AUTOSTAT: DSL-BASED AUTOMATED STATISTICAL
MODELING FROM NATURAL LANGUAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Statistical modeling plays a critical role and is widely used in data analysis across
diverse domains. Despite its importance, existing workflows remain cumbersome:
they rely on fragmented programming environments and domain-specific proba-
bilistic programming languages that are verbose and difficult to use, especially
for non-experts. Although many efforts have been made toward automated sta-
tistical modeling, the methods still suffer from low accuracy, high computational
cost, and heavy reliance on manual intervention. To address these challenges,
we present AutoStat, a novel Domain-Specific Language (DSL)-based framework
for automating statistical modeling. AutoStat leverages StatModelDSL, the first
compact and structured DSL that specifies complete modeling tasks in a unified
and portable form. AutoStat further enhances the automated process via interac-
tive modeling by integrating two agents — StatModelChatbot, which interactively
refines underspecified user requirements, and StatModelCopilot, which generates
executable DSL programs. With StatModelChatbot clarifying intent and StatMod-
elCopilot emitting executable DSL, AutoStat compiles and executes the specifi-
cation end-to-end, delivering the complex statistical models directly from natural-
language dialogue. We demonstrate that the proposed StatModelDSL affords both
LLM amenability and practical usability: when instantiated with GPT-4o, it yields
a91.59% reduction in error rate and a 5.89 % uplift in user preference over a Stan-
based workflow. Meanwhile, AutoStat achieves a 100% syntax correctness rate
for DSL generation and a 98.76 % semantic passing rate, significantly surpassing
previous methods. Our dataset, codes, and models will be publicly released upon
acceptance.

1 INTRODUCTION

Statistical modeling (Boxl [1976; |Gelman et al [1995) provides a principled framework for ana-
lyzing data by formalizing assumptions about the underlying data-generating process. It involves
constructing probabilistic models that link observed data with underlying variables, enabling both
interpretation and prediction. Statistical modeling is widely applied across domains such as eco-
nomics (Sims, [2012} |Shavell, 2004), biology (Kaplan & Meier, |1958; |Armitage & Dolll [2004), and
social sciences (Holland, [1986; |Deegan Jr, [1979), where it helps researchers quantify uncertainty,
test hypotheses, and make predictions. However, existing workflows for statistical modeling remain
overly complex and unfriendly to users, as revealed by |Gelman et al.| (2020). On the one hand,
probabilistic programming languages (PPLs) such as Stan (Carpenter et al.,2017) and PyMC (Patil
et al.l 2010) are syntactically verbose and often difficult to interpret. On the other hand, the overall
workflow is fragmented: even fitting a simple hierarchical regression typically requires preprocess-
ing data in a general-purpose language, writing dozens of lines of Stan code with explicit priors, and
then switching back for post-processing.

To simplify the workflow and improve usability, many efforts (Li et al., |2024} (Gouk & Gao) [2024)
have been made to utilize the general knowledge from Large Language Model (LLM). Given a
task description, these methods typically prompt an LLM to synthesize end-to-end code in a cho-
sen PPL. Despite these attempts, we found that automated statistical modeling persistently suffers
from low accuracy, high computational cost, and heavy reliance on intervention due to three issues:
1) Insufficient specifications. Statistical models require fine-grained specifications (e.g., different
variable distributions and constraints), yet verbose PPL syntax often leads LLMs to misinterpret

critical details; for example, as shown in Appendix [A] the number of sampling steps is frequently
misunderstood in the generated code, hindering the modeling process. 2) Fragmentation. Requiring
LLMs to bridge heterogeneous environments (e.g., data preprocessing in Python while inference in
Stan (Carpenter et al., [2017)) often yields inconsistent outputs, resulting in multiple types of code
that are lengthy and difficult to read. (Figure[5|provides an example). 3) Lack of portability. Models
specified for one inference engine are not readily transferable across backends (e.g., Stan (Carpenter.
et al., 2017) to PyMC (Patil et al.,2010)), resulting in limited cross-engine comparability as well as
reduced validation capability. We identified that the root cause of the given limitations lies not only
in the modeling capability of LLMs but, more importantly, in the modeling-language substrate it-
self: Natural language is very underspecified for statistical modeling, while existing PPLs are overly
verbose, fragmented, and require substantial domain-specific expertise. Taken together, these issues
highlight the need for an intermediate abstraction that is structured and concise, providing a middle
ground between underspecified natural language and verbose PPLs.

Motivated by this, we present a novel automated statistical modeling framework, AutoStat. At
its core is StatModelDSL, a Domain-Specific Language (DSL) that represents complete statistical
modeling tasks in a unified and portable modeling language form. This abstraction offers three
main benefits: 1) Completeness and clarity: Every component of a task (data, parameters, model,
inference, output) is explicitly represented, reducing ambiguity and improving human readability; 2)
Unification and portability: A single DSL program can be compiled into multiple inference engines
(e.g., Stan, PyMC), eliminating the need to switch between environments and avoiding framework
lock-in; and 3) LLM-friendliness: Its structured design makes fine-grained details explicit, enabling
LLMs to generate more accurate and reliable programs (Tam et al.l [2024)) than with free-form PPL
code. We validate these advantages in Section 4.3}

Since statistical modeling inherently requires fine-grained details that are difficult to specify in a
single attempt, we design StatModelChatbot to guide users through dialogue, progressively ground-
ing their intent into the structured components of StatModelDSL (e.g., data, parameters, and model
blocks), enabling users to complete modeling tasks with ease. AutoStat incorporates two agents
to support the automation process (illustrated in Figure [T). StartModelChatbot interactively supple-
ments incomplete or ambiguous user descriptions to finalize all necessary task components, while
StatModelCopilot translates the clarified descriptions into executable StatModelDSL programs. To-
gether, these components allow users to specify and execute complex statistical models directly from
natural language, while ensuring that the resulting code remains precise, portable, and reliable.

We demonstrate that StatModelDSL affords both LLM amenability and practical usability: when
instantiated with an LLM, e.g., GPT-4o, it yields a 91.59% reduction in error rate and a 5.89%
uplift in user preference over a Stan-based workflow. Building on this DSL, AutoStat attains a
100% syntax-correctness rate for DSL generation and a 98.76% semantic passing rate, significantly
surpassing prior methods. Our dataset, code, and models will be released upon acceptance.

In summary, our contributions include the following.

* We present AutoStat, an end-to-end DSL-based framework that converts natural language into
executable, reproducible statistical workflows. At its core is StatModelDSL—a concise, unified,
and standardized Domain-Specific Language that formalizes task specifications for automated
statistical modeling.

* We enable interactive statistical modeling that iteratively aligns users’ intent with StatModelDSL
through two agents that converse to capture and refine intent and then effectively produce the
specification into executable DSL programs—improving accuracy, usability, and efficiency.

* Extensive experiments on diverse statistical tasks show that the StatModelDSL-equipped AutoStat
delivers consistently higher accuracy, reliability, and reproducibility, outperforming the SOTA
automated modeling approaches.

2 RELATED WORK

2.1 STATISTICAL MODELING WORKFLOW

Current workflows for statistical modeling (Gelman et al., 2020) heavily rely on Probabilistic
Programming Languages (PPLs)(van de Meent et al, [2018; Krapu & Borsuk, [2019), such as

oo Copilot fa Compiler
Task Specification (with Chatbot) =3 DSL Program Generation =3

e - : N
— User Copilot Data Loading Preprocess
ith thi 2 Chatbot ()
Plea‘sg help me ‘{V'th this - stat_model_spec cognitive_task { ?
statistical .modell.ng task! What is the path to your meta{..} JSON CSV
I need a hierarchical input data? documentation """ "
normal model where .. dataf...} PPL As Inference Engine

transformed_data{ ... }

¢ &
[°.9) parameters { ... }
Chatbot transformed_parameters{ ... } g PYMC

All data should be loaded wep [Tanks! Here is the model {... }

from "group_data.json". summary of your task inference { ... } Result Analysis
definition: output {...}
<a detailed description> }
(. /
7 T N\ J
v T
v 3
The user wants to build a hierarchical Bayesian model for grouped data, where Parameter Mean SD 5% 50% 95%
observations y are modeled with group-specific means that are d i ~ N(e 02)
li]»)
from a common hyper-distribution. _ mu 11.65 104 9.82 1172 1317
Mg = L+ T - €g,
'The input data is in JSON format from the file "group_data.json", and includes: €g~ N(0,1), sigma 0.54 011 040 053 074
- x:an integer indicating the number of total observations. o~ N(O, 52), b E =
7 ~ Exponential (1),
The summary should include statistics like mean, a5, 95, and diagnostics like rhat. o ~ Cauchy *(0,2.5)
Also, generate plots for m: and sigma, and expol ults to "results_hier.csv'. E—— _
Task Definition Statistic Model Final Results

Figure 1: The workflow of AutoStat: StatModelChatbot first assists users in refining task details,
after which StatModelCopilot generates the corresponding StatModelDSL program. The DSL com-
piler then executes this program to produce the final results.

Stan(Carpenter et al., 2017), PyMC (Patil et al., 2010), Turing.jl (Ge et al., [2018])), and Pyro (Bing-
ham et al.| |2018). As noted by |Gelman et al.|(2020), while PPLs are powerful for statistical model-
ing, the complete workflow still requires external tools (e.g., Python or R) for data processing and
analysis. Early attempts at automation, such as |[Fischer & Schumann| (2003), transformed statisti-
cal models into automated data analysis pipelines, but the input rules were overly restrictive and
the modeling expressiveness too limited for modern PPL environments. More recently, approaches
leveraging LLMs (Gouk & Gao, 2024} (L1 et al.l |2024) have emerged to translate natural language
descriptions into PPL programs. However, these methods still suffer from fragmented environments
and limited accuracy. In this work, we introduce a DSL-based framework that unifies the entire
workflow. Leveraging LLMs, we make the workflow easy and reliable.

