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ABSTRACT

Comprehending embodied interactions within real-world settings poses a consid-
erable challenge, attributed to the multifaceted nature of human interactions and
the variability of environments, necessitating the development of comprehensive
benchmark datasets and multimodal learning models. Existing datasets do not
adequately represent the full spectrum of human interactions, are limited by per-
spective bias, rely on single viewpoints, have insufficient nonverbal gesture cap-
ture, and have a predominant focus on indoor settings. To address these gaps,
we present an Embodied Referring Expressions dataset (called Refer360), which
contains an extensive collection of embodied verbal and nonverbal interaction data
captured from various viewpoints across various indoor and outdoor settings. In
conjunction with this benchmark dataset, we propose a novel multimodal guided
residual module (MuRes) that helps the existing multimodal models to improve
their representations. This guided residual module acts as an information bot-
tleneck to extract salient modality-specific representations, and reinforcing these
to the pre-trained representations produces robust complementary representations
for downstream tasks. Our extensive experimental analysis of our benchmark Re-
fer360 dataset reveals that existing multimodal models alone fail to capture human
interactions in real-world scenarios comprehensively for embodied referring ex-
pression comprehension tasks. Building on these findings, a thorough analysis
of four benchmark datasets demonstrates superior performance by augmenting
MuRes into current multimodal models, highlighting its capability to improve the
understanding and interaction with human-centric environments. This paper offers
a benchmark for the research community and marks a stride towards developing
robust systems adept at navigating the complexities of real-world human interac-
tions.

1 INTRODUCTION

An understanding of embodied interaction by combining verbal messages and nonverbal signals
is crucial for robots in achieving fluent collaboration with people in human environments McNeill
(2012); Arbib et al. (2008); Liszkowski et al. (2006; 2004); Tomasello (2010); Tang et al. (2020);
Stacy et al. (2020); Kratzer et al. (2020); Islam and Iqbal (2020; 2021). It enables their smooth
integration into human teams and facilitates more natural interactions with people Chen et al. (2021);
Islam et al. (2024a; 2022a); Kratzer et al. (2020); Yasar* et al. (2022); Yasar and Iqbal (2021).
However, comprehending multimodal cues by extracting and fusing representations from verbal and
non-verbal signals poses some significant challenges Samyoun* et al. (2022); Islam et al. (2022b);
Feichtenhofer et al. (2019). Moreover, these difficulties are exacerbated by inherent data collection
biases, which result in a nuanced yet restricted comprehension of human behaviors and interactions
due to environmental constraints, pre-defined human-robot interactions, and the diversity of sensory
modalities Islam et al. (2024a). These limitations underscore the need for a robust multimodal model
to extract complementary representations trained on a diverse dataset.

Existing datasets, such as YouRefIt Chen et al. (2021) and MoGaze Kratzer et al. (2020), while
capturing real-world embodied interactions, have crucial limitations that challenge the development
of robust comprehension models. First, these datasets contain verbal utterances from the speaker’s
or observer’s perspective, such as “left ball” versus “right ball”. This bias in the trained data limits
the models’ ability to understand embodied interactions comprehensively. Second, the reliance on

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Refer360 data collection setup to capture human interactions using Azure Kinect mounted on the
robot and a Pupil Smart Glass worn by the subject (left). Interaction frames from three different views (Exo,
Ego, and Exo). Highlighting the canonical frames, i.e., frames where the subject precisely points to an object
(right).

single-view (exo or ego) data collection introduces view bias, limiting model performance across di-
verse environments. Multi-view data capturing (ego, exo, and top views) is essential for overcoming
occlusions in object visibility and interaction nuances, thereby enabling a more holistic understand-
ing of embodied interactions. Third, existing datasets partially capture nonverbal gestures. These
datasets capture either pointing gestures or gazes. However, in embodied interactions, both signals
provide complementary information to comprehend an interaction robustly. Fourth, existing datasets
are collected indoors and in constrained settings where humans are specifically instructed. Addition-
ally, these datasets are collected from a stationary camera from a fixed angle. These drawbacks in
the datasets limit the trained models to comprehend real-world human interactions in diverse and
unconstrained settings. A comparison of the existing datasets is given in Table 1.

