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ABSTRACT

Test-time adaptation (TTA) has proven effective in enhancing model robustness
against unforeseen distribution shifts during testing. However, current TTA meth-
ods struggle when applied to multi-modal models. In this paper, we explore multi-
modal TTA and reveal two key limitations of existing approaches: i) difficulty in
mitigating attention shifts when dealing with biased modalities, and ii) insufficient
exploitation of the synergy and complementarity among multiple modalities. To
address these challenges, we propose a novel method called Parameter-Efficient
Attention Transfer (PEAT), which strikes a balance between performance and
efficiency. Specifically, we first discuss the modulation strategies for updating
various model parameters and propose to adapt the self-attention modules. Fur-
thermore, we design a modality-aware low-rank adaptation method to dynami-
cally learn cross-domain attention patterns. Our approach introduces intra-modal
and inter-modal interactions for LoRAs, where the former captures uni-modal do-
main information through modality-specific parameters, while the latter promotes
cross-modal feature alignment in a unified space through modality-shared param-
eters. Extensive experiments conducted across various distribution-shifted modal-
ities, including video, image, audio, and text, demonstrate that PEAT consistently
outperforms existing state-of-the-art methods.

1 INTRODUCTION

In recent years, multi-modal learning has demonstrated significant advancements against cross-
modal heterogeneity (Baltrušaitis et al., 2019; Bao et al., 2022; Wang et al., 2023; Guo et al., 2024b).
In this context, multi-modal pre-training has emerged as a promising avenue for associating multiple
communicative modalities, allowing for enhanced comprehension and performance in the various
real-world downstream tasks, particularly in the audio-visual (Arandjelović & Zisserman, 2018;
Gong et al., 2023) and vision-language (Radford et al., 2021; Li et al., 2022) domains.

In the pre-training paradigm, multi-modal pre-trained models can be adapted to specific domains
through fine-tuning. This paradigm exhibits remarkable performance in the assumption of the known
and fixed test domain. However, such a mild assumption is often violated in non-stationary and
changing practical environments. In open-world scenarios, test samples may encounter natural vari-
ations or corruptions (i.e., distribution shifts), which can be attributed to unpredictable factors such
as weather changes, sensor degradation, etc (Hendrycks & Dietterich, 2019). Although multi-modal
data boast rich and comprehensive information representation, the multi-modal models still suffer
significant performance degradation against test-time distribution shifts.

Recently, fully test-time adaptation (TTA) methods propose to adapt the model using unlabeled
samples during testing, which have been shown to boost robustness against distribution shifts in
the test domain. Toward this goal, existing works focus on mitigating the covariance shifts across
domains via normalization statistics adaptation. Specifically, the affine parameters are optimized in
each test batch with self-supervised or unsupervised objectives, including, but not limited to, entropy
minimization (Wang et al., 2021; Niu et al., 2022; 2023), pseudo labeling (Liang et al., 2020; Wang
et al., 2022), and consistent regularization (Zhang et al., 2022).

However, these methods are constrained to uni-modal tasks, exhibiting suboptimal improvements
when applied to multi-modal models. Therefore, it is worth exploring how to bridge the gap be-
tween uni-modal and multi-modal adaptation. For this issue, we rethink the limitations of existing
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Table 1: Qualitative comparison of adapting various modulation parameters on VGGSound-C
dataset with corrupted audio modality (severity level 5) regarding Accuracy (%, ↑). “LN”, “MLP”,
“SAF” and “Attn.” denote the layer normalization, multilayer perceptron, self-adaptive attention-
based fusion, and self-attention, respectively. △ (%, ↑) represents the average improvement in
model accuracy compared with the source model. The bold number indicates the best result.

Noise Weather

Method Gauss. Traff. Crowd. Rain Thund. Wind Avg. △ Param.

Source 37.2 21.2 16.8 21.6 27.3 25.5 24.9 - -
• LN 41.3 33.5 32.3 32.2 38.6 34.3 35.4 +10.5 0.22M
• MLP 37.2 39.3 40.3 34.4 46.2 37.8 39.2 +14.3 108.62M
• SAF 38.8 31.7 31.9 30.5 38.0 32.2 33.9 +9.0 1.77M
• Attn. 41.5 41.1 43.1 37.1 47.8 39.8 41.7 +16.8 40.75M

Corrupted Input

Frost

Fog

Snow

Brit.

Source LN MLP Attn.

Clean Input

Source

Figure 1: Grad-CAM visualization on ViT-based encoders with various modulation parameters.
The comparisons are conducted with real-world weather corruptions, including fog, snow, frost, and
brightness. For clear presentation, we introduce the red box to indicate the high activation region in
the unbiased attention pattern, i.e., the discriminative semantic objective. Specifically, the label of
the sample is passing American football (in game), and the corresponding semantic objective is the
running football player.

