

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PARAMETER-EFFICIENT ATTENTION TRANSFER FOR MULTI-MODAL TEST-TIME ADAPTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Test-time adaptation (TTA) has proven effective in enhancing model robustness against unforeseen distribution shifts during testing. However, current TTA methods struggle when applied to multi-modal models. In this paper, we explore multi-modal TTA and reveal two key limitations of existing approaches: i) difficulty in mitigating attention shifts when dealing with biased modalities, and ii) insufficient exploitation of the synergy and complementarity among multiple modalities. To address these challenges, we propose a novel method called **Parameter-Efficient Attention Transfer** (PEAT), which strikes a balance between performance and efficiency. Specifically, we first discuss the modulation strategies for updating various model parameters and propose to adapt the self-attention modules. Furthermore, we design a modality-aware low-rank adaptation method to dynamically learn cross-domain attention patterns. Our approach introduces intra-modal and inter-modal interactions for LoRAs, where the former captures uni-modal domain information through modality-specific parameters, while the latter promotes cross-modal feature alignment in a unified space through modality-shared parameters. Extensive experiments conducted across various distribution-shifted modalities, including video, image, audio, and text, demonstrate that PEAT consistently outperforms existing state-of-the-art methods.

1 INTRODUCTION

In recent years, multi-modal learning has demonstrated significant advancements against cross-modal heterogeneity (Baltrušaitis et al., 2019; Bao et al., 2022; Wang et al., 2023; Guo et al., 2024b). In this context, multi-modal pre-training has emerged as a promising avenue for associating multiple communicative modalities, allowing for enhanced comprehension and performance in the various real-world downstream tasks, particularly in the audio-visual (Arandjelović & Zisserman, 2018; Gong et al., 2023) and vision-language (Radford et al., 2021; Li et al., 2022) domains.

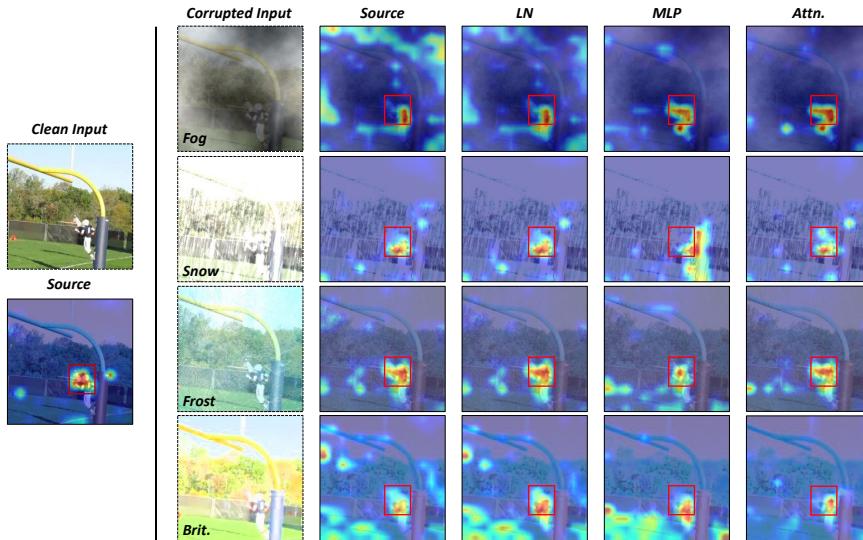
In the pre-training paradigm, multi-modal pre-trained models can be adapted to specific domains through fine-tuning. This paradigm exhibits remarkable performance in the assumption of the known and fixed test domain. However, such a mild assumption is often violated in non-stationary and changing practical environments. In open-world scenarios, test samples may encounter natural variations or corruptions (*i.e.*, *distribution shifts*), which can be attributed to unpredictable factors such as weather changes, sensor degradation, etc (Hendrycks & Dietterich, 2019). Although multi-modal data boast rich and comprehensive information representation, the multi-modal models still suffer significant performance degradation against test-time distribution shifts.

Recently, fully test-time adaptation (TTA) methods propose to adapt the model using unlabeled samples during testing, which have been shown to boost robustness against distribution shifts in the test domain. Toward this goal, existing works focus on mitigating the *covariance shifts* across domains via normalization statistics adaptation. Specifically, the affine parameters are optimized in each test batch with self-supervised or unsupervised objectives, including, but not limited to, entropy minimization (Wang et al., 2021; Niu et al., 2022; 2023), pseudo labeling (Liang et al., 2020; Wang et al., 2022), and consistent regularization (Zhang et al., 2022).

However, these methods are constrained to uni-modal tasks, exhibiting suboptimal improvements when applied to multi-modal models. Therefore, it is worth exploring *how to bridge the gap between uni-modal and multi-modal adaptation*. For this issue, we rethink the limitations of existing

054
 055 Table 1: Qualitative comparison of adapting various modulation parameters on VGGSound-C
 056 dataset with corrupted audio modality (severity level 5) regarding **Accuracy** (%), \uparrow). “LN”, “MLP”,
 057 “SAF” and “Attn.” denote the layer normalization, multilayer perceptron, self-adaptive attention-
 058 based fusion, and self-attention, respectively. Δ (%), \uparrow) represents the average improvement in
 059 model accuracy compared with the source model. The **bold** number indicates the best result.

Method	Noise			Weather			Avg.	Δ	Param.
	Gauss.	Traff.	Crowd.	Rain	Thund.	Wind			
Source	37.2	21.2	16.8	21.6	27.3	25.5	24.9	-	-
• LN	41.3	33.5	32.3	32.2	38.6	34.3	35.4	+10.5	0.22M
• MLP	37.2	39.3	40.3	34.4	46.2	37.8	39.2	+14.3	108.62M
• SAF	38.8	31.7	31.9	30.5	38.0	32.2	33.9	+9.0	1.77M
• Attn.	41.5	41.1	43.1	37.1	47.8	39.8	41.7	+16.8	40.75M



087 Figure 1: Grad-CAM visualization on ViT-based encoders with various modulation parameters.
 088 The comparisons are conducted with real-world weather corruptions, including fog, snow, frost, and
 089 brightness. For clear presentation, we introduce the **red box** to indicate the high activation region in
 090 the unbiased attention pattern, i.e., the discriminative semantic objective. Specifically, the label of
 091 the sample is *passing American football (in game)*, and the corresponding semantic objective is the
 092 running football player.

093
 094 TTA methods in multi-modal scenarios. On the one hand, we discover that normalization statistics
 095 adaptation suffers from a challenge of *attention shifts* when dealing with biased modalities. As illus-
 096 trated in Figure 1, the adapted model mistakenly focuses on biased and non-discriminative semantics
 097 (e.g., lawn, sky) when processing the sample with the label *passing American football (in game)*. In
 098 contrast, self-attention adaptation maintains a stable information flow on discriminative semantics
 099 (i.e., football player). In this paper, we argue that attention shifts are the primary factor preventing
 100 model generalization across domains. The results in Table 1 further corroborate the relationship
 101 between attention shifts and performance, where updating self-attention modules significantly out-
 102 performs other modulation parameters (e.g., LN, MLP). On the other hand, most methods focus
 103 on uni-modal adaptation and adapt modality-specific encoders independently, ignoring the synergy
 104 and complementarity in multi-modal adaptation. Although Shin et al. (2022) jointly consider multi-
 105 modal information to construct reliable pseudo-labels, this is established on the output space rather
 106 than the feature space, struggling to model complex modality associations. In conclusion, our work
 107 mainly focuses on two aspects: i) the attention shifts in distribution-shifted modalities and ii) the
 108 multi-modal synergy and complementarity.