To address these issues, we have curated a comprehensive and diverse dataset, called Refer360,
to facilitate the understanding of human interactions in real-world settings. We have collected the
dataset across various indoor and outdoor settings with varying attributes, such as variable light-
ing conditions, object arrangements, and environment appearances. Our data collection system is
depicted in Fig. 1. We have collected multimodal data using a range of sensors to capture interac-
tions comprehensively, including ego and exo visual views, depth, skeleton, infrared, audio, gaze,
and pupil tracking. Finally, this dataset contains scenes and verbal utterances annotated by expert
human annotators. Data collection was conducted under an approved Institutional Review Board
(IRB) protocol.

Beyond dataset biases, another significant challenge in comprehensively understanding embodied
referring expressions is the extraction of complementary representations from multimodal data.
While existing multimodal models fuse multimodal representations from the frozen pre-trained en-
coders, leading to performance enhancements across various tasks, the representation gap between
these frozen representations can lead to sub-optimal multimodal representations. Several approaches
have been proposed in the literature to reduce the representation gap Alayrac et al. (2022); Li et al.
(2022; 2023); Liu et al. (2023). However, fusing these frozen representations using self-attention
or cross-attention approach can overlook modality-specific cues, limiting the model’s ability to ef-
fectively leverage and integrate the distinct, complementary cues in multimodal interaction signals
(verbal and non-verbal). Thus, extracting salient representations across modalities can help to ex-
tract complementary representations.

To address this challenge, we introduce a novel multimodal guided residual module, MuRes, to learn
complementary multimodal representation. Unlike existing approaches, MuRes not only extracts
aligned representations but also learns modality-specific cues through guided residual connections.
Following the information bottleneck principle Islam et al. (2023); Wang et al. (2022); Tishby and
Zaslavsky (2015); Shwartz-Ziv and Tishby (2017); Tishby et al. (2000); Sun et al. (2022); Alemi
et al. (2016); Träuble et al. (2022); Islam et al. (2024b), we design MuRes as a representation bottle-
neck to extract relevant representations across modalities. Reinforcing these relevant representations
can help to extract complementary multimodal representations. This method ensures that the model
captures aligned and modality-specific representations across modalities. This complementary fused
representation can help comprehensively understand multimodal embodied interactions. Our pro-
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Table 1: Comparison of the QA datasets. Existing VQA and EQA datasets do not contain nonverbal gestures
(NV), multiple verbal (V) perspectives (MP), contrastive (C), and ambiguous (A) data samples, and outdoor
scene data. ‡Embodied (E) interactions refer to humans interacting using multimodal expressions. †Embodied
interactions refer to an agent navigating in an environment. ⋆Sythetic Environment. Please check the supple-
mentary for a detailed comparison with other related datasets.

Datasets V NV E MP Views C A Image
Frames

Interaction
Samples Environment Type

Exo Ego

VQA Antol et al. (2015) ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ 204K 614K Internet Image
GRiD-3D⋆ Lee et al. (2022) ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ 8K 445K Simulated Image
EQA† Das et al. (2018) ✓ ✗ ✓† ✗ ✗ ✓† ✗ ✗ 5K 5K Simulated Interactive
MT-EQA† Yu et al. (2019) ✓ ✗ ✓† ✗ ✗ ✓† ✗ ✗ 19K 19K Simulated Interactive
CAESAR-XL‡⋆ Islam et al. (2022a) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 841K 1M Simulated Image
EQA-MX‡⋆ Islam et al. (2024a) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 750K 8K Simulated Image
YouRefIt Chen et al. (2021) ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ 497K 4K Indoor Video

Refer360‡ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 1.3M 14K Indoor+Outdoor Video

posed guided residual module can be used as an adapter module in existing multimodal models to
extract salient representations.

To evaluate the effectiveness of our module, we conduct extensive experimental analysis on our
Refer360 dataset for comprehending referring expressions, alongside various visual question-
answering (VQA) datasets. Furthermore, we have integrated MuRes into existing multimodal mod-
els to show the effectiveness of utilizing MuRes for extracting salient complementary multimodal
representation. Our experimental analysis suggests that MuRes helps to improve these multimodal
models’ performance for various question-answering tasks. For example, integrating MuRes im-
proved the CLIP model’s performance (IOU-25) by 3.4% and 4.99% on the Refer360 and CAESAR-
PRO datasets, respectively. Additionally, MuRes boosted the VQA task’s accuracy of VisualBERT
model on the ScienceQA Lu et al. (2022) dataset by 4.58% and ViLT Kim et al. (2021) model on the
A-OKVQA dataset by 2.86%. These performance improvements depict the significance of our pro-
posed guided residual model for extracting complementary multimodal representations for various
downstream tasks.

