
Learning Safe Strategies for Value Maximizing Buyers in Uniform Price Auctions

Negin Golrezaei 1 Sourav Sahoo 1

Abstract
We study the bidding problem in repeated uni-
form price multi-unit auctions from the perspec-
tive of a single value-maximizing buyer who aims
to maximize their cumulative value over T rounds
while adhering to return-on-investment (RoI) con-
straints in each round. Buyers adopt m-uniform
bidding format, where they submit m bid-quantity
pairs (bi, qi) to demand qi units at bid bi. We in-
troduce safe bidding strategies as those that sat-
isfy RoI constraints in every auction, regardless
of competing bids. We show that these strategies
depend only on the bidder’s valuation curve, and
the bidder can focus on a finite subset of this class
without loss of generality. While the number of
strategies in this subset is exponential in m, we
develop a polynomial-time algorithm to learn the
optimal safe strategy that achieves sublinear re-
gret in the online setting, where regret is measured
against a clairvoyant benchmark that knows the
competing bids a priori and selects a fixed hind-
sight optimal safe strategy. We then evaluate the
performance of safe strategies against a clairvoy-
ant that selects the optimal strategy from a richer
class of strategies in the online setting. In this sce-
nario, we compute the richness ratio, α ∈ (0, 1]
for the class of strategies chosen by the clairvoy-
ant and show that our algorithm, designed to learn
safe strategies, achieves α-approximate sublinear
regret against these stronger benchmarks. Exper-
iments on semi-synthetic data from real-world
auctions show that safe strategies substantially
outperform the derived theoretical bounds, mak-
ing them quite appealing in practice.

1. Introduction
In a uniform price multi-unit auction, the auctioneer sells K
identical units of a single good to buyers who may demand
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multiple units, with the per-unit price set at the Kth highest
bid. These auctions are widely used to allocate scarce re-
sources in critical markets such as emissions permits, energy
markets, and Treasury auctions. To succeed in these mar-
kets, bidders must develop effective bidding strategies that
balance long-term value maximization with financial risk
management, all while operating under limited information,
uncertainty in competing bids and strategic (or adversarial)
behavior of other bidders, among other challenges.

In this paper, we model the bidders as a value-maximizing
agent with per-round return-on-investment (RoI) constraints.
This model reflects real-world decision-making in industries
where managing financial risks is as critical as maximizing
value. Unlike traditional mechanism design, which assumes
bidders with quasilinear utility (i.e., utility decreases linearly
with payments), many practical settings involve bidders who
optimize total value while adhering to financial constraints
such as RoI or budgets. These scenarios frequently arise
in industries where agents or algorithms bid on behalf of
clients, optimizing for high-level objectives within strict con-
straints—a context akin to the principal-agent framework
(Fadaei & Bichler, 2016; Aggarwal et al., 2024). Examples
include autobidders in online advertising, where advertis-
ers seek to maximize clicks while keeping the average cost
per click below a threshold (Lucier et al., 2024; Balseiro
et al., 2021a; Deng et al., 2023b), and consultants bidding
for small firms in emission permit auctions (EEX, 2024).

Building on this, we study the bidding problem in repeated
uniform price auctions over T rounds, from the perspective
of a single bidder who seeks to maximize cumulative value
while adhering to per-round RoI constraints—that is, ensur-
ing that the value obtained in each round is at least a fixed
multiple of the corresponding payment (see Eq. (2)).

To address practical bidding interfaces, we assume bidders
adopt m-uniform bidding format, a generalization of the
uniform bidding format (De Keijzer et al., 2013; Birmpas
et al., 2019) for some m ∈ N. In a m-uniform strategy
b := ⟨(b1, q1), . . . , (bm, qm)⟩, bidders bid b1 for the first q1
units, b2 for the next q2 units and so on (see Definition 1).

1.1. Our Contributions

Safe Bidding Strategies (Section 3). To ensure that the
bidder satisfies the RoI constraint without knowing the com-
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peting bids, we introduce the concept of safe bidding strate-
gies. These strategies guarantee that the RoI constraint is
met regardless of how the other participants bid. We then
identify the class of m-uniform safe undominated bidding
strategies, denoted by S⋆m (Theorem 3.2), and demonstrate
that the strategies within this class depend solely on the
bidder’s valuation vector [v1, . . . , vK ] and exhibit a “nested”
structure (illustrated in Fig. 1).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

w3

w7

w9

Figure 1. Nested structure of the bidding strategies in S⋆
3 . Consider

the strategy b = ⟨(w3, 3), (w7, 4), (w9, 2)⟩ ∈ S⋆
3, where we note

that Q1 = 3, Q2 = 3 + 4 = 7 and Q3 = 3 + 4 + 2 = 9. The
jth highest bid (i.e., bj) is the average of the first Qj entries of the
valuation vector, i.e., bj = wQj , where wj = 1

j

∑
ℓ≤j vℓ.

Learning Safe Bidding Strategies (Section 4). Designing
an algorithm to learn the optimal safe strategy with at most
m bid-quantity pairs poses significant challenges due to the
exponential size of the decision space in m. So, we first con-
sider an offline setting where the competing bids are known
in advance. In this setting, we construct a polynomial-sized
directed acyclic graph (DAG) with carefully assigned edge
weights and show that determining the maximum weight
path in the DAG is equivalent to computing the optimal safe
strategy with at most m bid-quantity pairs (Theorem 4.2).

Building on this, we develop an online learning algorithm
when the competing bids are unknown.1 Our algorithm runs
in polynomial time and achieves a regret of Õ(M

√
mT ) in

a full-information setting and Õ(m3/2M2
√
T ) regret in a

bandit setting, where the clairvoyant selects the fixed hind-
sight optimal safe strategy (Theorem 4.3). Additionally, we
establish a regret lower bound of O(M

√
T ) (Theorem 4.4).

The problem of learning to bid in multi-unit uniform price
and pay-as-bid auctions has been explored recently by
Brânzei et al. (2023); Galgana & Golrezaei (2024); Pot-
fer et al. (2024), assuming the bidders are quasilinear utility
maximizers. Our work differs from them in two key ways:
(a) we consider value-maximizing buyers with RoI con-
straints, a fundamentally different behavioral model, and
(b) from a technical perspective, unlike prior works that
require bid spaces to be discretized, our approach does not,
due to the structure of safe strategies. Consequently, the
time complexity becomes independent of T in both online
and offline settings 2, and under bandit feedback, the depen-

1For a detailed discussion on leveraging offline algorithms
for no-regret learning, we refer readers to Roughgarden & Wang
(2019); Niazadeh et al. (2022); Brânzei et al. (2023).

2Assuming the discretization level in the offline setting is same

dence on T in the regret bound improves from T 2/3 to
√
T

implying that it is easier to learn safe strategies for value
maximizers compared to bidding strategies for quasilinear
utility maximizers.

Richer Classes of Strategies for the Clairvoyant (Sec-
tion 5). A key novel aspect of our work is to evaluate
the performance of safe bidding strategies with at most m
bid-quantity pairs and the online learning algorithm from
Section 4 against a clairvoyant that selects the optimal strat-
egy from a richer class of strategies. In this case, the bid-
der (learner) achieves α-approximate sublinear regret (same
as Theorem 4.3) for a parameter α ∈ (0, 1]—defined as
the richness ratio—thereby demonstrating the robustness of
the safe bidding strategies against a broad range of bench-
marks (Corollary 5.2). One of our main contributions is to
compute the richness ratio, α, for various classes of bidding
strategies. Specifically, when the clairvoyant selects the
optimal bidding from the class of

(a) strategies that are RoI-feasible, not necessarily safe and
have at most m bid-quantity pairs, we get α = 1

2 , notably
independent of m (Theorem 5.3).

(b) safe strategies with at most m′ bid-quantity pairs, where
m′ ≥ m, we obtain α = m

m′ (Theorem 5.4).

(c) strategies that are RoI-feasible, not necessarily safe and
have at most m′ bid-quantity pairs, where m′ ≥ m, we get
that α = m

2m′ (Theorem 5.5).

Computing α involves two key challenges: (a) deriving an
upper bound on the ratio between the value obtained by the
clairvoyant’s optimal strategy and that of the optimal safe
strategy in the worst case (see Definition 4 for details), and
(b) proving that this upper bound is tight. The key ideas
for deriving the upper bound are outlined in Section 5. The
construction of problem instances, each tailored to a specific
strategy class, is non-trivial due to their exponential size in
m and the need for a careful choice of competing bids and
the valuation vector, as detailed in Appendices D.1 to D.4.
Simulations using semi-synthetic data show that the empir-
ical richness ratios in practical scenarios are significantly
better than the theoretical bounds, making safe strategies
highly appealing in practice (Section 5.3).

1.2. Related Work

Value Maximizers and RoI Constraints. The concept of
agents as value maximizers within financial constraints is
a well-established notion in microeconomic theory (Mas-
Colell et al., 1995). In mechanism design literature, one of
the earliest explorations of value-maximizing agents was
conducted by Wilkens et al. (2016). Their work primar-

as that in the online setting. In the online setting, time complexity
refers to per-round running time.
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ily delved into the single-parameter setting, characterizing
truthful auctions for value maximizers. Similarly, Fadaei &
Bichler (2016) and Lu et al. (2023) studied truthful (approx-
imate) revenue-maximizing mechanisms in combinatorial
markets tailored for such agents.

In recent years, there has been growing interest in RoI-
constrained value maximizers, particularly in the context
of autobidding and online advertising. One of the earliest
works in this area is Golrezaei et al. (2021), which studied
auction design for RoI-constrained buyers and validated the
presence of such soft financial constraints using data from
online ad auctions. Broadly, the literature in this space can
be divided into two categories: (i) works that design opti-
mal auctions under RoI constraints (Balseiro et al., 2021a;b;
2022; Deng et al., 2021; 2023b), and (ii) works that char-
acterize optimal bidding strategies and/or develop learning
algorithms in repeated auction settings (Aggarwal et al.,
2019; Deng et al., 2023a; Golrezaei et al., 2023; Castiglioni
et al., 2024; Aggarwal et al., 2025; Lucier et al., 2024).
Our work primarily aligns with the latter. We study value-
maximizing buyers in uniform price auctions under RoI
constraints and demonstrate that these buyers can employ
safe bidding strategies that are efficiently learnable and ro-
bust against a variety of strong benchmarks.

Multi-unit Auctions. In this work, we focus on a subset
of combinatorial auctions termed as multi-unit auctions in
which multiple identical goods are sold to a group of buy-
ers.3 These auctions find widespread application in various
practical scenarios, including Treasury auctions (Hortaçsu
& McAdams, 2010), procurement auctions (Cramton &
Ausubel, 2006), electricity markets (Tierney et al., 2008),
and emissions permit auctions (Schmalensee & Stavins,
2017). While several works have focused on studying the
equlibria properties in these auctions (Ausubel et al., 2014;
Markakis & Telelis, 2015; De Keijzer et al., 2013), comput-
ing equilibrium strategies is usually intractable in general
multi-unit auctions due to multi-dimensional valuations. As
a result, a growing body of work has emphasized on design-
ing optimal bidding strategies in a prior-free setting, i.e.,
without any assumptions of the competing bidders’ bids or
valuations (Galgana & Golrezaei, 2024; Potfer et al., 2024;
Brânzei et al., 2023). Our work contributes to this literature
by learning optimal strategies for value-maximizing buyers
in repeated uniform price auctions.

2. Model
Preliminaries. There are n buyers (bidders) indexed by
i ∈ [n], and K identical units of a single good. Each bidder
i has a fixed, private valuation curve, denoted by vi ∈ RK

+

3For a comprehensive survey on combinatorial auctions, we
refer the readers to several excellent works by De Vries & Vohra
(2003); Blumrosen & Nisan (2007); Palacios-Huerta et al. (2022).

that has diminishing marginal returns property, i.e., vi,1 ≥
vi,2 ≥ · · · ≥ vi,K which is standard in literature (Brânzei
et al., 2023; Goldner et al., 2020). As we study optimal
bidding strategies from the perspective of a single bidder,
we drop the index i when the context is clear. The maximum
total demand for bidder i, denoted by M ∈ [K], is defined
as min{j ∈ [K − 1] : vj+1 = 0}. If such an index does not
exist, we set M as K. Hence, without loss of generality, we
assume v ∈ RM

+ . For each v = [v1, . . . , vM ], we define the
average cumulative valuation vector as w = [w1, . . . , wM ],

where wj =
1

j

∑
ℓ≤j

vℓ,∀j ∈ [M ] . (1)

As v1 ≥ · · · ≥ vM , we also have w1 ≥ · · · ≥ wM .

2.1. Auction Format and Bidders’ Behavior

Allocation and Payment Rule. In a uniform price auction,
each bidder i submits a sorted bid vector b using m-uniform
bidding language (see Definition 1). The auctioneer collects
the bids (entries of the bid vector) from all the bidders,
sorts them in non-increasing order, and allocates units to the
bidders with the top K bids (also termed as ‘winning’ bids).
That is, if bidder i has j bids in the top K positions, they
are allocated j units. For ease of exposition, we assume
there are no ties (or ties are always broken in the favor of the
bidder in consideration). See Appendix F for our discussion
on handling ties. We assume the auction follows the last-
accepted-bid payment rule (bidders pay the Kth highest bid
per unit) which is widely used for uniform price auctions in
practice (Regulations, 2019; Garbade & Ingber, 2005).

Let β− denote the bids submitted by all bidders except bid-
der i and β

−(j)
− be the jth smallest among the top K compet-

ing bids (i.e., bids from all bidders except bidder i). Suppose
bidder i submits b, such that the bid profile is β := (b;β−).
Let x(β) and p(β) denote the number of units allocated to
bidder i and the clearing price (i.e., the per-unit price which
is the Kth highest submitted bid), respectively. The total
value obtained by the bidder is V (β) =

∑
j≤x(β) vj , while

the total payment made is P (β) = p(β) · x(β).

Bidding Language. Multi-unit auctions allocate a large
number of identical units, requiring efficient ways for the
bidders to express preferences. A common approach is stan-
dard bidding, where bidders submit a vector of bids, one for
each unit (Brânzei et al., 2023; Galgana & Golrezaei, 2024;
Babaioff et al., 2023; Birmpas et al., 2019; Potfer et al.,
2024). Although expressive, this becomes computationally
impractical when the number of units, K, is large, as in
EU ETS emission permit auctions and Treasury auctions.
To address this, we consider a bidding language called m-
uniform bidding, for any m ∈ N.4 In m-uniform bidding,

4This format generalizes the uniform bidding format (De Kei-
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bidders submit m bid-quantity pairs (bi, qi), where bi is the
bid value per unit and qi is the quantity demanded:
Definition 1 (m-Uniform Bidding). For a fixed m ∈ N, a m-
uniform bidding strategy is characterized by m bid-quantity
pairs, denoted as b := ⟨(b1, q1), . . . , (bm, qm)⟩, where b1 >
b2 > · · · > bm > 0 and qj > 0, j ∈ [m]. This m-uniform
bid can be equivalently expressed as a vector (similar to the
standard bidding format) in which the first q1 bids are b1,
followed by q2 bids of b2, and so on.

We define b[1 : ℓ] = ⟨(b1, q1), . . . , (bℓ, qℓ)⟩, for all ℓ <
m, to represent the first ℓ bid-quantity pairs within a m-
uniform bidding strategy b = ⟨(b1, q1), . . . , (bm, qm)⟩. We
further define Qj =

∑j
ℓ=1 qℓ for all j ∈ [m] as the total

quantity demanded in the first j bid-quantity pairs, with
Q0 = 0, where we assume, without loss of generality that
Qm ≤ M .5 If m = M , the bidding format is equivalent to
standard bidding but in practice, bidders often submit only
a few bid-quantity pairs. For instance, in the 2023 EU ETS
auctions, bidders submitted ∼ 4.35 bid-quantity pairs per
auction on average (EEX, 2023).

Bidders’ Behavior. The bidders maximize their total value
obtained while adhering to a constraint that ensures the total
value obtained in an auction is at least a constant multiple
of the payment in that auction. This can be equivalently
expressed as a return-on-investment (RoI) constraint:

V (b;β−) ≥ (1 + γ)P (b;β−) . (2)

Here, γ is defined as the target RoI which is private and
fixed. Without loss of generality, we assume γ = 0 (or
equivalently the valuation curve v is scaled by 1

1+γ ) for the
rest of this work. For γ = 0, the RoI constraint implies the
value obtained in an auction is at least the payment. We
illustrate how the auction operates in Example 1.
Example 1. Consider an auction with n = 2 bidders,
and K = 5 identical units. The valuations are: v1 =
[6, 4, 3, 1, 1] and v2 = [5, 3, 1, 1, 0]. Both the bidders are
value maximizing buyers with target RoI, γ1 = γ2 = 0.
Suppose m = 2 and the bids submitted by the bidders are
b1 = ⟨(5, 2), (3, 3)⟩ and b2 = ⟨(4, 2), (2, 2)⟩. The bid pro-
file: β = [5, 5, 4, 4, 3, 3, 3, 2, 2] and top K = 5 winning
bids are [5, 5, 4, 4, 3]. Bidder 1 is allocated 3 units as they
have 3 bids (underlined) in the winning bids, and bidder 2
gets the remaining 2 units. The clearing price p(β) = 3,
V1(β) = 6 + 4 + 3 = 13, V2(β) = 5 + 3 = 8, P1(β) =
3 · 3 = 9, and P2(β) = 2 · 3 = 6. The RoI constraint is
satisfied for both the bidders as 13 > 9 and 8 > 6.

jzer et al., 2013; Birmpas et al., 2019) and aligns with practical
languages like those in product-mix auctions (Klemperer, 2009)
and piecewise-linear bidding (Nisan, 2015).