From these observations, we develop a novel TTA approach oriented towards multi-modal models, called parameter-efficient attention transfer (PEAT). In the method, we counter attention shifts by performing adaptation on self-attention modules instead of layer normalizations. Motivated by Hu et al. (2022), the attention updates are learned in a smaller subspace via Low-Rank Adaptation (LoRA). Meanwhile, we propose a modality-aware LoRA method to introduce intra-modal and inter-modal interactions between cross-layer and cross-modality LoRAs. Specifically, our model use modality-specific parameters to compress the domain information of different modalities into a low-rank space, and then use modality-shared parameters to project them into a unified space, promoting feature alignment between modalities. In this way, we trade off parameter efficiency and performance, not only harnessing redundancy in LoRA parameters but also considering synergy and complementarity in multi-modal adaptation.

Our main contributions can be summarized as:

- We rethink the test-time adaptation (TTA) for multi-modal models, highlighting the *attention shifts* in distribution-shifted modalities, and the multi-modal synergy and complementarity.
- We propose a parameter-efficient attention transfer (PEAT) method for multi-modal TTA, obtaining a trade-off between performance and efficiency.
- We extend a vision-language benchmark dataset for multi-modal TTA and introduce eight text corruption types at character, word, and sentence levels. Extensive experiments with corruptions in various modalities, including video, image, audio, and text, demonstrate that PEAT improves the performance of entropy-based TTA method in multi-modal contexts.

2 RELATED WORK

Test-Time Adaptation (TTA) refers to domain adaptation in a source-free and online manner, which has been shown to boost model robustness against distribution shifts during testing. In the setting of fully TTA, the model must adapt given only the pre-trained parameters and the unlabeled test data. Tent (Wang et al., 2021), as the pioneer work, proposes to conduct adaptation on the affine parameters in normalization layers with entropy minimization. Since TTA proved effective as a general adaptation setting, subsequent works have expanded its practicality in a broader range of contexts, including, but not limited to, i) robust adaptation (Niu et al., 2022; 2023; Yuan et al., 2023; Lim et al., 2023) for practical scenarios involving mixed domain shifts, small batch sizes, label shifts, etc.; ii) continual adaptation (Wang et al., 2022; Lee et al., 2024a) against continually changing distribution shifts, which suffers from error accumulation and catastrophic forgetting; iii) efficient adaptation (Song et al., 2023; Niu et al., 2024) for resource-limited on-device learning.

However, these works are constrained to uni-modal adaptation, demonstrating suboptimal improvements when applied to multi-modal models. A recent work called READ (Yang et al., 2024) attributes it to multi-modal reliability bias and proposes self-adaptive attention-based fusion (SAF) to mitigate the dominance of biased modalities. Compared to READ, our work has the following key differences. i) Motivation differences. READ focuses on solving multi-modal reliability bias through self-adaptive fusion. However, this work is based on the observation that normalization adaptation methods (e.g., SAR) struggle with attention shifts; thus, we aim to find more effective adaptation parameters. ii) Modulation parameter differences. We propose the attention transfer method to dynamically learn cross-domain attention patterns in modality encoders rather than in the fusion module. iii) Updating method differences. READ directly updates the attention-based fusion module. Our work proposes a low-rank adaptation method with intra-modal and inter-modal interactions, which reduces the number of tunable parameters and considers the multi-modal association.

Parameter-Efficient Fine-Tuning (PEFT) is a technique designed to adapt large pre-trained models for specific downstream tasks without requiring full retraining. PEFT updates only a small subset of additional parameters while freezing the majority of the model’s structure, offering significant advantages in terms of efficiency, accessibility, and adaptability. The promising advances in this sphere include adapter-based methods (Rebuffi et al., 2017; Houlsby et al., 2019), LoRA-based methods (Hu et al., 2022; Guo et al., 2024a), prompt-based methods (Lester et al., 2021), and many other variants (Li & Liang, 2021; Ben Zaken et al., 2022). Among these, LoRA-based methods have achieved a trade-off between parameter efficiency and performance, attracting widespread attention in practical applications. However, recent research observes the redundancy of LoRA parameters.

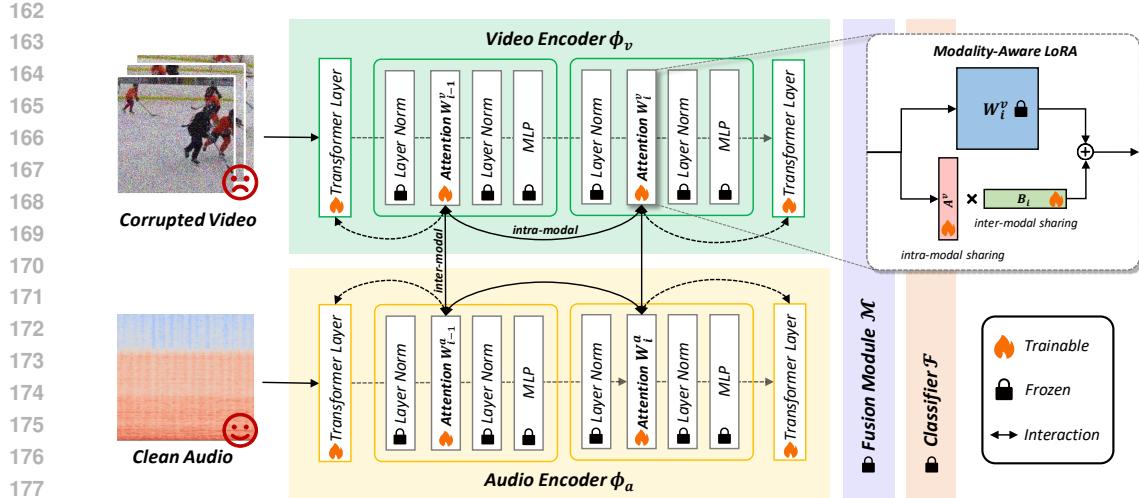


Figure 2: The illustration of Parameter-Efficient Attention Transfer (PEAT). During adaptation, the corrupted modalities are input into corresponding modality-specific encoders, and the output embeddings are concatenated at the token level for fusion. In the method, we update self-attention projections both in the encoders and the fusion module using Low-Rank Adaptation (LoRA). To further achieve multi-modal collaboration, we introduce the Modality-Aware LoRA method with intra-modal interactions (*i.e.*, \mathbf{A}^a and \mathbf{A}^v) and inter-modal interactions (*i.e.*, \mathbf{B}_i).

VB-LoRA (Li et al., 2024) replaces low-rank matrices with a shared vector bank. RaSA (He et al., 2025) demonstrates that sharing ranks across layers leads to lower reconstruction error and thus better expressive capacity. These findings collectively suggest that LoRA parameters have not been fully utilized and that different LoRAs exhibit similarities across layers and modules. In this paper, we further explore the redundancy in LoRA parameters and introduce multi-modal interactions using shared low-rank matrices.

