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Abstract

Learning agents with reinforcement learning is difficult when dealing with long
trajectories that involve a large number of states. To address these learning problems
effectively, the number of states can be reduced by abstract representations that
cluster states. In principle, deep reinforcement learning can find abstract states, but
end-to-end learning is unstable. We propose contrastive abstraction learning to
find abstract states, where we assume that successive states in a trajectory belong
to the same abstract state. Such abstract states may be basic locations, achieved
subgoals, inventory, or health conditions. Contrastive abstraction learning first
constructs clusters of state representations by contrastive learning and then applies
modern Hopfield networks to determine the abstract states. The first phase of
contrastive abstraction learning is self-supervised learning, where contrastive
learning forces states with sequential proximity to have similar representations. The
second phase uses modern Hopfield networks to map similar state representations
to the same fixed point, i.e. to an abstract state. The level of abstraction can
be adjusted by determining the number of fixed points of the modern Hopfield
network. Furthermore, contrastive abstraction learning does not require rewards
and facilitates efficient reinforcement learning for a wide range of downstream
tasks. Our experiments demonstrate the effectiveness of contrastive abstraction
learning for reinforcement learning.

1 Introduction

Key in reinforcement learning (RL) is to learn proper representation of the environment. If the
state space is small and trajectories are short, RL can efficiently construct plans and solve tasks.
In particular, for Markov decision processes (MDPs) [72] with few states and short trajectories,
an agent can readily learn world models, value functions, and policies. Therefore, the main goal
in representation learning for RL is to find clusters of similar states, that form abstract states. If
we know how to transit from one abstract state to another one, then state abstraction transforms
a complex problem into a simpler problem, e.g. an MDP with many states into an MDP with few
states. Deep reinforcement learning gave us the hope that it automatically identifies abstract states,
however, end-to-end learning of representations is not stable [54, 50]. Therefore, recent work revisited
auxiliary losses and data augmentation to obtain good representations [25]. Also, learning proper
state abstractions is computationally expensive, since a proper clustering of states must be identified
in large set of possible clusterings. However, if state abstractions are learned reward free they can be
used for many RL tasks, thus amortizing the cost of finding these state clusterings.

A promising direction to learn proper RL representations without using rewards is self-supervised
learning, where a learning system is trained to capture the mutual dependencies between its inputs
[55]. The data stream and not the model designer should determine good representations, which will
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Figure 1: Contrastive abstraction learning. (a) The first phase applies self-supervised learning via
contrastive learning to represent states with sequential proximity in a similar way. Using the InfoNCE
objective, two sequentially close states are forced to have a similar representation and non-close
states dis-similar representation. (b) In the second phase, a modern Hopfield network maps similar
representations to the same fixed point which constitutes an abstract state. (c) In the last phase,
downstream tasks are solved in the reduced state space.

emerge under appropriate training schemes [95]. We leverage such reward free learning to obtain
abstract states to make learning efficient in downstream tasks.

Intuition for our approach. Typically, an agent remains in the same abstract state after a state
transition, while leaving the abstract state is a rare event. Such abstract states may be basic locations,
achieved subgoals, current demands, inventory, or health conditions. If the agent is in the office
and wants to buy from the supermarket, then abstract states of the location might be office building,
street, and supermarket. The first subgoal would be to leave the office building to the street, the
second subgoal to walk on the street to the supermarket, and the final subgoal to buy from the
supermarket. These abstract states may be identified by both sequential proximity of original states in
the trajectories and similarities of state representations. Therefore, original states should be clustered
to create abstract states. In the next step, abstract actions have to be constructed that allow to transit
from one abstract state to another. These abstract actions can be subagents, like a subagent for leaving
the building to the street. Given abstract states, subagents can be readily trained via reinforcement
learning. A start-goal-subagent is placed in a state that belongs to the start abstract state and receives
a reward if it reaches a state that belongs to the goal abstract state.

We propose to learn abstractions, i.e. proper state representations, through self-supervised learning.
States with sequential proximity in a trajectory are assumed to belong to the same abstract state.
Therefore, in the first phase we use contrastive learning to map states with sequential proximity
to a similar representation. In the second phase, similar representations are mapped by a modern
Hopfield network (MHN) [78] to the same fixed point. Such a fixed point constitutes an abstract state.
MHNs allow abstraction at different levels since a temperature parameter determines the number of
fixed points. Therefore, the same MHN with the same stored representations enables finer or coarser
abstractions. Further, we learn the temperature parameter of the MHN. This is useful as some tasks
need to distinguish between states while in some cases we can unify them. Our main contributions
are:

• We propose a novel method called "contrastive abstraction learning" to learn abstractions
in state space without rewards using contrastive learning in the first phase and MHNs in the
second phase. Contrastive learning captures the structure of the environment by constructing
state clusters, while MHNs supply the abstract states given state clusters.

• Contrastive abstraction learning controls the level of abstraction by a temperature parameter
of the MHN. The control function adjusts the temperature based on the current state and is
trained by contrastive learning.

• We study the resulting abstractions in different environments of varying complexity and
evaluate the performance of our contrastive abstraction learning in downstream tasks.
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2 Method

We propose the novel contrastive abstraction learning to find abstract states for RL. After learning,
original states are mapped to the same abstract state if they are in sequential proximity in the training
trajectories. For example, in a grid world, all states within a room would be mapped to the same
abstract state. Therefore the number of states is reduced to the number of rooms. Next, we have
to construct a small number of sub-policies to move from one room to another room. Importantly,
finding such an abstract state does not depend on a goal or reward and, therefore, can be used for
various downstream RL tasks. In the grid world example, representing the environment by the rooms
helps to solve any task where the agent has to visit specific rooms.

