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Abstract

Advancements in Al for science unlocks capabilities for critical drug discovery
tasks such as protein-ligand binding affinity prediction. However, current models
overfit to existing oversimplified datasets that does not represent naturally occurring
and biologically relevant proteins with modifications. In this work, we curate a
complete and modification-aware version of the widely used DAVIS dataset by
incorporating 4,032 kinase-ligand pairs involving substitutions, insertions, dele-
tions, and phosphorylation events. This enriched dataset enables benchmarking
of predictive models under biologically realistic conditions. Based on this new
dataset, we propose three benchmark settings—Augmented Dataset Prediction,
Wild-Type to Modification Generalization, and Few-Shot Modification Generaliza-
tion—designed to assess model robustness in the presence of protein modifications.
Through extensive evaluation of both docking-free and docking-based methods,
we find that docking-based model generalize better in zero-shot settings. In con-
trast, docking-free models tend to overfit to wild-type proteins and struggle with
unseen modifications but show notable improvement when fine-tuned on a small
set of modified examples. We anticipate that the curated dataset and benchmarks
offer a valuable foundation for developing models that better generalize to protein
modifications, ultimately advancing precision medicine in drug discovery. The
benchmark is available at: https://github.com/ZhiGroup/DAVIS-complete

1 Introduction

Measuring protein-ligand binding affinity is a critical task in drug development, as it directly deter-
mines the therapeutic efficacy and selectivity of potential drug candidates [37]. Al breakthrough has
revolutionized protein folding [4} 11} [16} 22], protein design [[19,[18]], and even protein-ligand bind-
ing [4} 7,146, 8]]. However, even with breakthroughs like AlphaFold [4}[11}[16] and DiffDock [7, 18],
the protein-ligand affinity prediction problem is not solved yet. First, structural predictions from
models like AlphaFold are Al estimations, not always equivalent to experimentally solved crys-
tal structures [33, [17]. Second, even with solved protein structures, co-crystalized ligand-bound
structures are often unavailable. Third, factors beyond direct structural complementarity, such as
pH [30] and solvent effects [3], also significantly influence binding affinity. Current Al-driven affinity
prediction methods are still in what might be termed a *pre-AlphaFold era’; a significant portion
operate as ’structure-free’ (using 1D protein amino acid sequences) [55} 154, 150, 27] or ’docking-free’
even with the incorporation of structural information [25} [15] 44].

A more pressing challenge in the field is the lack of large, diverse, and experimentally homogeneous
training datasets [20] that adequately capture biological realities. In particular, protein modifica-
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tions—such as substitutions, insertions, deletions, and post-translational modifications (PTMs)—can
drastically alter protein structure and ligand interactions [38} |26} 48]]. While generating such com-
prehensive datasets is challenging, current Al-driven models [21} 2} [34] 14} [52] [13} 53] 144} 28]
only focus on wild-type proteins, overlooking modified protein versions or applying a simplistic
"one-size-fits-all" approach to variants within datasets like DAVIS [10]. This oversight creates a
significant gap in understanding how these models perform in real-world biological contexts, where
proteins naturally undergo structural or chemical modifications. Models trained solely on such data
may overfit to wild-type proteins and fail to generalize to more complex, yet practical, scenarios.

This study aims to bridge this critical gap. We introduce DAVIS-complete, a curated and complete
version of the DAVIS dataset [[10] that explicitly accounts for protein modifications, as illustrated
in Fig.[T(a). Building upon this, we design three novel benchmark frameworks inspired by realistic
drug discovery scenarios: (1) Augmented Dataset Prediction: We augment the previously used
DAVIS dataset with modified protein—ligand pairs and evaluate model performance across three
standard train-test splits, assessing general predictive capability in a diverse setting (Fig.[I(c)). (2)
Wild-Type to Modification Generalization: This benchmark assesses a model’s ability to generalize
from wild-type proteins to unseen modified variants in a zero-shot setting, reflecting practical
cases where experimental data for modified proteins are unavailable (Fig. [T[(d)). (3) Few-Shot
Modification Generalization: We further evaluate model adaptability by fine-tuning on a small number
of modified protein-ligand pairs(Fig.[I(e)). This scenario mirrors precision medicine applications,
where individualized therapies frequently rely on accurately predicting drug responses from limited
genetic or proteomic data unique to each patient. Together, these benchmarks, for the first time,
provide a more comprehensive and biologically relevant framework for evaluating binding affinity
prediction models.

Our contributions are:

* The curation and public release of DAVIS-complete, a comprehensive dataset incorporating
protein modifications for binding affinity prediction benchmark.