3 METHODOLOGY

3.1 PRELIMINARIES

Problem Definition. Without loss of generality, we consider multi-modal TTA within the context of an audio-video classification task. Specifically, we utilize the most popular architecture in multi-modal models, featured with modality-specific encoders and a modality-unified fusion module, which can be denoted as $f(\cdot) = \{\phi_a(\cdot), \phi_v(\cdot), \mathcal{M}(\cdot), \mathcal{F}(\cdot)\}$, where $\phi_a(\cdot)$ and $\phi_v(\cdot)$ refer to the transformer encoders for audio and video modality, $\mathcal{M}(\cdot)$ and $\mathcal{F}(\cdot)$ represent the fusion module and the following classification head.

Domain adaptation aims to transfer the model from the source domain $P(\mathbf{x})$ to the target domain $Q(\mathbf{x})$, where $P(\mathbf{x})$ and $Q(\mathbf{x})$ have a large distribution gap. Before adaptation, the base model $f_\theta(\cdot)$ parameterized with θ has been pre-trained on the labeled data $\mathcal{D}_{source} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$, where the multi-modal input $\mathbf{x}_i = \{x_i^a, x_i^v\} \sim P(\mathbf{x})$ consists of audio x_i^a and video x_i^v pairs. $f_\theta(\cdot)$ can exhibit excellent inference performance on the in-distribution (ID) test samples drawn from $P(\mathbf{x})$ but struggles to generalize to out-of-distribution (OOD) samples $\mathcal{D}_{target} = \{\mathbf{x}_i\}_{i=1}^M \sim Q(\mathbf{x})$. In this paper, we propose a parameter-efficient adaptation method using low-rank adaptation (LoRA).

LoRA models the incremental update of a pre-trained weight matrix $\mathbf{W}_0 \in \mathbb{R}^{d_1 \times d_2}$ by the product of two low-rank matrices $\mathbf{A} \in \mathbb{R}^{d_1 \times r}$ and $\mathbf{B} \in \mathbb{R}^{d_2 \times r}$, where $r \ll \{d_1, d_2\}$. For $\mathbf{h} = \mathbf{W}_0 \mathbf{x}$, the modified forward pass is

$$\mathbf{h} = \mathbf{W}_0 \mathbf{x} + \Delta \mathbf{W} \mathbf{x} = \mathbf{W}_0 \mathbf{x} + \mathbf{A} \mathbf{B}^\top \mathbf{x}. \quad (1)$$

In practical applications, the matrix \mathbf{A} is initialized with a random Gaussian distribution and \mathbf{B} with zeros, setting the initial $\Delta \mathbf{W}$ to zero for training.

216
217

3.2 PARAMETER-EFFICIENT ATTENTION TRANSFER

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

Motivating Observation. Transformer has emerged as the most popular architecture for scaling in multi-modal learning. Therefore, we highlight the exploration of the adaptability of transformer-based models. The mainstream TTA methods (Niu et al., 2023) tend to mitigate covariance shift with layer normalization (LN) adaptation. Recent work (Yang et al., 2024) has introduced self-adaptive attention-based fusion (SAF) against multi-modal reliability bias. In order to determine the most effective modulation parameters, we conduct empirical studies on various transformer components, including LN, MLP, SAF, and self-attention. It is worth noting that, to ensure a fair comparison, all experiments were performed with the same unsupervised objectives, avoiding collapse during the adaptation process. As demonstrated in Table 1, self-attention adaptation exhibits significant superiority compared to other modulation parameters. In the transformer architecture, the attention map $\text{softmax}(QK^\top)$ serves as the only way for information to flow between tokens. For further discussion, we explore the attention map in transformer layers. According to visualization results in Fig. 1, the source model mistakenly focuses on biased and non-discriminative semantics (e.g., lawn, sky) under distribution shifts. Consistent with the quantitative experiments, LN adaptation fails to improve the attention patterns of the source model, while self-attention adaptation captures the class-related objective (i.e., football player) from distribution-shifted contexts. In this paper, we refer to this phenomenon of misfocus or wrong activation in attention maps as *attention shifts*. Based on the above observations, we believe that attention shifts impair the expressiveness of biased modalities, leading to information discrepancies across modalities. To address this, we propose optimizing the biased attention pattern during testing by leveraging a signal derived from entropy minimization.

237
238
239
240
241
242
243

Attention Transfer. The *attention shifts* illustrate the limitation of LN adaptation (e.g., SAR (Niu et al., 2023)) for transformer-based models. Therefore, we propose a novel approach of *attention transfer*, which aims to dynamically learn attention patterns across domains. Specifically, we conduct self-attention adaptation in modality-specific encoders $\phi_a(\cdot)$ and $\phi_v(\cdot)$, while keeping the fusion module $\mathcal{M}(\cdot)$ and the classification head $\mathcal{F}(\cdot)$ frozen. In this way, the model can maintain a stable information flow on the most discriminative content, promoting the alignment of multi-modal representations from the target domains to the source domain.

244
245
246
247
248
249
250
251
252

Notably, self-attention adaptation is an effective but not efficient method. In transformer layers, the embedding dimension is denoted as d_{model} , then a layer normalization comprises $d_{\text{model}} \times 2$ parameters, while an attention module encompasses $(d_{\text{model}} + 1) \times d_{\text{model}} \times 3$ parameters. The number of parameters in self-attention modules is significantly larger than that of layer normalizations. To address this, we develop a parameter-efficient attention transfer method via low-rank adaptation (LoRA). Specifically, following Eq. 1, the low-rank updates $\Delta \mathbf{W}$ are incorporated into the query \mathbf{W}_Q , key \mathbf{W}_K and value \mathbf{W}_V projection matrices in the self-attention module. In this way, the number of parameters required can be decreased to $d_{\text{model}} \times r \times 4$. Since $r \ll d$, it has a comparable number of parameters to LN. The $\Delta \mathbf{W}$ in multi-modal models can be decomposed as:

253

$$\Delta \mathbf{W}_i^a = \mathbf{A}_i^a \mathbf{B}_i^{a\top}, \Delta \mathbf{W}_i^v = \mathbf{A}_i^v \mathbf{B}_i^{v\top}, i \in [0, D_s), \quad (2)$$

254

where D_s denotes the number of modality-specific layers in encoders.

255
256
257
258
259
260
261
262
263

One intuitive observation is that, when a multi-modal model suffers from distribution shifts, its robustness usually depends on the reliable modality information. READ (Yang et al., 2024) is motivated by this insight and propose self-adaptive attention-based fusion (SAF) to make the model focus on unbiased modalities. However, this method cannot improve the degraded modality representations, leading to a low information gain. Thus, our method proposes to leverage cross-modal information to generate reliable modality representations. Toward this goal, we introduce intra-modal and inter-modal interactions between LoRAs, taking into account synergy and complementarity between multiple modalities. Specifically, we achieve the interactions by shared low-rank matrices while reducing the redundancy in LoRA parameters.

264
265
266
267
268
269

Intra-Modal Interaction aims to construct domain information that is independent between modalities but consistent within modalities. During inference, the distribution-shifted modality input is processed by a sequence of transformer layers. The shared domain knowledge ensures a consistent understanding of domain-specific features, maintaining a stable and effective information flow in the model. In the method, the matrices \mathbf{A}_i^a and \mathbf{A}_i^v in Eq. 2 are shared in each modality encoder, which can be uniformly expressed as \mathbf{A}_a and \mathbf{A}_v , i.e., $\mathbf{A}_0^a = \mathbf{A}_1^a = \dots = \mathbf{A}_D^a = \mathbf{A}^a$ and $\mathbf{A}_0^v = \mathbf{A}_1^v = \dots = \mathbf{A}_D^v = \mathbf{A}^v$.