2.2 DOMAIN-SPECIFIC LANGUAGE FOR LARGE LANGUAGE MODELS

A Domain-Specific Language (DSL) (Fowler, 2010; Mernik et al., |2005) is a programming lan-
guage tailored to a particular domain (e.g., Markdown, SQL). Its simplified and structured design
makes task specification clearer for humans and more reliable for LLMs. DSLs can be broadly
divided into two categories: 1) Standalone DSLs, which define their own syntax and compiler in-
frastructure. Examples include MoVer (Ma & Agrawala, [2025), a motion verification language for
controllable motion generation, and SPCC (Li et al.,2025c¢), a specialized language for CAD model-
ing. 2) Embedded DSLs, which are implemented within a host language such as Python. Examples
include [Liang et al.| (2022), who encode robot policies as Python programs for LLM-based policy
control, |Makatura et al| (2025)), who design a DSL to capture metamaterials in a structured and
expressive form, and [Li et al.|(2025a)), who develop a Python-based DSL for material modeling and
employ vision-language models for code generation. In this work, we propose StatModelDSL, a
standalone DSL that models the entire statistical modeling workflow, and we use LLMs to automat-
ically generate programs in this DSL.

3 METHOD

To address the verbosity of existing PPLs and enable a user-friendly, end-to-end automated statis-
tical modeling workflow, we propose AutoStat. As illustrated in Figure [I] AutoStat leverages the
concise and structured StatModelDSL (Section [3.1]) to represent the entire statistical modeling task,
replacing traditional PPLs. The StatModelChatbot (Section [3.2) interactively collects and clarifies
task details from the user, after which the StatModelCopilot (Section [3.4) accurately generates spe-
cific DSL programs and executes them. With AutoStat, even novice users can complete complex
statistical modeling tasks using only natural language.

Task Data Variable Model Result
Definition Loading Specification Definition Configurations

(a) Entire Workflow: 5 Sequential Nodes

[0.9) 0.9

= Chatbot Q Chatbot
Please help me with this (“data”: { Could you please tell me what
statistical modeling task! " " ' | ": "data.json"}, is the variable type of the input
I need a hierarchical " i pe™: i "data.json"}, data ‘word_ids'? Maybe array
normal model where ... ": "data.json"}, int [N]?

L Missing!!! /)
=, User ﬁ Chatbot u= Chatbot

" fi "data": { You are provided with a
Yes, it’s an array of int. "N": {"variable_type": "int", "data_path": "data.json"}, dataset located at “data.json’,
"M": {"variable_type"; "int", "data_path": "data.json"}, which includes:
"word_ids": {variable_type": "array int [N]", "ata_path": "data.json"}, - N: an integer representing the
b) Data Loading Node number of observations
(b) g U Complete!!! _

Figure 2: An illustration of the StatModelChatbot workflow. The chatbot leverages the user’s de-
scription to populate a predefined schema. If the provided information is insufficient to complete all
required fields, the chatbot prompts the user for additional input until the schema is fully specified.

3.1 STATMODELDSL

We present StatModelDSL, a Domain-Specific Language that systematically expresses statistical
modeling tasks in a structured and interpretable way. It integrates all components of the workflow,
from data pre-processing and model specification to inference and result analysis, and can be com-
piled directly into executable programs across different probabilistic programming environments
(e.g., Stan, PyMC). The design of StatModelDSL emphasizes three key characteristics:

* Clarity: Each component of a statistical model is explicitly organized into separate blocks, ensur-
ing that fine-grained details are represented in a transparent and structured manner.

* Completeness: The DSL captures the entire modeling pipeline, while our compiler automates
execution end-to-end, reducing the fragmented and redundant steps of traditional workflows.

* Portability: The DSL can be translated into multiple inference engines, avoiding framework
lock-in and enhancing flexibility. This cross-platform capability also facilitates the design of
LLM-based agents, as they can generate a single unified DSL program without needing to handle
environment-specific differences.

When executing the DSL, we first parse the code into an Abstract Syntax Tree (AST) using the
Lark parser (Shinan, 2021), which captures the hierarchical structure of the program and facilitates
traversal and manipulation. We then leverage a general-purpose programming language (Python) to
handle data loading, preprocessing, and post-processing tasks such as plotting and result exporting,
while the core statistical model is executed using the target PPL environment (e.g., Stan or PyMC)
to complete the end-to-end workflow. Appendix [B] provides a comprehensive description of Stat-
ModelDSL’s design, execution process, and illustrative examples, as well as demonstrations of its
portability by compiling the program into different PPL backends.

3.2 STATMODELCHATBOT

Statistical modeling is inherently detail-intensive, requiring specifications such as variable types and
distributional parameters. Since it is difficult for users to provide a complete description in a single
attempt, we design a supportive chat agent (Wolf et al.l [2019; |Adiwardana et al.| 2020), StatMod-
elChatbot, that interactively assists users in refining task details, thereby ensuring completeness.

To ensure that the chatbot systematically verifies the presence of all necessary task information and
produces outputs in a stable format, inspired by (Caufield et al.| 2024} Lu et al., |2025; [Shiri et al.|
2024), we design a schema that specifies the key elements the chatbot must extract. Furthermore, to
improve accuracy, following (Zhou et al., 2022), we decompose the task into five sequential nodes:
task definition, data loading, variable specification, model definition, and result configuration.

As illustrated in Figure E} For a certain node, the chatbot extracts key information from the user’s
prompt to populate a pre-designed schema that specifies both required elements and optional ones. If

Sample use case and settings Data Generation Data Augmentation

Use Case: You are a helpful DSL generator. | You are a helpful assistant for
. Daily temperature prediction will provide you with: StatModelDSL. | will give you:
1 Settings:
- Model style: linear —> Your task is to generate a Your job is to rewrite the user's
- parameterization: non-centered complete StatModelDSL task description so that it
- diagnostics: ess program that fits the given precisely corresponds to the

scenario and settings. ... provided DSL code. ...
! T

v

(- Copilot Data Filtering . .
opilo’

g Finetune ¢Syntax Check VSemantics ChECkXSimilarity Check

Figure 3: The pipeline of the StatModelDataset construction process, which contains three main
steps: data generation, data augmentation, and data filtering.

all required fields are successfully filled, the node is considered complete, and the chatbot generates
a natural-language summary for user confirmation before proceeding to the next node. If critical
information is missing, the chatbot gives feedback to the user to provide the necessary details, and
the process repeats. At the end of this interaction, we obtain a complete schema containing all
essential specifications, along with a finalized natural-language task definition.

3.3 STATMODELDATASET

To effectively train and evaluate LLMs on our DSL, it is crucial to develop a diverse, and high-
quality dataset. To this end, we construct StatModelDataset, whose construction pipeline, illustrated
in Figure 3] comprises three stages: data generation, data augmentation, and data filtering.

3.3.1 DATA GENERATION

Due to the lack of existing datasets for statistical modeling, we leverage the strong in-context learn-
ing capabilities of LLMs (Brown et al.,[2020; |Yang et al.||2024; Li et al.| | 2025b) to generate synthetic
data. To ensure the diversity of our dataset, we predefine 56 domains (e.g., Time Series and Forecast-
ing, Economics and Finance), each containing more than 10 potential use cases, resulting in a total
of 590. In addition, we predefine a variety of model settings. For each use case, we randomly sample
model settings and prompt GPT (Hurst et al., [2024) to generate both a concise task description X,
and the corresponding DSL code Y. To guarantee generation quality, we also provide LLMs with a
natural-language description of the DSL syntax along with several detailed examples. Through this
design, we are able to efficiently generate diverse base data.

3.3.2 DATA AUGMENTATION

A solely concise description is insufficient to capture the complexity of a statistical task; thus, we
refine the initial task descriptions to provide greater detail. Specifically, we supply the DSL code
to the LLM, along with illustrative examples, prompting it to generate a more comprehensive task
description Xg4. In this way, we construct a triplet dataset consisting of a concise task description
X, a detailed task description X4, and the corresponding DSL code Y. More details are illustrated
in Appendix

3.3.3 DATA FILTERING

To ensure the quality of our dataset, the most critical step is filtering out erroneous and low-quality
data. To this end, we designed the following data cleaning procedures tailored to our DSL.

» Syntax check. To ensure the syntax correctness of our DSL programs, we employ our DSL
compiler to verify whether each DSL instance conforms to the syntax specification, while also
checking for issues such as variable name reuse and other violations of syntactic rules.

* Semantics check. To assess whether each description is sufficiently complete and fully aligned
with the DSL, we further prompt an LLM to verify the semantic consistency between them. This
process ensures that the description does not omit critical details and that the DSL and the detailed
description are matched at a fine-grained level. The prompt is shown in Appendix[G.2]

 Similarity check. To ensure dataset diversity and prevent the repetition of highly similar samples,
we apply TF-IDF vectorization |Salton et al.| (1975) to all DSL code and remove instances that
exceed a similarity threshold, thereby filtering out overly redundant code at the string level.

Although such strict filtering further reduces the dataset size, it ensures high-quality and reliable
data, thereby providing a solid foundation for the subsequent training of our StatModelCopilot.

For evaluation, the final test set (Table [/) contains 323 high-quality items, categorized into three
levels of complexity (simple, medium, and complex) based on the description X4 length. Both
training and testing datasets are verified by humans to ensure high quality.

3.4 STATMODELCOPILOT

After all task details are specified, an agent is responsible for converting the natural language de-
scription into a fully executable DSL program, enabling end-to-end automation. LLMs have demon-
strated strong capabilities in code generation (Chen et al., | 2021; Jiang et al., 2024; Hui et al.| [2024;
Guo et al., 2024), but for a new DSL that is both detail-intensive and instruction-heavy, relying
solely on in-context learning (Dong et al., |2024) is insufficient. To address this challenge, we train
our StatModelCopilot, which can follow complex statistical modeling instructions and generate syn-
tactically correct DSL programs that strictly adhere to the specifications.

To maximize the effectiveness of our dataset and ensure that the model both learns the syntax of
our DSL and faithfully follows complex user specifications, we adopt a curriculum learning ap-
proach (Bengio et al.| |2009) with two training stages. In the first stage, we use concise task descrip-
tions as input prompts, with the corresponding DSL code as labels. This stage focuses on teaching
the LLM the syntax and structural rules of StatModelDSL, ensuring syntactic correctness. In the
second stage, we extend training to detailed task descriptions, where the model must capture and
follow all specified details, producing DSL programs that are not only syntactically valid but also
strictly aligned with the input requirements. We leverage the instruction tuning method to train our
models. The training losses are:

Ny N
Ly==) log P(Yi|(X.):), La=—» logP(Yi|(Xa)i), (1)
1=1 i=1

where V1, Ny denote the number of training samples for two stages, respectively.

4 EXPERIMENTS

We evaluate the proposed AutoStat framework to answer the following research questions:
* RQ1: How does AutoStat compared to other LLM-based methods?

* RQ2: What is the contribution to the designs in AutoStat (i.e., two-stage training strategy, chatbot
assistance) to the performance?