TTA methods in multi-modal scenarios. On the one hand, we discover that normalization statistics
adaptation suffers from a challenge of attention shifts when dealing with biased modalities. As illus-
trated in Figure 1, the adapted model mistakenly focuses on biased and non-discriminative semantics
(e.g., lawn, sky) when processing the sample with the label passing American football (in game). In
contrast, self-attention adaptation maintains a stable information flow on discriminative semantics
(i.e., football player). In this paper, we argue that attention shifts are the primary factor preventing
model generalization across domains. The results in Table 1 further corroborate the relationship
between attention shifts and performance, where updating self-attention modules significantly out-
performs other modulation parameters (e.g., LN, MLP). On the other hand, most methods focus
on uni-modal adaptation and adapt modality-specific encoders independently, ignoring the synergy
and complementarity in multi-modal adaptation. Although Shin et al. (2022) jointly consider multi-
modal information to construct reliable pseudo-labels, this is established on the output space rather
than the feature space, struggling to model complex modality associations. In conclusion, our work
mainly focuses on two aspects: i) the attention shifts in distribution-shifted modalities and ii) the
multi-modal synergy and complementarity.
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From these observations, we develop a novel TTA approach oriented towards multi-modal models,
called parameter-efficient attention transfer (PEAT). In the method, we counter attention shifts by
performing adaptation on self-attention modules instead of layer normalizations. Motivated by Hu
et al. (2022), the attention updates are learned in a smaller subspace via Low-Rank Adaptation
(LoRA). Meanwhile, we propose a modality-aware LoRA method to introduce intra-modal and
inter-modal interactions between cross-layer and cross-modality LoRAs. Specifically, our model
use modality-specific parameters to compress the domain information of different modalities into
a low-rank space, and then use modality-shared parameters to project them into a unified space,
promoting feature alignment between modalities. In this way, we trade off parameter efficiency and
performance, not only harnessing redundancy in LoRA parameters but also considering synergy and
complementarity in multi-modal adaptation.

Our main contributions can be summarized as:

• We rethink the test-time adaptation (TTA) for multi-modal models, highlighting the attention
shifts in distribution-shifted modalities, and the multi-modal synergy and complementarity.

• We propose a parameter-efficient attention transfer (PEAT) method for multi-modal TTA, ob-
taining a trade-off between performance and efficiency.

• We extend a vision-language benchmark dataset for multi-modal TTA and introduce eight text
corruption types at character, word, and sentence levels. Extensive experiments with corruptions
in various modalities, including video, image, audio, and text, demonstrate that PEAT improves
the performance of entropy-based TTA method in multi-modal contexts.

2 RELATED WORK

Test-Time Adaptation (TTA) refers to domain adaptation in a source-free and online manner,
which has been shown to boost model robustness against distribution shifts during testing. In the
setting of fully TTA, the model must adapt given only the pre-trained parameters and the unlabeled
test data. Tent (Wang et al., 2021), as the pioneer work, proposes to conduct adaptation on the
affine parameters in normalization layers with entropy minimization. Since TTA proved effective
as a general adaptation setting, subsequent works have expanded its practicality in a broader range
of contexts, including, but not limited to, i) robust adaptation (Niu et al., 2022; 2023; Yuan et al.,
2023; Lim et al., 2023) for practical scenarios involving mixed domain shifts, small batch sizes,
label shifts, etc.; ii) continual adaptation (Wang et al., 2022; Lee et al., 2024a) against continually
changing distribution shifts, which suffers from error accumulation and catastrophic forgetting; iii)
efficient adaptation (Song et al., 2023; Niu et al., 2024) for resource-limited on-device learning.

However, these works are constrained to uni-modal adaptation, demonstrating suboptimal improve-
ments when applied to multi-modal models. A recent work called READ (Yang et al., 2024) at-
tributes it to multi-modal reliability bias and proposes self-adaptive attention-based fusion (SAF)
to mitigate the dominance of biased modalities. Compared to READ, our work has the following
key differences. i) Motivation differences. READ focuses on solving multi-modal reliability bias
through self-adaptive fusion. However, this work is based on the observation that normalization
adaptation methods (e.g., SAR) struggle with attention shifts; thus, we aim to find more effective
adaptation parameters. ii) Modulation parameter differences. We propose the attention transfer
method to dynamically learn cross-domain attention patterns in modality encoders rather than in the
fusion module. iii) Updating method differences. READ directly updates the attention-based fusion
module. Our work proposes a low-rank adaptation method with intra-modal and inter-modal inter-
actions, which reduces the number of tunable parameters and considers the multi-modal association.

Parameter-Efficient Fine-Tuning (PEFT) is a technique designed to adapt large pre-trained mod-
els for specific downstream tasks without requiring full retraining. PEFT updates only a small
subset of additional parameters while freezing the majority of the model’s structure, offering signif-
icant advantages in terms of efficiency, accessibility, and adaptability. The promising advances in
this sphere include adapter-based methods (Rebuffi et al., 2017; Houlsby et al., 2019), LoRA-based
methods (Hu et al., 2022; Guo et al., 2024a), prompt-based methods (Lester et al., 2021), and many
other variants (Li & Liang, 2021; Ben Zaken et al., 2022). Among these, LoRA-based methods have
achieved a trade-off between parameter efficiency and performance, attracting widespread attention
in practical applications. However, recent research observes the redundancy of LoRA parameters.
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Figure 2: The illustration of Parameter-Efficient Attention Transfer (PEAT). During adaptation,
the corrupted modalities are input into corresponding modality-specific encoders, and the output
embeddings are concatenated at the token level for fusion. In the method, we update self-attention
projections both in the encoders and the fusion module using Low-Rank Adaptation (LoRA). To
further achieve multi-modal collaboration, we introduce the Modality-Aware LoRA method with
intra-modal interactions (i.e., Aa and Av) and inter-modal interactions (i.e., Bi).