270 **Inter-Modal Interaction** aims to model semantic consistency across modalities. In real-world sce-
 271 narios, different modalities are often closely related. Taking audio-visual learning as an example,
 272 both the barking sound of the dog and its appearance can be related to the concept of “dog”, which is
 273 called *semantic consistency*. In multi-modal adaptation, this cross-modal consistency allows biased
 274 modalities to be enhanced by reliable information from other modalities. To establish a bridge be-
 275 tween modalities, the low-rank matrices \mathbf{B}_i^a and \mathbf{B}_i^v in Eq. 2 share parameters layer by layer between
 276 modality-specific encoders, which can also be uniformly expressed as \mathbf{B}_i^s , *i.e.*, $\mathbf{B}_i^a = \mathbf{B}_i^v = \mathbf{B}_i$.

277 In this way, modality-specific parameters compress the information of different modalities into a
 278 low-rank space, and then modality-shared parameters project them into a unified space, promoting
 279 cross-modal feature alignment.

280

281 3.3 SOURCE-AWARE ENTROPY MINIMIZATION

282

283 According to the setting of multi-modal TTA, attention transfer is performed in an unsupervised
 284 manner. To mitigate the negative transfer, the source domain knowledge is leveraged to provide
 285 regularization for the entropy minimization.

286 During adaptation, different samples produce various effects, and samples with high confidence are
 287 more valuable for domain transfer. Existing works (Niu et al., 2022; 2023) have utilized entropy
 288 as the confidence metric. Another related research (Lee et al., 2024b) focuses on the sensitivity to
 289 structural information, which is designed for visual modalities. In this paper, we attempt to employ
 290 source domain knowledge to judge the reliability of samples. Specifically, the samples that deviate
 291 far from the prior in the source domain are considered to have high uncertainty and are more likely
 292 to produce wrong gradients. Based on the assumption above, we propose to attach higher weights
 293 to samples with smaller divergence and lower entropy in optimization.

294 In the implementation, the Jensen-Shannon divergence (\mathbf{D}_{JS}) (Menéndez et al., 1997) of predictions
 295 measures the distance of each sample that deviates from the source domain. Formally, the sample-
 296 adaptive weight is given by:

$$297 \quad w(\mathbf{x}) = \frac{1}{\exp[\mathbf{D}_{JS}(f_{\theta_t}(y|\mathbf{x}) \| f_{\theta_0}(y|\mathbf{x})) \cdot \mathbf{H}(f_{\theta_t}(y|\mathbf{x}))]} \quad (3)$$

298 where $f_{\theta_t}(y|\mathbf{x})$ denotes the softmax output of the adapted model at epoch t , $\mathbf{H}(\cdot)$ represents the
 299 information entropy. Correspondingly, θ_0 is the parameters of the source model, which can be easily
 300 obtained from θ_t by disabling LoRA.

301 With the source-aware weight, the sample-wise loss of improved entropy minimization can be ex-
 302 pressed as:

$$303 \quad \mathcal{L}_{ent} = -w(\mathbf{x}) \sum_{y \in \mathcal{C}} f_{\theta_t}(y|\mathbf{x}) \log f_{\theta_t}(y|\mathbf{x}) \quad (4)$$

304 Furthermore, adaptation using entropy minimization tends to cause collapse, *i.e.*, predicting all sam-
 305 ples to a single class (Niu et al., 2023), which attributes to the unbalanced label distribution. Thus, a
 306 diversity-promoting term $\mathcal{L}_{div} = \sum_{y \in \mathcal{C}} \hat{p}_c \log \hat{p}_c$ is introduced following preliminary works (Liang
 307 et al., 2020), where $\hat{p}_c = \frac{1}{B} \sum_{i=1}^B f_{\theta_t}(y|\mathbf{x}_i)$ is the average of softmax output of test samples in each
 308 mini-batch of size B , and \mathcal{C} is the model output space.

309

310 4 EXPERIMENTS

311

312 **Datasets and Models.** Previous research (Yang et al., 2024) has constructed two audio-visual bench-
 313 mark datasets, Kinetics (Kay et al., 2017) and VGGSound (Chen et al., 2020), and introduced 15
 314 types of video corruptions and 6 types of audio corruptions. The ViT-based CAV-MAE (Gong et al.,
 315 2023) model serves as the source model, which is pre-trained on web-scale audio-visual data and
 316 fine-tuned on the training sets of Kinetics50 and VGGSound dataset.

317 To further verify the applicability of multi-modal TTA methods, we provide a vision-language
 318 dataset, UPMC-FOOD101 (Wang et al., 2015), as a novel benchmark and introduce 8 types of
 319 text corruptions at the character, word, and sentence levels. We use the pre-trained bert-base-
 320 uncased (Devlin et al., 2019) model to extract text features and use pre-trained ViT (Kolesnikov

324
 325 Table 2: Comparison with state-of-the-art methods on Kinetics-C with corrupted video modality
 326 (severity level 5) regarding **Accuracy (%)**, ↑).

327 328 Method	Noise				Blur				Weather				Digital			
	Gauss.	Shot	Impul.	Defoc.	Glass	Mot.	Zoom	Snow	Frost	Fog	Brit.	Contr.	Elas.	Pix.	JPEG	Avg.
Source	46.9	48.5	46.9	67.4	62.1	71.5	66.7	61.3	61.2	46.6	75.3	52.0	66.2	66.5	62.2	60.1
• Tent (ICLR’21)	46.3	47.4	46.4	67.5	62.6	71.4	67.8	61.7	61.8	37.6	75.4	51.2	67.3	67.6	62.9	59.7
• EATA (ICML’22)	46.9	48.2	47.0	67.6	63.4	71.4	67.8	62.2	62.3	47.2	75.3	52.1	66.9	67.4	63.2	60.6
• SAR (ICLR’23)	47.0	48.4	47.1	67.4	62.1	71.5	66.8	61.3	61.1	46.5	75.4	52.1	66.2	66.5	62.4	60.1
• READ (ICLR’24)	48.9	49.9	48.7	67.8	65.0	71.7	68.8	64.0	64.5	55.2	75.5	53.4	68.2	68.2	65.0	62.3
• TSA (ICML’25)	52.6	52.3	52.0	68.7	68.0	70.7	68.8	65.2	66.6	64.3	74.6	57.4	70.5	69.0	66.2	64.5
• Ours	51.4	51.8	50.6	70.5	70.8	73.8	72.4	67.6	68.2	66.7	75.9	58.9	73.5	72.7	70.4	66.4

335
 336 Table 3: Comparison with state-of-the-art methods on Kinetics-C (left) and VGGSound-C (right)
 337 with corrupted audio modality (severity level 5) regarding **Accuracy (%)**, ↑).