Figure 1 shows an overview of our contrastive abstraction learning, which consists of three phases.
In the first phase, we sample two states from a sequence of states based on their sequential proximity
and use contrastive learning to learn a representation that maps sequentially proximal states to a
similar representation. The training trajectories might be expert examples, recorded examples, or
examples sampled from a random policy. In the second phase, MHNs reduce the number of states to
a small number of abstract states by mapping states to fixed points. In order to control the level of
abstraction, the temperature parameters of MHNs can be learned to be controlled. In the final phase,
a policy on this small set of abstract states is learned very efficiently since there are only few abstract
states. To learn the policy, we have to learn sub-policies that move the agent from one abstract state
to another. These sub-policies serve as actions for an MDP built with the abstract states.

2.1 Contrastive Learning of Sequential Proximal States

With the advent of large corpora of unlabeled data in vision and language, contrastive learning
methods have become highly successful to learn expressive representations that can be adapted to
various downstream tasks [43, 17, 73, 30]. Similarly, contrastive learning can be applied to data of
trajectories to construct rich state representations.We utilize contrastive learning to map states with
sequential proximity to a similar representation. Given an MDP, the resulting representation encodes
the transition structure of the MDP. For example, if an agent transits from state s1 to s2 after selecting
an action a, then the representation of s1 should be closer to s2 than other states st.

We define our problem setting as a finite MDP without reward to be a 3-tuple of (S,A, p) of finite
set S with states s, A with actions a, transitions dynamics p(st+1 = s′ | st = s, at = a). Here, t is
the position in a state-action trajectory (s1, a1, . . . , sT , aT ) of length T . The agent selects actions
a ∼ π(st = s) based on the policy π, which depends on the current state s. For contrastive learning,
pairs of states (st, st+k) from the same trajectory with small absolute value of k are selected as
positive pairs with high probability, while other pairs are negative pairs, which also include states
from different trajectories. We sample a set of positive pairs for each mini-batch of trajectories in
the following way. First, we uniformly sample a time index ti from a trajectory τ0:T . Then, we
sample the time index tj from the same trajectory e.g. by centering a Gauss or Laplace distribution
on ti. The Laplace distribution can be approximated by using a discount factor and normalizing
the discounts, where states farther away from i are more discounted and, therefore, have lower
probability. Hence, the samples of a positive pair are temporally related. Negative pairs are samples
from different trajectories or those with a large sequential distance. With N as the number of samples
in the mini-batch, our contrastive objective [93] is

LInfoNCE = − 1

N

N∑
i=1

ln
exp(τ−1 sTtistj )∑N
k=1 exp(τ

−1 sTtistk)
. (1)

2.2 Sampling a Positive Pair

The sampling strategy to construct a positive pair for the contrastive objective has a profound impact
on the learned representation. Given a trajectory, the timestep ti of the first state of a positive pair is
sampled uniformly. Then, we center a distribution at the timestep ti and then sample the timestep tj
of the second state to complete the positive pair. We explore the following four distributions located
at ti for sampling tj : (I) uniform, (II) Gaussian, (III) Laplace, and (IV) exponential. With sampling
from a uniform distribution, the second timestep tj is sampled uniformly from the same trajectory,
thus not using sequential proximity. For sampling from a Gaussian distribution, we center a Gaussian
with standard deviation σ at ti and select tj that is closest to a sample that can be from both the future
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and the past. Analog for sampling from a Laplace distribution with scale parameter b. Also analog
for sampling from an exponential distribution inverse scale γ. Since only positive values are sampled,
only future states are sampled. For additional details on sampling strategies see Appendix Sec. (B).

2.3 Abstractions via Modern Hopfield Networks

After learning state representations based on sequential proximity, we reduce their number by
mapping them to abstract states. With a small state space RL can efficiently solve an MDP for a given
reward function. MHNs [78] map states to fixed points that correspond to abstract states. Hopfield
networks, introduced in the 1980s, are binary associative memories that played a significant role in
popularizing artificial neural networks [3, 46, 47]. These networks were designed to store and retrieve
samples [16, 71, 7, 33, 1, 48, 12, 52]. In contrast to traditional binary memory networks, we employ
continuous associative memory networks with exceptionally high storage capacity. These MHNs,
utilized in deep learning architectures, have an energy function with continuous states and possess
the ability to retrieve samples with just a single update [78]. The update rule of MHNs is guaranteed
to converge to a fixed point. These fixed points correspond to attractors in the network’s energy
landscape, and the network dynamics converge towards these attractors when starting at an input
pattern. MHNs have already been demonstrated to be successful in diverse fields [96, 84, 97, 67, 30].
In summary, MHNs store and retrieve patterns similar to the query (the input).

We leverage the mechanism of MHNs to map every input pattern to a fixed point. The MHNs have
N state representations ui as stored patterns U = (u1, . . . ,uN ). The update rule of MHNs with
inverse temperature β is

ξt+1 = U softmax(βUT ξt) , (2)

which is applied until convergence. The query x of the MHN is a state representation and serves
as initial state ξ0 = x. To determine all fixed points of the MHN, we query with the ith stored
representations ξ0 = ui. Therefore, we obtain N fixed points of the MHNs. After removing
duplicates, we get all M different fixed points (y1, . . . ,yM ) of the MHN that stores U .

By adjusting the inverse temperature β, we can control the number of fixed points y, and thus the level
of abstraction. For β = 0 there is only one fixed point y, which is the average of all stored patterns.
Conversely, for large β the stored pattern is retrieved that is closest to the query. For intermediate β
values, we obtain meta-stable states, that means several stored patterns converge to a fixed point they
share. The larger β the smaller the meta-stable states, i.e. less stored patterns are mapped to the same
fixed point. Thus, small values for β result in a small number of fixed points while high values of β
in a larger number of fixed points. Therefore, adjusting β to control the number of fixed points, and
thus the granularity of our abstract representation, is crucial.