VB-LoRA (Li et al., 2024) replaces low-rank matrices with a shared vector bank. RaSA (He et al.,
2025) demonstrates that sharing ranks across layers leads to lower reconstruction error and thus
better expressive capacity. These findings collectively suggest that LoRA parameters have not been
fully utilized and that different LoRAs exhibit similarities across layers and modules. In this pa-
per, we further explore the redundancy in LoRA parameters and introduce multi-modal interactions
using shared low-rank matrices.

3 METHODOLOGY

3.1 PRELIMINARIES

Problem Definition. Without loss of generality, we consider multi-modal TTA within the con-
text of an audio-video classification task. Specifically, we utilize the most popular architecture in
multi-modal models, featured with modality-specific encoders and a modality-unified fusion mod-
ule, which can be denoted as f(·) = {ϕa(·), ϕv(·),M(·),F(·)}, where ϕa(·) and ϕv(·) refer to the
transformer encoders for audio and video modality, M(·) and F(·) represent the fusion module and
the following classification head.

Domain adaptation aims to transfer the model from the source domain P (x) to the target domain
Q(x), where P (x) and Q(x) have a large distribution gap. Before adaptation, the base model fθ(·)
parameterized with θ has been pre-trained on the labeled data Dsource = {(xi, yi)}Ni=1, where the
multi-modal input xi = {xa

i , x
v
i } ∼ P (x) consists of audio xa

i and video xv
i pairs. fθ(·) can

exhibit excellent inference performance on the in-distribution (ID) test samples drawn from P (x)
but struggles to generalize to out-of-distribution (OOD) samples Dtarget = {xi}Mi=1 ∼ Q(x). In
this paper, we propose a parameter-efficient adaptation method using low-rank adaptation (LoRA).

LoRA models the incremental update of a pre-trained weight matrix W0 ∈ Rd1×d2 by the product
of two low-rank matrices A ∈ Rd1×r and B ∈ Rd2×r, where r ≪ {d1, d2}. For h = W0x, the
modified forward pass is

h = W0x+∆Wx = W0x+AB⊤x. (1)

In practical applications, the matrix A is initialized with a random Gaussian distribution and B with
zeros, setting the initial ∆W to zero for training.
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3.2 PARAMETER-EFFICIENT ATTENTION TRANSFER

Motivating Observation. Transformer has emerged as the most popular architecture for scaling
in multi-modal learning. Therefore, we highlight the exploration of the adaptability of transformer-
based models. The mainstream TTA methods (Niu et al., 2023) tend to mitigate covariance shift with
layer normalization (LN) adaptation. Recent work (Yang et al., 2024) has introduced self-adaptive
attention-based fusion (SAF) against multi-modal reliability bias. In order to determine the most
effective modulation parameters, we conduct empirical studies on various transformer components,
including LN, MLP, SAF, and self-attention. It is worth noting that, to ensure a fair comparison,
all experiments were performed with the same unsupervised objectives, avoiding collapse during
the adaptation process. As demonstrated in Table 1, self-attention adaptation exhibits significant
superiority compared to other modulation parameters. In the transformer architecture, the attention
map softmax(QK⊤) serves as the only way for information to flow between tokens. For further
discussion, we explore the attention map in transformer layers. According to visualization results in
Fig. 1, the source model mistakenly focuses on biased and non-discriminative semantics (e.g., lawn,
sky) under distribution shifts. Consistent with the quantitative experiments, LN adaptation fails to
improve the attention patterns of the source model, while self-attention adaptation captures the class-
related objective (i.e., football player) from distribution-shifted contexts. In this paper, we refer to
this phenomenon of misfocus or wrong activation in attention maps as attention shifts. Based on the
above observations, we believe that attention shifts impair the expressiveness of biased modalities,
leading to information discrepancies across modalities. To address this, we propose optimizing the
biased attention pattern during testing by leveraging a signal derived from entropy minimization.

Attention Transfer. The attention shifts illustrate the limitation of LN adaptation (e.g., SAR (Niu
et al., 2023)) for transformer-based models. Therefore, we propose a novel approach of atten-
tion transfer, which aims to dynamically learn attention patterns across domains. Specifically, we
conduct self-attention adaptation in modality-specific encoders ϕa(·) and ϕv(·), while keeping the
fusion module M(·) and the classification head F(·) frozen. In this way, the model can maintain a
stable information flow on the most discriminative content, promoting the alignment of multi-modal
representations from the target domains to the source domain.

Notably, self-attention adaptation is an effective but not efficient method. In transformer layers, the
embedding dimension is donated as dmodel, then a layer normalization comprises dmodel×2 param-
eters, while an attention module encompasses (dmodel + 1) × dmodel × 3 parameters. The number
of parameters in self-attention modules is significantly larger than that of layer normalizations. To
address this, we develop a parameter-efficient attention transfer method via low-rank adaptation
(LoRA). Specifically, following Eq. 1, the low-rank updates ∆W are incorporated into the query
WQ, key WK and value WV projection matrices in the self-attention module. In this way, the
number of parameters required can be decreased to dmodel×r×4. Since r ≪ d, it has a comparable
number of parameters to LN. The ∆W in multi-modal models can be decomposed as:

∆Wa
i = Aa

iB
a
i
⊤,∆Wv

i = Av
iB

v
i
⊤, i ∈ [0, Ds), (2)

where Ds denotes the number of modality-specific layers in encoders.

