏

i

p(y∗
i |x)

}{∏
j

p(yj |y∗
j , ηj)

}
p(η), (23)

where the prior p(η) is designed to capture spatial correlation (via a KMS covariance structure).

We introduce the variational distribution as

:= q(η, y∗|y) = q(η|y) q(y∗|η, y) = q(η)
∏

i

q(y∗
i |ηi, yi), (24)

which approximates the true posterior p(y∗, η|y, x). Then the marginal log-likelihood of the observed labels
can be lower bounded as follows:

log p(y|x) = log
∫ ∑

y∗

p(y|η, y∗, x) p(η, y∗|x) dη (25)

= logE
[

p(y|η, y∗, x) p(η, y∗|x)
]

(26)

≥ E [log p(y|η, y∗, x)]−KL
[
∥ p(η, y∗|x)

]
. (27)
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We decompose the expectation term as:

E [log p(y|η, y∗, x)] (28)
= E [log p(y|η, y∗, x)] (29)
= E [log p(y|η, y∗)] (30)

= E

[
log
(∏

i

p(yi|ηi, y∗
i )
)]

(31)

= E

[∑
i

log p(yi|ηi, y∗
i )
]

(32)

=
∑

i

E [log p(yi|ηi, y∗
i )] (33)

=
∑

i

Eq(ηi,y∗
i

|y) [log p(yi|ηi, y∗
i )] (marginalized by (η\i, y∗

\i)) (34)

=
∑

i

Eq(y∗
i

|ηi,y)q(ηi) [log p(yi|ηi, y∗
i )] (35)

=
∑

i

Eq(y∗
i

|ηi,yi)q(ηi) [log p(yi|ηi, y∗
i )] , (y∗

i ⊥⊥ y\i|ηi, yi) (36)

where \i denotes pixel indices other than i on the image. We also decompose the negative KL divergence
term as:

−KL [∥p(η, y∗|x)] (37)

= E
[
log p(η, y∗|x)

]
(38)

= E [log p(η, y∗|x)− log] (39)

= E

log p(y∗|η, x)︸ ︷︷ ︸
= p(y∗|x)

p(η|x)︸ ︷︷ ︸
= p(η)

− log q(y∗|y, η) q(η|y)︸ ︷︷ ︸
= q(η)

 (40)

= E

log p(y∗|x)︸ ︷︷ ︸
=
∏

i
p(y∗

i
|x)

+ log p(η)− log q(y∗|y, η)︸ ︷︷ ︸
=
∏

i
{q(y∗

i
|yi,ηi)}

− log q(η)

 (41)

= E

[∑
i

log p(y∗
i |x) + log p(η)−

∑
i

log q(y∗
i |yi, ηi)− log q(η)

]
(42)

= −Eq(η) [log q(η)] + Eq(η) [log p(η)]−
∑

i

Eq(ηi)q(y∗
i

|ηi,yi) [log q(y∗
i |yi, ηi)] (43)

+
∑

i

Eq(ηi)q(y∗
i

|ηi,yi) [log p(y∗
i |x)] (44)

Thus, the overall ELBO becomes

log p(y|x) ≥
∑

i

Eq(ηi) q(y∗
i

|yi,ηi) [log p(yi|ηi, y∗
i )]− Eq(η) [log q(η)] + Eq(η) [log p(η)]

−
∑

i

Eq(ηi) q(y∗
i

|yi,ηi) [log q(y∗
i |yi, ηi)] +

∑
i

Eq(ηi) q(y∗
i

|yi,ηi) [log p(y∗
i |x)] . (45)
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A.3 Efficient ELBO Computation

In our framework, the spatially correlated prior p(η) is modeled as a Gaussian distribution with a covariance
matrix that incorporates spatial structure via a Kac–Murdock–Szegö (KMS) matrix:

Σ = V
(
Rρ ⊗R′

ρ

)
V, (46)

where Rρ = AH(ρ) ∈ RH×H and R′
ρ = AW (ρ) ∈ RW ×W are the KMS matrices for the vertical and horizontal

directions, respectively, and V is a diagonal matrix (e.g., V = σI in a simplified setting).

Because the inverse of a KMS matrix is tridiagonal, the inverse of the Kronecker product R−1
ρ ⊗ R′

ρ
−1 is

very sparse (with at most 9 nonzero entries per row). Hence, if V = σI, then

Σ−1 = V −1 (R−1
ρ ⊗R′

ρ
−1) V −1 = 1

σ2 (R−1
ρ ⊗R′

ρ
−1). (47)

Similarly, by exploiting the determinant properties of Kronecker products,

det Σ = (det V )2 (det Rρ)W (det R′
ρ)H

=
(HW∏

i=1
σi

)2
(1− ρ2)W (H−1)(1− ρ2)H(W −1). (48)

Taking the logarithm yields

log det Σ = 2
HW∑
i=1

log σi + W (H − 1) log(1− ρ2) + H(W − 1) log(1− ρ2). (49)

The efficient computation of the trace terms in the ELBO is similarly achieved by noting that Σ−1 is sparse,
which reduces the computational burden when evaluating expressions such as tr

(
ΓΣ−1) and tr

(
(µ−m)(µ−

m)T Σ−1).
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