339 340 Method	Noise				Weather				Noise				Weather			
	Gauss.	Traff.	Crowd.	Rain	Thund.	Wind	Avg.	Gauss.	Traff.	Crowd.	Rain	Thund.	Wind	Avg.		
Source	74.0	65.5	67.9	70.4	67.9	70.3	69.3	37.2	21.2	16.8	21.6	27.3	25.5	24.9		
• Tent	73.9	67.2	69.2	70.4	66.5	70.6	69.6	11.6	3.0	1.9	3.1	5.9	4.2	4.9		
• EATA	73.8	67.0	69.0	70.6	69.0	70.5	70.0	40.3	27.5	26.0	28.5	35.3	31.4	31.5		
• SAR	73.7	65.8	68.3	70.5	68.1	70.2	69.4	38.0	8.9	8.6	14.5	28.3	18.1	19.4		
• READ	74.4	68.8	69.8	71.2	71.6	70.6	71.0	40.3	29.1	26.9	30.8	36.5	30.7	32.4		
• TSA	74.5	69.6	70.5	71.4	72.0	71.0	71.5	41.5	31.8	30.9	32.6	38.9	32.6	34.7		
• Ours	75.5	72.5	73.7	72.6	75.6	72.9	73.8	42.7	40.7	42.2	37.9	47.7	39.9	41.9		

347
 348 et al., 2021) on ImageNet to extract image features. Meanwhile, we use transformer encoders as
 349 modality encoders and the fusion module. The model is trained on the training sets of UPMC-
 350 FOOD101, obtaining the corresponding source models.

351 In the experiments, the clean datasets are the source domain, and the corrupted datasets are the
 352 target domain. As a result, we obtain the Kinetics50-C and VGGSound-C benchmarks with either
 353 corrupted audio or corrupted video modalities and the UPMC-FOOD101-C benchmark with either
 354 corrupted text or corrupted image modalities. Each type of corruption has five levels of severity. In
 355 order to check the performance under the worst corruption case, we focus on testing with corrupted
 356 data of high severity level.

357 **Compared Methods.** To evaluate the proposed method, we conduct contrast experiments with the
 358 following state-of-the-art (SOTA) methods, which involve uni-modal TTA and multi-modal TTA.
 359 Tent (Wang et al., 2021), EATA (Niu et al., 2022), and SAR (Niu et al., 2023) are representative
 360 entropy-based methods for uni-modal TTA, while READ (Yang et al., 2024) and TSA (Chen et al.,
 361 2025) are designed for multi-modal TTA tasks.

362 **Implementation Details.** For test-time adaptation, we update parameters using the Adam optimizer,
 363 with a batch size of 64 for audio-visual benchmarks, 128 for vision-language benchmark, and a
 364 learning rate of 0.0001 for all benchmarks. Additionally, we initialize trainable LoRA matrices with
 365 Kaiming uniform initialization (He et al., 2015), with $r = 16$ and $\alpha = 16$ for audio-visual benchmarks
 366 and $r = 4$ and $\alpha = 4$ for the vision-language benchmark.

367 4.1 COMPARISON WITH PREVIOUS METHODS

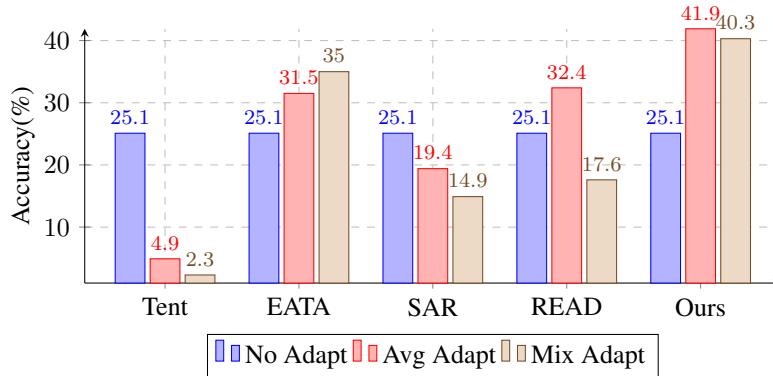
368
 369 **Results under Uni-Modal Distribution Shifts.** Uni-modal distribution shifts have been discussed
 370 in the recent multi-modal TTA works (Yang et al., 2024; Chen et al., 2025). For a comprehensive
 371 evaluation, we conduct experiments under two challenging settings: i) distribution shifts of high
 372 severity ii) mixed distribution shifts.

373 *i) Distribution Shifts of High Severity:* To highlight the effectiveness and robustness, the following
 374 comparison focuses on the challenging scenarios where the dominant modalities suffer from high-
 375 severity corruptions. Notably, the dominant modalities of the Kinetics-C benchmark, VGGSound-C
 376 benchmark, and UPMC-FOOD101-C benchmark are video, audio, and text modalities, respectively.

378

379
380
Table 4: Comparison with state-of-the-art methods on UPMC-FOOD101-C with corrupted text
modality (severity level 5) regarding **Accuracy (%)**, \uparrow .

Method	Character			Word			Sentence		Avg.
	Insert	Replace	Delete	Synon.	Split	Delete	Exten.	Trans.	
Source	54.6	53.6	54.9	87.4	77.7	75.0	74.5	69.2	68.3
• Tent	54.4	53.7	55.2	87.5	78.0	75.1	75.6	69.5	68.6
• EATA	55.8	54.7	55.4	87.4	77.9	75.1	75.4	69.5	68.9
• SAR	55.2	54.3	55.5	87.5	78.0	75.2	75.7	69.5	68.9
• READ	55.8	54.6	55.3	87.4	77.7	75.0	74.4	69.4	68.7
• Ours	59.6	58.1	57.7	87.5	78.5	75.2	80.1	70.0	70.8

403
404
Figure 3: Performance of TTA methods under the mixture of 6 different audio corruption types
405
(VGGSound-C).

406 The comparison results on the three benchmarks are reported in Tables 2, 3 and 4, where our PEAT
407 method has shown significant superiority compared to existing methods when dealing with various
408 datasets and various modality corruptions. Compared to the previous SOTA methods, we achieve an
409 average performance improvement of 9.5% on the benchmark with audio corruptions, while 4.1%
410 and 2.1% on the benchmarks of audio and text corruptions, respectively. Meanwhile, PEAT has
411 been shown to achieve a balance between parameter efficiency and performance, which delivers a
412 significant improvement over LN adaption while only requiring a comparable number of parameters.

413 *ii) Mixed Distribution Shifts:* We evaluated the performance on a mixture of 6 audio corruption types
414 at severity levels 5 on the VGGSound-C benchmark. According to Figure 3, the mix adapt accuracy
415 of other methods is significantly lower than the average adapt accuracy across different severity
416 levels. In contrast, EATA and PEAT provide stronger robustness against various distribution shifts.

417 Results under Multi-Modal Distribution Shifts.

418 Existing methods only consider the mild setting under uni-
419 modal corruptions. It will be more
420 challenging to handle multi-modal
421 TTA tasks suffering from multiple
422 distribution-shifted modalities. Thus,
423 we explore the multi-modal distribu-
424 tion shifts on the audio-visual bench-
425 mark. For instance, in a snowy en-
426 vironment, heavy snow and strong
427 winds always occur together, which
428 causes distribution shifts both in the
429 sampling of video and audio modalities. According to the experimental results in Table 5, we ob-
430 serve that our method achieves an average performance improvement of 14.1% under multi-modal
431 distribution shifts, which proves that our method leverages reliable modality information to improve
the quality of modality representations.

420
421
422
423
424
425
426
427
428
429
430
431
Table 5: Comparison with state-of-the-art methods on VGGSound-C with corrupted audio and video modality
modality (severity level 5) regarding **Accuracy (%)**, \uparrow .