2 RELATED WORK

Embodied Referring Expression Datasets: In the literature, embodied interactions are studied in
two forms. The first involves agents navigating an environment to gather visual data following verbal
instructions Das et al. (2018); Yu et al. (2019). The second focuses on comprehending referring
expressions involving verbal and nonverbal cues, where agents interpret and respond Chen et al.
(2021); Islam et al. (2022a;c). We explore the second aspect of embodied interactions, focusing on
understanding multimodal referring expressions.

Several datasets have been curated in the literature to study embodied referring expressions (E-RFE).
For example, Chen Chen et al. (2021) developed an embodied referring expressions dataset where
a human refers to an object using verbal and pointing gestures. In their proposed dataset, Kratzer
Kratzer et al. (2020) mainly focused on capturing the human body motion and eye gaze. To incor-
porate both verbal and nonverbal signals, Islam Islam et al. (2022a) developed a synthetic dataset
by generating nonverbal cues (pointing gesture and gaze) in a virtual environment and template-
based verbal instructions. While these datasets demonstrated the importance of developing diverse
datasets towards comprehensively understanding of E-RFE, they predominantly focus on indoor set-
tings Chen et al. (2021), static camera view without motion Chen et al. (2021); Kratzer et al. (2020);
Islam et al. (2022a;c; 2024a), scripted human interactions Islam et al. (2022a;c; 2024a), limited
sensor modalities Chen et al. (2021); Kratzer et al. (2020), and synthetic environments Islam et al.
(2022a;c; 2024a). Therefore, these datasets provide limited data samples for developing models for
a comprehensive understanding of E-RFE.

Multimodal Representation Learning: There has been significant progress in the last sev-
eral years on developing multimodal models, particularly focusing on Visual Question Answering
(VQA) tasks Li et al. (2019); Lu et al. (2019); Kim et al. (2021); Radford et al. (2021); Li et al. (2022;
2023); Zhai et al. (2022); Alayrac et al. (2022); Liu et al. (2023); Goyal et al. (2017); Gao et al.
(2015); Yu et al. (2015); Zhu et al. (2016); Krishna et al. (2017). For example, VisualBERT Li et al.
(2019) used a Transformer with Self-Attention to extract salient multimodal representation, which
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is trained using visually grounded language model objectives. ViLT Kim et al. (2021) processed
visual inputs holistically, learning visual-language representations without relying on the regional
supervision typically associated with object detection. BLIP-2 Li et al. (2023) designed Querying
Transformer to bootstrap vision-language representation from a frozen image encoder. These mod-
els achieved performance improvement on VQA tasks by utilizing representation alignment-based
training objectives. However, as these objectives primarily focus on representation alignment, the
model can not effectively fuse the modality-specific representations. Additionally, utilizing the self
and cross-attention approaches primarily focuses on alignment to calculate attention score; hence,
complementary representations can not be extracted, which are crucial for comprehensively under-
standing the multimodal referring expressions.

3 DATA COLLECTION

3.1 DATA COLLECTION SYSTEM

Figure 2: Sample canonical frames from Refer360
dataset in three different views: Exo-view (RGB), Ego-
view (RGB), and Exo-View (Depth). The first, second,
and third rows contain interaction samples from a home,
lab, and outdoor location.

The goal of the Refer360 dataset is to study
real-world human-robot interactions in which a
human provides object-referencing instructions
to robots across diverse environments, spanning
controlled laboratory setups to outdoor loca-
tions. To achieve this, we have developed a
data collection system that synchronously cap-
tures multimodal data of embodied interactions
in lab and outside-lab environments, utilizing
an Azure Kinect DK azu and a Pupil Glass eye
tracker pup. It is worth noting that by ‘outside-
lab environment,’ we encompass settings, in-
cluding home, outdoor locations, etc.