One intuitive observation is that, when a multi-modal model suffers from distribution shifts, its
robustness usually depends on the reliable modality information. READ (Yang et al., 2024) is mo-
tivated by this insight and propose self-adaptive attention-based fusion (SAF) to make the model
focus on unbiased modalities. However, this method cannot improve the degraded modality repre-
sentations, leading to a low information gain. Thus, our method proposes to leverage cross-modal in-
formation to generate reliable modality representations. Toward this goal, we introduce intra-modal
and inter-modal interactions between LoRAs, taking into account synergy and complementarity be-
tween multiple modalities. Specifically, we achieve the interactions by shared low-rank matrices
while reducing the redundancy in LoRA parameters.

Intra-Modal Interaction aims to construct domain information that is independent between modal-
ities but consistent within modalities. During inference, the distribution-shifted modality input is
processed by a sequence of transformer layers. The shared domain knowledge ensures a consis-
tent understanding of domain-specific features, maintaining a stable and effective information flow
in the model. In the method, the matrices Aa

i and Av
i in Eq. 2 are shared in each modality en-

coder, which can be uniformly expressed as Aa and Av , i.e., Aa
0 = Aa

1 = · · · = Aa
D = Aa and

Av
0 = Av

1 = · · · = Av
D = Av .
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Inter-Modal Interaction aims to model semantic consistency across modalities. In real-world sce-
narios, different modalities are often closely related. Taking audio-visual learning as an example,
both the barking sound of the dog and its appearance can be related to the concept of “dog”, which is
called semantic consistency. In multi-modal adaptation, this cross-modal consistency allows biased
modalities to be enhanced by reliable information from other modalities. To establish a bridge be-
tween modalities, the low-rank matrices Ba

i and Bv
i in Eq. 2 share parameters layer by layer between

modality-specific encoders, which can also be uniformly expressed as Bs
i , i.e., Ba

i = Bv
i = Bi.

In this way, modality-specific parameters compress the information of different modalities into a
low-rank space, and then modality-shared parameters project them into a unified space, promoting
cross-modal feature alignment.

3.3 SOURCE-AWARE ENTROPY MINIMIZATION

According to the setting of multi-modal TTA, attention transfer is performed in an unsupervised
manner. To mitigate the negative transfer, the source domain knowledge is leveraged to provide
regularization for the entropy minimization.

During adaptation, different samples produce various effects, and samples with high confidence are
more valuable for domain transfer. Existing works (Niu et al., 2022; 2023) have utilized entropy
as the confidence metric. Another related research (Lee et al., 2024b) focuses on the sensitivity to
structural information, which is designed for visual modalities. In this paper, we attempt to employ
source domain knowledge to judge the reliability of samples. Specifically, the samples that deviate
far from the prior in the source domain are considered to have high uncertainty and are more likely
to produce wrong gradients. Based on the assumption above, we propose to attach higher weights
to samples with smaller divergence and lower entropy in optimization.

In the implementation, the Jensen-Shannon divergence (DJS) (Menéndez et al., 1997) of predictions
measures the distance of each sample that deviates from the source domain. Formally, the sample-
adaptive weight is given by:

w(x) =
1

exp[DJS(fθt(y|x)∥fθ0(y|x)) ·H(fθt(y|x))]
(3)

where fθt(y|x) denotes the softmax output of the adapted model at epoch t, H(·) represents the
information entropy. Correspondingly, θ0 is the parameters of the source model, which can be easily
obtained from θt by disabling LoRA.

With the source-aware weight, the sample-wise loss of improved entropy minimization can be ex-
pressed as:

Lent = −w(x)
∑
y∈C

fθt(y|x) log fθt(y|x) (4)

Furthermore, adaptation using entropy minimization tends to cause collapse, i.e., predicting all sam-
ples to a single class (Niu et al., 2023), which attributes to the unbalanced label distribution. Thus, a
diversity-promoting term Ldiv =

∑
y∈C p̂c log p̂c is introduced following preliminary works (Liang

et al., 2020), where p̂c = 1
B

∑B
i=1 fθt(y|xi) is the average of softmax output of test samples in each

mini-batch of size B, and C is the model output space.

4 EXPERIMENTS

Datasets and Models. Previous research (Yang et al., 2024) has constructed two audio-visual bench-
mark datasets, Kinetics (Kay et al., 2017) and VGGSound (Chen et al., 2020), and introduced 15
types of video corruptions and 6 types of audio corruptions. The ViT-based CAV-MAE (Gong et al.,
2023) model serves as the source model, which is pre-trained on web-scale audio-visual data and
fine-tuned on the training sets of Kinetics50 and VGGSound dataset.

To further verify the applicability of multi-modal TTA methods, we provide a vision-language
dataset, UPMC-FOOD101 (Wang et al., 2015), as a novel benchmark and introduce 8 types of
text corruptions at the character, word, and sentence levels. We use the pre-trained bert-base-
uncased (Devlin et al., 2019) model to extract text features and use pre-trained ViT (Kolesnikov

6
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Table 2: Comparison with state-of-the-art methods on Kinetics-C with corrupted video modality
(severity level 5) regarding Accuracy (%, ↑).

Noise Blur Weather Digital

Method Gauss. Shot Impul. Defoc. Glass Mot. Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Avg.