2.4 Controlling the Level of Abstraction

For a given state s, we first obtain its state representation x, which serves as input to the MHN. Then
we obtain the fixed point y = y(x), which is the abstract state. Controlling the level of abstraction
is essential to generate representations that are useful for a large number of tasks. MHNs are well
suited to achieve this control via the inverse temperature β.

Training a β-network. To determine a suitable β for a given state representation x we train a
separate β-network (see overview Figure (1)). This β-network is trained using a contrastive setup.
One branch of the contrastive model applies random dropout to a given state representation x to
obtain a masked representation x′. By masking features in the input, the network is forced to adjust
the level of abstraction in such a way, that even masked representations are assigned to the correct
fixed point. A second branch consists of the β-network followed by a MHN. The original x is input
to the β-network, a small FNN, which regresses a β value. This β value is then used in the MHN
to map the state representation x to a fixed point y. The output of the two branches, the masked
representation x′ and the fixed point y, form a positive pair. Other masked representations from the
mini-batch serve as negatives. The contrastive model is trained with the InfoNCE objective. See
Appendix Sec. (C).
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Figure 2: Visualization of learned representation of the states for different sampling techniques for
contrastive learning. Left: Two trajectories (⋆ and ▲) in the Maze2D environment. Right: Different
sampling techniques of positive pairs for contrastive learning. Red points are states in the dataset,
while blue and green are the trajectories from left. Sampling from the Laplace distribution leads to
representation well suited for abstraction, while Gaussian does not yield clear clusters.

2.5 Using Abstraction for Downstream Tasks

Abstraction of states can be a powerful tool for improving the efficiency and effectiveness of planning
and RL tasks. Abstract states can be used in several ways for downstream applications. The following
three approaches demonstrate ways in which abstraction can be applied to downstream tasks. Each
offers unique advantages in terms of reduced state space and efficient learning. The specific approach
can be chosen depending on the characteristics of the task and the available resources.

Learning a policy from abstract states (Abstract Policy). By reducing the state space to a set of
abstract states, we also reduce the complexity of the problem. Instead of operating in the original
state space, the policy can now focus on making decisions based on abstract states. We refer this
approach as Abstract Policy. For this approach, we assume that the optimal policy selects the same
action for all original states mapping to one abstract state. While this is a strong assumption we show
experimentally, that this approach is viable.

Learning sub-policies as meta-actions (Meta Policy). Sub-policies allow the agent to transition
from one abstract state to another, thereby acting as meta-actions. Such sub-policies can be learned
from existing trajectories or newly generated trajectories using imitation learning or other RL
algorithms. For example, the agent can learn to imitate trajectories between abstract states via
Behavior Cloning (BC). The sub-policy for the transition from abstract state y1 to y2 starts in a
state mapped to y1 and receives a reward if it arrives at a state which maps to y2. Subsequently, a
meta-policy is trained to select the appropriate sub-policy based on the current abstract state. The
advantage of this approach is that it focuses on learning and selecting from the small abstract state
space, leading to faster and more targeted learning. We refer to this approach as Meta Policy.

Goal-conditioned planning from a graph over abstract states (Planning). In a third approach, a
graph is constructed over the abstract states, representing their relationships and connectivity. This
graph can then be utilized for planning and decision-making. Given a goal state, the agent can
plan a sequence of abstract states that lead to the desired outcome using graph search algorithms.
Additionally, learned sub-policies can be employed to execute actions within the environment,
facilitating the agent’s progress towards the goal state. This approach combines the benefits of
abstraction, graph-based planning, and learned sub-policies to enable effective goal-directed behavior.

3 Experiments

In order to show the effectiveness of contrastive abstraction learning we perform a series of experi-
ments. First, we verify that abstract representations encode the structure of the environment. Using
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Figure 3: Learned representations (blue) and fixed points (red) of a MHN for Maze2D and Red-
BlueDoor. The parameter β of the MHN increases from left to right, thus increasing the number
of fixed points. The learned representation forms clusters of states where corridors (top) or rooms
(bottom) are close. These clusters are mapped to abstract states via an MHN. In the rooms example
(bottom row), (a) corresponds to states where the agent is in Room 1 and the red door is closed, (b)
corresponds to the red door being open, (c) corresponds to agent being in Room 2.

trajectories collected from a diverse set of environments we visualize the abstract representations
via fixed points. Next, we investigate the connection between β and the level of abstraction. Finally,
we show experiments for each of the three approaches of using contrastive abstraction learning for
downstream tasks detailed in the previous section.

3.1 Environments

We perform all experiments on a set of environments with increasing complexity selected or designed
to showcase the effectiveness of a learned abstract representation. Furthermore, for learning a
contrastive representation as well as for learning the abstract representation we require a dataset of
trajectories. Therefore, we select a set of trajectories for each environment from existing datasets if
available or by sampling from a random policy in case no dataset is available. Alternatively, a dataset
can easily be acquired with an iterative approach by interacting with the environment but we found
that the representation learned from randomly sampled trajectories is often sufficient.

(I) CifarEnv is an environment with images and classes from the CIFAR-100 dataset. It is used to
verify if the method obtains abstract representations. We select 10 classes with defined transition
structures for various goals and tasks. The agent remains in the same state for a specified number
of timesteps (e.g., 8), receiving images from the corresponding class. After the timesteps, the agent
selects an action to transition to the next state. We sample 100,000 timesteps from this environment
to create a dataset for contrastive abstraction learning. (II) Maze2D-large is an environment from
Mujoco Suite [91]. A robot must navigate to a given goal state from a random starting position. We
use trajectories from the D4RL dataset [29] for our experiments. (III) RedBlueDoor is part of the
Minigrid library [19] and is a partially observable environment. We generate a dataset by storing all
interactions during training of a policy with Proximal Policy Optimization (PPO) [81]. We use the
environment and the dataset of human demonstrations released for the MineRL competition [36].