» The design and proposal of three biologically relevant benchmarks built upon DAVIS-
complete.

* An extensive evaluation of existing state-of-the-art methods using these new benchmarks,
highlighting current limitations (e.g., overfitting to wild-type proteins) and demonstrating
the potential improvement (e.g., through fine-tuning strategies).

2 Related Works

2.1 Docking free-based models

In scenarios where high-resolution co-crystallized three-dimensional protein structures are unavail-
able, most existing deep learning approaches for predicting protein-ligand binding affinity operate
without considering explicit binding poses—commonly referred to as docking-free methods. These
models often represent proteins using amino acid sequences or predicted protein contact maps, while
ligands are depicted as SMILES strings or molecular graphs. Deep neural networks are then employed
to extract latent features from these representations to predict binding affinities. Notable models in
this category include DeepDTA [55], AttentionDTA [54]], GraphDTA [27], DGraphDTA [15]], and
MGraphDTA [50]. These methods have significantly advanced the field by circumventing the high
cost of experimentally determining protein—ligand binding conformations. However, due to the nature
of their input representations, these models are inherently limited in their ability to capture structural
alterations caused by protein mutations or PTMs. This limitation is particularly important, as such
modifications frequently occur in biological systems and could substantially influence protein-ligand
binding affinity.

2.2 Docking-based models

When high-resolution co-crystallized three-dimensional structures are available, docking-based ap-
proaches have also made strides in modeling protein-ligand interactions by explicitly considering
atom-level interaction details. Unlike docking-free models, these methods incorporate spatial infor-
mation about the binding pose, allowing for a more accurate depiction of the interaction landscape.



Notable examples include SchNet [36]], EGNN [35], and GIGN [51]], which leverage 3D convolutional
networks or equivariant graph neural networks to process molecular structures and predict binding
affinity directly from geometric configurations. However, the applicability of docking-based methods
is limited by the availability of high-quality co-crystallized 3D structures.

Building on this direction, the Folding-Docking-Affinity (FDA) [47] provides a framework for
binding affinity prediction in scenarios where experimentally determined co-crystallized structures are
unavailable. It unifies protein structure prediction, molecular docking, and binding affinity estimation
into a single pipeline. FDA employs predicted 3D protein structures (e.g., from AlphaFold [11} 4])
and ligand binding poses generated through docking methods (e.g., DiffDock [7]) to construct
realistic protein-ligand complexes at scale. Despite potential noise, FDA explicitly models atom-level
interactions within predicted complexes to capture spatial information for binding affinity prediction.
In parallel, recent co-folding models that jointly fold proteins and ligands—such as AlphaFold3 [4]],
Chai-1 [41]], Protenix [40], and Boltz-1 [46]—have advanced binding structure generation. Building
on this line, Boltz-2 [32]] augments its predecessor with an affinity module to predict protein—ligand
binding affinity.

2.3 Datasets

Two widely used datasets for evaluating the performance of deep learning-based protein-ligand affinity
prediction models are DAVIS [10] and KIBA [39]]. The DAVIS dataset focuses on kinase—ligand
interactions and provides binding affinity values measured as dissociation constants (K ;). These
measurements offer an experimentally homogeneous, high-quality, and biologically meaningful
ground truth, making the dataset suitable for assessing model performance in kinase-targeted drug
discovery. On the other hand, the KIBA dataset aggregates various bioactivity measurements,
including K;, Kg4, and IC5( values, into a unified KIBA score, providing a broader yet noisier
representation of drug-target interactions across a diverse set of kinases and compounds. These
datasets have served as the standard benchmarks for docking free-based models like DeepDTA [55]],
GraphDTA [27], and their variants [54} 50} 25]], allowing for consistent performance comparisons
across different protein-ligand representation and model architectures.

2.4 Related Datasets on Modification-aware Binding

The PSnpBind dataset [3] offers a resource for studying the impact of single-point mutations at
protein binding sites on ligand binding affinity. However, its reliance on traditional molecular docking
methods may hinder its acceptability, as experimental assays are still the gold standard. The predicted
binding conformations are static and may not capture the dynamic, context-dependent effects of
mutations. Additionally, the empirical scoring functions used in docking often fail to accurately
reflect changes in binding affinity, particularly in mutated proteins [31].

Another large-scale dataset is BindingDB [24]], which contains approximately 3 million experimen-
tally measured binding affinity data points, including both modified and unmodified proteins. Despite
its scale, the dataset suffers from heterogeneity in assay types, experimental conditions, and reporting
formats, leading to inconsistencies that impede data integration and limit its utility for predictive
modeling. For example, a study by Landrum et al. [20] have demonstrated that combining IC5q or
K; values from different sources introduces significant noise.