* RQ3: How does the base LLM affect the performance of our AutoStat?

* RQ4: As the foundation of AutoStat, does StatModelDSL provide advantages over traditional
PPLs in LLM-based code generation and user usability?

* RQS5: Whether AutoStat can achieve strong performance and play a practical role in real-world
statistical modeling tasks.

All experiments are conducted on our test set mentioned in During testing, the detailed task
description X is used as the input prompt, and the target StatModeIDSL program Y serves as the
ground truth statistical modeling program.

4.1 EXPERIMENTAL SETTINGS

Baselines. Following prior work, we evaluate AutoStat using GPT-40 and GPT-40-mini (Hurst
et al.| [2024; |Li et al.,2024), as well as Llama3-8B (Dubey et al., 2024} |Gouk & Gao,2024), under a
few-shot learning setup (Brown et al.,[2020; [Parnami & Leel [2022)), where models are given the DSL
specification and a few examples along with the task description. In contrast, our StatModelCopilot
directly generates the DSL program from the task description alone.

6

Table 1: Performance comparison between our AutoStat and GPT-based baselines. “*” indicates
prompting with two in-context examples. The best performance is highlighted in bold.

Syntax 1 Semantics 1
Simple Medium Complex Avg. |Simple Medium Complex Avg.

Llama3-8B 79.01 61.82 33.77 59.44 | 8.64 3273 11.69 21.67
Llama3-8B* | 90.12 76.97 5844 7585 | 59.26 51.52 40.26 50.77
GPT-40-mini | 98.77 96.36 88.31 95.05 | 90.12 82.42 48.05 76.16
GPT-40-mini* | 98.77 97.58 93.51 9690 | 93.83 93.94 79.22 90.40
GPT-40 97.53 99.39 96.10 98.14 | 92.59 93.33 77.92 89.47
GPT-40* 98.77 100.00 96.10 98.76 | 96.30 95.15 81.82 92.26

AutoStat (1B) | 98.77 97.58 9221 96.59 | 91.36 90.30 68.83 8545
AutoStat (3B) | 98.77 96.36 98.70 97.52 | 93.83 92.73 77.92 89.47
AutoStat (§B) | 100.00 100.00 100.00 100.00| 98.77 99.39 97.40 98.76

Model

Metrics. To evaluate the accuracy of our automation pipeline, following (Chen et al., 2021} Kulal
et al, |2019; |Guo et al.| |2025), we employ Pass@1 to assess the DSL code generation success rate.
Specifically, we compare the generated DSL with the ground-truth DSL at both the AST level and
after conversion to the target PPL code. A sample is considered successful only if all components,
including model design, data processing, and variable specifications, exactly match the ground truth.

Implementation Details. We fine-tune Llama3-(1B, 3B, 8§B) (Dubey et al.|[2024) using the LoRA
framework (Shen et al.) on a single NVIDIA A40 GPU. More details are shown in Table @

4.2 RESULTS ANALYSIS (RQ1)

Table|l| presents a comprehensive comparison between StatModelCopilot and all baseline methods.
We summarize our key observations as follows:

* Our fine-tuned 8B Copilot achieves the best performance across tasks of varying difficulty, ex-
celling at both the syntax and semantic levels. Specifically, it attains a 100% passing rate on
syntax checks and a 98.76 % passing rate on semantic checks. These results indicate that Stat-
ModelCopilot can accurately understand user requirements, capture nearly all critical task details,
and generate programs that comply with our DSL specification. Compared to the weak perfor-
mance of the pre-trained Llama baselines, the superior performance further validates the effec-
tiveness of our training data and methodology.

* Providing additional examples significantly improves model performance. With just two exam-
ples, GPT-40, GPT-40-mini, and Llama3-8B all show substantial gains at the syntax and semantic
levels. This demonstrates the strong in-context learning ability of powerful LLMs: supplementary
examples help them better understand and apply our DSL, leading to more accurate task execution.

* Model capacity plays a crucial role in the performance of statistical modeling tasks, particularly in
semantic understanding and handling complex tasks. In our complex-level semantic evaluations,
GPT-40 outperforms GPT-40-mini by nearly 30%. Similarly, our 8B StatModelCopilot achieves
around 30% higher accuracy than its 1B counterpart and about 20% higher than the 3B version.
These results suggest that for tasks requiring fine-grained semantic comprehension and precise
specification, final performance strongly depends on the underlying model capacity, regardless of
whether fine-tuning or prompt engineering is applied.

4.3 ABLATION STUDIES (RQ2)

To assess the effectiveness of our two-stage learning strategy and the StatModelChatbot, we perform
ablation studies on the 8B StatModelCopilot: (1) “w/o Stage-One”: training only with detailed de-
scriptions (X g4, Y); (2) “w/o Stage-Two””: training only with concise descriptions (X, Y); (3) “w/o
Chatbot”: replacing the standardized prompts generated by StatModelChatbot with masked, user-
toned prompts X; to simulate users’ prompts to examine its contribution to the overall workflow.

From the results shown in Table [2, we observe that:

Table 2: Effect of our training strategy and the StatModelChatbot.

Model Syntax 1 Semantics T
Simple Medium Complex Avg. |Simple Medium Complex Avg.
Ours |100.00 100.00 100.00 100.00 | 98.77 99.39 97.40 98.76

- w/o Stage-One | 98.77 100.00 96.10 98.76 | 96.30 95.15 81.82 92.26
- w/o Stage-Two | 100.00 100.00 98.79 96.28 | 81.48 61.21 41.56 61.61
- w/o Chatbot 97.53 97.58 9481 9690 | 59.26 50.91 35.06 49.23

Table 3: Comparison across different base LLMs. For syntax and semantics, we report pass@1.
For speed, we report average seconds per batch (s/batch), and for memory, we report GPU VRAM
usage. The best results are highlighted in bold.

Model \ Size Syntax T Semantics 1 Speed | Memory |
Llama3 8B 100.00 98.76 19.72 41.22
Qwen3 8B 99.38 96.59 23.64 41.32
Qwen2.5-Coder| 7B 98.76 94.43 19.22 41.64
Mistral 7B 99.69 92.26 27.44 41.52

In the first stage, after training the LLM with concise task descriptions, the results show that the
model already achieves a strong syntax passing rate. This indicates that Stage-One successfully
enables the LLM to grasp the grammatical rules of our DSL, as expected. However, its relatively
weaker performance at the semantic level suggests that such training alone is insufficient for the
model to capture key information from task descriptions or to fully understand the user’s intent.

Removing Stage-One training and directly learning from complex tasks affects performance, as
the model struggles to acquire the syntax and semantics of StatModelDSL from limited data. A
curriculum strategy—starting with simpler tasks and gradually increasing complexity—enables
the model to internalize DSL structures and capture semantic intent more effectively, consistent
with prior findings on curriculum learning (Bengio et al., 2009; Elmanl 1993} Xu et al., [2020).

Without the standard and complete prompt generated by StatModelChatbot, the performance of
our StatModelCopilot drops dramatically. On the one hand, user descriptions may be incom-
plete or underspecified, making it difficult for the Copilot to generate a DSL program that exactly
matches the target. On the other hand, while the training inputs X, follow standardized expres-
sions, real user inputs are often more varied and irregular in format, which weakens the Copilot’s
performance. This mismatch is also reflected in the observed drop in syntax-level performance.

4.4 EFFECT OF BASE LLMS (RQ3)

To assess the impact of the underlying base model in StatModelCopilot, we conduct a comprehensive
comparison across LLMs of similar size. In addition to Llama3-8B (Dubey et al.,2024)), we evaluate
Qwen3-8B (Yang et al.| [2025), Qwen2.5-Coder-7B (Hui et al., 2024), and Mistral-7B (Jiang et al.,
2023)), providing a systematic analysis of how different architectures affect performance.

We evaluate both the syntax and semantics Pass@1 across the entire dataset. In addition, we assess
inference cost and efficiency. Specifically, we adopt vLLM (Kwon et al., 2023) with a fixed batch
size of 32, and measure the average inference time per batch and the GPU memory consumption.

As shown in Table[3] we have the following observations:

Llama3 achieves the best overall performance both in terms of passing rate and memory usage.

For models with similar sizes, the memory usage is roughly comparable; however, we observe
clear differences in inference speed. These differences primarily stem from architectural design
choices as well as the average generation length.

We also test Qwen2.5-Coder to see if a code-specialized model would perform better, but it shows
no clear advantage. This may be because it lacks additional training on probabilistic programming
languages (Hui et al., [2024)), which are central to our tasks.

DSL Stan PymMmC

#LLM Error ¥ #LLMToken (k) # User Preference (%) Clarity Preference (%) Modification Modification
4.59 Correctness (%) T TTime (min) §
4.40 8.40
88.89
159.22 29.41 77.78
a118 352 52.94 ’
a.45 |
21.43
124.28 B 265
116.89
0.37
) 100 50.00)
(a-1) (a-2) (b-1) (b-2) (b-3) (b-4)

Figure 4: Performance comparison between the StatModelDSL-based workflow and PPL-based
workflows. Subfigures (a-1) and (a-2) report experiments evaluating LLM-friendliness, while (b-1)
to (b-4) present experiments evaluating user-friendliness.

4.5 STATMODELDSL EVALUATION (RQ4)

4.5.1 EXPERIMENTAL SETTINGS

We conduct both a quantitative evaluation and a user study to demonstrate that our StatModelDSL-
based workflow is more accurate, efficient, and user-friendly compared to Stan and PyMC.

Quantitative evaluation. We uniformly prompt GPT-40 (Hurst et al.l | 2024)) to generate programs
on the test set under different environments. For fairness, when using StatModelDSL, we addition-
ally provide its concise syntax specification to the model. We then evaluate the generated outputs
along two dimensions: accuracy and cost. For accuracy, since implementations across different
environments cannot be directly compared with rule-based checks, we adopt an LLLM-as-a-judge
approach (Liu et al., 2023 [Zheng et al.,[2023)) (see Appendix[G.2)), where GPT-4o is asked to iden-
tify and count inconsistencies between the generated program and the task description. For cost, we
measure the total number of tokens generated during inference on the entire dataset.