Source 46.9 48.5 46.9 67.4 62.1 71.5 66.7 61.3 61.2 46.6 75.3 52.0 66.2 66.5 62.2 60.1
• Tent (ICLR’21) 46.3 47.4 46.4 67.5 62.6 71.4 67.8 61.7 61.8 37.6 75.4 51.2 67.3 67.6 62.9 59.7
• EATA (ICML’22) 46.9 48.2 47.0 67.6 63.4 71.4 67.8 62.2 62.3 47.2 75.3 52.1 66.9 67.4 63.2 60.6
• SAR (ICLR’23) 47.0 48.4 47.1 67.4 62.1 71.5 66.8 61.3 61.1 46.5 75.4 52.1 66.2 66.5 62.4 60.1
• READ (ICLR’24) 48.9 49.9 48.7 67.8 65.0 71.7 68.8 64.0 64.5 55.2 75.5 53.4 68.2 68.2 65.0 62.3
• TSA (ICML’25) 52.6 52.3 52.0 68.7 68.0 70.7 68.8 65.2 66.6 64.3 74.6 57.4 70.5 69.0 66.2 64.5
• Ours 51.4 51.8 50.6 70.5 70.8 73.8 72.4 67.6 68.2 66.7 75.9 58.9 73.5 72.7 70.4 66.4

Table 3: Comparison with state-of-the-art methods on Kinetics-C (left) and VGGSound-C (right)
with corrupted audio modality (severity level 5) regarding Accuracy (%, ↑).

Noise Weather Noise Weather

Method Gauss. Traff. Crowd. Rain Thund. Wind Avg. Gauss. Traff. Crowd. Rain Thund. Wind Avg.

Source 74.0 65.5 67.9 70.4 67.9 70.3 69.3 37.2 21.2 16.8 21.6 27.3 25.5 24.9
• Tent 73.9 67.2 69.2 70.4 66.5 70.6 69.6 11.6 3.0 1.9 3.1 5.9 4.2 4.9
• EATA 73.8 67.0 69.0 70.6 69.0 70.5 70.0 40.3 27.5 26.0 28.5 35.3 31.4 31.5
• SAR 73.7 65.8 68.3 70.5 68.1 70.2 69.4 38.0 8.9 8.6 14.5 28.3 18.1 19.4
• READ 74.4 68.8 69.8 71.2 71.6 70.6 71.0 40.3 29.1 26.9 30.8 36.5 30.7 32.4
• TSA 74.5 69.6 70.5 71.4 72.0 71.0 71.5 41.5 31.8 30.9 32.6 38.9 32.6 34.7
• Ours 75.5 72.5 73.7 72.6 75.6 72.9 73.8 42.7 40.7 42.2 37.9 47.7 39.9 41.9

et al., 2021) on ImageNet to extract image features. Meanwhile, we use transformer encoders as
modality encoders and the fusion module. The model is trained on the training sets of UPMC-
FOOD101, obtaining the corresponding source models.

In the experiments, the clean datasets are the source domain, and the corrupted datasets are the
target domain. As a result, we obtain the Kinetics50-C and VGGSound-C benchmarks with either
corrupted audio or corrupted video modalities and the UPMC-FOOD101-C benchmark with either
corrupted text or corrupted image modalities. Each type of corruption has five levels of severity. In
order to check the performance under the worst corruption case, we focus on testing with corrupted
data of high severity level.

Compared Methods. To evaluate the proposed method, we conduct contrast experiments with the
following state-of-the-art (SOTA) methods, which involve uni-modal TTA and multi-modal TTA.
Tent (Wang et al., 2021), EATA (Niu et al., 2022), and SAR (Niu et al., 2023) are representative
entropy-based methods for uni-modal TTA, while READ (Yang et al., 2024) and TSA (Chen et al.,
2025) are designed for multi-modal TTA tasks.

Implementation Details. For test-time adaptation, we update parameters using the Adam optimizer,
with a batch size of 64 for audio-visual benchmarks, 128 for vision-language benchmark, and a
learning rate of 0.0001 for all benchmarks. Additionally, we initialize trainable LoRA matrices with
Kaiming uniform initialization (He et al., 2015), with r = 16 and α = 16 for audio-visual benchmarks
and r = 4 and α = 4 for the vision-language benchmark.

4.1 COMPARISON WITH PREVIOUS METHODS

Results under Uni-Modal Distribution Shifts. Uni-modal distribution shifts have been discussed
in the recent multi-modal TTA works (Yang et al., 2024; Chen et al., 2025). For a comprehensive
evaluation, we conduct experiments under two challenging settings: i) distribution shifts of high
severity ii) mixed distribution shifts.

i) Distribution Shifts of High Severity: To highlight the effectiveness and robustness, the following
comparison focuses on the challenging scenarios where the dominant modalities suffer from high-
severity corruptions. Notably, the dominant modalities of the Kinetics-C benchmark, VGGSound-C
benchmark, and UPMC-FOOD101-C benchmark are video, audio, and text modalities, respectively.

7
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Table 4: Comparison with state-of-the-art methods on UPMC-FOOD101-C with corrupted text
modality (severity level 5) regarding Accuracy (%, ↑).

Character Word Sentence

Method Insert Replace Delete Synon. Split Delete Exten. Trans. Avg.