Method	Snow&Wind	Fog&Rain	Frost&Traff.	Brit.&Crowd.	Avg.
Source	8.8	5.0	8.9	9.1	7.9
• Tent	1.4	0.7	1.1	1.1	1.1
• EATA	10.4	4.9	9.3	11.4	9.0
• SAR	4.1	2.3	3.2	3.9	3.4
• READ	13.3	11.9	15.0	17.2	14.3
• Ours w/o SAEM	23.0	23.6	26.2	35.6	27.1
• Ours	24.9	24.9	27.5	36.3	28.4

432

433 Table 6: Ablation studies on VGGSound-C with corrupted audio modality (severity level 5) regarding
434 **Accuracy (%)**. All methods are compared in the context of attention transfer.

435

436 437 Method	Noise			Weather				438 439 440 441 Param.
	Gauss.	Traff.	Crowd.	Rain	Thund.	Wind	Avg.	
Full Tuning	41.7	41.3	43.2	37.7	48.1	40.4	42.1	38.98M
LoRA (baseline)	41.5	41.0	42.8	37.3	47.6	39.7	41.7	1.08M
+ intra-modal interaction	41.2	40.9	42.6	37.2	47.6	39.9	41.6	0.84M (\downarrow 22%)
+ inter-modal interaction	41.5	41.0	42.8	37.0	47.9	39.6	41.6	0.43M (\downarrow 77%)

442

443 4.2 ABLATION STUDIES

444

Effect of Parameter-Efficient Attention Transfer (PEAT). The proposed method is a LoRA-based approach with inter-modal and intra-modal interactions. Therefore, we evaluate the contribution of each component in the architecture. From Table 6, we observe that the interactions based on parameter sharing maintain superior performance while reducing the number of parameters. Our ablation experiments demonstrate that multi-modal LoRA is cross-layer and cross-modal correlated, and we exploit this property to improve parameter efficiency. More ablation results are included in G.

445

Effect of Source-Aware Entropy Minimization (SAEM). SAEM attaches higher weights to high-quality samples that are closer to the source domain. This allows SAEM to prevent the model from overfitting to noisy samples and maintain the knowledge of source domain. Intuitively, the effect of SAEM is more obvious in stronger OOD scenarios. Therefore, we conduct ablation experiments under the setting of multi-modal corruption. The results in Table 5 exhibit that SAEM yields a significant accuracy improvement of 1.3%. This improvement proves that the source domain knowledge is a effective tool to measure the confidence of samples.

450

451

452 4.3 EFFICIENCY COMPARISON

453

We conducted an efficiency analysis in terms of parameter count, memory usage, and inference speed. Since SAEM requires additional forward passes, it introduces an efficiency limitation and was therefore excluded from our evaluation. The results demonstrate that our method outperforms existing LN adaptation methods in accuracy while achieving higher efficiency. Compared to READ, which optimizes only the fusion layer, our method requires additional resources to update the modality encoders. However, as presented in Table 7, when the number of tunable layers N is reduced, our method consistently delivers superior performance while achieving memory and computational efficiency comparable to READ.

474

5 CONCLUSION

477

In this paper, we explore test-time adaptation (TTA) methods oriented towards multi-modal models. Based on empirical studies, we reveal two key limitations of existing methods. Firstly, layer normalization (LN) adaptation struggles to handle the attention shifts when processing distribution-shifted modalities. Moreover, existing methods tend to adapt each modality independently, ignoring multi-modal synergy and complementarity. To address these issues, we propose a parameter-efficient attention transfer (PEAT) method, which adapts self-attention modules to dynamically learn cross-modal attention patterns. For efficiency, we learn attention updates in a smaller space via low-rank adaptation (LoRA). Furthermore, we decouple the low-rank matrices into intra-modal and inter-modal shared knowledge, associating reliable information across modalities. Extensive experimental results demonstrate the superiority of our PEAT method in terms of performance and robustness.

486 REFERENCES
487

488 Relja Arandjelović and Andrew Zisserman. Objects that sound. In *European Conference on Com-*
489 *puter Vision*, 2018.

490 Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
491 A survey and taxonomy. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2019.

492 Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu, Owais Khan Mohammed, Kriti Aggarwal, Subho-
493 jit Som, Songhao Piao, and Furu Wei. Vlmo: Unified vision-language pre-training with mixture-
494 of-modality-experts. In *Advances in Neural Information Processing Systems*, 2022.

495 Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-
496 tuning for transformer-based masked language-models. In *Annual Meeting of the Association for*
497 *Computational Linguistics*, 2022.

498 Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-
499 visual dataset. In *International Conference on Acoustics, Speech and Signal Processing*, 2020.

500 Mingcai Chen, Baoming Zhang, Zongbo Han, Yuntao Du, Wenyu Jiang, Yanmeng Wang, Shuai
501 Feng, and Bingkun Bao. Test-time selective adaptation for uni-modal distribution shift in multi-
502 modal data. In *Test-Time Selective Adaptation for Uni-Modal Distribution Shift*, 2025.

503 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
504 bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
505 Thamar Solorio (eds.), *Annual Meeting of the Association for Computational Linguistics*, 2019.

506 Yuan Gong, Andrew Rouditchenko, Alexander H. Liu, David Harwath, Leonid Karlinsky, Hilde
507 Kuehne, and James R. Glass. Contrastive audio-visual masked autoencoder. In *International*
508 *Conference on Learning Representations*, 2023.

509 Zirun Guo, Xize Cheng, Yangyang Wu, and Tao Jin. A wander through the multimodal landscape:
510 Efficient transfer learning via low-rank sequence multimodal adapter. In *Annual AAAI Conference*
511 *on Artificial Intelligence*, 2024a.

512 Zirun Guo, Tao Jin, Jingyuan Chen, and Zhou Zhao. Classifier-guided gradient modulation for
513 enhanced multimodal learning. In *Advances in Neural Information Processing Systems*, 2024b.

514 Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
515 human-level performance on imagenet classification. *International Conference on Computer Vi-*
516 *sion*, 2015.

517 Zhiwei He, Zhaopeng Tu, Xing Wang, Xingyu Chen, Zhijie Wang, Jiahao Xu, Tian Liang, Wenxiang
518 Jiao, Zhuosheng Zhang, and Rui Wang. RaSA: Rank-sharing low-rank adaptation. In *Inter-*
519 *national Conference on Learning Representations*, 2025.

520 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
521 ruptions and perturbations. *International Conference on Learning Representations*, 2019.

522 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
523 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
524 In *International Conference on Machine Learning*, 2019.

525 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
526 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *International Con-*
527 *ference on Learning Representations*, 2022.

528 Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
529 narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew
530 Zisserman. The kinetics human action video dataset, 2017.

531 Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob Uszkoreit,
532 Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Sylvain Gelly, Thomas Unterthiner,
533 and Xiaohua Zhai. An image is worth 16x16 words: Transformers for image recognition
534 at scale. In *International Conference on Learning Representations*, 2021.

540 Daeun Lee, Jaehong Yoon, and Sung Ju Hwang. Becotta: Input-dependent online blending of experts
 541 for continual test-time adaptation. In *International Conference on Machine Learning*, 2024a.

542

543 Jonghyun Lee, Dahuin Jung, Saehyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang, and Sun-
 544 groh Yoon. Entropy is not enough for test-time adaptation: From the perspective of disentangled
 545 factors. In *International Conference on Learning Representations*, 2024b.

546 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 547 tuning. In *Empirical Methods in Natural Language Processing*, 2021.

548

549 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping language-image pre-
 550 training for unified vision-language understanding and generation. In *International Conference
 551 on Machine Learning*, 2022.

552 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
 553 *Annual Meeting of the Association for Computational Linguistics*, 2021.