Figure 1 depicts a sample data collection setup
of Refer360. The Azure Kinect DK is mounted
on an Ohmni telepresence robot ohm to in-
corporate camera motion and replicate real-
world settings. The Kinect sensor offers mul-
tiple data streams that capture different interac-
tion modalities. Its RGB camera continuously
records visual data, providing an external or ex-
ocentric perspective of the participant’s actions. The Pupil eye tracker records an RGB data stream,
capturing the participant’s first-person or egocentric perspective. Additionally, the Kinect sensor
captures depth, infrared, and audio data streams, enabling analysis of the participant’s environment
and audio cues. We utilize Kinect’s Body Tracking SDK Microsoft to capture 3D skeletal data with
32 body joints, allowing us to track the participant’s movements and postures. By combining exo-
centric and egocentric viewpoints, along with multimodal data from the same interaction, our system
offers a comprehensive understanding of embodied human-robot interactions.

We have developed a Python-based application to synchronize the data collection process. It utilizes
the pyKinectAzure Gorordo (Year of access) library for the Kinect sensor’s data streams and Pupil
Labs’ Real-time Python API Pupil Labs (Year of access) for the Eye Tracker’s data streams. We log
the UNIX timestamps of data capture events for multiple sensor data streams from Kinect and Eye
Tracker. We used these timestamps to synchronize the captured data during post-processing. This
timestamp-based synchronization method can be extended to seamlessly integrate various additional
sensors for enhanced functionality and versatility. We will opensource this data collection system
for future research. Details of the data collection system can be found in Appendix A.

3.2 PARTICIPANTS

After receiving approval from the Institutional Review Board (IRB) for our study involving human
participants, we recruited 66 participants for the study and data collection with 53% males (n =
35) and 47% females (n = 31). The participants were primarily students from various academic
backgrounds. The average age of the participants was 26.66 years, with a standard deviation of 3.36
years. One participant did not consent to release the data. We excluded that participant data from
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Table 2: Statistical breakdown of Refer360 dataset.

Sessions Interactions Frames Canonical Frames Avg. Interaction Duration Total Duration

Lab 198 10,814 2,472,939 22,356 4.484 sec 13.48 hr
Outside-lab 194 3,176 759,018 6,380 4.691 sec 4.14 hr

Total 392 13,990 3.2M 28,736 4.531 sec 17.62 hr

Refer360. Each participant was compensated $15 for 1 hour of their time, which is higher than the
state minimum wage guideline.

3.3 DATA COLLECTION PROTOCOL

All data collection tasks required participants to provide object referencing instructions across dif-
ferent sessions, where the environment setup, objects, and data capturing viewpoints varied. Before
beginning the study, participants reviewed consent documents and task instructions. They then com-
pleted a pre-task survey, providing demographic information and details about their experience with
robots. Next, participants wore the eye tracker and participated in the data collection sessions. These
sessions occurred under one of two distinct conditions: constrained or unconstrained. In the con-
strained condition, participants received guidelines on the instruction format and were encouraged
to utilize verbal and non-verbal modalities for natural interaction. Conversely, subjects received no
specific instruction format or modality suggestions in the unconstrained condition. After complet-
ing all sessions, participants completed a post-task survey indicating their preferred method of object
referencing. The options provided were using only verbal instructions, only gestures, or a combi-
nation of verbal instructions and gestures. Participants also signed a consent form permitting the
release of the collected dataset. Please refer to Appendix A for further details on the data collection
protocol and procedure. The study protocol was approved by the University of Virginia’s IRB.

3.4 DATASET POST-PROCESSING

We have recorded a single video file utilizing the Kinect sensor for each session, which contains
three data streams: RGB, Depth, and Infrared. Using the data collection application, we read the
Kinect sensor’s IMU and 3D skeleton joint data and stored them in separate JSON files. We uti-
lize the FFmpeg ffm library to split the Kinect video stream into three separate streams for RGB,
Depth, and Infrared. The IMU time series data is split into two files: accelerometer readings and
gyroscope readings. We extracted the recorded audio from Kinect as an MP3 file. For each session,
the Pupil eye tracker generates a video file in MP4 format and saves it to the Pupil Cloud with event
timestamps.