5Suppose the bidder bids for, and wins more than M units.
There is no additional value being allocated over M units, but the
total payment increases (assuming the clearing price is positive),
potentially violating the RoI constraint.

2.2. Learning to Bid in Repeated Settings

In practice, most multi-unit auctions, such as emission per-
mit auctions and Treasury auctions, are conducted in a re-
peated setting. Formally, the auction described in the previ-
ous section takes place sequentially over T rounds indexed
by t ∈ [T ]. We assume that the valuation vector v is fixed
over the T rounds which is a standard assumption in the
literature (Brânzei et al., 2023; Galgana & Golrezaei, 2024;
Potfer et al., 2024). Similarly, the target RoI is also assumed
to be fixed over the T rounds.

We now extend the notations from the previous section to the
repeated setting. Formally, in this setting, βt

− denotes the
bids submitted by all bidders except bidder i in round t and
β
−(j)
−,t is the jth smallest among the top K competing bids

in round t. In round t, if bidder i submits a bid bt, the bid
profile is βt := (bt;βt

−). Let x(βt) and p(βt) denote the
number of units allocated to bidder i and the clearing price,
respectively, in round t. The total value obtained by the
bidder is V (βt) =

∑
j≤x(βt) vj , while the total payment

made is P (βt) = p(βt) · x(βt).

RoI Constraints in Repeated Setting. In the repeated
setting, we require the bidders to satisfy the RoI constraint
described in Eq. (2) in every round. A bidding strategy b is
called feasible for a sequence of competing bids [βt

−]t∈[T ],
if the RoI constraint is satisfied for every round t ∈ [T ].
Remark 2.1 (RoI Constraints). Our notion of RoI constraints
in the repeated setting aligns with the definitions in Wilkens
et al. (2016; 2017); Lv et al. (2023). Similar constraints
are considered by Lucier et al. (2024) and Gaitonde et al.
(2023), termed as marginal RoI (or value) and maximum bid
constraints (up to scaling factors), respectively. Unlike the
aggregate constraints over T rounds typically assumed in
online ad auction literature (Deng et al., 2021; 2024; Feng
et al., 2023; Deng et al., 2023a), we enforce RoI constraints
for each auction individually. This distinction reflects the
fundamental differences between the two settings: ad auc-
tions often occur simultaneously and frequently, with values
in the order of cents, whereas Treasury and emission permit
auctions occur sequentially over longer horizons, with units
valued in millions. Hence, bidders in such auctions priori-
tize profitability in each auction rather than waiting for an
indefinite period, leading to per-round RoI constraints.6

2.3. Objective and Performance Metric

We consider an online setting where a bidder seeks to max-
imize cumulative value while satisfying RoI constraints

6Although EU ETS emission permit auctions are scheduled
to occur regularly, regulations stipulate that an auction may be
canceled if the bidders’ demand falls short of the supply of permits
or if the clearing price of the auction does not meet the reserve
price (Regulations, 2019). Hence, the bidders are more likely to
ensure RoI feasibility in each round.
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and managing uncertainty about competing bids. In this
setting, bidders privately submit their bids, and the auction-
eer allocates items and sets prices based on these bids. In
round t, the learning algorithm maps the feedback informa-
tion set from the first t − 1 rounds, denoted by It−1, to a
bid bt, where this mapping may be deterministic or ran-
dom. Under full information feedback, the information set
It−1 = (β1,β2, . . . ,βt−1), which includes all bids from
previous rounds. In the bandit setting, the information set
It−1 = (V (β1), P (β1), . . . , V (βt−1), P (βt−1)) includes
only the value and price outcomes of the previous rounds.

We design learning algorithms to minimize regret, the dif-
ference in the value obtained by a fixed hindsight-optimal
strategy chosen by a clairvoyant with a priori knowledge of
competing bids and that by the learner over time. Formally,

REG = max
b∈B

T∑
t=1

V (b;βt
−)−

T∑
t=1

E[V (bt;βt
−)], (3)

where the expectation is with respect to any randomness in
the learning algorithm. Here, B is the class of bidding strate-
gies (formally characterized in Section 3). We require the
bidding strategies in B to be RoI feasible for the sequence
of competing bids [βt

−]t∈[T ]. In Section 4, we consider the
case when the both the clairvoyant and the learner choose
strategies from the same class and aim to obtain sublinear
regret. Later, we consider more challenging settings where
the clairvoyant can choose the optimal strategy from much
richer classes of strategies compared to the learner. In these
cases, we obtain sublinear α-approximate regret, where
α ∈ (0, 1] is the richness ratio (see details in Section 5).

3. Safe Bidding Strategies
Recall that strategies chosen by the learner must be causal
(mapping the history to a bidding strategy) while remaining
RoI feasible for all rounds t ∈ [T ], even under adversarially
generated competing bids. This creates an obvious chal-
lenge: a bidding strategy that satisfies RoI feasibility in pre-
vious rounds may become infeasible even under the slightest
change in the competing bids e.g., if v = [0.9, 0.5, 0.1], the
bidding strategy (0.6, 3) is RoI feasible for competing bids
β1
− = [0.61, 0.59, 0.59] but not for β2

− = [0.59, 0.59, 0.59].
To address this, we focus on safe bidding strategies that
inherently guarantee RoI feasibility, regardless of the adver-
sarial behavior of competing bids:
Definition 2 (Safe Strategies). A m-uniform bidding strat-
egy, b = ⟨(b1, q1), . . . , (bm, qm)⟩, is called a safe strategy
if it is feasible irrespective of the competing bids, i.e.,

V (b;β−) ≥ P (b;β−), ∀β− .

The class of all m-uniform safe bidding strategies is denoted
as Sm. The union of classes of safe bidding strategies with at
most m bid-quantity pairs is denoted as Um =

⋃
k∈[m] Sk.

3.1. Characterizing Safe Bidding Strategies

We begin by defining underbidding (overbidding) under the
m-uniform bidding format in the given context. Recall that
in a single-item auction, if the value of the item is v, then a
bid b is an underbid (overbid) if b < v (b > v).

Definition 3 (Underbid and Overbid). A m-uniform bidding
strategy b = ⟨(b1, q1), . . . , (bm, qm)⟩ is an

(a) underbidding strategy if bj ≤ wQj
,∀j ∈ [m] and ∃ℓ ∈

[m] such that bℓ < wQℓ
.

(b) overbidding strategy if ∃ℓ ∈ [m] such that bℓ > wQℓ
.

Figure 2. The solid line represents the average cumulative valua-
tion curve, w, and the dotted line represents the valuation curve,
v. The figure in the left (resp. right) illustrates underbidding (resp.
overbidding) for a 2-uniform bidding strategy. Note that the no-
tions of underbidding and overbidding in Definition 3 are defined
with respect to w and not v.8Here, the plots of v and w are shown
to be linear for illustrative purposes only.

In other words, if γ = 0, b = ⟨(b1, q1), . . . , (bm, qm)⟩ is
an underbidding strategy if, for all j ∈ [m], the bid bj is
at most the average of the first Qj entries of the valuation
vector, denoted as wQj

, and there exists ℓ ∈ [m] where
the inequality is strict. Recall that Qj =

∑
ℓ≤j qℓ denotes

the maximum number of demanded units in the first j bid-
quantity pairs. Similarly, b is an overbidding strategy if
there exists some ℓ ∈ [m] such that bℓ is strictly greater than
the average of the first Qℓ entries of the valuation vector.
Having defined the notions of overbidding and underbidding,
we characterize the class of safe bidding strategies, Sm:

Theorem 3.1. For any m ∈ N, no overbidding is allowed
in Sm. So, the collection of all m-uniform safe strategies is

Sm =
{
b = ⟨(b1, q1), . . . , (bm, qm)⟩ : bℓ ≤ wQℓ

,∀ℓ ∈ [m]
}
,

where w is defined in Eq. (1).

The proofs of this section are presented in Appendix A.
Since there are infinitely many safe strategies in Sm, we

8In Definition 3 (and throughout the paper), we assume γ = 0
without loss of generality for ease of exposition. Fig. 2 illustrates
how different values of γ impacts the results. Specifically, for any
γ ≥ 0, underbidding and overbidding are defined with respect to
the scaled average cumulative valuation curve, w

1+γ
.

5



Learning Safe Strategies for Value Maximizing Buyers in Uniform Price Auctions

focus on the subset of safe undominated strategies, S⋆m, ob-
tained by removing very weakly dominated strategies. A
safe strategy b is said to be very weakly dominated if there
exists another safe strategy b′ such that, for any compet-
ing bid β−, V (b,β−) ≤ V (b′,β−) (Shoham & Leyton-
Brown, 2008, pp. 79). Keeping these strategies does not
improve the bidder’s performance, but removing them yields
a finite strategy class (as shown below), which significantly
simplifies the design of online learning algorithms. We now
present the main result of this section:
Theorem 3.2. The class of m-uniform safe undominated
bidding strategies, S⋆m, is given as follows:

S⋆m =
{
b = ⟨(b1, q1), . . . , (bm, qm)⟩ : bℓ = wQℓ

, ℓ ∈ [m]
}
.

The union of classes of safe undominated strategies with at
most m bid-quantity pairs is denoted by U⋆

m =
⋃

k∈[m] S
⋆
k.

Observe that S⋆m is a finite class of bidding strategies that
depend only the valuation curve and is independent of the
competing bids. The strategies in S⋆m exhibit a “nested”
structure, referred to as nested m-uniform bidding strate-
gies hereafter, where the jth highest bid (bj) is the average
of the first Qj =

∑j
ℓ=1 qℓ entries of the valuation curve

(illustrated in Fig. 1). Importantly, fixing Qj’s uniquely
determines the bidding strategy, as bj = wQj for strategies
in S⋆m which will be crucial in learning the optimal safe
bidding strategy, as discussed in the following section.

4. Learning Safe Bidding Strategies
Here, the clairvoyant and the learner choose strategies from
the class of safe bidding strategies with at most m bid-
quantity pairs, U⋆

m. Thus, the regret defined in Eq. (3) is

REG = max
b∈U⋆

m

T∑
t=1

V (b;βt
−)−

T∑
t=1

E[V (bt;βt
−)] .

To design learning algorithms, we first consider the offline
setting, where we aim to solve the following problem given
the bid history, [βt

−]t∈[T ].

max
b∈U⋆

m

T∑
t=1

V (b;βt
−) (OFFLINE)

Since U⋆
m contains O(Mm) strategies, evaluating each strat-

egy individually is intractable. To overcome this, we reduce
the offline problem to finding the maximum weight path in a
carefully constructed edge-weighted directed acyclic graph
(DAG), which allows for the computation of the optimal
offline bidding strategy in poly(m,M ) time.

4.1. Offline Problem

Fix a bid history, H− = [βt
−]t∈[T ], and consider (OFFLINE).

The following lemma shows that the objective function can

be decomposed across the bid-quantity pairs. Formally,
Lemma 4.1. Problem (OFFLINE) can be formulated as

max
ℓ∈[m]

max
Q1,...,Qℓ

ℓ∑
j=1

T∑
t=1

Qj∑
k=Qj−1+1

vk · I
[
wQj

≥ β
−(k)
−,t

]
.

The proofs of this section are presented in Appendix B.
Building on the decomposition in Lemma 4.1, we now con-
struct an edge-weighted DAG G(V,E) as proposed earlier.

Vertices. The DAG has a ‘layered’ structure with a source
node (s), destination node (d) and m intermediate layers.
The ℓth intermediate layer contains M+1−ℓ nodes, denoted
by (ℓ, j) where ℓ ∈ [m], j ∈ {ℓ, ℓ+1, . . . ,M} as shown in
Fig. 3. For convenience, we set s = (0, 0).

Edges and Edge Weights. A directed edge exists from
vertex x to y under the following conditions:

(i) x = (ℓ − 1, j) and y = (ℓ, j′), ∀ℓ ∈ [m] and j < j′.
This edge connects consecutive layers in the graph, and its
weight is given by:

w(e) =
T∑

t=1

j′∑
k=j+1

vk · I
[
wj′ ≥ β

−(k)
−,t

]
. (4)

(ii) x = (ℓ, j) and y = d, ∀ℓ ∈ [m], j ∈ [M ]. This edge
connects the current layer to the destination node d, and its
weight is w(e) = 0.

Figure 3. In this DAG, M = 3, m = 2. The red path refers to b =
⟨(w1, 1), (w3, 2)⟩ ∈ U⋆

2. The values in red are the corresponding
Qj’s. Similarly, the blue path refers to b = (w3, 3) ∈ U⋆

2.

Theorem 4.2. • There exists a bijective mapping between
the s-d paths in G(V,E) and bidding strategies in U⋆

m, i.e.,
the path s → (1, z1) → · · · → (k, zk) → d for k ∈ [m]
refers to the strategy b = ⟨(b1, q1), . . . , (bk, qk)⟩ where

bℓ = wzℓ and qℓ = zℓ − zℓ−1,∀ℓ ∈ [k] .

where wzℓ is defined as per Eq. (1), ∀ℓ ∈ [k]. Conversely,
the strategy b = ⟨(wQ1

, q1), . . . , (wQk
, qk)⟩ maps to the

path s → (1, Q1) → · · · → (k,Qk) → d.

• The value obtained by a bidding strategy is the weight of
the corresponding s-d path. Thus, the Problem (OFFLINE)
is equivalent to finding the maximum weight s-d path in
G(V,E) which can be computed in poly(m,M) time.
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4.2. Online Setting

In the online setting, in each round t ∈ [T ], the learner
submits a strategy bt ∈ U⋆

m and receives feedback from the
auction. We consider two feedback models: (a) full informa-
tion setting and (b) bandit setting, with the latter discussed
in Appendix B.3.1. Leveraging the DAG formulation, we
design an online learning algorithm such that REG = o(T ).
Without loss of generaity, assume vj ∈ [0, 1],∀j ∈ [M ].

In every round t, a DAG Gt(V,E) is constructed as de-
scribed earlier. After receiving feedback at the end of the
round, in the full information setting,

(i) If x = (ℓ−1, j) and y = (ℓ, j′) with ℓ ∈ [m] and j < j′,

wt(e) =

j′∑
k=j+1

vk · I
[
wj′ ≥ β

−(k)
−,t

]
. (5)

(ii) If x = (ℓ, j) and y = d, then wt(e) = 0,∀ℓ ∈ [m], j ∈
[M ].

The online algorithm in Algorithm 1 consists of three main
steps: (1) UPDATE, (2) SAMPLE, and (3) MAP. In the
first two steps, the algorithm maintains and updates the
probabilities over the edges in the constructed DAG and
selects a s-d path in the DAG by sampling from these proba-
bilities. These steps implement exponential weight updates
using the weight-pushing method proposed by Takimoto &
Warmuth (2003). Naively implementing exponential weight
updates by treating each s-d path (safe strategy) as an expert
is intractable as there are O(Mm) such experts. However,
following the decomposition in Lemma 4.1, Algorithm 1
only needs to maintain weights for individual edges and
then sample a path based on these weights, avoiding the
need to track weights for each path separately. The MAP
step is the key component of the algorithm that maps the
sampled path to a safe strategy (by Theorem 4.2).

Algorithm 1 Learning Safe Bidding Strategies (Full Info.)
Require: valuation curve v, time horizon T , learning rate η > 0.
1: for t = 1, 2, . . . , T do
2: Construct Gt(V,E) similar to G(V,E) without weights.
3: UPDATE : Obtain edge probabilities φt(·) by Algorithm 2.

SAMPLE: Define initial node u = s and path pt = s.
4: while u ̸= d do
5: Sample v with probability φt(u→ v).
6: Append v to the path pt; set u← v.
7: end while
8: MAP: If pt = s → (1, z1) → · · · → (k, zk) → d for

some k ∈ [m], submit bt = ⟨(b1, q1), . . . , (bk, qk)⟩ where

bℓ = wzℓ and qℓ = zℓ − zℓ−1, ∀ℓ ∈ [k] .

where wzℓ is defined as per Eq. (1) for all ℓ ∈ [k].
9: The bidder observes βt

− and sets wt(e) as per Eq. (5).
10: end for

Theorem 4.3. Algorithm 1 runs in poly(m,M) time per
round and achieves REG ≤ O(M

√
mT logM) under full

information feedback, and REG ≤ O(M2
√
m3T logM)

in the bandit setting.

Algorithm 2 Update Edge Probabilities

Require: For t ≥ 1, Gt(V,E). For t ≥ 2, additionally require η,
φt−1(e) and wt−1(e), ∀e ∈ E.

1: If t = 1,
– Initialize the edge probability of each edge e = x → y as
φ1(e) = 1/|Nx| whereNx is the set of out-neighbors of x.

2: If t ≥ 2:
– Set Γt−1(d) = 1 and recursively compute in bottom-to-top
fashion for every node u in Gt(V,E):

Γt−1(u) =
∑

v:u→v=e∋E

Γt−1(v) · φt−1(e) · exp(ηwt−1(e))

– For edge e = u→ v in Gt(V,E), update edge probability:
φt(e) = φt−1(e) · exp(ηwt−1(e)) · Γ

t−1(v)

Γt−1(u)
.

We prove Theorem 4.3 by showing that Algorithm 1 is an ef-
ficient (polynomial time) and equivalent implementation of
the exponential weight updates algorithm. We complement
Theorem 4.3 by establishing the following lower bound.

Theorem 4.4. Suppose M ≥ 2 and m = 1. Then, there ex-
ist competing bids, [βt

−]t∈[T ], such that, under any learning
algorithm, the expected regret E[REG] = Ω(M

√
T ) in both

full information and bandit settings.