554

555 Yang Li, Shaobo Han, and Shihao Ji. Vb-lora: Extreme parameter efficient fine-tuning with vector
 556 banks. In *Neural Information Processing Systems*, 2024.

557 Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
 558 hypothesis transfer for unsupervised domain adaptation. In *International Conference on Machine
 559 Learning*, 2020.

560 Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. Ttn: A domain-shift aware batch
 561 normalization in test-time adaptation. *International Conference on Learning Representations*,
 562 2023.

563

564 M.L. Menéndez, J.A. Pardo, L. Pardo, and M.C. Pardo. The jensen-shannon divergence. *Journal of
 565 the Franklin Institute*, 1997.

566

567 Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
 568 Tan. Efficient test-time model adaptation without forgetting. In *International Conference on
 569 Machine Learning*, 2022.

570 Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiqian Wen, Yaofo Chen, Peilin Zhao, and Mingkui
 571 Tan. Towards stable test-time adaptation in dynamic wild world. In *International Conference on
 572 Learning Representations*, 2023.

573 Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time model
 574 adaptation with only forward passes. In *International Conference on Machine Learning*, 2024.

575

576 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 577 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 578 Sutskever. Learning transferable visual models from natural language supervision. In *Interna-
 579 tional Conference on Machine Learning*, 2021.

580 Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
 581 residual adapters. In *Advances in Neural Information Processing Systems*, 2017.

582

583 Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel Schulter, Buyu Liu, Sparsh Garg, In So
 584 Kweon, and Kuk-Jin Yoon. Mm-tta: Multi-modal test-time adaptation for 3d semantic segmen-
 585 tation. In *Computer Vision and Pattern Recognition*, 2022.

586 Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. Ecotta: Memory-efficient continual test-
 587 time adaptation via self-distilled regularization. In *Computer Vision and Pattern Recognition*,
 588 2023.

589 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
 590 test-time adaptation by entropy minimization. In *International Conference on Learning Repre-
 591 sentations*, 2021.

592

593 Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation. In
Computer Vision and Pattern Recognition, 2022.

594 Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
595 Owais Khan Mohammed, Saksham Singhal, Subhajit Som, and Furu Wei. Image as a foreign
596 language: Beit pretraining for vision and vision-language tasks. In *Computer Vision and Pattern*
597 *Recognition*, 2023.

598 Xin Wang, Devinder Kumar, Nicolas Thome, Matthieu Cord, and Frédéric Precioso. Recipe recog-
599 nition with large multimodal food dataset. In *International Conference on Multimedia Expo*
600 *Workshops*, 2015.

601 Mouxing Yang, Yunfan Li, Changqing Zhang, Peng Hu, and Xi Peng. Test-time adaption against
602 multi-modal reliability bias. In *International Conference on Learning Representations*, 2024.

603 Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios. In
604 *Computer Vision and Pattern Recognition*, pp. 15922–15932, 2023.

605 Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
606 augmentation. In *Advances in Neural Information Processing Systems*, 2022.

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 **A REPRODUCIBILITY STATEMENT**
649650 We have already elaborated on all the models or algorithms proposed, experimental configurations,
651 and benchmarks used in the experiments in the main body or appendix of this paper. Furthermore,
652 we declare that the entire code used in this work will be released after acceptance.
653654 **B THE USE OF LARGE LANGUAGE MODELS**
655656 We use large language models solely for polishing our writing, and we have conducted a careful
657 check, taking full responsibility for all content in this work.
658660 **C LIMITATIONS**
661662 Our work presents a parameter-efficient way to dynamically learn cross-domain attention patterns.
663 We acknowledge that, as with any research endeavor, limitations exist in our work. Firstly, although
664 the source-aware entropy minimization effectively mitigates overfitting on noisy samples, it requires
665 an additional forward process, which limits the inference efficiency. Furthermore, while our method
666 introduces inter-modal and intra-modal interactions by sharing the low-rank matrix between LoRAs,
667 it does not fully exploit the potential of multi-modal association. Further utilizing multi-modal
668 associations to enhance multi-modal test-time adaptation will be a promising approach.
669670 **D MORE DETAILS ABOUT THE BENCHMARKS**
671672 In this paper, we construct a new benchmark for multi-modal TTA upon the UPMC Food-101 Wang
673 et al. (2015) dataset. UPMC Food-101 is a classification dataset that contains 90,704 image-text
674 pairs and 101 classes, where the image and text pairs are noisy since all the images are obtained in
675 an uncontrolled environment.
676677 To explore adaptation to distribution shifts, we introduce different corruption types for image and
678 text modalities. For images, we follow Hendrycks & Dietterich (2019) to apply 15 kinds of corrup-
679 tions, and each corruption is with 5 kinds of severity levels for extensive validations. Specifically,
680 the corruptions on image modality include “Gaussian Noise”, “Shot Noise”, “Impulse Noise”, “De-
681 focus Blur”, “Glass Blur”, “Motion Blur”, “Zoom Blur”, “Snow”, “Frost”, “Fog”, “Brightness”,
682 “Elastic”, “Pixelate”, “Contrast”, and “JPEG”. Similar to the image modality, we design 8 kinds of
683 text corruptions at the character, word and sentence levels. To be specific,
684685

- 686 • *Character-level Corruptions* simulates typos in manual input or machine
687 recognition, including insertion, replacement, and deletion. Given a char-
688 acter sequence $s = \{c_1, c_2, \dots, c_n\}$, the result of insertion can be ex-
689 pressed as $s' = \{c_1, \dots, c_k, \hat{c}, c_{k+1}, \dots, c_n\}$, while replacement yields $s' = \{c_1, \dots, c_{k-1}, \hat{c}, c_{k+1}, \dots, c_n\}$, and deletion gives $s' = \{c_1, \dots, c_{k-1}, c_{k+1}, \dots, c_n\}$,
690 where $k \in [1, n]$ denotes a random position number and \hat{c} is a random letter.
- 691 • *Word-level Corruptions* evolve synonym replacement, splitting, and deletion. We assume
692 that the word sequence can be expressed as $s = \{w_1, w_2, \dots, w_n\}$. Synonym replacement
693 preserves general meaning while replacing words at a random position k , which results in
694 $s' = \{w_1, \dots, w_{k-1}, \hat{w}, w_{k+1}, \dots, w_n\}$, where \hat{w} is one of the synonyms of w_k . Splitting
695 means splitting words into smaller units, which can be expressed as $s' = \{w_1, \dots, w_k[:u], w_k[u:], \dots, w_n\}$, where u is the split position in w_k . Deletion removes entire words,
696 which yields $s' = \{w_1, \dots, w_{k-1}, w_{k+1}, \dots, w_n\}$.
- 697 • *Sentence-level Corruptions* explore distribution shifts dominated by semantic variation.
698 Noise extension introduces irrelevant contexts τ into text s , which can be represented as
699 $\{\tau_1, \dots, s, \dots, \tau_m\}$. Back-translation means translating the text into another language
700 and then translating it back to the original language, where $s' = T_{e2c}(T_{c2e}(s))$, T_{e2c} and
701 T_{c2e} refer to the translators from English to Chinese and from Chinese to English.