One of the major challenges in the data post-processing was to synchronize the Azure Kinect and
Pupil Eye Tracker data and segment each interaction. We used each interaction’s start and end
times for the segmentation from the Pupil Cloud event timestamps log. Additionally, we logged
canonical frames (Figure 1 (right)), i.e., frames where participants precisely pointed to the object
of interest during data collection. We leveraged the FFmpeg library to split the data into individual
interactions and these specific canonical frames for Kinect and eye-tracking data. We used the Pupil
Labs’ Real-time Python API for the eye tracker to access the corresponding recordings stored in the
Pupil cloud, matching them to the Kinect data using timestamps. Finally, we employed the OpenAI
Whisper OpenAI (Year of access) library to transcribe the audio data captured by the Kinect. Under
the approved IRB, five human experts validated all interaction segmentation, synchronization, and
audio transcriptions to ensure high-quality data. This dataset was annotated by human annotators
from an external company, which provides data annotation services. Figure 2 illustrates sample
interactions from Refer360 dataset along with the audio transcription.

4 DATASET ANALYSIS

Table 2 presents a detailed statistical breakdown of our Refer360 dataset. The data collection phase
involved 392 sessions split between lab and outside-lab environments. A total of 13, 990 interactions
were recorded within 17.62 hours of recording time. A total of 14, 368 frames were captured. There
were approximately 36.65 frames in each session. The average session length was 2.69 minutes,
and each interaction lasted 4.53 seconds on average.
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To gain insight into participants’ preferred methods of object referencing, we analyzed the post-
task survey data. The results revealed that an overwhelming majority of participants, 96.97% (n
= 63), preferred using a combination of verbal instructions and non-verbal gestures, such as gaze
and pointing. Only a small fraction, 3.03% (n = 2), preferred using verbal instructions alone. In-
terestingly, none of the participants chose to rely solely on non-verbal gestures as their preferred
method of communication. These findings highlight the strong preference for combining verbal and
non-verbal cues when referencing expressions in embodied settings.

5 MURES: MULTIMODAL GUIDED RESIDUAL MODULE

Figure 3: Multimodal Model, MuRes, with the
Guided Residual module. Visual and language
representations are extracted and projected from
a pre-trained VL model. The projected represen-
tations are fed into the cross-attention module as
the query. The key and value are the original ex-
tracted visual and language representations on the
residual connection. The output from the cross-
attention module and projection are summed for
downstream task learning.

The task of grounding objects, referred to by em-
bodied interactions, requires a comprehensive un-
derstanding of verbal utterances and nonverbal ges-
tures. Existing visual-language (VL) models of-
ten utilize pre-trained frozen encoders to extract vi-
sual and language representations, fusing using self-
attention or cross-attention approaches for down-
stream task learning. These fusion approaches can
lose salient information due to the modality gap be-
tween frozen language and visual representations,
resulting in sub-optimal multimodal representations
and decreased downstream task performance. To
prevent this from happening, one of the prevalent
approaches is to utilize a residual connection, which
can improve gradient flow Huang et al. (2016; 2017);
He et al. (2016) and reinforce a prior representation.
However, residual connections contain no informa-
tion bottleneck, resulting in visual and language rep-
resentations that contain unrelated information for
downstream tasks. From this motivation, we design
a multimodal guided residual module, MuRes, to re-
inforce salient multimodal representations for down-
stream tasks (Fig. 3).

Visual-Language Representations: Similar to ex-
isting models Alayrac et al. (2022); Li et al. (2022;
2023); Zhai et al. (2022); Kim et al. (2021), we first
extract visual and language representations using a
frozen pre-trained encoder. We used state-of-the-art
VL models to extract visual (V ∈ RDV ) and lan-
guage L ∈ RDL representations, such as CLIP Radford et al. (2021), DualEncoder Wu et al. (2019),
ViLT Kim et al. (2021), and BLIP-2 Li et al. (2023). Here, DV and DL are the dimensions of visual
and language representations from the pre-trained encoders.