5. Competing Against Richer Classes of
Bidding Strategies

In previous sections, we characterized the class of safe bid-
ding strategies and proposed a learning algorithm that obtain
sublinear regret, where the regret is computed against a clair-
voyant that also selects the optimal safe bidding strategy. In
this section, we consider the cases where the clairvoyant
can choose the optimal strategy from richer bidding classes,
which we will describe shortly. We show that under Algo-
rithm 1, the class of safe bidding strategies achieves sub-
linear (approximate) regret when competing against these
stronger benchmarks. Here, the performance metric is

α-REGBc = α · max
b∈Bc

T∑
t=1

V (b;βt
−)−

T∑
t=1

E[V (bt;βt
−)] .

Here, Bc is the class of bidding strategies from which the
clairvoyant (which serves as our benchmark) chooses the
optimal bidding strategy whereas the bidder (learner) sub-
mits bids, bt ∈ U⋆

m, in each round unless stated otherwise
and α ∈ (0, 1] is defined as the richness ratio.
Remark 5.1 (Richness Ratio α). In prior works on approxi-
mate regret, α typically measures the hardness of the offline
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problem, such as maxb∈Bc

∑T
t=1 V (b;βt

−) (see Streeter
& Golovin (2008); Niazadeh et al. (2022)). In contrast, our
work reinterprets α as richness ratio, capturing the relative
richness of the clairvoyant’s strategy class compared to the
learner’s. Specifically, it quantifies how closely the value
achieved by the optimal strategy in U⋆

m approximates that
by the optimal strategy in Bc. If Bc = U⋆

m, then α = 1 (see
Section 4). By considering a richer class of strategies for
the clairvoyant, we aim to quantify the robustness and per-
formance of safe strategies against stronger benchmarks.

Our main contribution in this section is to compute the
richness ratio α for different classes of bidding strategies.
To this end, for any Bc, define:

ΛBc,U⋆
m
:= max

v,H−
ΛBc,U⋆

m
(H−,v),where

ΛBc,U⋆
m
(H−,v) =

maxb∈Bc

∑T
t=1 V (b;βt

−)

maxb′∈U⋆
m

∑T
t=1 V (b′;βt

−)
(6)

for H− = [βt
−]t∈[T ]. In words, ΛBc is the maximum ratio

of the value obtained by the optimal bidding strategy in Bc

and that by the optimal strategy in U⋆
m over all valuation

curves and bid histories in an offline setting. We drop the
argument v from ΛBc,U⋆

m
(H−,v) when the context is clear.

Definition 4 (Richness Ratio). Suppose the clairvoyant
chooses the optimal strategy from Bc (which may depend
on the bid history, H−) such that ΛBc,U⋆

m
≤ λ, and the

bound is tight, i.e., there exist a bid history H−, a valuation
curve v, and δ > 0 such that ΛBc,U⋆

m
(H−,v) ≥ λ− δ for

any δ ∈ (0, δ]. Then, the richness ratio of Bc is α = 1/λ.

The key idea is that if, in the worst-case scenario for the
offline problem, the optimal safe strategy achieves no more
than a 1

λ -fraction of the value obtained by the optimal bid-
ding strategy in Bc, then the learner can achieve at most a
1
λ -fraction of that value in the online setting as well. In the
subsequent sections, we consider different classes of bid-
ding strategies for the clairvoyant and compute its richness
ratio α. An immediate corollary of Definition 4 is:

Corollary 5.2. Suppose the clairvoyant chooses the optimal
strategy from the class Bc such that ΛBc,U⋆

m
≤ λ and this

bound is tight. Then, Algorithm 1 obtains 1
λ -REGBc ≤

O(M
√
mT logM) under full information feedback and 1

λ -
REGBc ≤ O(M2

√
m3T logM) under bandit feedback.

Proof. As ΛBc,U⋆
m
≤ λ,

1

λ
-REGBc =

1

λ
· max
b∈Bc

T∑
t=1

V (b;βt
−)−

T∑
t=1

E[V (bt;βt
−)]

≤ max
b∈U⋆

m

T∑
t=1

V (b;βt
−)−

T∑
t=1

E[V (bt;βt
−)] = REG .

By Theorem 4.3, we get the stated regret upper bound.

5.1. Richness Ratio of m-uniform Non-Safe Strategies

Here, we consider the clairvoyant class Bc to be the class of
bidding strategies containing at most m bid-quantity pairs,
which are feasible only for the given bid history H−, rather
than for every possible sequence of competing bids as in the
case of safe strategies. The following theorem characterizes
the richness ratio of this class, denoted as FH−

m :
Theorem 5.3. For any m ∈ N, Λ

F
H−
m ,U⋆

m

≤ 2. Further-
more, there exist a bid history and valuation curve such that
for any δ ∈ (0, 1

2 ], ΛF
H−
m ,U⋆

m

(H−,v) ≥ 2 − δ. Thus, the

richness ratio of the class FH−
m is α = 1/2.

Theorem 5.3 implies that restricting the learner to safe bid-
ding strategies has a bounded cost and does not lead to an
arbitrary loss in the obtained value as the upper bound is
independent of m. Building on this, Corollary 5.2 shows
that Algorithm 1 results in 1

2 -approximate sublinear regret in
the online setting when the safe strategies compete against
F
H−
m . Additionally, the factor-of-two loss represents a worst-

case scenario, occurring in a highly non-trivial setting (see
Appendix D.2). In practice, we expect these strategies to
perform near-optimally, a claim further supported by the
numerical simulations presented in Section 5.3.

Proof Sketch of Theorem 5.3 (Upper Bound). We now
present the central ideas to prove the upper bound, which
are also used to show the subsequent theorems, albeit with
changes specific to each case. Fixing a bid history, H−, we
consider the expression in Eq. (6). Maximizing over all bid
histories and valuation curves, we get the desired result.

Firstly, we bridge the we bridge the gap between the bidding
strategies of the clairvoyant and the learner by construct-
ing a restricted class of safe strategies, U⋆

m(H−) ⊆ U⋆
m.

This restricted class is exponentially smaller in size and
is derived based on the optimal strategy selected by the
clairvoyant (see exact characterization in Eq. (17) for Theo-
rem 5.3 and Algorithm 3 for Theorem 5.4). We demonstrate
that considering this restricted class of safe strategies is
sufficient to derive tight upper bounds.

Second, as a crucial step, we show that for any m-uniform
safe bidding strategy b = ⟨(wQ1

, q1), . . . , (wQm
, qm)⟩,

V (b;β−) = max
ℓ∈[m]

V ((wQℓ
, Qℓ);β−)

for all competing bids β−, where, Qℓ =
∑ℓ

j=1 qj . Thus,
the value obtained by any m-uniform safe strategy can be
determined by knowing the value obtained by the strategies
in U⋆

1, allowing us to focus solely on 1-uniform strategies.

As the third key idea, we partition the T rounds into sets
Tj , based on the least winning bid of the optimal bidding
strategy chosen by the clairvoyant (see details in Eq. (15))
and derive lower bounds on the value obtained by 1-uniform
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strategies in U⋆
m(H−) in terms of the value obtained by

optimal strategy chosen by the clairvoyant in each partition
Tj . With these three key ideas, we bound the ratio in Eq. (6).
The detailed proof is presented in Appendix C.1.

Proof Sketch of Theorem 5.3 (Tight Lower Bound). For
any δ ∈ (0, 1], we construct a tight lower-bound instance
for any m ∈ N by considering an offline problem where
M = T = N2m and K = M + 1, with N = O(1/δ). We
set v = [1, v, . . . , v] ∈ RM , where v = 1 − O(δ). The
sequence of T auctions is divided into 2m partitions of ex-
ponentially varying sizes, each with an identical competing
bid profile. In each bid profile, there are two types of bids:
‘big’ and ‘small’. All ‘big’ bids are set to C ≫ 1, while the
‘small’ bids remain identical within a partition. The parti-
tion sizes, the number of ‘small’ competing bids, and the
exact values of these bids are carefully chosen to ensure that
Λ
F

H−
m ,U⋆

m

(H−;v) ≥ 2− δ (see Appendices D.1 to D.2).

5.2. Richness Ratio of m′-uniform Strategies

We first consider the case when the clairvoyant selects the
optimal strategy from the class of safe bidding strategies
with at most m′ bid-quantity pairs where m′ ≥ m.
Theorem 5.4. For any m,m′ ∈ N such that m′ ≥ m,
ΛU⋆

m′ ,U
⋆
m

≤ m′

m . Additionally, there exist H− and v such

that for any δ ∈ (0, 1
2 ], ΛU⋆

m′ ,U
⋆
m
(H−,v) ≥ m′

m − δ. Thus,
the richness ratio of the class U⋆

m′ is α = m/m′.

Suppose the clairvoyant can now select the optimal strategy
from F

H−
m′ , the class of bidding strategies with at most m′

bid-quantity pairs (m′ ≥ m) that are feasible for the bid
history H− = [βt

−]t∈[T ], but not necessarily safe. Then,
Theorem 5.5. For any m,m′ ∈ N such that m′ ≥ m,
Λ
F

H−
m′ ,U⋆

m

≤ 2m′

m . Moreover, there exist H− and v such

that for any δ ∈ (0, 1
2 ], ΛF

H−
m′ ,U⋆

m

(H−,v) ≥ 2m′

m −δ. Thus,

the richness ratio of the class FH−
m′ is α = m/2m′.

By Corollary 5.2, for m′ ≥ m, Algorithm 1 obtains m
m′ -

approximate (resp. m
2m′ -approximate) sublinear regret in

the online setting when the clairvoyant draws the optimal
strategy from the class of safe (resp. feasible but not neces-
sarily safe) strategies with at most m′ bid-quantity pairs.

The richness ratio in Theorem 5.4 and Theorem 5.5 can theo-
retically become arbitrarily small as m′ grows, for a fixed m.
However, the bidder has the flexibility to choose m; increas-
ing m, though, incurs higher space and time complexity
for Algorithm 1. Moreover, for any given pair (m,m′), the
bound is tight under a highly non-trivial setting (see details
in Appendices D.3 to D.4). In practice, as shown in Sec-
tion 5.3, the observed richness ratios are substantially better
than the theoretical bounds, suggesting that the worst-case
scenarios are unlikely to arise in real-world applications.

5.3. Estimating The Richness Ratio: A Case Study

In this section, we estimate the richness ratio (equivalently
ΛBc,U⋆

m
) for the discussed classes of bidding strategies by

experiments using EU ETS emission permit auction data
from 2022 and 2023. Detailed methods are provided in
Appendix E, and the results are shown in Fig. 4.

Figure 4. The left (resp. right) figure refers to (the upper bound
on) Λ

F
H−
m ,U⋆

m

(H−) (resp. ΛU⋆
m,U⋆

1
(H−)) as a function of m.

Estimating Λ
F

H−
m ,U⋆

m

(H−). The left plot of Fig. 4 shows

that (the upper bound for) Λ
F

H−
m ,U⋆

m

(H−) is significantly
better than the theoretical bound of 2. The decaying trend of
the plot with increasing m can be attributed to the fact that
we are computing an upper bound for the value achieved by
the optimal bidding strategy in F

H−
m , which is independent

of m, rather than the exact value (see Appendix E.2). For
m ≥ 4, even the upper bound of Λ

F
H−
m ,U⋆

m

(H−) ∼ 1.05

indicating that the safe bidding strategies are near-optimal.

Estimating ΛU⋆
m,U⋆

1
(H−). From the right plot of Fig. 4, we

observe that the empirical values of ΛU⋆
m,U⋆

1
(H−) is signifi-

cantly better than the worst-case bound m (Theorem 5.4).
In fact, the gain obtained by increasing the number of bid-
quantity pairs plateaus after m = 4 and even for m = 10,
the ratio of the value obtained by the optimal bidding strat-
egy with at most 10 bid-quantity pairs to that by optimal
1-uniform bidding strategy is ∼ 1.25.

Both plots show that the richness ratio is significantly better
in practice than the theoretical bounds, suggesting that safe
strategies with small m are near-optimal in practice.

6. Conclusion and Open Problems
We studied bidding in repeated uniform price auctions for a
value maximizing buyer with per-round RoI constraints and
characterized safe bidding strategies that can be efficiently
learnt and are robust against various strong benchmarks.
This study suggests several interesting future research di-
rections: (1) analyzing bidding strategies in discriminatory-
price (“pay-as-bid”) auctions; (2) modeling bidders with
time-varying valuations and cumulative RoI constraints; (3)
incorporating both RoI and budget constraints for a more
realistic model of bidder behavior; and (4) extending the
analysis to the more complex setting of combinatorial auc-
tions with non-identical items.
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Impact Statement
This is primarily a theoretical work that discusses a class of
bidding strategies in multi-unit auctions. There are many
potential societal consequences of our work, none which we
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Inefficiency of standard multi-unit auctions. In European
Symposium on Algorithms, pp. 385–396. Springer, 2013.

De Vries, S. and Vohra, R. V. Combinatorial auctions: A
survey. INFORMS Journal on computing, 15(3):284–309,
2003.

Deng, Y., Mao, J., Mirrokni, V., and Zuo, S. Towards effi-
cient auctions in an auto-bidding world. In Proceedings
of the Web Conference 2021, pp. 3965–3973, 2021.

Deng, Y., Golrezaei, N., Jaillet, P., Liang, J. C. N., and
Mirrokni, V. Multi-channel autobidding with budget and
roi constraints. In International Conference on Machine
Learning, pp. 7617–7644. PMLR, 2023a.

Deng, Y., Mao, J., Mirrokni, V., Zhang, H., and Zuo, S.
Autobidding auctions in the presence of user costs. In
Proceedings of the ACM Web Conference 2023, pp. 3428–
3435, 2023b.

Deng, Y., Golrezaei, N., Jaillet, P., Liang, J. C. N., and Mir-
rokni, V. Individual welfare guarantees in the autobidding
world with machine-learned advice. In Proceedings of
the ACM on Web Conference 2024, pp. 267–275, 2024.

EEX. Eex - eua primary auction spot download,
2023. URL https://www.eex.com/en/
market-data/environmental-markets/
eua-primary-auction-spot-download.
Accessed on January 17, 2024.

EEX. Auctions participation report, August 2024.
URL https://www.eex.com/fileadmin/
EEX/Markets/Environmental_markets/
Emissions_Auctions/20240801_Auctions_

10

https://doi.org/10.1145/3696410.3714881
https://doi.org/10.1145/3696410.3714881
https://www.eex.com/en/market-data/environmental-markets/eua-primary-auction-spot-download
https://www.eex.com/en/market-data/environmental-markets/eua-primary-auction-spot-download
https://www.eex.com/en/market-data/environmental-markets/eua-primary-auction-spot-download
https://www.eex.com/fileadmin/EEX/Markets/Environmental_markets/Emissions_Auctions/20240801_Auctions_participation_5min_Final.pdf
https://www.eex.com/fileadmin/EEX/Markets/Environmental_markets/Emissions_Auctions/20240801_Auctions_participation_5min_Final.pdf
https://www.eex.com/fileadmin/EEX/Markets/Environmental_markets/Emissions_Auctions/20240801_Auctions_participation_5min_Final.pdf
https://www.eex.com/fileadmin/EEX/Markets/Environmental_markets/Emissions_Auctions/20240801_Auctions_participation_5min_Final.pdf


Learning Safe Strategies for Value Maximizing Buyers in Uniform Price Auctions

participation_5min_Final.pdf. Accessed:
2024-08-01.

Fadaei, S. and Bichler, M. Truthfulness and approxima-
tion with value-maximizing bidders. In International
Symposium on Algorithmic Game Theory, pp. 235–246.
Springer, 2016.

Feng, Z., Padmanabhan, S., and Wang, D. Online bidding
algorithms for return-on-spend constrained advertisers.
In Proceedings of the ACM Web Conference 2023, pp.
3550–3560, 2023.

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55(1):119–139,
1997.

Gaitonde, J., Li, Y., Light, B., Lucier, B., and Slivkins, A.
Budget pacing in repeated auctions: Regret and efficiency
without convergence. In 14th Innovations in Theoretical
Computer Science Conference (ITCS 2023), volume 251,
pp. 52, 2023.

Galgana, R. and Golrezaei, N. Learning in repeated multiu-
nit pay-as-bid auctions. Manufacturing & Service Opera-
tions Management, 2024.

Garbade, K. and Ingber, J. The treasury auction process: Ob-
jectives, structure, and recent adaptations. Current Issues
in Economics and Finance, 2005. URL https://www.
newyorkfed.org/medialibrary/media/
research/current_issues/ci11-2.html.

Goldner, K., Immorlica, N., and Lucier, B. Reducing ineffi-
ciency in carbon auctions with imperfect competition. In
11th Innovations in Theoretical Computer Science Con-
ference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

Golrezaei, N., Lobel, I., and Paes Leme, R. Auction design
for roi-constrained buyers. In Proceedings of the Web
Conference 2021, pp. 3941–3952, 2021.

Golrezaei, N., Jaillet, P., Liang, J. C. N., and Mirrokni, V.
Pricing against a budget and roi constrained buyer. In
International Conference on Artificial Intelligence and
Statistics, pp. 9282–9307. PMLR, 2023.
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A. Omitted Proofs from Section 3
A.1. Proof of Theorem 3.1

Before proving Theorem 3.1, we present the following lemma about the bidder’s per unit payments, which we will also use
to prove several other results.
Lemma A.1 (Per-unit Payments). Suppose the bidder bids b = ⟨(b1, q1), . . . , (bm, qm)⟩. Recall that Qj =

∑j
ℓ=1 qℓ,∀j ∈

[m]. Recall that, β−(j)
−,t is the jth smallest winning bid in the absence of bids from bidder i for round t. If j = 0, β−(j)

−,t = 0

and j > K, β−(j)
−,t = ∞. Then, the per-unit payments by the bidder in round t is

p(βt) =


0, if x(βt) = 0

bℓ, if Qℓ−1 < x(βt) < Qℓ

min(bℓ,β
−(Qℓ+1)
−,t ), if x(βt) = Qℓ

. (7)

Define the following class of no-overbidding (NOB) strategies with m bid-quantity pairs:

SNOB
m :=

{
b = ⟨(b1, q1), . . . , (bm, qm)⟩ : bℓ ≤ wQℓ

,∀ℓ ∈ [m]
}
.