3.2 Contrastive and Abstract Representation

In order to show that contrastive abstraction learning results in a representation that encodes the
structure of the environment we present qualitative analysis for the various environments. We
visualize the learned representation after contrastive learning and the abstract representation obtained
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Figure 4: Visualization of all states (blue) in the memory, with the resulting fixed points (red) in
CifarEnv. We compare the number of fixed points when the temperature parameter is fixed (a) and
when the temperature parameter is learned (b). The learned temperature parameter reduces the state
space to a number of fixed points equal to the number of Cifar classes in the environment.

via fixed points from MHNs. We use PCA to downproject both the representation after contrastive
pre-training as well as the abstract representation.

Sampling strategies for contrastive pre-training. We visualize the learned representation after
contrastive learning of sequentially proximal states for different sampling strategies (2.2) in Figure
2. We visualize all samples after contrastive pre-training and highlight two trajectories. While on
first look the representation obtained when sampling positive pairs using the Gaussian strategy seems
good, for subsequent abstraction this strategy is not well suited. The representation almost perfectly
mirrors the original state space, therefore similar states are not closer to each other than without
contrastive pre-training. As expected, the Uniform strategy results in unclear clusters and thus a
sub-par representation. From the remaining two we prefer sampling with the Laplace strategy as
clusters of states emerge and states where both trajectories overlap are closer in the representation.

Controlling the level of abstraction through β. Next, we visualize abstract states obtained via
fixed points of the MHN. First, we show the effect of β on the number of abstract states. In Figure 3 we
show three different settings of beta for three environments, namely Maze2D-large and RedBlueDoor.
From left to right we increase β and therefore the number of abstract states that emerge. This shows
that finding a suitable value for β is crucial for solving downstream tasks.

Learning β. Next, we show on CifarEnv that learning β works well and results in a set of abstract
states that is both small and covers all modes of the state space. Figure 4 (a) shows a manually
selected value for β that at first glance results in a good abstract representation. However, the set of
abstract states is still much larger than necessary. In Figure 4 (b) the abstract states, represented by
fixed points of the MHN, are much sparser while still covering the state space. Manually tuning β for
each environment would be time-consuming, therefore learning an good value for β is crucial.

3.3 Abstract Policy

The first approach for using the abstract representation for downstream tasks we investigate is training
an Abstract Policy. We assume that the optimal policy selects the same action for every state belonging
to an abstract state. As this assumption holds in the CifarEnv we train a policy using PPO. At every
timestep t the original state st is first mapped to it’s corresponding abstract state y. This abstract state
is then used by the policy network. The original action space is not changed. Figure 5 shows that
Abstract Policy can solve all tasks in this environment, only outperformed by the next Meta Policy.
For comparison we include two additional baselines. Contrastive Representation is trained with PPO
using the representation after contrastive pre-training, thus without abstract states. Original State is a
PPO baseline on the original state space without constrastive abstraction learning.
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Figure 5: We show training of policies from abstract states to solve four tasks in CifarEnv. Abstract
Policy uses abstract states but the original action space. Meta Policy selects actions from an abstract
action space and executes sub-policies. Contrastive Representation uses state representations from
contrastive pre-training. For Original State both action and state space are not changed. Both methods
using abstract states are able to solve all tasks.
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Figure 6: We compare the actual underlying transition graph (a) between states and the graph we
construct using fixed points (b). Such a graph can be used for high-level planning in the environment.

3.4 Meta Policy

Next, we train the Meta Policy. In contrast to the Abstract Policy, the original action space is replaced
by an abstract action space where each action represents a transition from one abstract state to another.
These abstract actions are learned, either by interacting with the environment or, as in our case, via
BC. Thus, each abstract action is a sub-policy that imitates behavior from the dataset. When an
abstract action is selected, the corresponding sub-policy is executed in the environment. The Meta
Policy is again trained with PPO. In Figure 5 we show results using this approach in the CifarEnv.
Meta Policy outperforms all other approaches and baselines.

3.5 Planning

The third approach for obtaining a policy from abstract states is Planning. Here, we extract a
graph from the abstract states describing an environment and then use it for planning. The graph is
constructed by calculating the cosine similarity of all abstract states with each other. Then, a threshold
is applied to remove connections between dissimilar abstract states. In Figure 6 we compare the true
graph and the graph constructed from the abstract states. While there is a some additional edges, the
constructed graph is sufficient to solve almost all tasks. In this experiment, we randomly sample goal
states and plan a path towards it using the graph. We find the shortest path from the current abstract
state to the abstract state of the goal on the graph. Similar to Meta Policy, we use sub-policies to
transition from one abstract state to another. These are again learned with BC from the dataset.

In addition to CifarEnv we evaluate the robustness of constructing a valid graph from abstract states.
For each environment in Table 1 we sample 1000 start and goal states. Using a graph, we find a plan
to transition from the start to goal state and execute this plan in the environment. We then record if the
goal state is reached within a certain number of timesteps. For more details see Appendix Sec. (D).
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Table 1: Planning over graphs. For each environment 1000 abstract start and goal states are sampled.
A graph is constructed and used for planning a policy to transition from start to goal state. We show
the rate of success of reaching the goal state when the plan is executed in the environment.