Multimodal Guided Residual Module: We introduce a multimodal guided residual module to
reinforce salient portions of modality-specific representations, serving as an information bottleneck
over vanilla residual connection He et al. (2016) reinforcing entire representations. This is done by
focusing on the most relevant parts of the visual or language representations using cross-attention.
Cross-attention is similar to self-attention but has a crucial difference in its inputs. In cross-attention,
the query is different from the keys and values, whereas in self-attention these are the same. This
allows for the usage of projected visual (V p) and language (Lp) representations as the query (q),
and usage of the originally extracted visual (V ) and language (L) representations as the key (k) and
value (v):

{V g, Lg} = Cross-Attention(q = {V p, Lp}, k = {V,L}, v = {V,L}) (1)

This design allows for maintaining beneficial aspects of residual connections, such as improved gra-
dient flow and reinforcement of prior representations, while establishing an information bottleneck
on the residual connection. After extracting the guided residual representations, they are added to
the projected representations as in vanilla residual connections: V f , Lf = V p + V g, Lp + Lg .
Finally, we fused these representations (V f , Lf ) for downstream task learning.
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Training Model: To demonstrate the MuRes model’s effectiveness at improving representations,
we train for two downstream tasks: comprehending embodied referring expressions designed as
an object bounding box prediction and visual-question answering designed as a multiple choice
question-answering task. We used a regression loss for the object bounding box prediction task and
a classification loss for the multiple-choice question-answering task.

We developed all models using the PyTorch Paszke et al. (2019) and PyTorch-Lightning Falcon
(2019) deep learning frameworks. We also used the HuggingFace library for pre-trained models
(ViLT, Dual Encoder, CLIP, and BLIP-2). We used an embedding size of 512 for the Dual-Encoder
and CLIP models, 768 for the ViLT model, and 1408 for the BLIP-2 model. We trained models using
the AdamW optimizer with a weight decay regularization set to 0.01 Loshchilov and Hutter (2017)
and cosine annealing warm restarts with a cycle length (T0): {2, 4, 6}, and cycle multiplier (Tmult):
2. For the Dual Encoder, CLIP, ViLT, and BLIP-2 models doing detection we used a learning rate
of 3e− 5, 3e−6, 3e−5, and 3e−6 respectively, and all models for VQA used a learning rate of 1e−5.
We used a batch size of 32 for all models except BLIP-2 where we used a batch size of 2 due to the
model being much larger. All models for detection were trained for 10 epochs on Refer360 and 25
epochs on CAESAR-PRO with a random seed of 33; and all models for VQA were trained for 20
epochs with a random seed of 42.

6 EXPERIMENTAL ANALYSIS

We have incorporated our proposed guided residual module MuRes into the existing state-of-the-art
multimodal models, including CLIP Radford et al. (2021), DualEncoder Wu et al. (2019), ViLT
Kim et al. (2021), BLIP-2 Li et al. (2023), and VisualBERT Li et al. (2019). We have evaluated
these models and baselines multimodal models on Refer360 and CAESAR-PRO Islam et al. (2022c)
datasets focusing on embodied referring expression comprehension (E-RFE) tasks. We have also
evaluated these models on two more widely used datasets, ScienceQA Lu et al. (2022), and A-
OKVQA Schwenk et al. (2022), to assess their performance on Visual Question Answering (VQA)
tasks. We trained multiple variations of our proposed residual module MuRes, each differing in
the type of residual representation of visual and language modalities. We examined four distinct
variations:

• Visual-Only Residual Representation MuRes(V): This variant leverages the projected
visual representation as the query in the guided residual modules to extract the salient
multimodal residual representations.

• Language-Only Residual Representation MuRes(L): This variant utilizes the projected
language representation as the query in the guided residual modules to extract the salient
multimodal residual representations.

• Visual and Language Residual Representation MuRes(V+L): This variant employs pro-
jected visual and language representations as the query to extract the salient multimodal
residual representations.

• Vanilla Models: Following the original residual architecture He et al. (2016), this base-
line directly summed visual and language representations to the projected representations
without using any attention approach. We also evaluated several multimodal models in the
vanilla mode without any residual connections.

6.1 EXPERIMENTAL EVALUATION ON EMBODIED REFERRING EXPRESSION
COMPREHENSION TASK

We evaluated models on the Refer360 and CAESAR-PRO datasets for the embodied referring ex-
pression comprehension task. Following prior work on the embodied referring expression task Chen
et al. (2021), we designed this task as an object bounding box detection task. All models were
trained following a similar setup outlined in Section 5 (Training Model). We have reported Top-1
accuracy for the VQA tasks. The experimental results are presented in Table 3.