We first show that Sm ⊆ SNOB
m , and then complete the proof by showing SNOB

m ⊆ Sm.

Proof of Sm ⊆ SNOB
m .

Observation 1. Overbidding is not a safe bidding strategy. To see this, let b = ⟨(b1, q1), . . . , (bℓ, qℓ), . . . , (bm, qm)⟩ be an
overbid such that bℓ > wQℓ

. Now, consider an auction in which the competing bids are:

β
−(j)
−, =

{
ϵ, if 1 ≤ j ≤ Qℓ

2b1, if Qℓ < j ≤ K
,

where ϵ < bm
2 . Submitting b gets allocated Qℓ units and from Lemma A.1, we conclude that the clearing price of auction is

bℓ. As bℓ > wQℓ
by assumption, the RoI constraint is violated.

As overbidding is not a safe strategy, every safe bidding strategy is a NOB strategy, i.e., Sm ⊆ SNOB
m .

Proof of SNOB
m ⊆ Sm. We now prove that the converse is also true, i.e., every NOB strategy is also a safe strategy. To show

this, fix any competing bid, β−, and consider any b = ⟨(b1, q1), . . . , (bm, qm)⟩ ∈ SNOB
m . Suppose bidding b wins x(β)

units. So, from Lemma A.1, if x(β) = 0, trivially, P (β) = 0 = V (β). If Qℓ−1 < x(β) ≤ Qℓ, for some ℓ ∈ [m],

P (β) = x(β) · p(β) ≤ x(β) · bℓ ≤ x(β) · wQℓ
≤ x(β) · wx(β) = V (β) .

The first inequality holds true because bidders’ per-unit payment is at most their least winning bid (individual rationality
of the auction format), the second is true by definition, and the third is true because the wj is non-decreasing in j and
x(β) ≤ Qℓ. As the choice of competing bids and bidding strategy b was arbitrary, we conclude that every strategy in SNOB

m

is safe, i.e., SNOB
m ⊆ Sm, which completes the proof.

A.1.1. PROOF OF LEMMA A.1

Consider the following three cases:

(1) If x(βt) = 0, trivially, p(βt) = 0.

(2) Let Qℓ−1 < x(βt) < Qℓ. Let b be the last accepted bid after including b, i.e., the smallest bid in βt = (b,βt
−). Then

bℓ
(a)

≥ b
(b)

≥ bℓ.

I. (a) holds true because the bidder is allocated at least one unit for bid bℓ and

II. (b) is correct because they do not acquire at least one unit for bid bℓ. Hence, p(βt) = bℓ.

(3) Suppose x(βt) = Qℓ. If bℓ > β
−(Qℓ+1)
−,t , then p(βt) = β

−(Qℓ+1)
−,t . However, if bℓ ≤ β

−(Qℓ+1)
−,t , p(βt) = bℓ. So,

p(βt) = min(bℓ,β
−(Qℓ+1)
−,t ).
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A.2. Proof of Theorem 3.2

We show that for any m ∈ N, most safe bidding strategies are very weakly dominated for which they can removed from
Sm, resulting in S⋆m. We begin by establishing a general result regarding the monotonocity of feasible bid vectors (not
necessarily m-uniform strategies) for value maximizing bidders. As the result holds for any bid vector, it is also true for
m-uniform bidding strategies.

Lemma A.2 (Monotonocity of feasible bids). Consider two sorted bid vectors: b = [b1, b2, . . . , bk] and b′ = [b′1, b
′
2, . . . , b

′
k]

such that bj ≥ b′j ,∀j ∈ [k]. Suppose b is RoI feasible for some competing bid, β−. Then, b′ is also feasible for β− and
V (b;β−) ≥ V (b′;β−).

Suppose b = ⟨(b1, q1), . . . , (bm, qm)⟩ is an underbidding strategy per Definition 3. Consider b′ = ⟨(b′1, q′1), . . . , (b′m, q′m)⟩
such that q′j = qj and b′j = wQj

,∀j ∈ [m]. By Theorem 3.1, we establish that b,b′ ∈ Sm. Invoking Lemma A.2 gives us
that the underbidding strategy is very weakly dominated, and hence can be removed from Sm to obtain S⋆m.

A.2.1. PROOF OF LEMMA A.2

Let β = (b,β−) and β′ = (b′,β−). We first prove that b′ is also feasible for β−. Contrary to our claim, suppose b′ is
infeasible, i.e., the value obtained by b′ when the competing bids are β− is strictly less than the payment. Suppose b′ is
allocated r′ units with clearing price p(β′) such that the RoI constraint is violated:

p(β′) > wr′ . (8)

Suppose b is allocated r units when the competing bids are β−. By definition of allocation and payment rule, the units
allocated and the clearing price in an auction are weakly increasing in bids, so r′ ≤ r and p(β′) ≤ p(β). As b is feasible,

p(β) ≤ wr. (9)

Combining Equations (8) and (9), we have

p(β) ≤ wr

(a)

≤ wr′ < p(β′) =⇒ p(β) < p(β′),

which is a contradiction. Here (a) is true as wj is non-increasing in j and r′ ≤ r. So, b′ is feasible.

By definition of the allocation rule, the value obtained in an auction is weakly increasing in the bids submitted. As b and b′

are both feasible, V (b;β−) ≥ V (b′;β−).

B. Omitted Proofs From Section 4
B.1. Proof of Lemma 4.1

By Theorem 3.2, a strategy b = ⟨(b1, q1), . . . , (bℓ, qℓ)⟩ ∈ U⋆
m for some ℓ ∈ [m] can be uniquely identified by {Q1, . . . , Qℓ}

where Qj =
∑

k≤j qk because bj = wQj
for all j ∈ [ℓ]. Let the bid history H− = [βt

−]t∈[T ]. Then, for any round t,

V (b;βt
−) =

ℓ∑
j=1

Qj∑
k=Qj−1+1

vk · I
[
wQj

≥ β
−(k)
−,t

]
Hence, the problem (OFFLINE) can be equivalently expressed as

max
b∈U⋆

m

T∑
t=1

V (b;βt
−) = max

ℓ∈[m]
max

Q1,...,Qℓ

ℓ∑
j=1

T∑
t=1

Qj∑
k=Qj−1+1

vk · I
[
wQj

≥ β
−(k)
−,t

]
.

B.2. Proof of Theorem 4.2

G(V,E) is a DAG. For convenience, let d = (m+ 1, 0). In the constructed graph, any node (ℓ, j) where ℓ ∈ [m] has edges
edges either to the next layer, i.e. nodes of the form (ℓ+ 1, j′) where j′ > j or to the destination node (m+ 1, 0). Hence,
the directed graph has a topological sorting of the nodes implying that G(V,E) is a DAG.
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Bijection between s-d paths and strategies in U⋆
m. Consider a path9

p = s → (1, z1) → · · · → (m, zm) → d .

By construction of G(V,E), edges e = s → (1, z1) and e = (m, zm) → d always exist. For any ℓ ∈ [m − 1], the edge
(ℓ, zℓ) → (ℓ+ 1, zℓ+1) exists if zℓ < zℓ+1. With this path p, we associate the strategy

b = ⟨(b1, q1), . . . , (bm, qm)⟩ where bℓ = wzℓ and qℓ = zℓ − zℓ−1,∀ℓ ∈ [m] .

where z0 = 0. By definition, Qj =
∑j

ℓ=1 qℓ = zj and bj = wzj = wQj ,∀j ∈ [m]. Hence, b ∈ U⋆
m.

Conversely, consider any safe strategy b = ⟨(b1, q1), . . . , (bm, qm)⟩ with bj = wQj
. With this strategy, we associate the

s-d path p′ = s → (1, Q1) → · · · → (m,Qm) → d where Qj =
∑j

ℓ=1 qℓ,∀j ∈ [m]. We claim that p′ is a valid path,
i.e., all the edges exist, because by definition e = s → (1, Q1) and e = (m,Qm) → d always exist. Furthermore, for any
ℓ ∈ [m− 1], the edge (ℓ,Ql) → (ℓ+ 1, Qℓ+1) also exists as Qℓ+1 −Qℓ = qℓ+1 > 0.

Weight of s-d paths. By assumption, s = (0, 0) and z0 = 0. The weight of p = s → (1, z1) → · · · → (m, zm) → d is:

w(p) =
∑
e∈p

w(e) =
m∑
ℓ=1

w((ℓ− 1, zℓ−1) → (ℓ, zℓ))

(4)
=

m∑
ℓ=1

T∑
t=1

zℓ∑
k=zℓ−1+1

vk · I
[
wzℓ ≥ β

−(k)
−,t

]

=

T∑
t=1

m∑
ℓ=1

zℓ∑
k=zℓ−1+1

vk · I
[
wzℓ ≥ β

−(k)
−,t

]
,

which is the value obtained by the safe strategy b = ⟨(b1, q1), . . . , (bm, qm)⟩ ∈ U⋆
m where bℓ = wzℓ ,∀ℓ ∈ [m].

Computing maximum weight path. As G(V,E) is a DAG, the edge weights can be negated and the maximum (resp.
minimum) weight path problem in the original (resp. ‘negated’) DAG can be solved in space and time complexity of
O(|V |+ |E|) = O(mM2) which is polynomial in the parameters of the problem.

B.3. Proof of Theorem 4.3

We begin by observing that there is a bijective mapping between s-d paths in the DAG Gt(V,E) and bidding strategies
b ∈ U⋆

m (see proof of Theorem 4.2). The core idea of the proof is to show that Algorithm 1 is an equivalent and efficient
implementation of the Hedge algorithm (Freund & Schapire, 1997) where every s-d path is treated as an individual expert.
Similar ideas have been utilized in Brânzei et al. (2023); Potfer et al. (2024); Galgana & Golrezaei (2024). For the sake of
completeness, we provide the details below.

In Algorithm 1, φt(u → ·) denotes the probability distribution over the outgoing neighbors of node u. By the recursive
sampling of nodes (Line 4-7 of Algorithm 1), we get that the probability of selecting s-d path p is

Pt(p) =
∏
e∈p

φt(e), (10)

and for any edge e = u → v in Gt(V,E), the edge probabilities, φt(e), are updated as

φt(e) = φt−1(e) · exp(ηwt−1(e)) · Γ
t−1(v)

Γt−1(u)
, (11)

where Γt−1(d) = 1 and Γt−1(·) is computed recursively in bottom-to-top fashion for every node u in Gt(V,E) as follows:

Γt−1(u) =
∑

v:u→v∈E

Γt−1(v) · φt−1(u → v) · exp(ηwt−1(u → v)) . (12)

9Here, we assume the path has m + 1 edges without loss of generality. The same argument follows if p = s → (1, z1) → · · · →
(k, zk)→ d with k + 1 edges for some k ∈ [m] is considered instead.
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Now, consider a naı̈ve implementation of the Hedge algorithm with learning rate η in which each s-d path is treated as an
individual expert. For t = 1, define P1

HEDGE(p) =
∏

e∈p φ
1(e). For t ≥ 2, the probability of selecting path p in round t is

Pt
HEDGE(p) =

Pt−1
HEDGE(p) exp(η

∑
e∈p w

t−1(e))∑
p′ Pt−1

HEDGE(p′) exp(η
∑

e∈p′ wt−1(e))
.

Now, we show that for any path p and t ∈ [T ], Pt(p) = Pt
HEDGE(p). To this end, we first present the following result:

Claim B.1. For any node u in the graph, let P(u) be the set of paths starting at u and terminating at d. Then,

Γt−1(u) =
∑

p∈P(u)

∏
e∈p

φt−1(e) · exp(ηwt−1(e))

Proof. We prove the result by induction in a bottom-to-top order. For the base case, u = d, Γt−1(d) = 1. Suppose the result
is true for all the nodes in layer ℓ+ 1 for some 0 ≤ ℓ ≤ m. By the recursion in Eq. (12), for any node u in layer ℓ,

Γt−1(u) =
∑

v:u→v∈E

Γt−1(v) · φt−1(u → v) · exp(ηwt−1(u → v))

=
∑

v:u→v∈E

( ∑
p∈P(v)

∏
e∈p

φt−1(e) · exp(ηwt−1(e))
)
φt−1(u → v) · exp(ηwt−1(u → v))

=
∑

p∈P(u)

∏
e∈p

φt−1(e) · exp(ηwt−1(e)),

where the first equality follows from induction hypothesis.

We will show by induction on t ∈ [T ] that for any path p, Pt(p) = Pt
HEDGE(p). For t = 1 and any path p, P1

HEDGE(p) =∏
e∈p φ

1(e) = P1(p). Here, the second equality holds by Eq. (10). Suppose the result holds for round t − 1, i.e.,
Pt−1(p) = Pt−1

HEDGE(p) =
∏

e∈p φ
t−1(e). For round t,

Pt(p) =
∏
e∈p

φt(e)
(11)
=

∏
e=u→v∈p

φt−1(e) · exp(ηwt−1(e)) · Γ
t−1(v)

Γt−1(u)
= Pt−1

HEDGE(p) · exp
(
η
∑
e∈p

wt−1(e)
)
· Γ

t−1(d)

Γt−1(s)
,

where the last equality follows by telescoping product and invoking the induction hypothesis. By definition, Γt−1(d) = 1.
By Claim B.1,

Γt−1(s) =
∑
p′

∏
e∈p′

φt−1(e) · exp(ηwt−1(e)) =
∑
p′

Pt−1
HEDGE(p

′) · exp
(
η
∑
e∈p′

wt−1(e)
)

Substituting the values gives Pt(p) = Pt
HEDGE(p) implying Algorithm 1 is a correct implementation of the Hedge algorithm.

B.3.1. BANDIT FEEDBACK MODEL

In the bandit setting, the bidder learns about their own allocation only for which wt(e) can not be exactly computed for all
the edges. Hence, we use an unbiased estimator, ŵt(e), of wt(e) as follows:

ŵt(e) = w(e)− w(e)− wt(e)

pt(e)
· I
[
e ∈ pt

]
where pt(e) =

∑
p:e∈p

Pt(p) .

Here, pt(e) is the probability of selecting edge e in round t, Pt is the distribution over all s-d paths in Gt(V,E). Observe
that ŵt

(e) is well defined as pt(e) > 0,∀e ∈ E,∀t ∈ [T ]. Here, w(e) is an edge-dependent upper bound of the edge weight
wt(e). Formally, for ℓ ∈ [m],

w(e) =

{
j′ − j, if e = (ℓ− 1, j) → (ℓ, j′)

0, if e = (ℓ, j) → d .
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The algorithm followed by the bidder in the bandit setting is identical to Algorithm 1, with each instance of wt(e) replaced
by ŵt(e),∀t ∈ [T ],∀e ∈ E. Clearly, E[ŵt(e)] = wt(e). The unbiased estimator ŵt(e) is different from the natural
importance-weighted estimator wt(e)

pt(e) · I[e ∈ pt] for technical reasons (similar to Lattimore & Szepesvári (2020, Eq. 11.6))
which we will clarify shortly.

B.3.2. REGRET UPPER BOUND

Full Information Setting. Having shown that Algorithm 1 is equivalent to the Hedge algorithm, we now recall its regret
bound from Brânzei et al. (2023, Corollary 1) which states that for learning rate η:

REG ≤ −1

η
max

p
log(P1(p)) +

ηTM2

8
.

Observe that P1(p) ≥ M−m, which implies,

REG ≤ m logM

η
+

ηTM2

8
.

Setting η = 1
M

√
8m logM

T , we get REG ≤ O(M
√
mT logM).

Bandit Setting. Using the standard analysis for EXP3 algorithm (see Lattimore & Szepesvári (2020, Chapter 11)), we get

REG = −1

η
max

p
log(P1(p)) +

T∑
t=1

E

[
1

η
log

(∑
p

Pt(p)eηŵ
t(p)

)
−
∑
p

Pt(p)ŵt(p)

]

where ŵt(p) =
∑

e∈p ŵ
t(e). Note that ŵt(p) =

∑
e∈p ŵ

t(e) ≤
∑

e∈p w(e) ≤ M and P1(p) ≥ M−m. For η ≤ 1
M ,

REG ≤ m logM

η
+ η

T∑
t=1

∑
p

Pt(p)E[ŵt(p)2]

≤ m logM

η
+ ηm

T∑
t=1

∑
p

Pt(p)
∑
e∈p

E[ŵt(e)2]

where in the first inequality, we used ex ≤ 1 + x+ x2 for x ≤ 1 and log(1 + x) ≤ x for x ≥ 0 and the second inequality
follows from Cauchy-Schwarz. Observe that∑

p

Pt(p)
∑
e∈p

E[ŵt(e)2] =
∑
e

E[ŵt(e)2]
∑
p:e∈p

Pt(p) =
∑
e

pt(e)E[ŵt(e)2],

where the last equality holds as pt(e) =
∑

p:e∈p Pt(p).

∑
e

pt(e)E[ŵt(e)2] =
∑
e

pt(e)
[
w(e)2(1− pt(e)) +

(
w(e)− w(e)− wt(e)

pt(e)

)2
pt(e)

]
=
∑
e

wt(e)2pt(e) + (w(e)− wt(e))2(1− pt(e)) ≤
∑
e

w(e)2 .