Environment CifarEnv Maze2D-Large Maze2D-Medium

Success (%) 86 88 92

4 Related Work

Recently, contrastive learning was very successful at constructing powerful representations with
clusters. In the embedding space, contrastive learning brings representations of paired inputs closer to
one another while moving unpaired inputs farther away from each other [17, 73, 80]. Following this
success, Contrastive Learning has been used in RL to learn representations [87, 25]. CURL [87] learns
representations on images by pairing a state with its augmented version. CoBerl [8] masks elements
of trajectories in the input and then tries to predict them, analogously to BERT in the language domain.
[25] pairs state-actions with future state-actions in a trajectory. Contrastive learning has been used as
unsupervised pretraining for RL. APS [40] and ATS [41] learn representations by maximizing entropy
during an unsupervised phase and fine-tuning for a subsequent task. ATC [89] pairs state with a state
that is k steps ahead in the trajectory. SPR [82, 83], KSL [62] and [4] predict the representation of
k future steps and bring it closer to the actual representation. Proto-RL [100] tries similarly to use
ideas from Swav [14] to first explore the environment in pre-training to learn representation from
diverse samples and then fine-tunes on downstream task.

Abstraction in RL is a well-studied area [10, 34, 6, 79, 90, 57, 21, 5, 94, 53, 70]. Bisimulation
[34, 27, 15, 101] tries to simplify MDPs by identifying states which lead to similar behaviors
(bisimilar states). Methods based on bisimulation learn abstractions that are dependent on a particular
reward function. Contrastive abstraction learning enables the identification of sub-goals and sub-
tasks, thus making it relevant to hierarchical reinforcement learning (HRL) approaches such as the
option framework [90], the MAXQ framework [24], and the recursive composition of option models
[86]. Several approaches have been proposed to tackle the problem of learning good options. One
approach is selecting frequently observed solution states as targets [88]. Another strategy involves
employing gradient-based techniques to enhance the termination function for options [20, 61, 56].
[56] employed policy gradient optimization to learn a unified policy comprising intra-option policies,
option termination conditions, and an option selection policy.

Parametrized options can be learned by treating the termination functions as hidden variables and
applying expectation maximization [21]. Intrinsic rewards have also been utilized to learn policies
within options, while extrinsic rewards are used to learn the policy over options [53]. [5] proposed
a method that jointly learns options and their associated policies using the policy gradient theorem.
Additionally, a manager module operating on a slow time scale has been introduced to learn sub-goals,
which are subsequently achieved by a worker module operating on a fast time scale [94].

5 Conclusion

We propose contrastive abstraction learning, a novel approach for state abstraction in RL. Abstract
states drastically reduce the number of states for planning in RL. We use contrastive learning to learn
a representation where states in sequential proximity are mapped to similar representations. Then
we use MHNs to determine abstract states via fixed points. Furthermore, we can adjust the level of
abstraction by controlling the number of fixed points. We show how to learn the level of abstraction
via contrastive learning. We propose three approaches for using such an abstract representation in RL
for efficiently learning policies. Our experiments show, that our approach is able to find a small set of
abstract states in several diverse environments and that learning policies based on this representation
can be efficient.
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A Extended Related Work

A.1 Contrastive Learning

Non-Contrastive learning objectives for self-supervised learning, such as those of BYOL [35] and
SimSiam [18] do not require negative samples. However, most self-supervised learning methods
use contrastive learning. The most popular constrative objective is InfoNCE [93]. InfoNCE pairs an
anchor sample with a positive sample (positive pair) and then contrasts this pair to pairs of the anchor
sample with negative samples (negative pairs). InfoNCE has been utilized in transfer learning [44],
aiding natural language response suggestions [45], acquiring sentence representations from unlabelled
data [59], and facilitating unsupervised feature learning by maximizing distinctions between instances
[99]. Furthermore, InfoNCE has been effectively employed for learning visual representations in
Pretext-Invariant Representation Learning (PIRL) [65], Momentum Contrast (MoCo) [43], and
SimCLR [17]. Given the success of the InfoNCE [93] with sequential data [45, 59], we use it as an
objective for contrastive learning. Specifically, we use contrastive learning using the InfoNCE [93]
objective.

Using contrastive learning for constructing powerful representations is well established. Contrastive
Predictive Coding (CPC) [93] learns abstract representations in an unsupervised way. The representa-
tion build by CPC was general enough that it allowed for transfer learning [44]. Contrastive learning
has been applied to natural language tasks to learn sentence representations from unlabelled data
[45, 59] and to unsupervised feature learning [99]. Also, SimCSE learns sentence embeddings [32]
In vision, Pretext-Invariant Representation Learning (PIRL) contrasts representations of transformed
versions of the same image with representations of other images [65]. Momentum Contrast (MoCo)
was very successful for unsupervised visual representation learning [43]. SimCLR is one of the
best-known contrastive learning methods for visual representations, which was highly effective for
transfer learning [17]. Vision applications have been extended to video representation learning [39].
A milestone in contrastive learning was Contrastive Language-Image Pre-training (CLIP), which
yielded very impressive results at zero-shot transfer learning [73, 74]. CLIP learns expressive image
embeddings directly from raw text, thereby leverages a much richer source of supervision than just
labels. The representation learned by CLIP are so powerful that a plethora of follow-up publications
used CLIP’s representations. The CLIP model is used in Vision-and-Language tasks [85]. The
CLIP model guided generative models via an additional training objective [9, 31, 28] and improved
clustering of latent representations [68]. It is used in studies of out of distribution performance
[23, 63, 64], of fine-tuning robustness [98], of zero-shot prompts [102] and of adversarial attacks to
uncurated datasets [13]. It stirred discussions about more holistic evaluation schemes in computer
vision [2]. Multiple methods utilize the CLIP model in a straightforward way to perform text-to-video
retrieval [26, 60, 66]. Latent diffusion models [80] lead to stable diffusion models version 1 [92] and
version 2 [92], which are a recent open-source image generation models comparable to proprietary
models such as DALL-E 2 [76]. Stable diffusion model version 1 uses CLIP for textual guiding, while
version 2 uses OpenCLIP. The representation learned by CLIP is key to gernerate impressive images
by stable diffusion models. Stable diffusion models hat high impact on the scientific community as
well as in the public.