Source 54.6 53.6 54.9 87.4 77.7 75.0 74.5 69.2 68.3
• Tent 54.4 53.7 55.2 87.5 78.0 75.1 75.6 69.5 68.6
• EATA 55.8 54.7 55.4 87.4 77.9 75.1 75.4 69.5 68.9
• SAR 55.2 54.3 55.5 87.5 78.0 75.2 75.7 69.5 68.9
• READ 55.8 54.6 55.3 87.4 77.7 75.0 74.4 69.4 68.7
• Ours 59.6 58.1 57.7 87.5 78.5 75.2 80.1 70.0 70.8

Tent EATA SAR READ Ours

10

20

30

40

25.1 25.1 25.1 25.1 25.1

4.9

31.5

19.4

32.4

41.9

2.3

35

14.9
17.6

40.3

A
cc

ur
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y(
%

)

No Adapt Avg Adapt Mix Adapt

Figure 3: Performance of TTA methods under the mixture of 6 different audio corruption types
(VGGSound-C).

The comparison results on the three benchmarks are reported in Tables 2, 3 and 4, where our PEAT
method has shown significant superiority compared to existing methods when dealing with various
datasets and various modality corruptions. Compared to the previous SOTA methods, we achieve an
average performance improvement of 9.5% on the benchmark with audio corruptions, while 4.1%
and 2.1% on the benchmarks of audio and text corruptions, respectively. Meanwhile, PEAT has
been shown to achieve a balance between parameter efficiency and performance, which delivers a
significant improvement over LN adaption while only requiring a comparable number of parameters.

ii) Mixed Distribution Shifts: We evaluated the performance on a mixture of 6 audio corruption types
at severity levels 5 on the VGGSound-C benchmark. According to Figure 3, the mix adapt accuracy
of other methods is significantly lower than the average adapt accuracy across different severity
levels. In contrast, EATA and PEAT provide stronger robustness against various distribution shifts.

Table 5: Comparison with state-of-the-art methods on
VGGSound-C with corrupted audio and video modality
(severity level 5) regarding Accuracy (%, ↑).

Method Snow&Wind Fog&Rain Frost&Traff. Brit.&Crowd. Avg.

Source 8.8 5.0 8.9 9.1 7.9
• Tent 1.4 0.7 1.1 1.1 1.1
• EATA 10.4 4.9 9.3 11.4 9.0
• SAR 4.1 2.3 3.2 3.9 3.4
• READ 13.3 11.9 15.0 17.2 14.3
• Ours w/o SAEM 23.0 23.6 26.2 35.6 27.1
• Ours 24.9 24.9 27.5 36.3 28.4

Results under Multi-Modal Distri-
bution Shifts. Existing methods only
consider the mild setting under uni-
modal corruptions. It will be more
challenging to handle multi-modal
TTA tasks suffering from multiple
distribution-shifted modalities. Thus,
we explore the multi-modal distribu-
tion shifts on the audio-visual bench-
mark. For instance, in a snowy en-
vironment, heavy snow and strong
winds always occur together, which
causes distribution shifts both in the
sampling of video and audio modalities. According to the experimental results in Table 5, we ob-
serve that our method achieves an average performance improvement of 14.1% under multi-modal
distribution shifts, which proves that our method leverages reliable modality information to improve
the quality of modality representations.

8
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Table 6: Ablation studies on VGGSound-C with corrupted audio modality (severity level 5) regard-
ing Accuracy (%). All methods are compared in the context of attention transfer.

Noise Weather

Method Gauss. Traff. Crowd. Rain Thund. Wind Avg. Param.

Full Tuning 41.7 41.3 43.2 37.7 48.1 40.4 42.1 38.98M
LoRA (baseline) 41.5 41.0 42.8 37.3 47.6 39.7 41.7 1.08M
+ intra-modal interaction 41.2 40.9 42.6 37.2 47.6 39.9 41.6 0.84M (↓ 22%)
+ inter-modal interaction 41.5 41.0 42.8 37.0 47.9 39.6 41.6 0.43M (↓ 77%)

4.2 ABLATION STUDIES

Effect of Parameter-Efficient Attention Transfer (PEAT). The proposed method is a LoRA-based
approach with inter-modal and intra-modal interactions. Therefore, we evaluate the contribution
of each component in the architecture. From Table 6, we observe that the interactions based on
parameter sharing maintain superior performance while reducing the number of parameters. Our
ablation experiments demonstrate that multi-modal LoRA is cross-layer and cross-modal correlated,
and we exploit this property to improve parameter efficiency. More ablation results are included in G.

Effect of Source-Aware Entropy Minimization (SAEM). SAEM attaches higher weights to high-
quality samples that are closer to the source domain. This allows SAEM to prevent the model from
overfitting to noisy samples and maintain the knowledge of source domain. Intuitively, the effect
of SAEM is more obvious in stronger OOD scenarios. Therefore, we conduct ablation experiments
under the setting of multi-modal corruption. The results in Table 5 exhibit that SAEM yields a signif-
icant accuracy improvement of 1.3%. This improvement proves that the source domain knowledge
is a effective tool to measure the confidence of samples.

4.3 EFFICIENCY COMPARISON

Table 7: Efficiency Comparison on VGGSound-C with cor-
rupted audio modality (severity level 5).