User study. To assess usability, we invite participants to modify programs under different environ-
ments to be familiar with different programming languages. Afterward, they are asked which envi-
ronment they find most user-friendly, which they would prefer to use in the future, and which code
representation they consider clearest and most readable. More details are shown in Appendix

4.5.2 RESULTS ANALYSIS

As shown in Figure[d] we have the following observations:

* As shown in (a-1) and (a-2), leveraging StatModelDSL dramatically improves the accuracy of
GPT-40: the error rate is reduced by more than 92.05% compared to PPL-based workflows. In
addition, token consumption is significantly lower, indicating that StatModelDSL is not only more
accurate but also more efficient, making it a better fit for LLM-driven statistical modeling tasks.

* As shown in (b-1) and (b-2), most participants found our StatModelDSL programs clearer and
more readable, and expressed a preference for using our DSL in similar tasks, demonstrating that
StatModelDSL is genuinely user-friendly, benefiting from its clear and structured design.

* More specifically, results from (b-3) and (b-4) show that novice users achieved relatively high suc-
cess rates when modifying both DSL and Stan programs. In addition, in terms of the time required
for modification, DSL outperformed both Stan and PyMC by a clear margin, demonstrating that
StatModelDSL is particularly user-friendly for novices, making code modification simpler and
more efficient while also enhancing overall readability.

4.6 REAL-WORLD EVALUATION (RQ5)

To further evaluate the effectiveness of our AutoStat pipeline in real-world scenarios, we constructed
two datasets of statistical modeling tasks:

* Textbook-derived tasks. We randomly curated 50 Bayesian modeling tasks from the official
Stan Examples Repositoryﬂ drawing exclusively from three authoritative textbooks in Bayesian
statistics |(Gelman & Hilll (2007); [Lee & Wagenmakers|(2014); |[Kéry & Schaub, (2011)).

* Research paper—derived tasks. To assess the utility of StatModelDSL in contemporary research
settings, we analyzed 83 papers published in Bayesian AnalysisE](ZOZO—present). After automated

"nttps://github.com/stan-dev/example-models
https://projecteuclid.org/journals/bayesian-analysis

https://github.com/stan-dev/example-models
https://projecteuclid.org/journals/bayesian-analysis

extraction and subsequent manual filtering, we selected 50 statistical modeling tasks with clear and
well-defined experimental descriptions.

All experimental settings follow exactly the same configuration as described in Section We
compare the AutoStat pipeline against the traditional workflow based on Python and Stan, evaluating
their respective error rates and recording the syntax correctness rate of our DSL.

From the results shown in Table [4]
we can observe that: 1) Our Auto-
Stat system is capable of handling
a wide range of real-world scenar-
ios. It can successfully complete
relatively straightforward data analy-

Table 4: Comparison of error rates between AutoStat and
the baseline. “Syntax” refers to the passing rate of syntax
checks performed by our DSL parser, and “Error” denotes
the number of inconsistencies between the generated output
and the task requirements as judged by the LLM.

sis tasks derived from textbooks, as

. Textbook Research paper
well as more complex statistical mod- Svntax (%) #E Svntax (%) #E
eling tasks that appear in cutting- yntax (%) rror_Syntax (%) rror
edge research. 2) The formal task Python + Stan - 0.00 - 8.90
specification provided by StatMod- AutoStat 100 0.00 100 5.48

elDSL makes statistical modeling
tasks clearer and more explicit, re-
sulting in a lower error rate. Every detail of the task is fully represented, enabling our system
to perform more effectively, especially on complex modeling problems. Moreover, our StatMod-
elChatbot enables interactive communication with users, allowing the system to fully understand
task requirements. Even novice users with limited background in statistical modeling can easily use
the system to construct and execute sophisticated statistical experiments.

For these evaluations, we will release all testing data, task descriptions, DSL implementations, and
detailed metadata—including the source papers and the exact locations of the corresponding exper-
iments within those papers—together with our full system. Additional examples and further details
can be found in the Appendix [H|

5 CONCLUSION AND FUTURE WORK

In this work, we propose AutoStat, a unified framework for automating statistical modeling. Auto-
Stat leverages StatModelDSL, the first Domain-Specific Language designed to simplify the entire
workflow of statistical modeling. Building on this foundation, AutoStat also consists of StatMod-
elChatbot and StatModelCopilot, which enable end-to-end automation of the task. With our frame-
work, even novice users can complete complex statistical modeling tasks simply by delivering the
complex statistical models directly from natural-language dialogue. Through extensive experiments,
we demonstrate that our method improves both accuracy and usability.

Looking forward, our framework offers potential for further scaling and improvement. StatMod-
elDSL can be extended to support richer data structures, more flexible data input functions, and
advanced output processing. The StatModelCopilot can be further enhanced by incorporating real-
world data for both training and evaluation, ensuring more reliable performance. Additionally, de-
veloping a more lightweight version of the model (e.g., using MoE-based architectures) would im-
prove efficiency and deployability for users. We also envision an online platform that allows users
to access the full workflow without requiring local GPU resources, making automated statistical
modeling more widely accessible.

REPRODUCIBILITY STATEMENT

Our code, dataset, and model weights will be publicly released upon acceptance. All implementation
details and training cost are shown in Appendix [Table[6] Our dataset, codes, and models will be
publicly released upon acceptance.

10

REFERENCES

Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal Thoppilan,
Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al. Towards a human-like open-
domain chatbot. arXiv preprint arXiv:2001.09977, 2020.

Peter Armitage and Richard Doll. The age distribution of cancer and a multi-stage theory of car-
cinogenesis. British journal of cancer, 91(12):1983-1989, 2004.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41-48, 2009.

Mario Beraha, Riccardo Corradin, et al. Bayesian nonparametric model-based clustering with in-
tractable distributions: An abc approach. Bayesian Analysis, 1(1):1-28, 2024.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep
universal probabilistic programming. J. Mach. Learn. Res., 20:28:1-28:6, 2018. URL https:
//api.semanticscholar.org/CorpusID:53038373.

George EP Box. Science and statistics. Journal of the American Statistical Association, 71(356):
791-799, 1976.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betan-
court, Marcus Brubaker, Jigiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic program-
ming language. Journal of statistical software, 76:1-32, 2017.

J Harry Caufield, Harshad Hegde, Vincent Emonet, Nomi L Harris, Marcin P Joachimiak, Nicolas
Matentzoglu, HyeongSik Kim, Sierra Moxon, Justin T Reese, Melissa A Haendel, et al. Struc-
tured prompt interrogation and recursive extraction of semantics (spires): A method for populating
knowledge bases using zero-shot learning. Bioinformatics, 40(3):btac104, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

John Deegan Jr. Constructing statistical models of social processes. Quality & Quantity, 13(2),
1979.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, et al. A survey on in-context learning. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 1107-1128, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Jeffrey L Elman. Learning and development in neural networks: The importance of starting small.
Cognition, 48(1):71-99, 1993.

Bernd Fischer and Johann Schumann. Autobayes: a system for generating data analysis programs
from statistical models. J. Funct. Program., 13(3):483-508, May 2003. ISSN 0956-7968. doi: 10.
1017/50956796802004562. URL https://doi.org/10.1017/S0956796802004562.

Martin Fowler. Domain-specific languages. Pearson Education, 2010.

Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: a language for flexible probabilistic inference.
In International conference on artificial intelligence and statistics, pp. 1682—1690. PMLR, 2018.

Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevel/hierarchical mod-
els. Cambridge university press, 2007.

11

https://api.semanticscholar.org/CorpusID:53038373
https://api.semanticscholar.org/CorpusID:53038373
https://doi.org/10.1017/S0956796802004562

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data analysis. Chap-
man and Hall/CRC, 1995.

Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C Margossian, Bob Carpenter, Yuling Yao,
Lauren Kennedy, Jonah Gabry, Paul-Christian Biirkner, and Martin Modrak. Bayesian workflow.
arXiv:2011.01808, 2020.

Henry Gouk and Boyan Gao. Automated prior elicitation from large language models for bayesian
logistic regression. In The 3rd International Conference on Automated Machine Learning, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Paul W. Holland. Statistics and causal inference. Journal of the American Statistical Associa-
tion, 81(396):945-960, 1986. ISSN 01621459, 1537274X. URL http://www. jstor.org/
stable/2289064l

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv:2410.21276,
2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

E. L. Kaplan and Paul Meier. Nonparametric estimation from incomplete observations. Journal of
the American Statistical Association, 53(282):457-481, 1958. ISSN 01621459, 1537274X. URL
http://www. jstor.org/stable/2281868.

Marc Kéry and Michael Schaub. Bayesian population analysis using WinBUGS: a hierarchical
perspective. Academic press, 2011.

Christopher Krapu and Mark E. Borsuk. Probabilistic programming: A review for envi-
ronmental modellers. Environ. Model. Softw., 114:40-48, 2019. URL https://api.
semanticscholar.org/CorpusID:67880715.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. Spoc: Search-based pseudocode to code. Advances in Neural Information Processing
Systems, 32, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Michael D Lee and Eric-Jan Wagenmakers. Bayesian cognitive modeling: A practical course. Cam-
bridge university press, 2014.

12

http://www.jstor.org/stable/2289064
http://www.jstor.org/stable/2289064
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
http://www.jstor.org/stable/2281868
https://api.semanticscholar.org/CorpusID:67880715
https://api.semanticscholar.org/CorpusID:67880715

Beichen Li, Rundi Wu, Armando Solar-Lezama, Changxi Zheng, Liang Shi, Bernd Bickel, and Wo-
jeiech Matusik. VImaterial: Procedural material generation with large vision-language models.
arXiv preprint arXiv:2501.18623, 2025a.

Jia Li, Chongyang Tao, Jia Li, Ge Li, Zhi Jin, Huangzhao Zhang, Zheng Fang, and Fang Liu. Large
language model-aware in-context learning for code generation. ACM Transactions on Software
Engineering and Methodology, 34(7):1-33, 2025b.

Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun Zhou, and Xiangdong Zhou. Cad-
llama: leveraging large language models for computer-aided design parametric 3d model gener-
ation. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 18563—
18573, 2025c.

Michael Y Li, Emily B Fox, and Noah D Goodman. Automated statistical model discovery with
language models. arXiv:2402.17879, 2024.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634, 2023.

Yaxi Lu, Haolun Li, Xin Cong, Zhong Zhang, Yesai Wu, Yankai Lin, Zhiyuan Liu, Fangming Liu,
and Maosong Sun. Learning to generate structured output with schema reinforcement learning.
arXiv preprint arXiv:2502.18878, 2025.

Jiaju Ma and Maneesh Agrawala. Mover: Motion verification for motion graphics animations. ACM
Transactions on Graphics (TOG), 44(4):1-17, 2025.