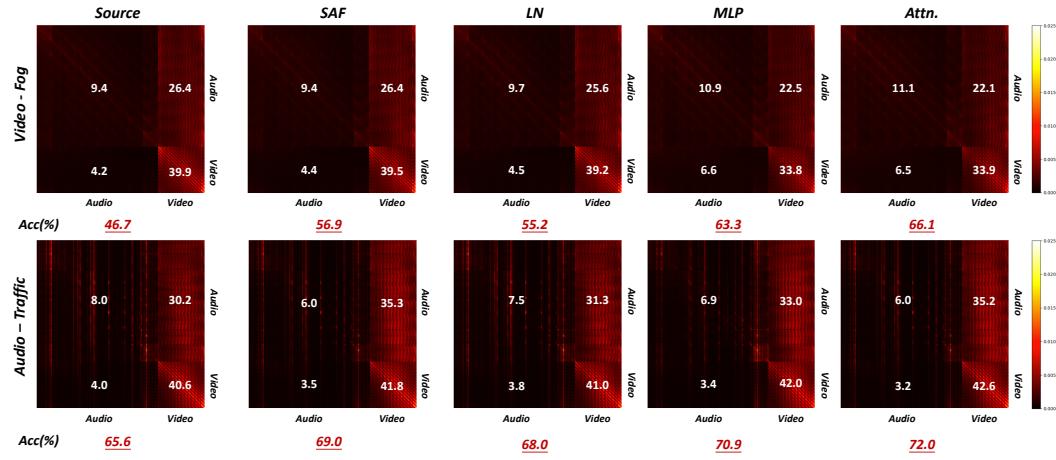


Figure 4: Visualization on the attention-based fusion module. The blocks of the top left and bottom right denote the self-attention between audios and videos, respectively. The blocks of the top right and bottom left denote the cross-attention from audio to video and video to audio, respectively. The number upon the blocks denotes the mean of attention values across the adaptation process, which is amplified by 10,000 times for clarity.

E MORE VISUALIZATION RESULTS

In Figure 4, we exhibit the attention map in the fusion module and the number upon the blocks denotes the mean of attention values across the adaptation process. In the forward process, the concatenated audio and video token sequences $\mathbf{z} = \{z_1^a, z_2^a, \dots, z_n^a, z_1^v, z_2^v, \dots, z_m^v\}$ are fed into the fusion module. Thus, the corresponding attention map includes self-attention M^{a2a}, M^{v2v} and cross-attention M^{a2v}, M^{v2a} , which can be expressed as:

$$M = \begin{bmatrix} M^{a2a} & M^{a2v} \\ M^{v2a} & M^{v2v} \end{bmatrix}$$

where the $x2y$ denotes the attention when modality x is the query and modality y is the key.

How can we highlight the superiority of our method from the figure? For example, the first row in the figure shows the attention maps when the video modality suffers from distribution shifts (i.e., fog). For robustness, the model should increase the importance of the unbiased modality, i.e., audio self-attention M^{a2a} (top left) and video-to-audio cross-attention M^{v2a} (bottom left). Correspondingly, M^{v2v} and M^{a2v} should be decreased. It is easy to observe that our method exhibits optimal attention scores compared to other methods.

F MORE EXPERIMENTAL RESULTS

Table 8: Comparison with state-of-the-art methods on UPMC Food-101-C with corrupted image modality (severity level 5) regarding Accuracy (%), \uparrow .

Method	Noise			Blur				Weather				Digital				Avg.
	Gauss.	Shot	Impul.	Defoc.	Glass	Mot.	Zoom	Snow	Frost	Fog	Brit.	Contr.	Elas.	Pix.	JPEG	
Source	82.8	82.2	82.6	84.6	84.3	85.4	83.0	82.2	84.3	81.5	89.2	81.2	88.1	88.1	88.0	84.5
• Tent	83.0	82.3	82.8	84.7	84.5	85.6	83.1	82.3	84.4	81.9	89.2	81.5	88.2	88.2	88.0	84.6
• EATA	83.1	82.5	82.9	84.7	84.5	85.6	83.2	82.4	84.5	82.0	89.2	81.6	88.2	88.2	88.0	84.7
• SAR	82.9	82.3	82.7	84.6	84.4	85.5	83.1	82.3	84.4	81.8	89.2	81.5	88.1	88.1	88.0	84.6
• READ	83.0	82.4	82.8	84.6	84.3	85.4	83.0	82.2	84.3	81.7	89.2	81.3	88.1	88.1	87.9	84.6
• Ours	84.0	83.6	83.9	85.3	85.2	86.0	83.9	83.4	84.8	83.2	89.3	82.8	88.4	88.5	88.2	85.4

756 Table 9: Continual TTA on VGGsound-C with corrupted audio modality (severity level 5). Each
 757 domain contains 1k samples.

758	759	Method	Setting	Noise			Weather			760
				Gauss.	Traff.	Crowd	Rain	Thund.	Wind	
761	762	Source	-	39.4	22.7	16.7	23.2	29.7	26.4	26.4
763	764	Ours	reset each shift	42.9	37.0	33.5	34.6	42.7	35.9	37.8
765	766	Ours	continual	42.9	35.0	37.9	34.7	45.6	37.3	38.9

G MORE ABLATION STUDY

How does the LoRA rank influence the performance?

767 Table 10: Performance comparison under different LoRA ranks on VGGSound-C with corrupted
 768 audio modality (severity level 5) regarding **Accuracy (%)**, ↑.

772	773	774	775	Noise			Weather			776	
				r	Gauss.	Traff.	Crowd.	Rain	Thund.		
777	778	779	780	4	42.4	40.4	41.9	37.3	47.4	39.9	41.5
781	782	783	784	8	42.4	40.0	41.9	37.9	47.5	39.9	41.6
785	786	787	788	16	42.7	40.7	42.2	37.9	47.7	39.9	41.9
789	790	791	792	32	42.9	40.6	42.9	38.1	47.7	40.2	42.1
793	794	795	796	64	43.0	40.8	42.8	37.9	47.7	40.1	42.0

How does the number of tunable layers influence the performance?

782 We compared the performance and the number of parameters required when updating different
 783 numbers of layers. As the table illustrates, beyond updating the top three layers, additional layers provide
 784 only marginal improvements. Our interpretation is that lower layers typically focus on extracting
 785 generalizable low-level features, while higher layers are responsible for modeling more task-specific
 786 semantic features. Consequently, the self-attention mechanisms in these higher layers exhibit su-
 787 perior transferability.

789 Table 11: Ablation study for the number of tunable layers D on VGGSound-C with corrupted audio
 790 modality (severity level 5) regarding **Accuracy (%)**, ↑.

792	793	794	795	Noise			Weather			796			
				Method	D	Gauss.	Traff.	Crowd	Rain				
797	798	799	800	Tent	-	11.6	3.0	1.9	3.1	5.9	4.2	4.9	0.22
801	802	803	804	READ	-	40.3	29.1	26.9	30.8	36.5	30.7	32.4	1.77
805	806	807	808	Ours	1	41.3	35.5	36.1	34.0	41.2	35.6	37.3	0.06
809	810	811	812	Ours	2	42.2	36.8	38.0	35.7	43.7	37.3	38.9	0.10
813	814	815	816	Ours	3	42.6	38.1	39.7	36.6	44.9	38.5	40.1	0.14
817	818	819	820	Ours	4	42.6	38.9	40.5	37.4	46.2	39.1	40.8	0.17
821	822	823	824	Ours	5	42.8	39.0	40.7	37.3	47.0	39.4	41.0	0.21
825	826	827	828	Ours	11	42.7	40.7	42.2	37.9	47.7	39.9	41.9	0.43