A.2 Contrastive Learning in Reinforcement Learning

CURL[87] learns representation on raw pixels by bringing closer the representation of a state and
its augmented version. CoBerl[8] uses contrastive learning to learn representations by using the
masked prediction objective of Bert in the time domain for reinforcement learning. [25] attempt
to move the representation of a state-action closer to another state if it is present in the future and
away from another state if it is not present in the future. Some methods use contrastive learning
during an unsupervised phase before online learning. APS [40] and ATS [41] learn representations
by maximizing entropy during an unsupervised phase and fine-tuning for a subsequent task. ATC
[89] brings closer the representation of a state to another state which is k steps in the future. SPR
[82, 83], KSL [62] and [4] predict the representation of k future steps and bring it closer to the
actual representation. DreamerPro [22] combines the ideas from Dreamer [38] and Swav [14] to do
Model-Based Reinforcement learning without reconstruction. Proto-RL [100] tries similarly to use
ideas from Swav to first explore the environment in pre-training to lean representation from diverse
samples and then fine-tunes on downstream task. Palm Up [58] connect large-scale vision models to
reinforcement learning by using them as an environment to learn representations.
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A.3 Abstraction in Reinforcement Learning

Abstraction in RL is a well-studied area [10, 34, 6, 79, 90, 57, 21, 5, 94, 53]. Bisimulation [34, 27,
15, 101] tries to simplify MDPs by identifying states which lead to similar behaviors (bisimilar states).
Methods based on bisimulation learn abstractions that are dependent on a particular reward function.
Contrastive abstraction learning enables the identification of sub-goals and sub-tasks, thus making it
relevant to hierarchical reinforcement learning (HRL) approaches such as the option framework [90],
the MAXQ framework [24], and the recursive composition of option models [86]. Several approaches
have been proposed to tackle the problem of learning good options. One approach is selecting
frequently observed solution states as targets [88]. Another strategy involves employing gradient-
based techniques to enhance the termination function for options [20, 61, 56]. [56] employed policy
gradient optimization to learn a unified policy comprising intra-option policies, option termination
conditions, and an option selection policy. Parametrized options can be learned by treating the
termination functions as hidden variables and applying expectation maximization [21]. Intrinsic
rewards have also been utilized to learn policies within options, while extrinsic rewards are used
to learn the policy over options [53]. [5] proposed a method that jointly learns options and their
associated policies using the policy gradient theorem. Additionally, a manager module operating on a
slow time scale has been introduced to learn sub-goals, which are subsequently achieved by a worker
module operating on a fast time scale [94].

B Contrastive Learning of Sequential Proximity

B.1 Hyperparameters for Constrastive Learning

In the maze experiments, a four-layer fully connected network was employed, comprising of 256,
128, 64, and 32 neurons in each respective layer. The network utilized ReLU activations. The τ value
was set to 30 for 1. A batch size of 4096 was used, and the training process consisted of 1000 epochs.
The learning rate was set to 1e-3, and a weight decay of 1e-5 was applied.

In the CIFAR environment experiments, a network architecture consisting of three CNN layers
followed by three fully connected layers was utilized. The CNN layers had output channels of 64, 32,
and 32, with kernel sizes of 4, 4, and 3 respectively. A stride and padding value of 2 was applied
throughout. The fully connected layers had sizes of 256, 64, and 8 neurons respectively, employing
ReLU activations. The τ value was set to 30 for 1. A batch size of 4096 was used, and the training
process spanned 8000 epochs. The learning rate was annealed using cosine annealing, starting from
1e-3 and gradually decreasing to a minimum value of 1e-6. A weight decay of 1e-5 was applied.

In the MiniGrid experiments, a network architecture comprising of three CNN layers followed by
two fully connected layers was employed. The CNN layers had output channels of 64 and 32, with
kernel sizes of 4, 4, and 2 respectively. Stride and padding values of 2 were uniformly used. The
fully connected layers had sizes of 64 and 32 neurons respectively, employing ReLU activations.
Following these layers, an LSTM layer and another fully connected layer were added, both with an
output size of 32. The τ value was set to 30 for 1. A batch size of 4096 was used, and the training
process spanned 8000 epochs. The learning rate was annealed using cosine annealing, starting from
1e-3 and decreasing gradually to a minimum value of 1e-6. Additionally, a weight decay of 1e-5 was
applied.

In the Minecraft experiments, the network architecture involves processing a sequence of the 32 most
recent frames as input. The first stage of the network consists of four batch-normalized convolution
layers with ReLU activation functions. These layers are structured as follows: Conv-Layer-1 with 16
feature maps, a kernel size of 4, a stride of 2, and zero padding of 1; Conv-Layer-2 with 32 feature
maps, a kernel size of 4, a stride of 2, and zero padding of 1; Conv-Layer-3 with 64 feature maps, a
kernel size of 3, and a stride of 2; and Conv-Layer-4 with 32 feature maps, a kernel size of 3, and a
stride of 2. The resulting flattened latent representation (dimension: R32×288) from the convolution
stage is then fed into an LSTM layer with 256 units for further processing. The inverse tau value
is set to 30 for the contrastive loss. A batch size of 1024 is used, and the training process involves
300 epochs. The learning rate is annealed using cosine annealing, starting from 1e-3 and gradually
decreasing to a minimum value of 1e-6. Additionally, a weight decay of 1e-5 is applied.
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B.2 Hyperparameters for Sampling Strategies

For the Gaussian sampling strategy, standard deviation (σ) of 15 is used for all experiments. For
exponential distribution, we use a γ of 0.99 for all experiments.