Observe that
∑

e w(e)
2 ≤ |E|M2 ≲ mM4. Hence,

REG ≤ m logM

η
+ ηm

T∑
t=1

∑
p

Pt(p)
∑
e∈p

E[ŵt(e)2]

≲
m logM

η
+ ηTm2M4

Setting η = 1
M2

√
logM
mT , we get REG ≤ O(M2

√
m3T logM) .
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B.3.3. TIME COMPLEXITY

In the full information setting, the running time bottleneck is Eq. (12). Thus, Algorithm 1 runs in |E| = O(mM2) time
per round. The bottleneck of running Algorithm 1 under the bandit feedback is the efficient computation of the marginal
distribution, pt(e). We claim that this can be done in O(M |E|) = O(mM3) time per-round.

We compute the marginal probabilities in a recursive manner over the topological sorting of the nodes in the DAG as follows:
for any edge starting at the source, e = s → u, pt(e) = φt(e). For any other edge of the form e = u → v, using law of total
probabilities

pt(u → v) =
∑

x∈N in
u

P[(u → v)|(x → u)] · pt(x → u) =
∑

x∈N in
u

φt(u → v) · pt(x → u),

where N in
u is the set of in-neighbors of node u and P[(u → v)|(x → u)] is the conditional probability of selecting edge

u → v once the edge x → u is chosen. The final equality holds because by Algorithm 1, we get that at any node, edges are
chosen in a Markovian manner implying P[(u → v)|(x → u)] = φt(u → v). Observe that probabilities pt(x → u) for any
x ∈ N in

u are known while computing pt(u → v) as the edge x → u precedes u → v in the topological sort. So, the total
run time is

O
(
|E| · max

u∈V :u ̸=d
|N in

u |
)
= O(M |E|) = O(mM3) .

Here, we exclude the destination node d while maximizing over the nodes as d has no outgoing edges.

B.4. Proof of Theorem 4.4

For m = 1, let K = M be an even integer. Let v = [1, . . . , 1, v, . . . , v]. Here, the first M
2 entries are 1 and the remaining

M
2 entries are v. Let v = 1− δ. Define δ′ = δ

2M . Consider two scenarios:

Scenario 1. In this scenario, for every t ∈ [T ], the competing bids βt
− are:

βt
− =

{
[1− δ′, . . . , 1− δ′], w.p. 1

2 + δ,

[ 1+v
2 − δ′, . . . , 1+v

2 − δ′], w.p. 1
2 − δ,

Scenario 2. In this scenario, for every t ∈ [T ], the competing bids βt
− are:

βt
− =

{
[1− δ′, . . . , 1− δ′], w.p. 1

2 − δ,

[ 1+v
2 − δ′, . . . , 1+v

2 − δ′], w.p. 1
2 + δ,

for some δ ∈ (0, 1/4) that would be determined shortly. Assume the randomness used in different rounds are independent.

Let P and Q be the distribution of [βt
−]t∈[T ] for scenario 1 and 2 respectively. Then, for δ ∈ (0, 1

4 ),

KL(P ||Q) = T · KL(BERN(0.5 + δ)||BERN(0.5− δ)) = 2Tδ log
(1 + 2δ

1− 2δ

)
≤ 8Tδ2

1− 2δ
≤ 16Tδ2

where the first inequality follows from log( 1+x
1−x ) ≤

2x
1−x . By Tsybakov (2009, Lemma 2.6),

1− TV(P,Q) ≥ 1

2
exp (−KL(P ||Q)) ≥ 1

2
exp

(
−16Tδ2

)
.

Consider the class of 1-uniform safe strategies. We first show that we need to consider only two strategies out of the M
possible strategies. Recall that any strategy in this class is of the form (wq, q).

Case 1. 1 ≤ q ≤ M
2 : Here, wq = 1,∀q. So, (1, M

2 ) weakly dominates all the strategies of the form (1, q) for 1 ≤ q ≤ M
2 .

Case 2. M
2 + 1 ≤ q ≤ M : In this interval, the highest bid value is for q = M

2 + 1 due to diminishing marginal returns
property. Note that,

wM
2 +1 =

M
2 + 1− δ
M
2 + 1

= 1− δ
M
2 + 1

≤ 1− δ

M
< 1− δ′ .
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Hence, no strategy of form (wq, q) for q ≥ M
2 + 1 is allocated any unit in when the competing bids are [1− δ′, . . . , 1− δ′].

The smallest bid value for M
2 + 1 ≤ q ≤ M is for q = M . Note that, wM = 1+v

2 > 1+v
2 − δ′. Hence, (wM ,M) =

( 1+v
2 ,M) = (1− δ

2 ,M) is allocated all the units when the competing bids are [ 1+v
2 − δ′, . . . , 1+v

2 − δ′] and, by definition,
weakly dominates all the strategies of the form (wq, q) for q ≥ M

2 +1. Hence, we have two undominated (for the constructed
competing bids) strategies: b1 = (1, M

2 ) and b2 = (1− δ
2 ,M).

Now, we compute the expected value obtained by b1 and b2 for scenarios P and Q.

EP [V (b1;β
t
−)] = EQ[V (b1;β

t
−)] =

M

2

EP [V (b2;β
t
−)] = M

(
1

2
− δ

)(
1 + v

2

)
=

M

2

(
1

2
− δ

)
(2− δ) <

M

2

EQ[V (b2;β
t
−)] = M

(
1

2
+ δ

)(
1 + v

2

)
=

M

2

(
1

2
+ δ

)
(2− δ) >

M

2

So, b1 (resp. b2) is optimal for scenario P (resp. scenario Q). Now, consider the distribution P+Q
2 , i.e., BERN(0.5).

EP+Q
2

[V (b1;β
t
−)] =

M

2
and EP+Q

2
[V (b2;β

t
−)] =

M

2

(
1 + v

2

)
≤ M

2

=⇒ max
b∈U⋆

1

EP+Q
2

[V (b;βt
−)] ≤

M

2
(13)

Hence, for any b ∈ U⋆
1, and any round t ∈ [T ],

max
b∗∈U⋆

1

EP [V (b∗;βt
−)− V (b;βt

−)] + max
b∗∈U⋆

1

EQ[V (b∗;βt
−)− V (b;βt

−)]

≥ max
b∗∈U⋆

1

EP [V (b∗;βt
−)] + max

b∗∈U⋆
1

EQ[V (b∗;βt
−)]− 2 max

b∗∈U⋆
1

EP+Q
2

[V (b∗;βt
−)]

= EP [V (b1;β
t
−)] + EQ[V (b2;β

t
−)]− 2 max

b∗∈U⋆
1

EP+Q
2

[V (b∗;βt
−)]

(13)
≥ M

2
+

M

2

(
1

2
+ δ

)
(2− δ)− 2 · M

2
=

M

2

(
3δ

2
− δ2

)
≥ 5Mδ

8
,

where the last inequality follows as δ ∈ (0, 1
4 ). Hence, any strategy b ∈ U⋆

1 incurs a total regret of 5MTδ
16 either under P or

under Q. By two-point method from Tsybakov (2009, Theorem 2.2),

EP+Q
2

[REG] ≥ 5MTδ

16
· (1− TV(P,Q)) ≥ 5MTδ

32
exp

(
−16Tδ2

)
Setting δ = 1

4
√
2T

, we get EP+Q
2

[REG] ≥ M
√
T

36
√
e

. Hence, EP+Q
2

[REG] = Ω(M
√
T ).

C. Omitted Proofs from Section 5
C.1. Proof of Theorem 5.3

To prove that Λ
F

H−
m ,U⋆

m

≤ 2 for any m ∈ N, recall from the proof sketch that we first defined the following metric for any

bid history, H− = [βt
−]t∈[T ],

Λ
F

H−
m ,U⋆

m

(H−) =
max

b∈F
H−
m

∑T
t=1 V (b;βt

−)

maxb∈U⋆
m

∑T
t=1 V (b;βt

−)
. (14)

Let bOPT
m (H−) = ⟨(b∗1, q∗1), . . . , (b∗m, q∗m)⟩ where bOPT

m (H−) := argmax
b∈F

H−
m

∑T
t=1 V (b;βt

−).
10Define Q∗

ℓ =∑
j≤ℓ q

∗
j . Suppose bOPT

m (H−) is allocated r∗t units in round t. For any j ∈ [m], let Tj be the set of rounds in which the

10We assumed bOPT
m (H−) = ⟨(b∗1, q∗1), . . . , (b∗m, q∗m)⟩ without loss of generality. The proof also follows if we considered

bOPT
m (H−) = ⟨(b∗1, q∗1), . . . , (b∗k, q∗k)⟩ for some k ∈ [m] instead.
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least winning bid is b∗j , i.e.,

Tj =
{
t ∈ [T ] : Q∗

j−1 < r∗t ≤ Q∗
j

}
. (15)

For any j ∈ [m], partition Tj into Tj,0 and Tj,1 such that Tj,0 is the set of rounds where the bidder gets strictly less than Q∗
j

units and Tj,1 is the set of rounds when they get exactly Q∗
j units:

Tj,0 =
{
t ∈ Tj : r

∗
t < Q∗

j

}
, Tj,1 =

{
t ∈ Tj : r

∗
t = Q∗

j

}
. (16)

For any j ∈ [m], let

Q̂j =

{
max{r∗t : t ∈ Tj,0}, if Tj,0 ̸= ∅
Q∗

j if Tj,0 = ∅ .

In other words, Q̂j is the 2nd highest number of units allocated to bOPT
m (H−) over the rounds in Tj (or the highest if

Tj,0 = ∅ or Tj,1 = ∅).

Step 1. Constructing a Restricted Class of Safe Bidding Strategies. Here, as a crucial part of the proof, we construct
a restricted class of safe bidding strategies, denoted by U⋆

m(H−), where U⋆
m(H−) ⊂ U⋆

m. This construction serves two
purposes. First, it reduces the search space for the optimal safe bidding strategy. Second, and more importantly, it enables us
to establish a connection between the optimal safe bidding strategy and bOPT

m (H−).

In defining the restricted class, we use the quantities, {Q̂j , Q
∗
j}j∈[m] as follows:

U⋆
m(H−) =

{
b = ⟨(b1, q1), . . . , (bm, qm)⟩ : bℓ = wQℓ

, Qℓ ∈ {Q̂ℓ, Q
∗
ℓ}, ∀ℓ ∈ [m]

}
. (17)

Recall that any strategy in U⋆
m with m bid-quantity pairs takes the form of b = ⟨(b1, q1), . . . , (bm, qm)⟩ : bℓ = wQℓ

,∀ℓ ∈
[m]. The strategies in U⋆

m(H−) also have the same structure but as an important difference, for any ℓ ∈ [m], we enforce
Qℓ ∈ {Q̂ℓ, Q

∗
ℓ}. Observe that for any ℓ ∈ [m− 1],

Qℓ ≤ Q∗
ℓ < Q̂ℓ+1 ≤ Qℓ+1,

where the first and third inequalities follow directly from the definition of Qℓ and the second one follows from the definition
of Q̂ℓ+1. So, Qℓ’s are distinct and ordered. Further observe that the number of bidding strategies in U⋆

m(H−) is O(2m);
significantly smaller than the number of strategies in U⋆

m, which is O(Mm).

With the definition of the restricted class of safe bidding strategies, we have

Λ
F

H−
m ,U⋆

m

(H−) =
max

b∈F
H−
m

∑T
t=1 V (b;βt

−)

maxb∈U⋆
m

∑T
t=1 V (b;βt

−)
≤

max
b∈F

H−
m

∑T
t=1 V (b;βt

−)

maxb∈U⋆
m(H−)

∑T
t=1 V (b;βt

−)
. (18)

Step 2. Value Decomposition for m-uniform Strategies. Let Vj,k be the time-average value obtained by bOPT
m (H−) in

the set of rounds in Tj,k (as defined in Eq. (16)). Formally, ∀j ∈ [m], k ∈ {0, 1},

Vj,k =
1

|Tj,k|
∑

t∈Tj,k

V (bOPT
m (H−) ,β

t
−) .

Define Wk =
∑k

j=1 vj . Note that Vj,1 = WQ∗
j

because for any t ∈ Tj,1, we have r∗t = Q∗
j . For any b ∈ U⋆

m(H−), where

b = ⟨(b1, q1), . . . , (bm, qm)⟩ : bℓ = wQℓ
, and Qℓ ∈ {Q∗

ℓ , Q̂ℓ} for any ℓ ∈ [m], define N∗, N̂ ⊆ [m] as follows:

N∗ = {j : Qj = Q∗
j , j ∈ [m]} and N̂ = {j : Qj = Q̂j < Q∗

j , j ∈ [m]} .

We now present a crucial result that expresses the value obtained by a m-uniform bidding strategy as a function of the value
obtained by m 1-uniform strategies.
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Lemma C.1. Let b = ⟨(wQ1
, q1), . . . , (wQm

, qm)⟩ be a m-uniform safe bidding strategy for some m ∈ N. Then, for any
competing bids β−,

V (b;β−) = max
ℓ∈[m]

V ((wQℓ
, Qℓ);β−),

where we recall that Qℓ =
∑ℓ

j=1 qj ,∀ℓ ∈ [m].

A key consequence of Lemma C.1 is that knowing the value obtained by the strategies in U⋆
1 is sufficient to compute the

value obtained any m-uniform safe bidding strategy. By Lemma C.1, for any round t ∈ Tj , and b ∈ U⋆
m(H−), we get

V (b;βt
−) = max

ℓ∈[m]
V ((wQℓ

, Qℓ);β
t
−) ≥ V ((wQj

, Qj);β
t
−) , (19)

=⇒
T∑

t=1

V (b;βt
−) ≥

∑
j∈N∗

∑
t∈Tj

V ((wQj
, Qj);β

t
−) +

∑
j∈N̂

∑
t∈Tj

V ((wQj
, Qj);β

t
−) . (20)

Step 3. Allocation Lower Bounds for 1-uniform Strategies. For any j ∈ [m], we now invoke the following lemma to
establish lower bound on

∑
t∈Tj

V ((wQj
, Qj);β

t
−) .

Lemma C.2. Let b ∈ U⋆
m(H−), where b = ⟨(b1, q1), . . . , (bm, qm)⟩ : bj = wQj

, and Qj ∈ {Q∗
j , Q̂j},∀j ∈ [m]. Then,

for any j ∈ [m],

(a) if Qj = Q̂j < Q∗
j (i.e., j ∈ N̂ ), we have∑

t∈Tj

V ((wQj , Qj);β
t
−) ≥ Vj,0|Tj,0|+WQ̂j

|Tj,1| . (21)

(b) If Qj = Q∗
j (i.e., j ∈ N∗), we have ∑

t∈Tj

V ((wQj , Qj);β
t
−) ≥ WQ∗

j
|Tj,1| . (22)

Note that the right hand side of Eq. (20) depends only on the choice of the partitions N∗ and N̂ . Substituting the lower
bound from Lemma C.2 in Eq. (20), we establish that,

Λ
F

H−
m ,U⋆

m

(H−)
(18)
≤

max
b∈F

H−
m

∑T
t=1 V (b;βt

−)

maxb∈U⋆
m(H−)

∑T
t=1 V (b;βt

−)

≤
max

b∈F
H−
m

∑T
t=1 V (b;βt

−)

max(N∗,N̂)

{∑
j∈N∗

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)} . (23)

Let (N∗
0 , N̂0) = argmax(N∗,N̂)

{∑
j∈N∗

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)}

. Then,

max
b∈F

H−
m

T∑
t=1

V (b;βt
−) =

T∑
t=1

1∑
ℓ=0

Vj,ℓ|Tj,ℓ|

=
∑
j∈N∗

0

(
Vj,0|Tj,0|+WQ∗

j
|Tj,1|

)
+
∑
j∈N̂0

(
Vj,0|Tj,0|+WQ∗

j
|Tj,1|

)
. (24)

Consider a partition of [m] that differs from the maximizing partition (N∗
0 , N̂0) by exactly one element, i.e., for any a ∈ N̂0,

consider the following partition: (N∗
0 ∪ {a}, N̂0 \ {a}). By definition,∑

j∈N∗
0

(
WQ∗

j
|Tj,1|

)
+
∑
j∈N̂0

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)
≥

∑
j∈N∗

0 ∪{a}

(
WQ∗

j
|Tj,1|

)
+

∑
j∈N̂0\{a}

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)
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=⇒ Va,0|Ta,0|+WQ̂a
|Ta,1| ≥ WQ∗

a
|Ta,1| . (25)

Now, for any b ∈ N∗
0 , consider the following partition: (N∗

0 \ {b}, N̂0 ∪ {b}). By definition,∑
j∈N∗

0

(
WQ∗

j
|Tj,1|

)
+
∑
j∈N̂0

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)
≥

∑
j∈N∗

0 \{b}

(
WQ∗

j
|Tj,1|

)
+

∑
j∈N̂0∪{b}

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)

=⇒ WQ∗
b
|Tb,1| −WQ̂b

|Tb,1| ≥ Vb,0|Tb,0| . (26)

Plugging in the values,

Λ
F

H−
m ,U⋆

m

(H−)
(24)
≤

∑
j∈N∗

0

(
Vj,0|Tj,0|+WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+WQ∗

j
|Tj,1|

)
∑

j∈N∗
0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)

(25)
≤

∑
j∈N∗

0

(
Vj,0|Tj,0|+WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
2Vj,0|Tj,0|+WQ̂j

|Tj,1|
)

∑
j∈N∗

0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)

(26)
≤

∑
j∈N∗

0

(
2WQ∗

j
|Tj,1| −WQ̂j

|Tj,1|
)
+
∑

j∈N̂0

(
2Vj,0|Tj,0|+WQ̂j

|Tj,1|
)

∑
j∈N∗

0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)

=
2
{∑

j∈N∗
0
WQ∗

j
|Tj,1|+

∑
j∈N̂0

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)}

−
∑m

j=1 WQ̂j
|Tj,1|∑

j∈N∗
0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)

= 2− θH− ,

where

0 < θH− =

∑m
j=1 WQ̂j

|Tj,1|∑
j∈N∗

0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+WQ̂j

|Tj,1|
)

(25)
≤

∑m
j=1 WQ̂j

|Tj,1|∑
j∈N∗

0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
WQ∗

j
|Tj,1|

)
=

∑m
j=1 WQ̂j

|Tj,1|∑m
j=1 WQ∗

j
|Tj,1|

(a)

≤ max
j∈[m]

WQ̂j

WQ∗
j

≤ 1 ,

and (a) follows from Fact 1. Finally,

Λ
F

H−
m ,U⋆

m

= max
H−

Λ
F

H−
m ,U⋆

m

(H−) ≤ 2−min
H−

θH− =: 2− θ, where θ = min
H−

θH− ∈ (0, 1] .