Method Acc. (%) Param. (M) Mem. (G) Throughput (Samples/s)

• Tent 4.9 0.22 15.6 47.2
• EATA 31.5 0.22 27.5 45.9
• SAR 19.4 0.22 21.7 15.4
• READ 32.4 1.77 6.4 60.0
• Ours (N = 11) 41.6 0.43 14.0 49.0
• Ours (N = 5) 40.4 0.21 10.3 63.8
• Ours (N = 1) 36.6 0.06 6.8 70.4

We conducted an efficiency anal-
ysis in terms of parameter count,
memory usage, and inference
speed. Since SAEM requires ad-
ditional forward passes, it intro-
duces an efficiency limitation and
was therefore excluded from our
evaluation. The results demon-
strate that our method outperforms
existing LN adaptation methods in
accuracy while achieving higher
efficiency. Compared to READ,
which optimizes only the fusion
layer, our method requires additional resources to update the modality encoders. However, as pre-
sented in Table 7, when the number of tunable layers N is reduced, our method consistently delivers
superior performance while achieving memory and computational efficiency comparable to READ.

5 CONCLUSION

In this paper, we explore test-time adaptation (TTA) methods oriented towards multi-modal models.
Based on empirical studies, we reveal two key limitations of existing methods. Firstly, layer normal-
ization (LN) adaptation struggles to handle the attention shifts when processing distribution-shifted
modalities. Moreover, existing methods tend to adapt each modality independently, ignoring multi-
modal synergy and complementarity. To address these issues, we propose a parameter-efficient
attention transfer (PEAT) method, which adapts self-attention modules to dynamically learn cross-
modal attention patterns. For efficiency, we learn attention updates in a smaller space via low-rank
adaptation (LoRA). Furthermore, we decouple the low-rank matrices into intra-modal and inter-
modal shared knowledge, associating reliable information across modalities. Extensive experimen-
tal results demonstrate the superiority of our PEAT method in terms of performance and robustness.

9
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A REPRODUCIBILITY STATEMENT

We have already elaborated on all the models or algorithms proposed, experimental configurations,
and benchmarks used in the experiments in the main body or appendix of this paper. Furthermore,
we declare that the entire code used in this work will be released after acceptance.

B THE USE OF LARGE LANGUAGE MODELS

We use large language models solely for polishing our writing, and we have conducted a careful
check, taking full responsibility for all content in this work.

C LIMITATIONS

Our work presents a parameter-efficient way to dynamically learn cross-domain attention patterns.
We acknowledge that, as with any research endeavor, limitations exist in our work. Firstly, although
the source-aware entropy minimization effectively mitigates overfitting on noisy samples, it requires
an additional forward process, which limits the inference efficiency. Furthermore, while our method
introduces inter-modal and intra-modal interactions by sharing the low-rank matrix between LoRAs,
it does not fully exploit the potential of multi-modal association. Further utilizing multi-modal
associations to enhance multi-modal test-time adaptation will be a promising approach.

D MORE DETAILS ABOUT THE BENCHMARKS

In this paper, we construct a new benchmark for multi-modal TTA upon the UPMC Food-101 Wang
et al. (2015) dataset. UPMC Food-101 is a classification dataset that contains 90,704 image-text
pairs and 101 classes, where the image and text pairs are noisy since all the images are obtained in
an uncontrolled environment.

To explore adaptation to distribution shifts, we introduce different corruption types for image and
text modalities. For images, we follow Hendrycks & Dietterich (2019) to apply 15 kinds of corrup-
tions, and each corruption is with 5 kinds of severity levels for extensive validations. Specifically,
the corruptions on image modality include “Gaussian Noise”, “Shot Noise”, “Impulse Noise”, “De-
focus Blur”, “Glass Blur”, “Motion Blur”, “Zoom Blur”, “Snow”, “Frost”, “Fog”, “Brightness”,
“Elastic”, “Pixelate”, “Contrast”, and “JPEG”. Similar to the image modality, we design 8 kinds of
text corruptions at the character, word and sentence levels. To be specific,

• Character-level Corruptions simulates typos in manual input or machine
recognition, including insertion, replacement, and deletion. Given a char-
acter sequence s = {c1, c2, · · · , cn}, the result of insertion can be ex-
pressed as s′ = {c1, · · · , ck, ĉ, ck+1, · · · , cn}, while replacement yields s′ =
{c1, · · · , ck−1, ĉ, ck+1 · · · , cn}, and deletion gives s′ = {c1, · · · , ck−1, ck+1, · · · , cn},
where k ∈ [1, n] donates a random position number and ĉ is a random letter.

• Word-level Corruptions evolve synonym replacement, splitting, and deletion. We assume
that the word sequence can be expressed as s = {w1, w2, · · · , wn}. Synonym replacement
preserves general meaning while replacing words at a random position k, which results in
s′ = {w1, · · · , wk−1, ŵ, wk+1, · · · , wn}, where ŵ is one of the synonyms of wk. Splitting
means splitting words into smaller units, which can be expressed as s′ = {w1, · · · , wk[:
u], wk[u :], · · · , wn}, where u is the split position in wk. Deletion removes entire words,
which yields s′ = {w1, · · · , wk−1, wk+1, · · · , wn}.

• Sentence-level Corruptions explore distribution shifts dominated by semantic variation.
Noise extension introduces irrelevant contexts τ into text s, which can be represented as
{τ1, · · · , s, · · · , τm}. Back-translation means translating the text into another language
and then translating it back to the original language, where s′ = Te2c(Tc2e(s)), Te2c and
Tc2e refer to the translators from English to Chinese and from Chinese to English.
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Figure 4: Visualization on the attention-based fusion module. The blocks of the top left and bottom
right denote the self-attention between audios and videos, respectively. The blocks of the top right
and bottom left denote the cross-attention from audio to video and video to audio, respectively. The
number upon the blocks denotes the mean of attention values across the adaptation process, which
is amplified by 10, 000 times for clarity.