C Abstraction using Modern Hopfield Networks

C.1 Review of Modern Hopfield Networks

We briefly review continuous MHNs that are used for deep learning architectures. MHNs [78] map
states to fixed points that correspond to abstract states. Hopfield networks, introduced in the 1980s,
are binary associative memories that played a significant role in popularizing artificial neural networks
[3, 46, 47]. These networks were designed to store and retrieve samples [16, 71, 7, 33, 1, 48, 12, 52].
Since they exhibit continuity and differentiability, these functions are compatible with gradient
descent in deep architectures. As they can be updated in a single step, they can be activated similarly
to other layers in deep learning. With their exponential storage capacity, they are capable of handling
large-scale problems effectively. In contrast to traditional binary memory networks, we employ
continuous associative memory networks with exceptionally high storage capacity. These MHNs,
utilized in deep learning architectures, have an energy function with continuous states and possess
the ability to retrieve samples with just a single update [78]. The update rule of MHNs is guaranteed
to converge to a fixed point. These fixed points correspond to attractors in the network’s energy
landscape, and the network dynamics converge towards these attractors when starting at an input
pattern. MHNs have already been demonstrated to be successful in diverse fields [96, 84, 97, 67, 30].

We assume a set of patterns {u1, . . . ,uN} ⊂ Rd that are stacked as columns to the matrix U =
(u1, . . . ,uN ) and a state pattern (query) ξ ∈ Rd that represents the current state. The largest norm
of a stored pattern is M = maxi ∥ui∥. Continuous MHNs with state ξ have the energy

E = − β−1 log

(
N∑
i=1

exp(βuT
i ξ)

)
+ β−1 logN +

1

2
ξT ξ +

1

2
M2 . (A1)

For energy E and state ξ, the update rule
ξnew = f(ξ;U , β) = U p = U softmax(βUT ξ) (A2)

has been proven to converge globally to stationary points of the energy E, which are almost always
local minima [77, 78]. The update rule Eq. (A2) is also the formula of the well-known transformer
attention mechanism [77, 78], therefore Hopfield retrieval and transformer attention coincide.

The separation ∆i of a pattern ui is defined as its minimal dot product difference to any of the
other patterns: ∆i = minj,j ̸=i

(
uT
i ui − uT

i uj

)
. A pattern is well-separated from the data if

∆i ≥ 2
βN + 1

β log
(
2(N − 1)NβM2

)
.

In the case where the patterns ui exhibit good separation, the iteration defined by Eq. (A2) converges
to a stable point that is in close proximity to one of the stored patterns. However, if certain patterns
are similar to each other and lack clear separation, the update rule Eq. (A2) converges to a stable point
that is close to the mean of those similar patterns. This particular fixed point represents a metastable
state of the energy function, effectively averaging over the similar patterns.

According to the next theorem, when the patterns are well separated, the update rule defined by
Eq. (A2) typically achieves convergence within a single update. Additionally, the theorem asserts
that the retrieval error is exponentially small with respect to the separation ∆i between the patterns.
Theorem A1 (Modern Hopfield Networks: Retrieval with One Update [78]). With query ξ, after
one update the distance of the new point f(ξ) to the fixed point u∗

i is exponentially small in the
separation ∆i. The precise bounds using the Jacobian J = ∂f(ξ)

∂ξ and its value Jm in the mean value
theorem are:

∥f(ξ) − u∗
i ∥ ⩽ ∥Jm∥2 ∥ξ − u∗

i ∥ , (A3)

∥Jm∥2 ⩽ 2 β N M2 (N − 1) exp(− β (∆i − 2 max{∥ξ − ui∥, ∥u∗
i − ui∥}M)) . (A4)

For given ϵ and sufficient large ∆i, we have ∥f(ξ) − u∗
i ∥ < ϵ, that is, retrieval with one update.

The retrieval error ∥f(ξ) − ui∥ of pattern ui is bounded by
∥f(ξ) − ui∥ ⩽ 2 (N − 1) exp(− β (∆i − 2 max{∥ξ − ui∥, ∥u∗

i − ui∥}M))M . (A5)
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For a proof see [77, 78].

Our objective is to store a potentially extensive collection of embeddings. To accomplish this, we
initially establish the concept of storing and retrieving patterns within a contemporary Hopfield
network.

Definition A1 (Pattern Stored and Retrieved [78]). We assume that around every pattern ui a sphere
Si is given. We say ui is stored if there is a single fixed point u∗

i ∈ Si to which all points ξ ∈ Si
converge, and Si ∩ Sj = ∅ for i ̸= j. We say ui is retrieved for a given ϵ if iteration (update rule)
Eq. (A2) gives a point x̃i that is at least ϵ-close to the single fixed point u∗

i ∈ Si. The retrieval error
is ∥x̃i − ui∥.

Similar to classical Hopfield networks, we focus on patterns that lie on a sphere, meaning patterns
with a constant norm. In the case of randomly selected patterns, the number of patterns that can be
stored increases exponentially with the dimensionality d of the pattern space (ui ∈ Rd).