Fact 1 (Williamson & Shmoys (2011, pp. 25)). For positive numbers a1, . . . , am and b1, . . . , bm,∑m
j=1 aj∑m
j=1 bj

≤ max
j∈[m]

aj
bj

.

C.2. Proof of Lemma C.1

We state and prove a stronger version of the result in Lemma C.1. Formally,
Lemma C.3. For any m ∈ N and competing bid β−, let b = ⟨(b1, q1), . . . , (bm, qm)⟩ be a feasible (not necessarily safe)
m-uniform strategy for β−. Then,

V (b;β−) = max
ℓ∈[m]

V ((bℓ, Qℓ);β−),

where we recall that Qℓ =
∑ℓ

j=1 qj ,∀ℓ ∈ [m].

Lemma C.3 states a similar result as Lemma C.1, except a key difference that the bidding strategies are not necessarily safe.
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C.2.1. PROOF OF LEMMA C.3

We prove the lemma via induction on m. The base case is m = 1 for which the result is trivially true. Now assume that
the result holds for any m-uniform bidding strategy for any competing bid β−. We now show that the result holds for any
(m+ 1)-uniform bidding strategy which is feasible for β−.

Consider any m+ 1-uniform bidding strategy b = ⟨(b1, q1), . . . , (bm, qm), (bm+1, qm+1)⟩ feasible for β−. Then,

Claim C.4. The bid-quantity pair (bm+1, Qm+1) is feasible for β− and V (b;β−) ≥ V ((bm+1, Qm+1);β−).

Proof. By assumption, b is feasible, the total demand of b and (bm+1, Qm+1) are equal and b(j) ≥ bm+1,∀j ∈ [Qm+1],
where b(j) denotes the bid value in jth position in the sorted bid vector. So, by Lemma A.2, (bm+1, Qm+1) is feasible and
V (b;β−) ≥ V ((bm+1, Qm+1),β−).

Suppose that by bidding b, the bidder is allocated r units. There are two cases: (a) r ≤ Qm and (b) r > Qm.

Case I. r ≤ Qm. In this case, we have

V (b;β−) = V (b[1 : m];β−) . (27)

Hence, by Claim C.4 and Eq. (27),

V (b;β−) = max
{
V (b[1 : m];β−), V ((bm+1, Qm+1);β−)

}
. (28)

Case II. r > Qm. As r > Qm, bm+1 is the least winning bid which implies bm+1 ≥ β
−(r)
− , where we recall that β−(r)

− is the
rth smallest competing bid in β−. So, (bm+1, Qm+1) is allocated at least r units which implies V ((bm+1, Qm+1),β−) ≥
V (b;β−). By Claim C.4, we also have V (b;β−) ≥ V ((bm+1, Qm+1),β−). Hence,

V (b;β−) = V ((bm+1, Qm+1);β−) . (29)

As r > Qm, (bm+1, Qm+1) is allocated at least Qm + 1 units, whereas b[1 : m] has demand for (hence, can be allocated)
at most Qm units. So,

V (b;β−) ≥ V (b[1 : m];β−)

=⇒ V (b;β−) = max
{
V (b[1 : m];β−), V ((bm+1, Qm+1);β−)

}
. (30)

For both Case I and Case II, we get the same result (cf. (28) and (30)). Hence,

V (b;β−) = max
{
V (b[1 : m];β−), V ((bm+1, Qm+1);β−)

}
(a)
= max

{
max
ℓ∈[m]

V ((bℓ, Qℓ);β−), V ((bm+1, Qm+1);β−)
}

= max
ℓ∈[m+1]

V ((bℓ, Qℓ);β−) .

Here, (a) holds as b[1 : m] is feasible for β− allowing us to apply the induction hypothesis for m.

C.3. Proof of Lemma C.2

To prove this result, we use the following key lemma that measures the value obtained by bOPT
m (H−) in terms of 1-uniform

safe bidding strategies.

Lemma C.5. Let bOPT
m (H−) = ⟨(b∗1, q∗1), . . . , (b∗m, q∗m)⟩. Suppose Q∗

j =
∑

ℓ≤j q
∗
ℓ ,∀j ∈ [m] and bOPT

m (H−) is allocated
r∗t units in any round t ∈ [T ]. Then,

1. For any t ∈ [T ] and q ≤ r∗t , (wq, q) gets exactly q units.
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2. For any j ∈ [m], let Tj ⊆ [T ] be the rounds in which b∗j is the least winning bid, i.e.,

Tj =
{
t ∈ [T ] : Q∗

j−1 < r∗t ≤ Q∗
j

}
.

Suppose that ∃t ∈ Tj such that r∗t < Q∗
j . Then in any round t′ ∈ Tj in which bOPT

m (H−) is allocated at most r∗t units, i.e.,
r∗t′ ≤ r∗t , (wr∗t

, r∗t ) is allocated at least r∗t′ units.

With this lemma, we are ready to prove Lemma C.2.

Case I: Qj = Q̂j < Q∗
j . For any t ∈ Tj,1, invoking Lemma C.5 (1) with q = Q̂j , we conclude that (wQ̂j

, Q̂j) is allocated

exactly Q̂j units. Summing over all rounds in Tj,1,∑
t∈Tj,1

V ((wQj
, Qj);β

t
−) = WQ̂j

|Tj,1| . (31)

As Q̂j < Q∗
j and Q̂j ≥ r∗s for any s ∈ Tj,0. So, for any s ∈ Tj,0, invoking Lemma C.5 (2) with r∗t = Q̂j , we conclude

that (wQ̂j
, Q̂j) is allocated at least r∗s units. Hence, summing over all rounds, (wQ̂j

, Q̂j) gets at least the value obtained by
bOPT
m (H−) over the rounds in Tj,0. So,∑

t∈Tj,0

V ((wQj
, Qj);β

t
−) ≥

∑
t∈Tj,0

V
(
bOPT
m (H−) ,β

t
−

)
= Vj,0|Tj,0| . (32)

Combining Eq. (31) and (32), for Qj = Q̂j ,∑
t∈Tj

V ((wQj , Qj);β
t
−) ≥ Vj,0|Tj,0|+WQ̂j

|Tj,1| . (33)

Case II: Qj = Q∗
j . So, for any t ∈ Tj,1, using Lemma C.5 (1) with q = Q∗

j , we get that (wQ∗
j
, Q∗

j ) is allocated exactly Q∗
j

units, which is the same as the allocation for bOPT
m (H−). Summing over all rounds in Tj,1,∑

t∈Tj,1

V ((wQj
, Qj);β

t
−) = WQ∗

j
|Tj,1| . (34)

For the rounds in Tj,0, trivially, ∑
t∈Tj,0

V ((wQj , Qj);β
t
−) ≥ 0 . (35)

Combining Eq. (34) and (35), for Qj = Q∗
j ,∑
t∈Tj

V ((wQj
, Qj);β

t
−) ≥ WQ∗

j
|Tj,1| . (36)

C.3.1. PROOF OF LEMMA C.5

(1) First we show that for any t ∈ [T ] and q ≤ r∗t , the 1-uniform bid (wq, q) is allocated exactly q units.

As (wq, q) ∈ U⋆
1, it is a safe strategy. By assumption, bOPT

m (H−) is allocated r∗t units in round t. Let βt =

(bOPT
m (H−) ,β

t
−). Recall that, β−(j)

−,t is the jth smallest winning bid in the absence of bids from bidder i for round
t. If r∗t = 0, the result is vacuously true. Suppose r∗t > 0, then

β
−(q)
−,t ≤ β

−(r∗t )
−,t ≤ p(βt) ≤ wr∗t

≤ wq ,

where the first inequality holds by definition of β−(j)
−,t and our assumption that q ≤ r∗t . For the second inequality, suppose

Q∗
ℓ−1 < r∗t ≤ Q∗

ℓ for some ℓ ∈ [m] which by definition implies that b∗ℓ is the least winning bid. By Lemma A.1,
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1. If p(βt) = b∗ℓ , we have p(βt) ≥ β
−(r∗t )
−,t as b∗ℓ is the least winning bid.

2. If p(βt) = β
−(Q∗

ℓ+1)
−,t , we have r∗t = Q∗

ℓ and by definition of β−(j)
−,t , p(βt) = β

−(Q∗
ℓ+1)

−,t ≥ β
−(r∗t )
−,t .

The third inequality is true as RoI constraint is satisfied by bOPT
m (H−) for round t, and the fourth is true as wj is a

non-decreasing function of j and q ≤ r∗t . From the first and last expressions, β−(q)
−,t ≤ wq which implies that (wq, q) is

allocated at least q units in round t. Moreover, (wq, q) can be allocated at most q units. Hence, the 1-uniform bid (wq, q) is
allocated exactly q units.

(2) For any j ∈ [m], let Tj ⊆ [T ], defined in Eq. (15), be the rounds in which b∗j is the least winning bid. Suppose that
∃t ∈ Tj such that r∗t < Q∗

j . We show that in any round t′ ∈ Tj in which bOPT
m (H−) is allocated at most r∗t units, i.e.,

r∗t′ ≤ r∗t , the 1-uniform strategy (wr∗t
, r∗t ) is allocated at least r∗t′ units.

Observe that (wr∗t
, r∗t ) ∈ U⋆

1, so it is a safe strategy. If r∗t = 0, the result is trivially true. Hence, suppose r∗t > 0 and
consider the set of rounds in Tj for any j ∈ [m]. As r∗t < Q∗

j , by Lemma A.1, p(βt) = b∗j . So, for any t′ ∈ Tj such that
r∗t′ ≤ r∗t ,

β
−(r∗

t′ )

−,t′ ≤ b∗j ≤ wr∗t
.

Here, the first inequality holds as b∗j is the least winning bid for round t′ ∈ Tj and the second one holds as the RoI constraint
is true for bOPT

m (H−) for round t. Hence, (wr∗t
, r∗t ) is allocated at least r∗t′ units in round t′.

C.4. Proof of Theorem 5.4

We state and prove a stronger result which recovers the upper bound in Theorem 5.4 as a corollary and is also crucial to
prove the upper bound in Theorem 5.5. Let FH−

m be the class of bidding strategies with at most m bid-quantity pairs that are
feasible for the bid history H− = [βt

−]t∈[T ]. Then,

Theorem C.6. For any m,m′ ∈ N such that m′ ≥ m, Λ
F

H−
m′ ,F

H−
m

≤ m′

m .

Proof. For H− = [βt
−]t∈[T ], we define

Λ
F

H−
m′ ,F

H−
m

(H−) =
max

b′∈F
H−
m′

∑T
t=1 V (b′;βt

−)

max
b∈F

H−
m

∑T
t=1 V (b;βt

−)
.

Then, maximizing over all bid histories, we get the desired result.

Let bOPT
m′ (H−) = argmax

b∈F
H−
m′

∑T
t=1 V (b;βt

−). If bOPT
m′ (H−) is a k-uniform bidding strategy where k ≤ m ≤ m′, by

definition, bOPT
m′ (H−) ∈ F

H−
m implying Λ

F
H−
m′ ,F

H−
m

(H−) = 1 ≤ m′

m .

Without loss of generality, let the optimal bidding strategy in F
H−
m′ be bOPT

m′ (H−) = ⟨(b∗1, q∗1), . . . , (b∗m′ , q∗m′)⟩ and
Q∗

ℓ =
∑

j≤ℓ q
∗
j for all ℓ ∈ [m′]. 11 Let r∗t be the number of units allocated to bOPT

m′ (H−) in round t. Recall that Tj is the
set of rounds when b∗j is the least winning bid when bOPT

m′ (H−) is submitted (see Eq. (15)). So,

T∑
t=1

V (bOPT
m′ (H−) ;β

t
−) =

m′∑
j=1

∑
t∈Tj

V (bOPT
m′ (H−) ;β

t
−) .

Observe that, for any t ∈ Tj ,

V (bOPT
m′ (H−) ;β

t
−) = V (bOPT

m′ (H−) [1 : j];βt
−) = max

ℓ∈[j]
V ((b∗ℓ , Q

∗
ℓ );β

t
−) ,

11A similar analysis also follows if bOPT
m′ (H−) is a k-uniform strategy where m ≤ k ≤ m′.
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where recall that b[1 : j] represents the first j bid-quantity pairs and the last equality holds due to Lemma C.3. For any
t ∈ Tj , r∗t > Q∗

j−1. So, ∀ℓ < j, V (bOPT
m′ (H−) ;β

t
−) > V ((b∗ℓ , Q

∗
ℓ );β

t
−) as the demand of the strategy (b∗ℓ , Q

∗
ℓ ) is strictly

less than the number of units obtained by bOPT
m′ (H−) in that round. Hence, for any t ∈ Tj ,

V (bOPT
m′ (H−) ;β

t
−) = V ((b∗j , Q

∗
j );β

t
−) =⇒

T∑
t=1

V (bOPT
m′ (H−) ;β

t
−) =

m′∑
j=1

∑
t∈Tj

V ((b∗j , Q
∗
j );β

t
−) . (37)

Let GH−
m ⊆ F

H−
m be the class of feasible strategies for H− that contain exactly m bid-quantity pairs. Then,

Λ
F

H−
m′ ,F

H−
m

(H−)
(37)
=

∑m′

j=1

∑
t∈Tj

V ((b∗j , Q
∗
j );β

t
−)

max
b∈F

H−
m

∑T
t=1 V (b;βt

−)
≤
∑m′

j=1

∑
t∈Tj

V ((b∗j , Q
∗
j );β

t
−)

max
b∈G

H−
m

∑T
t=1 V (b;βt

−)
. (38)

Constructing the class of bidding strategies, G̃H−
m . We now construct a class of m-uniform bidding strategies, G̃H−

m using
bOPT
m′ (H−) as a ‘parent’ bidding strategy, in Algorithm 3.

Algorithm 3 Constructing G̃
H−
m

Require: bOPT
m′ (H−) = ⟨(b∗1, q∗1), . . . , (b∗m′ , q∗m′)⟩. The collection, C, of all subsets S ⊆ [m′] such that |S| = m. Initialize G̃

H−
m = ∅.

1: for S ∈ C do
2: Suppose S = {k1, . . . , km} such that k1 < k2 < · · · < km.
3: Construct a m-uniform bidding strategy b = ⟨(b1, q1), . . . , (bm, qm)⟩ where

bj = b∗kj
and qj = Q∗

kj
−Q∗

kj−1
, ∀j ∈ [m] . (39)

4: G̃
H−
m ← G̃

H−
m ∪ {b}

5: end for
Return: The class of bidding strategies, G̃H−

m .

For example: suppose m′ = 4 and bOPT
m′ (H−) = ⟨(w3, 3), (w7, 4), (w8, 1), (w10, 2)⟩. Let m = 2 and S = {2, 4}. Then,

b = ⟨(w7, 7), (w10, 3)⟩.

Lemma C.7. Let b∗(j) be the jth entry when bOPT
m′ (H−) is expressed as a bid vector. Similarly, for any b ∈ G̃

H−
m , let b(j)

be the jth entry when b is expressed as a bid vector. Then, for any j ∈ [Qkm ], b(j) ≤ b∗(j). Thus, by Lemma A.2, b is also

feasible for H− and as b was chosen arbitrarily, we conclude that G̃H−
m ⊆ G

H−
m .

Proof. Let S contain k1 < · · · < km and b be constructed per Algorithm 3. Then, for any j ∈ [m] and any entry
ℓ ∈ (Q∗

kj−1
, Q∗

kj
],

b∗(ℓ) ≥ b∗(Q∗
kj

) = b∗kj
= b(ℓ),

where the first inequality follows because entries in bid vector are in non increasing order, the first equality follows as
b∗(Qr)

= b∗r for all r ∈ [m′] and second equality follows from Eq. (39). As j and ℓ were picked arbitrarily, we get that for all
j ∈ [Qkm

], b(j) ≤ b∗(j).

By Lemma C.7,

Λ
F

H−
m′ ,F

H−
m

(H−)
(38)
≤
∑m′

j=1

∑
t∈Tj

V ((b∗j , Q
∗
j );β

t
−)

max
b∈G

H−
m

∑T
t=1 V (b;βt

−)
≤
∑m′

j=1

∑
t∈Tj

V ((b∗j , Q
∗
j );β

t
−)

max
b∈G̃

H−
m

∑T
t=1 V (b;βt

−)
. (40)

Consider any b ∈ G̃
H−
m obtained from the set S = {k1, . . . , km} ⊆ [m′]. As b is feasible for H−, invoking Lemma C.3 for

any round t ∈ [T ], we get:

V (b;βt
−) = max

ℓ∈[m]
V ((b∗kℓ

, Q∗
kℓ
);βt

−) = max
ℓ∈S

V ((b∗ℓ , Q
∗
ℓ );β

t
−), (41)
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because for any ℓ ∈ [m], bℓ = b∗kℓ
and Qℓ =

∑j
j=1 qj =

∑j
j=1 Q

∗
kj

−Q∗
kj−1

= Q∗
kℓ
.