Liane Makatura, Benjamin Jones, Siyuan Bian, and Wojciech Matusik. Metagen: A dsl, database,
and benchmark for vlm-assisted metamaterial generation. arXiv preprint arXiv:2508.17568,
2025.

Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop domain-specific
languages. ACM computing surveys (CSUR), 37(4):316-344, 2005.

Archit Parnami and Minwoo Lee. Learning from few examples: A summary of approaches to few-
shot learning. arXiv preprint arXiv:2203.04291, 2022.

Anand Patil, David Huard, and Christopher J Fonnesbeck. Pymc: Bayesian stochastic modelling in
python. Journal of statistical software, 35:1-81, 2010.

Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic indexing.
Communications of the ACM, 18:613-620, 1975.

Steven Shavell. Foundations of economic analysis of law. Harvard University Press, 2004.

Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, et al. Lora: Low-rank
adaptation of large language models.

Erez Shinan. Lark., 2021. URLhttps://github.com/lark-parser/lark.

Fatemeh Shiri, Farhad Moghimifar, Reza Haffari, Yuan-Fang Li, Van Nguyen, and John Yoo. De-
compose, enrich, and extract! schema-aware event extraction using llms. In 2024 27th Interna-
tional Conference on Information Fusion (FUSION), pp. 1-8. IEEE, 2024.

Christopher A. Sims. Statistical modeling of monetary policy and its effects. American Economic
Review, 102(4):1187-1205, June 2012. doi: 10.1257/aer.102.4.1187. URL https://www.
aeaweb.org/articles?id=10.1257/aer.102.4.1187.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-Yen Lin, Hung-yi Lee, and Yun-Nung Chen.
Let me speak freely? a study on the impact of format restrictions on performance of large language
models. arXiv preprint arXiv:2408.02442, 2024.

13

https://github.com/lark-parser/lark
https://www.aeaweb.org/articles?id=10.1257/aer.102.4.1187
https://www.aeaweb.org/articles?id=10.1257/aer.102.4.1187

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduc-
tion to probabilistic programming. ArXiv, abs/1809.10756, 2018. URL https://api.
semanticscholar.org/CorpusID:52893693.

Thomas Wolf, Victor Sanh, Julien Chaumond, and Clement Delangue. Transfertransfo: A
transfer learning approach for neural network based conversational agents. arXiv preprint
arXiv:1901.08149, 2019.

Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan Wang, Hongtao Xie, and Yongdong Zhang.
Curriculum learning for natural language understanding. In Proceedings of the 58th annual meet-
ing of the association for computational linguistics, pp. 6095-6104, 2020.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Tong Yang, Yu Huang, Yingbin Liang, and Yuejie Chi. In-context learning with representations:
Contextual generalization of trained transformers. Advances in Neural Information Processing
Systems, 37:85867-85898, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595-46623, 2023.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

14

https://api.semanticscholar.org/CorpusID:52893693
https://api.semanticscholar.org/CorpusID:52893693
http://arxiv.org/abs/2403.13372

USE OF LLMS IN OUR WORK

In this paper, we leverage LLMs in several ways: (1) polishing the writing of our manuscript, (2)
retrieving relevant papers, (3) refining the design of prompts, and (4) generating part of our dataset
(as described in Section [3.3). Importantly, all outputs produced by LLMs were carefully reviewed
and verified by humans to ensure accuracy and reliability.

CONTENTS

I Infroduction| 1
2_Related Workl 2

2.1 Statistical Modeling Workflow|
2.2 Domain-Specific Language for Large Language Models|. 3
3 Method 3
3.1 StatModelDSL 4
4
5
5
[3.3.2 Data Augmentation|. 5
3.3.3 DataFiltering| 5
3.4 StatModelCopilot] 6
6
4.1 Experimental Settings|. 6
4.2 Results Analysis (RQL)[. 7
4.3 Ablation Studies (RQ2)| 7
4.4 Eftectof Base LLMs (RQ3), 8
4.5 StatModelDSL Evaluation (RQ4)|. 9
4.5.1 Experimental Settings| o 9
[4.5.2 Resultsanalysis|. 9
4.6 Real-World Evaluation (RQ5)|, 9
S Conclusion and Future Work| 10
A" Environments Comparison: An Example| 16
B StatModelDSL 17
17
18
20
|C__StatModelChatbot 22

15

IC.1 Extraction Schemal

IC2 StatModelChatbot Workflow]

[D"An enfire example using AutoStat, from task specification to DSL|

[E_StatModelDatasefl
[StatModelCopilof|

|G More Experimental Details|

IG.1 Details about our test dataset|

|G.2 LLM-as-a-judge|.

matplotlib.pyplot as pit

K/data/data20. Sson’) as
acH)

Pt tight layoutO)
Pt show)

st {n_divergent)”)

Y-AEE = np.BI1ECy)

with pa.ode1() as mode]
mu_latent = pa.Norma] ('mu_latent”, mu=0, signasl)
sigma_latent = pa.ualfcauchy('sigma_latent, betas2.5)

Tatent_effect = pm.Normal (latent_effect”, mu=0, sigmasl, shape=N-1)

obs = pm.Normal('y_obs", mu-mu_latent + Tatent_effect, sigmassigna_latent,
diee

pm. sample(2000, tune=1000, chains=d, target_accept=0.95
v

22
22

25

28

30

30
30
30
31

31
31
32

Figure 5: We prompt GPT-40 to generate code from the same task description under different prob-
abilistic programming environments.

As illustrated in Figure [5] we instructed GPT-4o to generate code under different probabilistic pro-
gramming environments using the identical detailed task description. Through this experiment, three
key observations can be explicitly drawn:

16

» The Stan-generated code is notably lengthy, and there exists a stark discrepancy in coding style
between Stan and Python, leading to weak readability. Additionally, the overall implementation
is highly complex and cumbersome.

* While the PyMC code is relatively concise, it suffers from poor clarity and poses a steep learning
curve for beginners. For instance, in this task, we require the “sigma_latent” variable to follow
a Cauchy distribution with the constraint of being greater than 0. In PyMC, this necessitates the
specific use of “HalfCauchy”—an operation that beginners may struggle to implement straight-
forwardly.

* In contrast, our proposed DSL achieves both conciseness and clarity. It streamlines numerous
repetitive yet essential procedures (e.g., plotting and data loading) into single, unambiguous lines
of code. Furthermore, the statistical model component of our DSL is remarkably intuitive: for the
“sigma_latent” variable mentioned above, we simply apply the constraint “> 0” for modification.
This approach also affords greater flexibility to the model formulation.

We further instructed GPT-4o to act as a critic, tasked with identifying all discrepancies between the
generated code and the task description. The key findings are as follows:

* Regarding the Stan code, there is an error in the sampling iterations. The task description explicitly
requires sampling 2000 iterations with 1000 warmup iterations, yet the generated code fails to
adhere to this specification.

* For the PyMC code, a mistake is present in the results saving process. As specified in the task, the
target metric to be saved is q95”, but the generated code incorrectly saves hdi_97.5%” instead.

* In contrast, the code generated using our DSL is entirely accurate. GPT-40 did not detect any
mismatches between the DSL code and the task definition.

B STATMODELDSL

B.1 DSL COMPONENTS

Our proposed StatModelDSL consists of several building blocks, each serving a specific role in
statistical modeling. The overall structure is as follows:

(\

stat_model_spec <model_name> {
meta { ... }
documentation "..."™ | ", mnwn
data { ... }
transformed_data { ... } (Optional)
parameters { ... }
transformed_parameters { ... } (Optional)
model { ... }
inference { ... }
output { ... }

\ J

Block Descriptions:

* meta: Specifies metadata such as inference engine, author, and version information.

* documentation: Provides human-readable notes or descriptions of the program in natural lan-
guage.

* data: Defines input data sources and corresponding constraints.

* transformed_data: (Optional) Declares new variables derived from input data.

» parameters: Lists model parameters with constraints and prior distributions.

* transformed_parameters: (Optional) Defines transformed parameters as variables for down-
stream modeling.

* model: Contains the core statistical model specification.
* inference: Configures inference algorithms and settings.

* output: Specifies outputs, including monitored parameters, summaries, diagnostics, plots, and
export options.

17

stat_model_spec Tinear_regression_example {

data {
source N: int from csv(
path="data.csv", head="num");
source x: vector from csv(path="data.csv");
source y: vector[N] from csv(path="data.csv');

}

parameters {

E csv: data.csvt-csv: data.csv Emt i:real

I 1
1 ath 1 100, 10) H
1 alpha: real ~ normal(0, 10); 1
| beta: real - normal(o, 5); | head:m csv: data.csv normal(0, 10) exponential(1)
I sigma: real where sigma > 0 ~ exponential(1); ' >0
i 1. (b) AST Level
b e ———————— i
parameters { model {
e seed) £ alpha ~ normal(o, 10);
df = pd.read_csv(csv_path) real beta; beta ~ normal(o, 5);

} head = entry.source.args.get("head", entry.name) signa ~ exponential(1);

real<lower=0.0> sigma;

1

val = df[head]

(a) DSL Program (c) Python Process + PPL Inference

Figure 6: Our StatModelDSL execution pipeline.

B.2 DSL EXECUTION

As illustrated in Figure[6] our StatModelCompiler takes two steps to execute a DSL program.

* (a) DSL — (b) AST. For a DSL program, we first parse the code using the Lark parser, converting
it into a hierarchical tree structure with the format “program — blocks — entries”. This tree
representation facilitates program comprehension and allows us to read, validate, and process the
code in a structured, block-wise manner.

* (b) AST — (c) Python+PPL. At the AST level, we handle each block differently. For example,
the data block is used to load and validate input data according to its specifications, while the
parameters block is converted into the corresponding code in the target PPL.

This is the execution EBNF of StatModelDSL, which formally specifies the rules for parsing and

compiling the entire modeling workflow.