Results and Discussion: The experimental results in Table 3 indicate that augmenting existing
multimodal models with the proposed multimodal guided residual module MuRes enhances embod-
ied referring expression comprehension task performance on both the Refer360 and CAESAR-PRO
datasets. More specifically, the results indicate that including visual reinforced representations en-
hances task performance. For example, augmenting MuRes into CLIPRadford et al. (2021) model
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Table 3: Comparison of VL models performance on the embodied referring expression comprehension task,
designed as bounding box detection. The results suggest that our multimodal guided residual module, MuRes,
enhances the performance of most baseline multimodal models on the Refer360 and CAESAR-PRO datasets.
Best performance numbers in bold face. (V: Visual, L: Language)

Refer360 Dataset

Models Without Residual Vanilla Residual MuRes(V) MuRes(L) MuRes(V+L)
IOU-25 IOU-50 IOU-25 IOU-50 IOU-25 IOU-50 IOU-25 IOU-50 IOU-25 IOU-50

CLIP 25.80 7.67 27.22 8.35 29.20 9.15 28.30 7.50 26.65 7.27
ViLT 36.53 14.03 35.34 14.37 - - - - 37.05 14.66
BLIP-2 29.42 7.54 27.66 7.31 25.45 7.71 26.81 7.94 16.44 3.80
Dual-Encoder 31.08 9.83 30.17 8.98 31.36 8.92 29.43 9.03 31.08 10.68

CAESAR-PRO Dataset Islam et al. (2022c)

Models Without Residual Vanilla Residual MuRes(V) MuRes(L) MuRes(V+L)
IOU-25 IOU-50 IOU-25 IOU-50 IOU-25 IOU-50 IOU-25 IOU-50 IOU-25 IOU-50

CLIP 37.92 9.82 39.43 10.83 42.91 11.91 39.56 10.85 39.06 10.46
ViLT 27.96 8.73 25.67 8.06 - - - - 28.52 8.04
Dual-Encoder 42.52 12.14 42.61 11.61 36.72 8.51 37.97 10.32 37.72 11.50

and reinforcing visual representation improved object bounding detection task performance on our
Refer360 dataset from 25.80% to 29.20% for IOU-25. Similarly, MuRes helps CLIPRadford et al.
(2021) model enhance object bounding detection task performance on CAESAR-PRO Islam et al.
(2022c) dataset from 37.92% to 42.91% for IOU-25. This performance improvement underscores
the importance of visual cues in object grounding and suggests that reinforcing visual representation
can lead to better performance.

Although the vanilla residual connection offers some performance improvement over models with-
out any residual connection-based fusion, the gains are modest compared to those achieved with
MuRes. The key distinction lies in MuRes’s selective reinforcement of the most salient aspects of
the visual-language representation, acting as an information bottleneck to extract only the relevant
information. This targeted approach contrasts with vanilla residual connections, which indiscrimi-
nately reinforce the entire representation. These insights align with the findings from prior works
on the information bottleneck Islam et al. (2023); Wang et al. (2022); Tishby and Zaslavsky (2015);
Shwartz-Ziv and Tishby (2017); Tishby et al. (2000); Sun et al. (2022); Alemi et al. (2016); Träuble
et al. (2022); Islam et al. (2024b). In the literature, it has been shown that information bottleneck
helps the model to extract the relevant information and thus improve downstream task performance.
Thus, the design choice of residual representation incorporation is pivotal in refining multimodal
representation and, consequently, downstream task performance.

The experimental results further suggest that the specific modality being reinforced can influence
performance improvements. For example, reinforcing the visual modality with MuRes boosts the
CLIP model’s performance for the object bounding box detection task from 25.80% to 29.20% for
IOU-25. Conversely, emphasizing the language modality results in a slightly lower enhancement,
with performance increasing to 28.30%. This variance suggests that the object grounding task is
predominantly reliant on visual information.Thus, the choice of modality for reinforcement should
be carefully considered based on the downstream task.