Recall that Tjs, the set of rounds in which b∗j is the least winning bid, form a partition of [T ]. So,

T∑
t=1

V (b;βt
−) =

m′∑
t=1

∑
t∈Tj

V (b;βt
−) =

∑
j∈S

∑
t∈Tj

V (b;βt
−) +

∑
j∈[m′]\S

∑
t∈Tj

V (b;βt
−) ≥

∑
j∈S

∑
t∈Tj

V (b;βt
−) (42)

For any j ∈ S, consider any round t ∈ Tj :

V (b;βt
−)

(41)
= max

ℓ∈S
V ((b∗ℓ , Q

∗
ℓ );β

t
−) ≥ V ((b∗j , Q

∗
j );β

t
−) =⇒

∑
t∈Tj

V (b;βt
−) ≥

∑
t∈Tj

V ((b∗j , Q
∗
j );β

t
−) (43)

which implies,

T∑
t=1

V (b;βt
−)

(42)
≥
∑
j∈S

∑
t∈Tj

V (b;βt
−)

(43)
≥
∑
j∈S

∑
t∈Tj

V ((b∗j , Q
∗
j );β

t
−) . (44)

Note that a bidding strategy b ∈ G̃
H−
m is uniquely determined by the set S ⊆ [m′] that generates b. Hence,

max
b∈G̃

H−
m

T∑
t=1

V (b;βt
−) = max

S⊆[m′]:|S|=m

T∑
t=1

V (b;βt
−)

(44)
≥ max

S⊆[m′]:|S|=m

∑
j∈S

∑
t∈Tj

V ((b∗j , Q
∗
j );β

t
−)

≥ m

m′

m′∑
j=1

∑
t∈Tj

V ((b∗j , Q
∗
j );β

t
−) . (45)

Hence,

Λ
F

H−
m′ ,F

H−
m

(H−) ≤
∑m′

j=1

∑
t∈Tj

V ((b∗j , Q
∗
j );β

t
−)

max
b∈G̃

H−
m

∑T
t=1 V (b;βt

−)

(45)
≤ m′

m
.

Maximizing over all bid histories, we get that Λ
F

H−
m′ ,F

H−
m

≤ m′

m .

Now, we prove that the result also holds for safe bidding strategies. Formally, we show that for m,m′ ∈ N and m′ ≥ m,
ΛU⋆

m′ ,U
⋆
m
≤ m′

m . To this end, we consider the quantity ΛU⋆
m′ ,U

⋆
m
(H−) analogous to Λ

F
H−
m′ ,F

H−
m

(H−), upper bound it and

maximize over all bid histories to get the desired result.

For any bid history, H− = [βt
−]t∈[T ], let bSAFE

m′ (H−) := argmaxb′∈U⋆
m′

∑T
t=1 V (b′;βt

−). Without loss of generality, let

bSAFE
m′ (H−) = ⟨(wQ∗

1
, q∗1), . . . , (wQ∗

m′ , q
∗
m′)⟩. The proof to bound ΛU⋆

m′ ,U
⋆
m
(H−) is similar to that of Theorem C.6 till

Eq. (38), where we have

ΛU⋆
m′ ,U

⋆
m
(H−) ≤

∑m′

j=1

∑
t∈Tj

V ((w∗
Qj

, Q∗
j );β

t
−)

maxb∈Sm

∑T
t=1 V (b;βt

−)
.

Recall that Sm is the class of m-uniform safe bidding strategies. Suppose Sm(H−) be the class that is constructed analogous
to the class G̃H−

m obtained in Algorithm 3. We now show that Sm(H−) ⊆ Sm.

Lemma C.8. For any subset S ⊆ [m′] such that |S| = m, suppose b is the bidding strategy obtained from S . Then, b is a
safe bidding strategy. As S was chosen arbitrarily, Sm(H−) ⊆ Sm.
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Proof. Let S contain k1 < · · · < km and b be constructed per Algorithm 3. Then, for any j ∈ [m],

bj = b∗kj
= wQ∗

kj
, and Qj = Q∗

kj
.

Thus, b is a safe bidding strategy.

The rest of the proof follows similar to that of Theorem C.6 which gives the desired result.

C.5. Proof of Theorem 5.5

We need to establish upper bounds on Λ
F

H−
m′ ,U⋆

m

. From Theorem C.6 and Theorem 5.3, we have:

Λ
F

H−
m′ ,U⋆

m

=
max

b′∈F
H−
m′

∑T
t=1 V (b′;βt

−)

maxb∈U⋆
m

∑T
t=1 V (b;βt

−)

=
max

b′∈F
H−
m′

∑T
t=1 V (b′;βt

−)

max
b′′∈F

H−
m

∑T
t=1 V (b′′;βt

−)
·
max

b′′∈F
H−
m

∑T
t=1 V (b′′;βt

−)

maxb∈U⋆
m

∑T
t=1 V (b;βt

−)

= Λ
F

H−
m′ ,F

H−
m

· Λ
F

H−
m ,U⋆

m

≤ 2m′

m
.

D. Tight Lower Bounds for Results in Section 5
D.1. Tight Lower Bound for Theorem 5.3 (For m = 1)

In this section, we construct a bid history, H− and valuation curve v (equivalently the U⋆
m) for which the upper bound

on Λ
F

H−
m ,U⋆

m

, presented in Theorem 5.3, is tight. Recall that for any choice of H−, Λ
F

H−
m ,U⋆

m

(H−) ≤ 2 − θH− , where

θH− ≤ maxj∈[m](WQ̂j/WQ∗
j
). To minimize θH− , we choose a valuation curve that is very weakly decreasing. We then set

the competing bids such that Q̂j ≪ Q∗
j for all j ∈ [m]. Finally, we determine the values of |Tj,0| and |Tj,1| for which the

upper bound is tight. See the definition of these quantities in Appendix C.1, where the first part of the theorem is proven.

We present the case when m = 1 below. The case for m ≥ 2 is deferred to Appendix D.2. Although the main idea for both
the cases are the same, for m ≥ 2, the construction is more involved, and hence presented separately. Formally, for any
δ ∈ (0, 1/2], we design a bid history, H−, and valuation vector, v for which Λ

F
H−
1 ,U⋆

1

(H−,v) ≥ 2− δ.

Let M = 2
⌈
1
δ

⌉
. Suppose v = [1, v, · · · , v] ∈ RM , target RoI γ = 0 and v = 1− 4ϵ where ϵ = δ−1/M

4(1−1/M) < δ
4 . Observe

that ϵ ∈ (0, 1/8) as δ ≤ 1/2. Let T = M and K = M + 1. The bid history is defined as:

β
−(j)
−,t =


1− ϵ, if t ≤ M − 1 and j = 1

C, if t ≤ M − 1 and 2 ≤ j ≤ K

ϵ, if t = M and 1 ≤ j ≤ K

,

where C ≫ w1. The bid history is presented in Table 1.

Table 1. Bid history for tight lower bound for m = 1. Here, C ≫ 1 and ϵ > 0 is a small real number.

t = 1 t = 2 · · · t = M − 1 t = M

C C · · · C ϵ
...

... · · ·
...

...

C C · · · C
...

1− ϵ 1− ϵ · · · 1− ϵ ϵ

Notice that the constructed H− contains M − 1 rounds with high competition (where the bidder can acquire at most 1
unit), while there is one round with minimal competition, allowing the bidder to obtain any desired number of units. The
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1-uniform safe bidding strategies of the form (wq, q) do not perform well universally on all rounds because with increase in
q, despite the increasing demand (i.e., q), the bid value wq decreases, thereby reducing the likelihood of acquiring any units.

Notations. For a given bid history H−, recall that for any m ∈ N, bOPT
m (H−) = argmax

b∈F
H−
m

∑T
t=1 V (b;βt

−). We

define V OPT
m (H−) =

∑T
t=1 V (bOPT

m (H−) ;β
t
−), the value obtained by bOPT

m (H−) over the bid history H−. Similarly,
bSAFE
m (H−) := argmaxb∈U⋆

m

∑T
t=1 V (b;βt

−) and V SAFE
m (H−) =

∑T
t=1 V (bSAFE

m (H−) ;β
t
−).

Computing the optimal strategy in F
H−
1 . We observe that no bidding strategy in F

H−
1 can obtain more than 1 unit in the

first M − 1 rounds and M units in the final round.

We claim that bOPT
1 (H−) = (1,M). Observe that bOPT

1 (H−) is allocated 1 unit in each of the first M − 1 rounds and M
units in the final round. Hence, it is allocated the maximum number of units possible. To verify that bOPT

1 (H−) is feasible
for the bid history, notice that for ∀t ∈ [M − 1], p(βt) = 1 ≤ w1 = 1. For round t = M , as K > M ,

p(βt) = ϵ ≤ 1− 4ϵ < wM = µ · 1 + (1− µ) · (1− 4ϵ), where µ =
1

M
,

implying that RoI constraint is satisfied by bOPT
1 (H−) in round t = T . So, V OPT

1 (H−) = M + v(M − 1).

Computing the optimal strategy in U⋆
1. Here, we argue that the optimal strategy in U⋆

1 is (w1, 1) = (1, 1). Observe that
the strategy (1, 1) is allocated 1 unit in each round. Hence, it obtains a total value of M .

As β−(1)
−,t = 1 − ϵ > 1 − 2ϵ = w2, for t = 1, 2, . . . ,M − 1, bidding (wq, q) for q ≥ 2 does not get any value in the first

M − 1 rounds. Bidding (wq, q) gets exactly q units in round M as wq > ϵ for any q ≥ 2. So, for 2 ≤ q ≤ M , the total
value obtained by bidding (wq, q) is 1 + (q − 1)v < q. Hence, V SAFE

1 (H−) = M , which is the value obtained by the safe
strategy (w1, 1) = (1, 1). So,

Λ
F

H−
1 ;U⋆

1

(H−,v) =
V OPT
1 (H−)

V SAFE
1 (H−)

=
M + v(M − 1)

M
=

2M − 1− 4ϵ(M − 1)

M
= 2− δ .

D.2. Tight Lower Bound for Theorem 5.3 (For m ≥ 2)

In this section, we design a bid history H− and valuation vector, v such that for any δ ∈ (0, 1/2], Λ
F

H−
m ,U⋆

m

(H−,v) ≥ 2−δ.
By definition, for any H− and m ≥ 2,

Λ
F

H−
m ,U⋆

m

(H−,v) =
V OPT
m (H−)

V SAFE
m (H−)

≥ V OPT
m (H−)

mV SAFE
1 (H−)

, (46)

where the second inequality follows because ΛU⋆
m,U⋆

1
≤ m (by Theorem 5.4). So, instead of computing V SAFE

m (H−)

directly which requires solving a DP, we obtain V SAFE
1 (H−) and show that the bound is tight.

D.2.1. CONSTRUCTION OF H−.

We first decide all the parameters.

• Fix m ≥ 2 and any integer N ≥ 2
⌈
1
δ

⌉
.

• Let M = N2m−1. Consider T = N2m−1 rounds and K = N2m−1 + 1 units in each auction.

• Let ϵ′ = mδ/(2m−1)−1/N
2(1−1/N) < δ

2 ≤ 1
4 . Set ϵ such that ϵ′ = ϵN2m−1(N2m−1 + 1).

Consider a valuation vector v = [1, v, · · · , v] such that v = 1− 2ϵ′, and target RoI γ = 0. Partition the N2m−1 rounds into
2m partitions such that the first partition has 1 round and the jth partition has N j−1 −N j−2 rounds for 2 ≤ j ≤ 2m. Each
partition has identical competing bid profile submitted by other bidders. In particular,

1. The first partition (containing one round) has all the bids submitted by others as wN2m−1+1 + ϵ.
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2. If j > 1 and j is odd, for the jth partition (of size N j−1 −N j−2), the smallest N2m−j + 1 winning competing bids
are wN2m−j+1 + ϵ and the remaining bids are C ≫ w1.

3. If j > 1 and j is even, for the jth partition (of size N j−1 −N j−2), the smallest N2m−j winning competing bids are
wN2m−j+1 + ϵ and the remaining bids are C ≫ w1.

We present an example for such a bid history in Table 2.

Table 2. Bid history achieving tight lower bound for m = 2. Each round in the same partition has identical competing bid profile. Total
number of units in each auction is K = N3 + 1.

Partition 1 Partition 2 Partition 3 Partition 4
t = 1 t ∈ [2, N ] t ∈ [N + 1, N2] t ∈ [N2 + 1, N3]

0 bids are C N3 −N2 + 1 bids are C N3 −N bids are C N3 bids are C
N3 + 1 bids are wN3+1 + ϵ N2 bids are wN2+1 + ϵ N + 1 bids are wN+1 + ϵ 1 bid is w2 + ϵ

D.2.2. COMPUTING bOPT
m (H−).

We make the following claim about the optimal m-uniform bidding strategy for the constructed H−.

Lemma D.1. For the aforementioned H−, bOPT
m (H−) = ⟨(b1, q1), . . . , (bm, qm)⟩ where

(bj , qj) =

{
(1, N) , if j = 1(
wN2j−2 , N2j−1 −N2j−3

)
, if 2 ≤ j ≤ m.

(47)

Furthermore,

V OPT
m (H−) = N2m−1 + (2m− 1)(N2m−1 −N2m−2)v .

Proof. We begin by a crucial observation that the bid history does not allow obtaining more than N2m−j units in the jth

partition while satisfying the RoI constraint, irrespective of the number of bids submitted by the bidder. To verify this,
note that, the maximum number of units that can be allocated to any bidding strategy in the jth partition is either N2m−j

or N2m−j + 1 (depending on if j is even or odd). Suppose contrary to our claim, the bidder is allocated N2m−j + 1
units in the some round t in the jth partition by bidding some b. Let βt = (b,βt

−) be the complete bid profile. So,
p(βt) ≥ wN2m−j+1 + ϵ but x(βt) = N2m−j + 1 indicating that the RoI constraint is violated, which verifies our claim.

So, the total number of units, Ntotal, that can be obtained by the bidder over all the rounds is:

Ntotal ≤ N2m−1 +

2m∑
j=2

N2m−j(N j−1 −N j−2) = 2mN2m−1 − (2m− 1)N2m−2 =: Nmax.

Now, we compute the the number of units obtained by bidding bOPT
m (H−) and show that it is allocated Nmax units for the

constructed bid history, demonstrating that it is the optimal bidding strategy.

Consider any auction in the jth partition. The lowest winning bid in the bid profile is wN2m−j+1 + ϵ. Note that the unique
bid values (ignoring the quantity for the sake of brevity) in bOPT

m (H−) are b = {1, wN2 , . . . , wN2m−2}. We claim that the
winning bid values of bOPT

m (H−) in the jth partition are b̂ = {1, wN2 , . . . , wN2m+2⌊−j/2⌋}. This is true because the least
bid value in b̂ is greater than wNm−j+1 + ϵ, i.e.,

wN2m+2⌊−j/2⌋ − (wN2m−j+1 + ϵ) ≥ wN2m−j − (wN2m−j+1 + ϵ)

=
1− v

N2m−j(N2m−j + 1)
− ϵ =

2ϵN2m−1(N2m−1 + 1)

N2m−j(N2m−j + 1)
− ϵ ≥ ϵ > 0 .

Let Nj denote the number of units allocated to bOPT
m (H−) in each auction in the jth partition. There are two cases:
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(a) for j odd, recall that for the jth partition (of size N j−1 −N j−2), the smallest N2m−j + 1 winning competing bids are
wN2m−j+1 + ϵ and the remaining bids are C ≫ w1. Then,

Nj = N +

m− j−1
2∑

ℓ=2

(N2ℓ−1 −N2ℓ−3) = N2m−j .

(b) For j even, recall that for the jth partition (of size N j−1 −N j−2), the smallest N2m−j winning competing bids are
wN2m−j+1 + ϵ and the remaining bids are C ≫ w1.

Nj = min

N2m−j , N +

m+1− j
2∑

ℓ=2

(N2ℓ−1 −N2ℓ−3)

 = min{N2m−j , N2m−j+1} = N2m−j .

Here, the minimum is taken over two quantities where the first quantity is the number of competing bids less than C in any
round t in the jth partition and the second quantity represents the total demand of the winning bids in bOPT

m (H−) for that
round. So, the total number of units obtained across all rounds is

N2m−1 +

2m∑
j=2

N2m−j(N j−1 −N j−2) = 2mN2m−1 − (2m− 1)N2m−2.

As this is the maximum number of units that can be obtained by the bidder, bOPT
m (H−) is optimal. The total value obtained

by bidding bOPT
m (H−) is

V OPT
m (H−) = 1 + (N2m−1 − 1)v +

2m∑
j=2

(N j−1 −N j−2)(1 + (N2m−j − 1)v)

= N2m−1 + (2m− 1)(N2m−1 −N2m−2)v .

D.2.3. COMPUTING V SAFE
1 (H−)

Recall that we compute V SAFE
1 (H−) and invoke the bounds on ΛU⋆

m,U⋆
1
, instead of directly evaluating V SAFE

m (H−).

Lemma D.2. For the aforementioned H−, bSAFE
1 (H−) = (1, 1) and V SAFE

1 (H−) = N2m−1.