Theorem A2 (Modern Hopfield Networks: Exponential Storage Capacity [78]). We assume a failure
probability 0 < p ⩽ 1 and randomly chosen patterns on the sphere with radius M := K

√
d− 1. We

define a := 2
d−1 (1 + ln(2βK2p(d − 1))), b := 2K2β

5 , and c := b
W0(exp(a+ln(b)) , where W0 is the

upper branch of the Lambert W function 4.13, and ensure c ≥
(

2√
p

) 4
d−1

. Then with probability
1− p, the number of random patterns that can be stored is

N ≥ √
p c

d−1
4 . (A6)

Therefore it is proven for c ≥ 3.1546 with β = 1, K = 3, d = 20 and p = 0.001 (a+ ln(b) > 1.27)
and proven for c ≥ 1.3718 with β = 1, K = 1, d = 75, and p = 0.001 (a+ ln(b) < −0.94).

For a proof see [77, 78].

The validity of employing continuous modern Hopfield networks in substituting retrieved embeddings
instead of the original embeddings for large batch sizes is supported by this theorem. Even with a
substantial number of embeddings, reaching into the hundreds of thousands, the continuous modern
Hopfield network demonstrates its capability to retrieve the embeddings, provided that the dimension
of the embeddings is sufficiently large.

C.2 Hyperparameters for Hopfield Network

For the fixed β visualisation experiments Fig 3 on Maze2D environment, we use β values of 20, 25
and 35.

For the fixed β visualisation experiments, Fig 3 on RedBlueDoor environment, we use β values of
100, 150 and 200 (left to right in Fig 3.

For the fixed β visualisation experiments, Fig 3 on Minecraft environment, we use β values of 30, 35
and 50.

We currently do not have any learnable weights in the hopfield, but a hopfield network can be trained
with learnable weights also.

C.3 Learned Beta Training

For all our experiments we use a single fully connected network as the β network. This β network
has a sigmoid output neuron, which predicts a value between 0 and 1. Further, we multiply this output
with βmax, which is the maximum value the β can have. Thus, bounding the β value. For all our
experiments we use the βmax value of 200.

We use a single fully connected network after hopfield network. In the experiment, the learning rate
was set to 1e-3. A weight decay of 1e-5 was applied to control the regularization of the model’s
weights. The training process spanned a total of 1000 epochs, with each epoch representing a
complete iteration through the dataset. Furthermore, a masking ratio of 0.3 was employed, indicating
the proportion of the input or data that was randomly masked or hidden during training.
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D Policy and Planning Experiments

D.1 Environment Details

CifarEnv is an environment consisting of images and classes from the CIFAR-100 [51] dataset.
This environment is designed to verify the abstract representation as the true number of abstract states
and their relation is known. We select 10 classes and define a transition structure for various goals and
tasks (see Figure 6(a)). For example, in GoSchool the agent starts in state bed and receives reward if
it reaches the state school. Other tasks include, GoMarket, GoOffice, GoHouse. The agent stays in the
same state for n timesteps (where n = 8 for our experiments) in this environment, and is presented
with an image sampled from the respective class in each timestep. After n timesteps the agent then
selects an action in order to transition to the next state. For example, if the agent is in the state house
then n different images of this class are sampled from CIFAR-100 sequentially. We randomly sample
100, 000 timesteps from this environment and build a dataset for constrastive abstraction learning.

Maze2D-large is an environment from Mujoco Suite [91]. A robot must navigate to a given goal
state from a random starting position. The state is an 4-dimensional vector and the action space is
continuous, controlling the agents directional movement. We use trajectories from the D4RL dataset
[29] for our experiments.

RedBlueDoor is part of the Minigrid library [19] and is a partially observable environment. The
agent has access to a partial view of the environment and can select from 7 discrete actions. We
generate a dataset by storing all interactions during training of a policy with Proximal Policy
Optimization (PPO) [81].

Minecraft is an environment based on the popular sandbox game Minecraft. The environment
was released together with a dataset of demonstrations from human players performing various tasks
for the MineRL competition [36]. Several tasks, such as mining a diamond, were defined for the
competition. We use the environment and the dataset of human demonstrations released for the
MineRL competition [36].

D.2 Policy experiments

We use the same PPO hyperparameters across all the methods. The clip coefficient was set to 0.2,
which limits the size of the policy update to prevent drastic changes. The entropy coefficient was set
to 0.0001, encouraging exploration by adding an entropy term to the objective function. The learning
rate was set to 1e-5, indicating the step size used in the optimization process. There was no annealing
applied to the learning rate or clipping parameter throughout the training process. Additionally,
to mitigate the impact of large gradients, the gradient was clipped if its norm exceeded 0.5. The
experiments were averaged over 10 different seeds.

D.3 Learning Policy between fixed points

We learn policy between fixed points using behavior cloning. We first map each state to the cor-
responding fixed point. Further, we pair the state with the next fixed point in the sequence, thus
obtaining a dataset where each sample has the following information, (st, ξt, ξt′ , at). Further, we
condition the policy network with the current state t and future fixed point ξt′ and predict the action
at in the dataset.

These policy between fixed points are used for both MetaPolicy and Planning experiments.

D.4 Planning

For the CIFAR experiments, we use a threshold of 0.68 to prune the connections in the graph. For
Maze2D experiments, we use a threshold of 0.6. We also remove self-connection by removing most
similar connections to the current node using another threshold (0.97, 0.9 respectively). Instead of
using a threshold, we can also use the dataset to prune connections. We can look for consecutive
fixed points in the entire dataset and remove connections which were not found.
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E Compute and Software Libraries

E.1 Compute Details

For all experiments, during development 2 to 3 nodes each with 4 GPUs of an internal GPU cluster
were used for roughly six months of GPU compute time (Nvidia A100).

E.2 Software Libraries

We are thankful towards the developers of Stable-Baselines [75], PyTorch [69], OpenAI Gym [11],
Numpy [42], Matplotlib [49] and Minecraft [37]. We also used code from [70].
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