Execution EBNF of StatModelDSL

start: stat_model_spec
stat_model_spec: "stat_model_spec" NAME "{" meta_block documentation_block? data_block
transformed_data_block? parameters_block transformed_parameters_block? model_block

inference_block? output_block? "}"

meta_block: "meta" "{" meta_pairx "}"
meta_pair: NAME ":" value ";"

documentation_block: "documentation" (MULTILINE_STRING_LITERAL | ESCAPED_STRING)

data_block: "data" "{" data_declx "}"
data_decl: "source" NAME ":" type (constraint)? "from" source_type " (" arg_list?

mym owow
trans_data_decl: NAME ":" type (constraint)? ";"

constraint: "where" bool_expr

?bool_expr: bool_expr "and" bool_expr -> and_

| bool_expr "or" bool_expr -> or_
| "not" bool_expr -> not_
| expr

|

" (" bool_expr ")"
source_type: NAME

transformed_data_block: "transformed_data" "{" (trans_data_decl | assign_stmt |
compound_assign_stmt | for_stmt | if_stmt)* "}"

parameters_block: "parameters" "{" param_declx "}"

param_decl: NAME ":" type constraint? prior? ";"

prior: """ distribution

transformed_parameters_block: "transformed parameters" "{" (trans_data_decl | assign_stmt |

18

compound_assign_stmt | for_stmt | if_stmt)x "}"

model_block: "model" "{" stmt_bodyx "}"

distribution: NAME " (" [expr ("," expr)x] ")"

inference_block: "inference" "{" "method" ":" NAME ";" settings_block? "}"
settings_block: "settings" ":" "{" inference_settingx "}"
inference_setting: NAME ":" value ";"

output_block: "output" "{" output_stmtx "}"

output_stmt: NAME ":" value_or_list ";"

arg_list: arg ("," arg)x

arg: NAME "=" value

value_or_list: value | "[" [value ("," value)x] "]"

value: NUMBER | BOOLEAN | ESCAPED_STRING | NAME

for_stmt: "for" " (" NAME "in" expr ":" expr ")" "{" stmt_bodyx "}"

if_stmt: "if" " (" bool_expr ")" "{" then_body "}" ("else" "{" else_body "}")?
then_body: stmt_body~*

else_body: stmt_bodyx

assign_stmt: assign_target "=" expr ";"

compound_assign_stmt: assign_target (PLUS_EQ | MINUS_EQ | STAR_EQ | DIV_EQ) expr ";"
assign_target: NAME | indexed_access

dist_stmt: assign_target """ distribution ";"
?stmt_body: assign_stmt | compound_assign_stmt | dist_stmt | for_stmt | trans_data_decl
if_stmt
?expr: expr GT term -> gt
expr LT term -> 1t

expr GTE term -> gte
expr LTE term -> lte
expr EQ term -> eq
expr NEQ term -> neg
expr PLUS term -> add
expr MINUS term —-> sub
term

?term: term STAR factor -> mul

| term DIV factor -> div
| term POW factor -> pow
| factor

?factor: function_call
log_prob_call

[
| NAME
| indexed_access
| NUMBER
| ESCAPED_STRING
| BOOLEAN
| "(" expr ")"
function_call: NAME " (" [expr ("," expr)=*] ")"
log_prob_call: NAME " (" expr ("|" expr ("," expr)x) ")"
PLUS: "+"
MINUS: "-"
STAR: "x"
DIV: "/"
POW: """
GT: ">"
LT: "<"
GTE: ">="
LTE: "<="
EQ: "=="
NEQ: "!="
PLUS_EQ: "+="
MINUS_EQ: "-="

STAR_EQ: "x="
DIV_EQ: "/="

19

BOOLEAN: "true" | "false"

NAME: /[-]?[a-zA-Z_][a-2zA-20-9_]«/

indexed_access: NAME "[" index_list "]"

index_list: index_part ("," index_part)?

index_part: expr?

type: array_type | base_type type_suffix?

BASE_TYPE: INT | REAL | VECTOR | MATRIX | SPARSE_MATRIX | ORDERED | SIMPLEX | BOOL
base_type: BASE_TYPE

type_suffix: "[" type_size ("," type_size)x "]"
type_size: expr
array_type: "array" "[" expr ("," expr)x "]" type

NUMBER: /=?2[0-9]+(\.[0-9]+)?2/

INT: "int"

REAL: "real"

VECTOR: "vector"

MATRIX: "matrix"
SPARSE_MATRIX: "sparse_matrix"
ORDERED: "ordered"

SIMPLEX: "simplex"

BOOL: "bool"

$import common.ESCAPED_STRING

$import common.WS

%$ignore WS

MULTILINE_STRING_LITERAL: /""" (2:[""\\J[\\.[""(2!"))x"""/

LPAR: " ("
RPAR: ")"

B.3 EXAMPLE: LINEAR REGRESSION IN STATMODELDSL

The following example illustrates a simple linear regression task defined using our DSL:

Example: Simple Linear Regression in StatModelDSL

stat_model_spec linear_regression_example {

meta {
author: "StatBot";
dsl_version: "1.0";
model_version: "1.0";
target_language: "stan";

}

documentation """

Simple linear regression: predict y using x.

nun

data {
source N: int from csv(path="data.csv", head="num");
source x: vector from csv(path="data.csv");
source y: vector[N] from csv(path="data.csv");

}

transformed_data {
x_centered: vector[N];
x_mean: real;
X_mean = mean (x);
for (i in 1:N) {
x_centered[i] = x[1] - x_mean;

}

parameters {

alpha: real = normal(0, 10);
beta: real 7 normal (0, 5);
sigma: real where sigma > 0 ~ exponential (1l);
}
model {
for (i in 1:N) {
y[i] 7 normal (alpha + beta % x_centered([i], sigma);
}

20

inference {
method: nuts;
settings: {
chains: 4;
num_samples: 1000;
num_warmup: 500;

output {
monitor: [alpha, beta, sigmal;
summary_stats: [mean, g5, g95];
diagnostics: [rhat];
plots: [alpha, betal;
export_results_to: "results_linear.csv";

\

If we set “target_language” to “stan”, the transformed stan code is:

Stan code for model inference

data {
int N;
vector[100] x;
vector[N] vy;

}

transformed data {
vector [N] x_centered;
real x_mean = mean (x);
X_mean = mean(x);
for (i in 1:N) {

x_centered[i] = x[1i] - x_mean;

}

}

parameters {
real alpha;
real beta;
real<lower=0.0> sigma;

}

model {
alpha ~ normal (0, 10);
beta ~ normal(0, 5);
sigma ~ exponential(l);
for (1 in 1:N) {

y[i] 7 normal (alpha + beta * x_centered[i], sigma);

\

If we set “target_language” to “pymc”, the transformed PyMC code is:

PyMC code for model inference

def build_and_sample (data, random_seed=None,
return_inference_data=True, *xsample_kwargs) :
import pymc as pm
import numpy as np
import aesara.tensor as at
import arviz as az
model = pm.Model ()
with model:
= pm.MutableData ('N', data.get('N'))
= pm.MutableData('x', data.get('x'))
= pm.MutableData('y', data.get('y'))
x_centered = x - at.mean (x)
alpha = pm.Normal ('alpha', 0, 10)
beta = pm.Normal ('beta', 0, 5)
sigma = pm.Exponential ('sigma', 1)

1

X =2

mu = alpha + beta * x_centered

pm.Normal ('y', mu=mu, sigma=sigma, observed=y)
chains = sample_kwargs.pop ('chains', 4)

draws = sample_kwargs.pop ('draws', 1000)

tune = sample_kwargs.pop('tune', 500
target_accept = sample_kwargs.pop('target_accept', 0.8)

21

trace = pm.sample (draws=draws, tune=tune, chains=chains,
target_accept=target_accept, random_seed=random_seed, x* sample_kwargs)
if return_inference_data:

return az.from _pymc3 (trace)
return trace

C STATMODELCHATBOT

C.1 EXTRACTION SCHEMA

We design an extraction schema to facilitate the StatModelChatbot to verify all necessary task infor-
mation. Here is the detailed schema we design:

(\

"data": {

"variable_name": {
"variable_type": "",
"data_path": ""

I

I
"transformed_data (optional)": {
"variable_name": {
"variable_type": "",
"expression": ""

e

I
"parameters": {
"variable_name": {
"variable_type": "",
"distribution": "",
"constraint (optional)":

nn

by

ba

"transformed_parameters (optional)": {
"variable_name": {
"variable_type": "",
"expression": ""
I
by
"model": [
"expressionl", "expression2",
1,
"inference": [

"configurationl", "configuration2",
1,
"output": [

"configurationl", "configuration2"

]

C.2 STATMODELCHATBOT WORKFLOW

As illustrated in Figure [2| (a), our StatModelChatbot goes through five sequential nodes to com-
plete the entire schema and output a final task description. Here are the detailed prompts for our
conversational agent.

Prompt for task definition

You are given a user's description of a dataset for a statistical modeling task. Please use
a short paragraph to summarize what this task intends to do.

Ouput format:

" " "markdown
<your answer>

22

User:
{user}

Example output:
{example}

Prompt for data |

4}

You are an assistant who helps structure user descriptions into a predefined schema.
The current task is about the xxinput data (data node) xx.

The schema is defined as follows:

{

"data": {
"variable_name": {
"variable_type": "",
"data_path": ""

e

prompt = prompt + f£'''

Instructions:
1. Carefully read the user's description:
{user}

2. Fill in the schema above with as much information as possible.
- “variable_name : the name of the variable or dataset.
- “variable_type”: the type of the variable (e.g., int, real, vector, array).
- “data_path”™: the exact path or identifier of the data
(e.g., “benchmark/data/datal.csv’).

3. If the description provides enough information to complete a field, fill it in.
If some required fields are missing, leave them as empty strings “""".

4. Provide *xtwo outputs#*x:
— x*Schema outputx* (inside “jgson ... TTT).
— x+xFeedback in natural languagex* (inside ~~“markdown ~~7).
- If all required information is present, the first line of Feedback must be “Enough”
- If some required information is missing, the first line must be “Not Enough”,
followed by an explanation of what is missing and what the user should provide.

Make sure to always output both parts.

Examples:
{example}

pt for variable specification

You are an assistant that helps structure user descriptions into a predefined schema.
The current task is about the xxvariable nodexx.

The schema is defined as follows:

"transformed_data (optional)": {
"variable_name": {
"variable_type": "",
"expression": ""
I

I
"parameters": {

"variable_name": {
"variable_type": "",
"distribution": "", "
constraint (optional)": ""

I

23

}
"transformed_parameters (optional)": {

"variable_name": {
"variable_type": "",
"expression": ""

by

}

}

Instructions:

1. Carefully read the user's description:
{user}

2. Fill in the schema above with as much information as possible.

- “parameters”® is xxrequiredxx. Each parameter should have:
— “variable_name®: the name of the parameter.
- “variable_type : the type (e.g., int, real, vector, array).
— “distribution”: the assumed prior distribution.
- “constraint (optional): optional constraints (e.g., >0,
between 0 and 1).