Proof. The basic idea is to enumerate the total units (value) that can be obtained by bidding (wq, q) for q ∈ [N2m−1] and
then finding the maximum of those values. As q can be exponential in m, we exploit the structure of the bid history to
compute the objective in an efficient manner.

Suppose q = 1. The maximum number of units (value) that can be obtained by bidding (1, 1) is trivially N2m−1, So, (1, 1)
obtains a total value N2m−1.

Suppose q ≥ 2. Furthermore, assume N2m−j < q ≤ N2m−j+1, for some 2 ≤ j ≤ 2m. Consider any bid of the form
(wq, q). Bidding (wq, q) does not obtain any units in the partitions indexed by j, j + 1, . . . , 2m as wq is strictly less than the
least winning competing bids in those partitions, i.e., wq ≤ wN2m−j+1 < wN2m−ℓ+1 + ϵ, for any ℓ ∈ {j, j + 1, . . . , 2m}.
So, if N2m−j < q ≤ N2m−j+1, (wq, q) gets no units in

2m∑
ℓ=j

N ℓ−1 −N ℓ−2 = N2m−1 −N j−2 auctions.

In the remaining N j−2 auctions it can win at most q units. So, the maximum value obtained by (wq, q) for any q ≥ 2 is

N j−2(1 + (q − 1)v) ≤ N j−2(1 + (N2m−j+1 − 1)v) = N j−2 + (N2m−1 −N j−2)v < N2m−1,

where the last inequality holds as v < 1. Hence, bSAFE
1 (H−) = (1, 1) and V SAFE

1 (H−) = N2m−1.
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Hence, from Lemma D.1, Lemma D.2 and Eq. (46)

Λ
F

H−
m ,U⋆

m

(H−,v) ≥
V OPT
m (H−)

mV SAFE
1 (H−)

=
N2m−1 + (2m− 1)(N2m−1 −N2m−2)v

mN2m−1

=
2mN2m−1 − (2m− 1)N2m−2 − 2ϵ′(2m− 1)(N2m−1 −N2m−2)

mN2m−1

= 2− 2m− 1

m

( 1

N
+ 2ϵ′

(
1− 1

N

))
= 2− δ ,

where the last step follows by substituting the value of ϵ′ and thus concludes the proof.

D.3. Tight Lower Bound for Theorem 5.4

In this section, we construct a bid history H− and valuation vector, v such that for any δ ∈ (0, 1
2 ], ΛU⋆

m′ ,U
⋆
m
(H−,v) ≥ m′

m −δ,
i.e., the upper bound is tight for m′ ≥ m+ 1 (If m′ = m, ΛU⋆

m′ ,U
⋆
m
= 1 implying the bound is tight).

Recall that Theorem 5.4 states that ΛU⋆
m,U⋆

1
≤ m for any m ≥ 1. So,

ΛU⋆
m′ ,U

⋆
m
(H−,v) =

V SAFE
m′ (H−)

V SAFE
m (H−)

≥ V SAFE
m′ (H−)

mV SAFE
1 (H−)

=
1

m
· ΛU⋆

m′ ,U
⋆
1
(H−,v) . (48)

We now establish a lower bound on ΛU⋆
m′ ,U

⋆
1
(H−,v).

D.3.1. CONSTRUCTION OF H−.

We first decide all the parameters.

• Fix m′ ≥ 2 and any integer N ≥
⌈
m′

δ

⌉
.

• Let M = Nm′−1. Consider T = Nm′−1 rounds and K = Nm′−1 units in each auction.

• Let ϵ′ = mδ/(m′−1)−1/N
2(1−1/N) < mδ

2(m′−1) ≤
1
4 . Set ϵ such that ϵ′ = ϵNm′−1(Nm′−1 + 1).

Let the valuation vector be v = [1, v, · · · , v] such that v = 1− 2ϵ′, and target RoI, γ = 0. Partition the Nm′−1 rounds into
m′ partitions such that the first partition has 1 round and the jth partition has N j−1 −N j−2 rounds for 2 ≤ j ≤ m′. Each
partition has identical competing bid profile submitted by the other bidders. In particular,

1. The first partition (containing one round) has all the competing bids to be wNm′−1+1 + ϵ.

2. For 2 ≤ j ≤ m′, the jth partition (of size N j−1 − N j−2); the smallest Nm′−j + 1 competing winning bids are
wNm′−j+1 + ϵ and the remaining bids are C ≫ w1.

We present an example for such a bid history in Table 3.

Table 3. Bid history attaining tight lower bound for m′ = 4 (and m = 1). Each round in the same partition has identical competing bid
profile. Total number of units in each auction is K = N3.

Partition 1 Partition 2 Partition 3 Partition 4
t = 1 t ∈ [2, N ] t ∈ [N + 1, N2] t ∈ [N2 + 1, N3]

0 bids are C N3 −N2 − 1 bids are C N3 −N − 1 bids are C N3 − 2 bids are C
N3 bids are wN3+1 + ϵ N2 + 1 bids are wN2+1 + ϵ N + 1 bids are wN+1 + ϵ 2 bids are w2 + ϵ
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D.3.2. COMPUTING bSAFE
m′ (H−)

We make the following claim about the optimal m′-uniform safe bidding strategy for H−.
Lemma D.3. For the aforementioned H−, bSAFE

m′ (H−) = ⟨(b1, q1), . . . , (b′m, q′m)⟩ where

(bj , qj) =

{
(1, 1) , if j = 1(
wNj−1 , N j−1 −N j−2

)
, if 2 ≤ j ≤ m′ . (49)

Furthermore,

V SAFE
m′ (H−) = Nm′−1 + (m′ − 1)(Nm′−1 −Nm′−2)v .

Proof. We begin by a crucial observation that the bid history does not allow obtaining more than Nm′−j units in the jth

partition, while satisfying the RoI constraint, irrespective of the number of bids submitted by the bidder. To verify this,
suppose contrary to our claim, that the bidder is allocated Nm′−j + 1 units in the some round t in the jth partition by
bidding some b. Let βt = (b,βt

−) be the complete bid profile. Hence, p(βt) ≥ wNm′−j+1 + ϵ but x(βt) = Nm′−j + 1
indicating that the RoI constraint is violated which verifies our claim.

So, the total number of units, Ntotal, that can be obtained by the bidder across all the rounds is:

Ntotal ≤ Nm′−1 +

m′∑
j=2

Nm′−j(N j−1 −N j−2) = m′Nm′−1 − (m′ − 1)Nm′−2 := Nmax.

Now, we compute the number of units obtained by bidding bSAFE
m′ (H−) and show that it is allocated Nmax units across all

the auctions, implying that it is the optimal bidding strategy.

To show bSAFE
m′ (H−) is optimal, consider any auction in the jth partition. The lowest winning competing bid is wNm′−j+1+ϵ.

Note that the unique bid values (ignoring the quantity for the sake of brevity) in bSAFE
m′ (H−), provided in Eq. (49),

are b = {1, wN , . . . , wNm′−1}. We claim that the winning bid values of bSAFE
m′ (H−) in the jth partition are b̃ =

{1, wN , . . . , wNm′−j}. Again recall that for 2 ≤ j ≤ m′, for the jth partition (of size N j−1 − N j−2), the smallest
Nm′−j + 1 competing winning bids are wNm′−j+1 + ϵ and the remaining bids are C ≫ w1. And here, the least bid value
in b̃ is greater than wNm′−j+1 + ϵ, i.e.,

wNm′−j − (wNm′−j+1 + ϵ) =
1− v

Nm′−j(Nm′−j + 1)
− ϵ =

2ϵNm′−1(Nm′−1 + 1)

Nm′−j(Nm′−j + 1)
− ϵ ≥ ϵ > 0 .

Moreover, observe that the bidder is allocated the maximum number of units demanded for each of the bid value in b̃. So,
the number of units in each auction in the jth partition by bidding bSAFE

m′ (H−) is

Nj = 1 +

m′−j+1∑
ℓ=2

(N ℓ−1 −N ℓ−2) = Nm′−j .

Hence, the total number of units obtained across all rounds is

Nm′−1 +

m′∑
j=2

Nm′−j(N j−1 −N j−2) = m′Nm′−1 − (m′ − 1)Nm′−2 = Nmax.

As this is the maximum number of units that can be obtained by the bidder, bSAFE
m′ (H−) is optimal. The total value obtained

by bidding bSAFE
m′ (H−) is given by

V SAFE
m′ (H−) = 1 + (Nm′−1 − 1)v +

m′∑
j=2

(N j−1 −N j−2)(1 + (Nm′−j − 1)v)

= Nm′−1 + (m′ − 1)(Nm′−1 −Nm′−2)v .
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D.3.3. COMPUTING bSAFE
1 (H−)

In this section, we compute the optimal 1-uniform safe bidding strategy for the bid history, H−.

Lemma D.4. For the constructed H−, bSAFE
1 (H−) = (1, 1) and V SAFE

1 (H−) = Nm−1.

Proof. The proof is similar to that of Lemma D.2 in the sense that it involves enumerating the total units obtaining by
submitting (wq, q) for all q ∈ [Nm−1] in an efficient manner by leveraging the structure in the bid history.

Substituting values from Lemma D.3, Lemma D.4 and Eq. (48)

ΛU⋆
m′ ,U

⋆
m
(H−,v) ≥

1

m
· ΛU⋆

m′ ,U
⋆
1
(H−,v) =

V SAFE
m′ (H−)

mV SAFE
1 (H−)

=
Nm′−1 + (m′ − 1)(Nm′−1 −Nm′−2)v

mNm′−1

=
m′Nm′−1 − (m′ − 1)Nm′−2 − 2ϵ′(m′ − 1)(Nm′−1 −Nm′−2)

mNm′−1

=
m′

m
− (m′ − 1)

m

( 1

N
+ 2ϵ′

(
1− 1

N

))
=

m′

m
− δ ,

where the last step follows by substituting the value of ϵ′ and thus concludes the proof.

Corollary D.5. As U⋆
m ⊆ F

H−
m for all m ∈ N, the upper bound in Theorem C.6 is also tight, i.e., for any m′ ≥ m and

δ ∈ (0, 1
2 ], there exists a bid history H− and valuation curve v such that Λ

F
H−
m′ ,F

H−
m

(H−,v) ≥ m′

m − δ.

D.4. Tight Lower Bound for Theorem 5.5

In this section, we present a bid history H− and valuation vector, v such that for any δ ∈ (0, 1
2 ], ΛF

H−
m′ ,U⋆

m

(H−,v) ≥ 2m′

m −δ,

i.e., the upper bound is tight for m′ ≥ m.

Recall that Theorem 5.4 states that ΛU⋆
m,U⋆

1
≤ m for any m ≥ 1. So,

Λ
F

H−
m′ ,U⋆

m

(H−,v) =
V OPT
m′ (H−)

V SAFE
m (H−)

≥ V OPT
m′ (H−)

mV SAFE
1 (H−)

=
1

m
· Λ

F
H−
m′ ,U⋆

1

(H−,v) . (50)

Recall that for showing tightness of the bound for Theorem 5.3 for any m ≥ 2, we computed a lower bound on
Λ
F

H−
m ,U⋆

1

(H−,v) (cf. Eq. (46)). Thus, we consider a valuation curve and a bid history that has a structure identical
to the one presented in Appendix D.2 but with the following modified parameters,

• Fix m′ ≥ 1 and any integer N ≥ 2
⌈
2m′

δ

⌉
.

• Let M = N2m′−1. Consider T = N2m′−1 rounds and K = N2m′−1 + 1 units in each auction.

• Let ϵ′ = mδ/(2m′−1)−1/N
2(1−1/N) < mδ

2(2m′−1) ≤
1
4 . Set ϵ such that ϵ′ = ϵN2m′−1(N2m′−1 + 1).

Consider a valuation vector v = [1, v, · · · , v] such that v = 1 − 2ϵ′, and target RoI γ = 0. Substituting the values from
Lemma D.1 and Lemma D.2,

Λ
F

H−
m′ ,U⋆

m

(H−,v) ≥
1

m
· Λ

F
H−
m′ ,U⋆

1

(H−,v) =
N2m′−1 + (2m′ − 1)(N2m′−1 −N2m′−2)v

mN2m′−1

=
2m′N2m′−1 − (2m′ − 1)N2m′−2 − 2ϵ′(2m′ − 1)(N2m′−1 −N2m′−2)

mN2m′−1

=
2m′

m
− (2m′ − 1)

m

( 1

N
+ 2ϵ′

(
1− 1

N

))
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=
2m′

m
− δ ,

where the last step follows by substituting the value of ϵ′ and thus concludes the proof.

E. Simulation Details
In Section 5.3, we conducted numerical experiments to estimate the richness ratio (or equivalently ΛBc,U⋆

m
) in practice for

the classes of bidding strategies discussed earlier. We now discuss a few details regarding the same.

Dataset. We estimate the richness ratio for the EU ETS emission permit auction data for 2022 and 2023. However, only
aggregate statistics of the submitted bids is publicly available for privacy reasons. Hence, we synthesize individual level
bid data from these available statistics. The exact procedure to reconstruct the bid data is presented in Appendix E.1. We
sample the values from the Unif[0, 1] distribution. In each simulation, we sample T ∼ Unif[100, 300] auctions and let
M ∼ Unif[10, 80]. We vary m = 1 to m = 10 and average over 100 simulations to obtain plots in Fig. 4. As computing
V OPT
m (H−) (the value obtained by the optimal bidding strategy in F

H−
m ) can be non-trivial, we obtain a uniform upper

bound for V OPT
m (H−) that is independent of m (see details in Appendix E.2).

E.1. Reconstructing Individual Bid Data

We obtained the publicly available auction data for Tmax = 443 EU ETS emission permit auctions held in 2022 and
2023 (EEX, 2023). For each auction indexed by t ∈ [Tmax], we have the following relevant information: the minimum
bid (btmin), the maximum bid (btmax), the average of the bids (btavg), the median of the bids (btmed), and the number of
bid-quantity pairs submitted (nt

sub). We normalized the bids to be in [0, 1]. For all rounds t, btavg ≈ btmed (linear regression
yields coefficient 1.01 and intercept −0.008).

Upon further investigation, we observed that, except a few, a significant number of auctions had either btmin ≈ btavg ≪
btmax (Type I) or btmin ≪ btavg ≈ btmax (Type II). As btavg ≈ btmed,∀t, we deduce that for Type I, most of the bids are
concentrated in the interval [btmin, 2b

t
avg − btmin] whereas for Type II, most of the bids are in the interval [2btavg − btmax, b

t
max].

We posit that for Type I (resp. Type II) auctions, f ∈ (0, 1) fraction of the bids (nt
sub) are in [btmin, 2b

t
avg − btmin] (resp.

[2btavg − btmax, b
t
max]) and the 1 − f fraction of bids are in [2btavg − btmin, b

t
max] (resp. [btmin, 2b

t
avg − btmax]). If for Type I

(resp. Type II) auctions, 2btavg > btmin + btmax (resp. 2btavg < btmin + btmax), we assume that all the bids are uniformly present
in the interval [btmin, b

t
max]. With these assumptions, we generate individual bid data for each auction by sampling uniformly

from these intervals.

After generating the individual bid data, we compute the metrics for the reconstructed bids (say b̂tavg) for each auction and
reject those with a relative error of at least δ (tolerance). For our simulations, we set δ = 0.05. We perform a grid search for
f to maximize the number of auctions where the metrics of the reconstructed data are within δ relative error of the actual
metrics, and obtain that f = 0.97. Following this pre-processing, we have reconstructed individual bid data for T = 341
auctions. The bids are normalized to be in [0, 1].

E.2. An Uniform Upper Bound for V OPT
m (H−) .

For any bid history, H− = [βt
−]t∈[T ], suppose bOPT

m (H−) is allocated rt units in any round t. Then, by Lemma C.5 (1), we
know that (wrt , rt) also obtains rt units in round t. So,

V (bOPT
m (H−) ;β

t
−) = V ((wrt , rt);β

t
−) ≤ max

b∈U⋆
1

V (b;βt
−)

=⇒ V OPT
m (H−) =

T∑
t=1

V (bOPT
m (H−) ;β

t
−) ≤

T∑
t=1

max
b∈U⋆

1

V (b;βt
−) .

F. Resolving Ties
We first emphasize that the effect of resolution of ties on the objective function under the value maximization behavioral
model is fundamentally different from the quasilinear utility maximization model. To illustrate this, consider a single-item
second price auction with two bidders each valuing the item equally at v. Assume that both the bidders bid v and there
exists a definitive tie breaking rule (either randomized or deterministic). If the bidders are considered quasilinear utility
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maximizers, the objective function value (value obtained minus the payments) for both the bidders is 0. However, under the
value maximization model (assume γ = 0 for both the bidders), the objective function value for the winning bidder is v and
0 for the losing bidder.12 Hence, we need to carefully analyze the key results of our work in the event of ties.

In the context of multi-unit auctions, we can classify ties into two informal types: (a) ‘good ties’—ties occurring at any bid
other than the last accepted bid (LAB) and (b) ‘bad ties’, which are the ties occurring at the LAB. All the results in this work
are unaffected in case only ‘good ties’ occur. Thus, we focus on ‘bad ties’ for the rest of this section. For this discussion, we
consider a public, deterministic tie breaking rule under which ties are always broken in favor of lower indexed bidder. In
the presence of ties, the undominated class of safe bidding strategies is still the class of nested strategies (Theorem 3.2).
The tie breaking rule is incorporated into the decomposition in Lemma 4.1 and computing the edge weights in the DAG in
the offline and online settings in Section 4, ensuring that the maximum weight path in the DAG gives the optimal offline
solution and Algorithm 1 achieves sublinear regret in the online setting.

12Although, the total (liquid) welfare is v in both the cases.
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