E MORE VISUALIZATION RESULTS

In Figure 4, we exhibit the attention map in the fusion module and the number upon the blocks
denotes the mean of attention values across the adaptation process. In the forward process, the
concatenated audio and video token sequences z = {za1 , za2 , . . . , zan, zv1 , zv2 , . . . , zvm} are fed into
the fusion module. Thus, the corresponding attention map includes self-attention Ma2a,Mv2v and
cross-attention Ma2v,Mv2a, which can be expressed as:

M =

[
Ma2a Ma2v

Mv2a Mv2v

]
where the x2y denotes the attention when modality x is the query and modality y is the key.

How can we highlight the superiority of our method from the figure? For example, the first row
in the figure shows the attention maps when the video modality suffers from distribution shifts (i.e.,
fog). For robustness, the model should increase the importance of the unbiased modality, i.e., audio
self-attention Ma2a (top left) and video-to-audio cross-attention Mv2a (bottom left). Correspond-
ingly, Mv2v and Ma2v should be decreased. It is easy to observe that our method exhibits optimal
attention scores compared to other methods.

F MORE EXPERIMENTAL RESULTS

Table 8: Comparison with state-of-the-art methods on UPMC Food-101-C with corrupted image
modality (severity level 5) regarding Accuracy (%, ↑).

Noise Blur Weather Digital

Method Gauss. Shot Impul. Defoc. Glass Mot. Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Avg.
Source 82.8 82.2 82.6 84.6 84.3 85.4 83.0 82.2 84.3 81.5 89.2 81.2 88.1 88.1 88.0 84.5
• Tent 83.0 82.3 82.8 84.7 84.5 85.6 83.1 82.3 84.4 81.9 89.2 81.5 88.2 88.2 88.0 84.6
• EATA 83.1 82.5 82.9 84.7 84.5 85.6 83.2 82.4 84.5 82.0 89.2 81.6 88.2 88.2 88.0 84.7
• SAR 82.9 82.3 82.7 84.6 84.4 85.5 83.1 82.3 84.4 81.8 89.2 81.5 88.1 88.1 88.0 84.6
• READ 83.0 82.4 82.8 84.6 84.3 85.4 83.0 82.2 84.3 81.7 89.2 81.3 88.1 88.1 87.9 84.6
• Ours 84.0 83.6 83.9 85.3 85.2 86.0 83.9 83.4 84.8 83.2 89.3 82.8 88.4 88.5 88.2 85.4
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Table 9: Continual TTA on VGGsound-C with corrupted audio modality (severity level 5). Each
domain contains 1k samples.

Noise Weather

Method Setting Gauss. Traff. Crowd Rain Thund. Wind Avg.
Source - 39.4 22.7 16.7 23.2 29.7 26.4 26.4
Ours reset each shift 42.9 37.0 33.5 34.6 42.7 35.9 37.8
Ours continual 42.9 35.0 37.9 34.7 45.6 37.3 38.9

G MORE ABLATION STUDY

How does the LoRA rank influence the performance?

Table 10: Performance comparison under different LoRA ranks on VGGSound-C with corrupted
audio modality (severity level 5) regarding Accuracy (%, ↑).

Noise Weather

r Gauss. Traff. Crowd. Rain Thund. Wind Avg.

4 42.4 40.4 41.9 37.3 47.4 39.9 41.5
8 42.4 40.0 41.9 37.9 47.5 39.9 41.6
16 42.7 40.7 42.2 37.9 47.7 39.9 41.9
32 42.9 40.6 42.9 38.1 47.7 40.2 42.1
64 43.0 40.8 42.8 37.9 47.7 40.1 42.0

How does the number of tunable layers influence the performance?

We compared the performance and the number of parameters required when updating different num-
bers of layers. As the table illustrates, beyond updating the top three layers, additional layers provide
only marginal improvements. Our interpretation is that lower layers typically focus on extracting
generalizable low-level features, while higher layers are responsible for modeling more task-specific
semantic features. Consequently, the self-attention mechanisms in these higher layers exhibit supe-
rior transferability.

Table 11: Ablation study for the number of tunable layers D on VGGSound-C with corrupted audio
modality (severity level 5) regarding Accuracy (%, ↑).

Noise Weather

Method D Gauss. Traff. Crowd Rain Thund. Wind Avg. Param. (M)
Tent - 11.6 3.0 1.9 3.1 5.9 4.2 4.9 0.22
READ - 40.3 29.1 26.9 30.8 36.5 30.7 32.4 1.77
Ours 1 41.3 35.5 36.1 34.0 41.2 35.6 37.3 0.06
Ours 2 42.2 36.8 38.0 35.7 43.7 37.3 38.9 0.10
Ours 3 42.6 38.1 39.7 36.6 44.9 38.5 40.1 0.14
Ours 4 42.6 38.9 40.5 37.4 46.2 39.1 40.8 0.17
Ours 5 42.8 39.0 40.7 37.3 47.0 39.4 41.0 0.21
Ours 11 42.7 40.7 42.2 37.9 47.7 39.9 41.9 0.43
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