- “transformed_data® and “transformed_parameters® are x*optionalxx.
- If mentioned in the description, fill them in.
— If not mentioned, you may leave them out without asking the user.

3. If the description provides enough information to fully specify the required fields in
“parameters”, fill them in.
If some required fields are missing, leave them as empty strings ~""~.

4. Provide x*xtwo outputs*x: (the same as data loading)

Make sure to always output both parts.
Examples:
{example}

Prompt for model definition

You are an assistant that helps structure user descriptions into a predefined schema.
The current task is about the x*model nodexx.

The schema is defined as follows:

{

"model": [
"expressionl", "expression2",
]
}
Instructions:
1. Carefully read the user's description:
{user}

2. Extract the part that describes the model (if any).
— If the user mentions a model structure, equations, or likelihoods, summarize them as a
list of expressions.
— If the user does not provide any model information, leave the list empty.

3. Provide x*two outputs*x:
— x*xSchema outputx* (inside “json ... TT7).
- x+xFeedback in natural languagex* (inside "markdown ... ~77)
— If model expressions are found, the first line of Feedback must be “Enough”, followed
by a short summary.
— If no model information is found, the first line must be “Not Enough®, followed by a
clear request for the user to provide model details.

Make sure to always output both parts.

Examples:
{example}

24

Prompt for result configurati

You are an assistant that helps structure user descriptions into a predefined schema.
The current task is about the xxinference and output nodesxx*.

The schema is defined as follows:

"inference": [
"configurationl", "configuration2",
1,
"output": [
"configurationl", "configuration2",
]
}
Instructions:
1. Carefully read the user's description:
{user}

2. Identify whether the description includes any details about:
- *xxInferencex* (e.g., sampling method, number of iterations, variational inference,
optimization settings, etc.).
- x*xOutput+* (e.g., what results to return, summary statistics, predictions, posterior
samples, etc.).

3. Provide *xtwo outputs*x:

- x+Schema outputx* (inside “““Jjson ... “°7), filling in the configurations if available

- x+Feedback in natural languagex* (inside ~~“markdown ... ~77):
- If inference and/or output details are found or the user says just default settings,
the first line must be “Enough”, followed by a short summary.
- If no inference/output information is found, the first line must be “Not Enough”,
followed by a clear request for the user to specify inference and/or output
configurations.

Make sure to always output both parts.

Examples:
{example}

D AN ENTIRE EXAMPLE USING AUTOSTAT, FROM TASK SPECIFICATION TO
DSL

First, the user can chat with the StatModelChatbot to specify the entire task, illustrated in Table E}
The StatModelChatbot will return the final output including the schema and the task description:

Output schema

"data": {
"N
"variable_type": "int",
"data_path": "testdata.json"
br
"year": {
"variable_type": "vector[int] [N]",
"data_path": "testdata.json"
br
"consumption": {
"variable_type": "vector[N]",
"data_path": "testdata.json"

}
b
"transformed_data": {
"diff consumption": {
"variable_type": "vector[N-11",
"expression": "diff_ consumption[i] = consumption[i+1l] - consumption[i]
for 1 in 1 to N-1"
}
by
"parameters": {

25

Table 5: An example of the dialogue between user and StatModelChatbot.

User

We’re modeling year-to-year changes in electricity consumption using
a simple Bayesian regression. After computing the first-order differ-
ences of consumption, we regress these differences on the correspond-
ing years with a normal likelihood.

Chatbot

Please provide the data paths for the electricity consumption differences
and corresponding years data files.

User

Our data is testdata.json, with an interger N and two vectors year and
consumption.

Chatbot

The description mentions using a normal likelihood for regression but
doesn’t specify the prior distributions for alpha, beta, and sigma. Please
provide the prior distributions for these parameters (e.g., normal priors
for alpha and beta, half-normal or half-cauchy for sigma).

User

alpha is Normal(0, 10), beta Normal(0, 5), sigma is exp(1) with lower
bound 0

Chatbot

The description provides details about the Bayesian regression model
structure (priors for alpha, beta, sigma, and likelihood) and the data
source, but it doesn’t specify any inference configurations (sampling
method, number of iterations, chains, etc.) or output configurations
(what results to return, summary statistics, predictions, or where to save
outputs). Please specify your inference and output preferences, or indi-
cate if you’d like to use default settings.

User

For inference, I think just take default settings is ok. Use nuts sampling
method, with 4 chains. I need 1000 warmup steps, then 1000 steps. For
output, I need to see the median, ess, plots for alpha and beta. Remem-
ber to export results to this file: electricity_consumption_results.csv

26

"alpha": {
"variable_type": "real",
"distribution": "normal (0, 10)"
I
"beta": {
"variable_type": "real",
"distribution": "normal (0, 5)"
by
"sigma": {
"variable_type": "real",
"distribution": "exponential(1l)",
"constraint": "> 0"
}
by
"model": ["diff_consumption[i] ~ normal (alpha + beta » year[i+l], sigma)

for i in 1:(N-1)"

I

"inference": [
"Use “nuts” method",
"4 chains",
"1000 samples after 1000 warmup iterations"

I

"output": [
"Report median as summary statistic",
"Check effective sample size (ess) for diagnostics",
"Generate plots for “alpha® and “beta™",
"Export results to “electricity_consumption_results.csv™"

Output task definition

You are provided with a dataset at “testdata.json™, which includes:

— "N°: an integer representing the number of observations.

- “year’: a vector of length "N containing the observation years.

- “consumption®: a vector of length "N° with consumption values (constrained to be greater
than 0).

Additionally, you define a transformed variable:
- "diff_consumption”: a vector of length "N-17, calculated as
“consumption[i] - consumption[i-1]" for each “i° from 2 to N.

You defined all required parameters clearly:
- “alpha ~ normal (0, 10)°

- “beta 7 normal (0, 5)°

- “sigma > 0 7 exponential(l)~

You also introduced a transformed data variable:
- “diff_consumption”: a vector of size “N-1°, where each element is
“consumption[i+l] - consumption[i]”

Model specification:

— For each "i° in “1:(N-1)°, the differences in consumption are modeled as
“diff_consumption[i] ~ normal (alpha + beta *x year[i+1l], sigma) .

This means consumption changes are assumed to follow a normal distribution with mean

determined by a linear function of the year and standard deviation “sigma’.

Inference configuration:
- Use the "nuts”™ sampler with 4 chains.
- Run 1000 warmup iterations followed by 1000 samples.

Output configuration:

— Report the xxmedianxx as the main summary statistic.

- Check xxeffective sample size (ess)*x for diagnostics.

— Generate xxplots for alpha and betaxx.

- Export results to xx electricity_consumption_results.csv *x.

Finally, our StatModelCopilot will generate the corresponding DSL code as follows:

27

Output task definition

stat_model_spec electricity_consumption_model {
meta {
author: "StatBot";
dsl_version: "1.0";
model_version: "1.0";
target_language: "stan";
}
documentation """
Bayesian regression model for year-to-year changes in electricity consumption.
Models first-order differences of consumption regressed on years with normal likelihood.

nun

data {
source N: int from json(path="testdata.json");
source year: vector[N] from json(path="testdata.json");
source consumption: vector[N] from json(path="testdata.json");

}
transformed_data {
consumption_diff: vector[N-11];

year_diff: vector[N-1];

for (1 in 1:(N-1)) {

consumption_diff[i] = consumption[i+1l] - consumption[i];
year_diff[i] = year[i+1];
}
}
parameters {
alpha: real ~ normal (0, 10);
beta: real ~ normal (0, 5);
sigma: real where sigma > 0 ~ exponential(l);
}
model {
for (i in 1:(N-1)) {
consumption_diff[i] ~ normal (alpha + beta * year diff[i], sigma);
}
}
inference {

method: nuts;
settings: {
chains: 4;
num_samples: 2000;
num_warmup: 1000;

}

output {
monitor: [alpha, beta, sigmal;
summary_stats: [median, ess];
diagnostics: [rhat];

plots: [alpha, betal;
export_results_to: "electricity_consumption_results.csv";

E STATMODELDATASET

In this section, we will deliver more details about our dataset construction process, including prompt
for data generation and prompt for data augmentation.

Prompt for data generation

You are a helpful DSL generator. I will provide you with:
- The grammar of the StatModelDSL,

- A few example DSL programs,

- A target usage scenario,

- And a set of configuration settings.

28

Your task is to generate a complete StatModelDSL program that fits the given scenario and
settings. Strictly follow the provided grammar and take inspiration from the examples.
Additionally, create a detailed task description written from the user's perspective -
imagine it's how someone would explain their modeling needs to an assistant.

You are allowed to define any ~.csv® or ~.json” data sources in your DSL program, but you
do **not** need to generate their contents - we will provide the actual data files.

Please output your response in *xexactlyxx the following format:

Description:
" “markdown

<The user's prompt when he want copilot to generate this
program. 1-3 sentences is ok.>

DSL code:

TTtdsl
<your complete DSL program here>

**xInputs:xx*

DSL Grammar:
" "markdown
{grammar}

DSL Program Examples:
TTTdsl
{examples}

Usage Scenario:
In the domain of xx{domain}*x, the task is *=x{task}x*x

Prompt for data augmentati

You are a helpful assistant for StatModelDSL, a DSL similar to Stan. I will give you:

* A StatModelDSL code snippet (which will be compiled into Stan).

* A natural-language task description written by a user.

* A few task examples demonstrating how to rewrite the natural-language description to
fully reflect the DSL specification.

Your job is to x*rewrite the user's task description*x so that it precisely
corresponds to the provided DSL code. The rewritten description should specify:

1. All data inputs and their types (e.g., int, real, vector, array), and where they
come from.

2. Any derived (transformed) data or parameters and how they are computed.

3. All model parameters and their prior distributions (with parameter values).

4. The structure of the model (e.g., likelihoods, regression equations, etc.).

5. Inference settings such as number of chains, number of samples, warm-up iterations.

Style instructions:

* The final description should *xsound like a power userxx of the tool giving precise
instructions to the system, written in a natural, fluent tone, as if to a copilot.

* Keep it concise but complete. Avoid vague language.

* Don't explain what the DSL does - describe *what the user wantsx in a way that fully
specifies the model.

Please output your response using this format:

Task description:

“markdown
<your rewritten description here>

29

Input:
Simple task description:

" " "markdown
{description}
DSL code:
TTTdsl

{dsl}

Examples:
{examples}

F STATMODELCOPILOT

We choose Llama3.1-8B-Instruct (Dubey et al., 2024) as our base LLM to train our StatModelCopi-
lot. The implementation details are shown in Table [6] All experiments are conducted on a single
NVIDIA A40 GPU, supported by Llama-Factory (Zheng et al., [2024)).