6.2 EXPERIMENTAL EVALUATION ON VISUAL QUESTION-ANSWERING TASK

We have evaluated the models on the ScienceQA Lu et al. (2022) and A-OKVQA Schwenk et al.
(2022) datasets for the VQA task. Following the evaluation protocols in these benchmark datasets,
we have evaluated the models on multiple-choice QA tasks. Similar to the previous tasks, we have
incorporated different variations of our multimodal guided residual module MuRes in CLIP Radford
et al. (2021), ViLT Kim et al. (2021), and VisualBERT Li et al. (2019) models. These variations are
MuRes(V), MuRes(L), MuRes(V+L), and Vanilla Multimodal Models without residual connection
for multimodal fusion. As ViLT is a monolithic model and provides combined visual-language
representations, we split the output representation of the VILT model into separate representations
for the text and image inputs based on the length of the text determined by the attention mask. All
models were trained following the similar setup outlined in Section 5 (Training Model). We reported
Accuracy for ScienceQA dataset and Multiple Choice (MC) based evaluation metric Schwenk et al.
(2022) for AOK-VQA dataset. The experimental results are presented in Table 4.
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Table 4: Comparison of VL models performance on the visual question-answering task. The results suggest
that our multimodal guided residual module, MuRes, enhances the performance of the multimodal models on
the ScienceQA and A-OKVQA datasets. Best performance numbers in bold face. (V: Visual, L: Language)

ScienceQA Dataset Lu et al. (2022)
Models Without Residual With Residual MuRes(V) MuRes(L) MuRes(V+L)

CLIP 21.31 33.36 40.75 31.33 51.85
ViLT 44.52 47.05 42.78 42.58 49.33
VisualBERT 34.95 36.63 37.13 37.63 39.03
Dual-Encoder 24.79 35.55 37.13 31.93 43.57

A-OKVQA Dataset Schwenk et al. (2022)
Models Without Residual With Residual MuRes(V) MuRes(L) MuRes(V+L)

CLIP 29.41 32.78 32.78 30.42 32.47
ViLT 31.61 31.21 32.19 31.48 32.53
VisualBERT 29.88 32.47 30.72 31.15 32.62
Dual-Encoder 32.64 33.45 32.89 31.72 35.02

Results and Discussion: The experimental results in Table 4 suggest that incorporating our mul-
timodal guided residual module, MuRes, into multimodal models demonstrates consistent perfor-
mance improvement across all variations evaluated compared to those without residual connections.
Specifically, the inclusion of both visual and linguistic modalities (MuRes(V+L)) consistently yields
the highest improvements. For example, in the ScienceQA dataset, CLIP model with MuRes VQA
task accuracy increases from 21.31% to 51.85%. This performance improvement attributed to the
information bottleneck in MuRes effectively extracts the salient representation from visual and lan-
guage modalities, leading to more accurate answers.

The gains from visual-only (MuRes (V)) and language-only (MuRes (L)) reinforcements underscore
the importance of modality-specific enhancements, with visual reinforcements being particularly
impactful in the VisualBERT model on the ScienceQA dataset, improved its performance from
34.95% to 37.13% using visual reinforcement and 37.63% using language reinforcement. These
insights suggest that strategically leveraging multimodal guided residuals can significantly refine
model performance in VQA tasks.

7 CONCLUSION

In this paper, we have introduced a diverse dataset of multimodal interactions, Refer360, as well
as presented a novel model, MuRes, to extract modality-specific salient representations. To com-
prehensively study embodied referring expressions in real-world settings, as our first contribution,
we have curated a diverse dataset, Refer360, from various environments. We collected multimodal
sensor data—exo visual view, ego visual view, depth, infrared, 3D skeletal data, audio, and robot
camera motion—to capture unconstrained human interactions from multiple verbal and visual view-
points. Consequently, Refer360 is the first embodied referring expression comprehension dataset
curated with such diverse sensor data, which facilitates the study of embodied referring expressions.
Additionally, we have conducted extensive experimental analyses, demonstrating that existing mul-
timodal models cannot effectively understand embodied referring expressions in real-world settings.
The primary reason for this discrepancy in performance is a failure to bridge the gap between general
pre-trained frozen visual-language representations with salient modality-specific cues. To address
this issue, as our second contribution, we have presented a multimodal guided residual module,
MuRes. This module acts as a bottleneck to extract salient modality-specific representations, which
are then integrated with the pre-trained representations. Our extensive quantitative and qualitative
experiments suggest that incorporating MuRes into existing multimodal models improves down-
stream task performance on four datasets comprising embodied referring expression understand-
ing and visual question answering. Our comprehensive multimodal dataset (Refer360), proposed
multimodal guided residual module (MuRes), and findings from our experimental analyses show
promising directions for research into embodied referring expression comprehension.
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