Table 6: Implementation details and training cost.

Stage Learning Rate Lora Rank # Training Data # Training Epochs Training Time
One 1x 1074 32 5064 5 3h
Two 5x107° 32 10907 3 7h

G MORE EXPERIMENTAL DETAILS

G.1 DETAILS ABOUT OUR TEST DATASET

Table 7: Details about our test set. All “lengths” mean the average lengths of all data. “Entire”
means the entire test dataset.

Simple Medium Complex Entire

Data 81 165 77 323
Insrtuction Length X4 1676 1917 2153 1913
DSL code length Y 1091 1331 1615 1339

Table [7| demonstrates more details about our test dataset. We decompose our test set into 3 lev-
els based on the length of the instructions to evaluate how different input lengths will affect the
performance.

G.2 LLM-AS-A-JUDGE

For quantitative experiments, we leverage GPT-40 as a judge to list out the mismatching items
between the description and the generated DSL/PPL code. Here is the prompt:

30

I will provide you with:
— A DSL code program
— The corresponding detailed description of the DSL code about the statistical modeling tadgk

Please help me to check if the description exactly matches the code. You need to focus on
each line of the description! Please list all the mismatches one by one.

If match, just answer: Match

If not, answer in this format:

Not match.

1. In description, we need xxx, but in the code, xxx
2. xXxx

DSL code:
TTtdsl
{code}

Description:
" "markdown
{description}

G.3 USER STUDY

Experimental settings. Each participant is asked to perform a simple code modification task in
each of the different programming environments. The purpose is to give them a basic familiarity with
the environment and ensure that they have carefully reviewed the provided code. After completing
the tasks in all three environments, participants are asked to rank the code in terms of clarity and
readability, and then indicate their preference—that is, which environment they would choose when
encountering a similar task in the future. To ensure the validity of the results and avoid any order
effects, the sequence in which participants worked with the three environments was randomized. The
tasks they encountered were also assigned randomly, while maintaining similar levels of difficulty
across conditions.

Participants. We collected a total of 17 responses. None of the participants had prior experience
with PPLs such as Stan or PyMC, but all had a solid foundation in Python and data analysis, as well
as a basic understanding of statistical concepts. From their responses, we can gain valuable insights
into novice users’ preferences and perceptions of different programming environments.

Results Analysis. From the results shown in Figure] we can observe that: 1) Clarity: Over half
of the participants favored our DSL, demonstrating that its design—by omitting verbose PPL code
and general-purpose language code (here, Python)—is concise and highly readable. 2) Preference:
Our DSL also achieved relatively high preference scores, indicating that for novices, this DSL for-
mat is indeed easier to use. However, compared with Stan, the advantage is not particularly large.
We believe this is because participants were already very familiar with Python, and the statistical
components in Stan were relatively minimal and straightforward. Additionally, the Stan code itself
is fairly concise and easy to understand, which led many users to also find it accessible.

H REAL-WORLD EVALUATION

To further demonstrate the practicality and effectiveness of our StatModelDSL and the full AutoStat
framework in real-world scenarios, we conduct a case study on two representative settings: 1) repro-
ducing real examples from the Stan textbook, and 2) replicating experiments reported in published
statistical research papers.

H.1 TASK COLLECTIONS

We collect real-world Bayesian modeling tasks from two types of scenarios:

31

* Textbook examples. We collect real-world Stan-based code from the official Stan example repos-
itoryﬂ These examples are drawn from three textbooks|Gelman & Hill| (2007); |Lee & Wagenmak-
ers| (2014); [Kéry & Schaub| (2011). We first filter out overly simplistic or incomplete code, then
randomly select 50 tasks from the remaining set. Each task is then converted into a complete
natural language description using GPT-40 (Hurst et al., [2024), and subsequently implemented in
StatModelDSL via our AutoStat framework.

* Research paper experiments. We collect all papers published in Bayesian Analysisﬂ from 2022
onward. For each paper, we extracted all simulation experiments that either relied on Bayesian
modeling or could be implemented using Bayesian approaches as a baseline. Using GPT-40 (Hurst
et al., 2024), we converted these experiments into structured task descriptions, filtering out cases
with overly vague descriptions or missing experimental details. From the remaining set, we ran-
domly selected 50 tasks, which were implemented and simulated using StatModelDSL through
our AutoStat framework. Because some experimental descriptions in the source papers are not
sufficiently detailed and the resulting outputs span diverse dimensions, it is difficult to design
rule-based checks to validate correctness. Therefore, our evaluation relies on a combination of
syntactic validation, manual inspection, and LLM-as-a-judge assessment to determine whether
the generated DSL faithfully matches the task requirements.

All generated DSL programs are syntactically correct, and the full set of programs is available
in our official code repository.

H.2 EXAMPLES

For textbook examples, here is a case:

Task definition

Develop a Bayesian hierarchical model using Stan to analyze data from multiple counties,
focusing on estimating county-specific effects on a continuous outcome variable. The

model includes hierarchical priors for county effects and uses NUTS sampling for inference,
with key parameters including the overall mean, county-specific deviations, and their
variances. The output should include plots of the primary parameters to assess their
distributions and relationships.

(More details omitted)

,
\

DSL implementation

stat_model_spec hierarchical_county_model {
meta {
author: "Public Health Analyst";
dsl_version: "1.0";
model_version: "1.0";
target_language: "stan";

}

documentation """

Bayesian hierarchical model for county-level data, using non-centered parameterization.
nnn

data {
source J: int from json(path="testdata.json");
source N: int from json(path="testdata.json");
source county: array[N] int from json(path="testdata.json");
source y: vector[N] from json(path="testdata.json");

}

parameters {
eta: vector([J] 7 normal (0, sigma_eta);
mu: real ~ normal (0, 1);
sigma_eta: real where sigma_eta > 0 ~ uniform(0, 100);
sigma_y: real where sigma_y > 0 ~ uniform(0, 100);

}

,
\

*https://github.com/stan-dev/example-models
*nttps://projecteuclid.org/journals/bayesian-analysis

32

https://github.com/stan-dev/example-models
https://projecteuclid.org/journals/bayesian-analysis

transformed_parameters {
eta_adj: vector[J];
mean_eta: real;
mu_adj: real;
for (J in 1:J) {

eta_adj[j] = etal[j] - mean(eta);
mean_eta = mean (eta);

}

mu_adj = 100 mu + mean_eta;

for (1 in 1:N) {
y_hat: vector[N];
for (j in 1:J) {
y_hat[i] = 100 * mu + eta[county[i]];
}

}

model {
mu ~ normal (0, 1);
sigma_eta ~ uniform(0, 100);
sigma_y ~ uniform(0, 100);
for (j in 1:J) {
eta[j] 7 normal (0, sigma_eta);
}
for (i in 1:N) {
y[i] 7 normal(y_hat[i], sigma_y);
}
}

inference ({
method: nuts;
settings: {
chains: 4;
num_samples: 1000;
num_warmup: 500;
}
}

output {
monitor: [mu, sigma_eta, sigma_y, etal;
summary_stats: [mean, g5, g95];
diagnostics: [rhat];
plots: [mu, sigma_eta, sigma_yl;
export_results_to: "results_hierarchical_county.csv";

\ J

This dsl implementation perfectly aligns with the task description and can be converted to the
ground-truth stan code.

For research paper examples, here is a case: In Section S4 of the appendix in Beraha et al.| (2024),
the authors conducted a Bayesian analysis on a mixture of Gaussians to compare the performance of
different sampling methods. Here, we replicate this experiment using StatModelDSL, performing
MCMC sampling with Stan. The corresponding DSL code is as follows:

(\

stat_model_spec mixture_gaussian {
meta {
author: "User";
dsl_version: "1.0";
model_version: "1.0";
target_language: "stan";
}

documentation """
We want to build a mixture-of-Gaussian distribution and test
the inference success rate and time cost of MCMC sampling.

nun

data {
source N: int where N > 1 from json(path="testdata.json");
source K: int where K > 1 from json(path="testdata.json");
source y: vector[N] from Jjson(path="testdata.json");

}

33

parameters {
theta: simplex[K] ~ dirichlet (rep_vector (1.0, K));
sigma: vector[K] ~ cauchy(0, 2.5);

mu: vector [K]

}

normal (0, 5);

model {
// Likelihood: mixture density
for (n in 1:N) {
lps: vector[K];
for (k in 1:K) {
lps[k] = log(thetal[k]) +
normal_lpdf (y[n] | mulk], sigmalk]);
}
target += log_sum_exp(lps); // mixture log-likelihood
}
}

inference {
method: nuts;
settings: {
chains: 4;
num_samples: 2000;
num_warmup: 1000;
}
}

output {
monitor: [thetal];
summary_stats: [mean, g5, g95];
diagnostics: [rhat, ess];
export_results_to: "results.csv";
posterior_predictive_checks: true;
age_group_differences: true;
credible_intervals: [0.9, 0.95];

\ J

Our experimental results show that when n = 100, the effective sample size (ESS) is 22.33 with a
sampling time of 2.58s; when n = 250, the ESS decreases to 14.61 with a sampling time of 3.78s.
Compared with Figure 1 in Section S4 (Beraha et al., 2024)), these results fall within a consistent
and realistic range.

34

	Introduction
	Related Work
	Statistical Modeling Workflow
	Domain-Specific Language for Large Language Models

	Method
	StatModelDSL
	StatModelChatbot
	StatModelDataset
	Data Generation
	Data Augmentation
	Data Filtering

	StatModelCopilot

	Experiments
	Experimental Settings
	Results Analysis (RQ1)
	Ablation Studies (RQ2)
	Effect of Base LLMs (RQ3)
	StatModelDSL Evaluation (RQ4)
	Experimental Settings
	Results analysis

	Real-World Evaluation (RQ5)

	Conclusion and Future Work
	Environments Comparison: An Example
	StatModelDSL
	DSL Components
	DSL Execution
	Example: Linear Regression in StatModelDSL

	StatModelChatbot
	Extraction Schema
	StatModelChatbot Workflow

	An entire example using AutoStat, from task specification to DSL
	StatModelDataset
	StatModelCopilot
	More Experimental Details
	Details about our test dataset
	LLM-as-a-judge
	User Study

	Real-world Evaluation
	Task Collections
	Examples