In contrast, the DAVIS dataset offers an experimentally homogeneous, high-quality resource on
kinase protein—ligand interactions. In addition to wild-type proteins, it also includes numerous data
points involving modified kinase proteins. Previous studies using this dataset [S5} 154} 27, [15 150} 251,
however, typically treated modified and unmodified kinases as equivalent or excluded the proteins with
modifications altogether. Such modifications could significantly affect binding affinity predictions
in certain cases. Therefore, indiscriminately incorporating them into predictive models without
accounting for their differences-or simply discarding them-may not leveraging the full value of this
dataset. Worse, models trained on such oversimplified DAVIS dataset may even overfit the wild-type
proteins. Of note, this study aims to curate a complete version of the DAVIS dataset that accounts
for all the modified kinases mentioned. Furthermore, the complete dataset is utilized to benchmark
previously proposed docking-free methods as well as the recently published docking-based approach,
Folding-Docking-Affinity (FDA) [47] and Boltz-2 [32].



3 A complete version of DAVIS dataset

The DAVIS dataset [10] covers interactions of 442 kinase proteins with 72 kinase inhibitors. Kinase
proteins are represented by their Entrez Gene Symbols and corresponding names, with modification
annotations included when applicable. This protein collection primarily focuses on catalytically
active human protein kinase domains across the eight major typical kinase groups, representing over
80% of the human protein kinome. The dataset was primarily curated to analyze the selectivity of
kinase inhibitors by examining small molecule-kinome interaction patterns. 31,824 binding affinity
measurements (/{;) were simultaneously determined using a biochemical assay panel developed
for this purpose. The consistency of the assay conditions minimizes variations in the experimental
settings, which is a common concern found in other heterogeneous datasets [23, |39} 20].

This comprehensive assay provides critical insights into how protein modifications affect kinase
binding affinity, which is vital for drug discovery. For example, the T790M mutation in EGFR reduces
Lapatinib binding affinity by approximately 360-fold compared to the wild-type, demonstrating the
significant impact of single-point mutations. Similarly, kinase conformational states, regulated by
phosphorylation, influence inhibitor binding, as seen with Imatinib, a type II inhibitor, which binds
more strongly to the inactive conformation of ABL1 kinase than its active state. These findings
highlight the importance of considering kinase conformational dynamics in designing targeted
therapies.

To include these modified kinase proteins, Entrez Gene Symbols in the dataset were mapped to UniProt
IDs, and the corresponding amino acid sequences were retrieved from the UniProt database [[1]. We
then manually curated 56 modified amino acid sequences for 11 kinase proteins based on available
annotations, including substitutions, insertions, deletions, phosphorylations, or any combinations.
This process added 4,032 new modified protein-ligand pair data points (56 sequences * 72 ligands) to
the dataset. Notable examples include ABL1 variants (e.g., T3151, H396P, F3171) with or without
Tyr393 phosphorylation (Fig. [T(b)), EGFR mutations (L858R, T790M), and the FLT3-ITD found in
the MV4;11 AML cell line [45]]. Moreover, we refined existing entries for 11 kinase proteins (such as
JAK, TYK2, and RSK family members) to include annotations of multiple specific domains rather than
merely full-length sequences—a distinction also overlooked in previous studies [55} 154, 27, [15] 50],
either. We updated these sequences by meticulously selecting domain boundaries based on relevant
literature [12] and UniProt annotations [1]]. Details of protein modifications are provided in Table. S1.

To formalize our extension of the DAVIS dataset by including modified kinase proteins, we introduce
the following notation: Let P* = {p™i | i = 1,2,3,...,|P"|} denote the set of wild-type
kinase proteins from the DAVIS dataset. For kinase proteins with modification variants, define:
pPm={p™ |i=1,2,3,...,|P™|} where P™ encompasses all modified variants across proteins,
and each p™ specifically denotes the set of modified variants for a given protein. Each modified
kinase variant within p"* is represented by p;-’“, corresponding to a specific type of modification (e.g.,
mutation, deletion, post-translational modification, or combinations thereof). Thus: p™i = {p;'” |
j=1,2,3,...|p™|}, p™ can be the empty set if no modified variants are available in the dataset.
To denote the combined set including both wild-type and modified kinase proteins, we introduce:
P* = PY U P™. The ligand set is denoted as: L = {l, | k = 1,2,3,...,|L|}, where each ligand [},
represents a distinct chemical compound in the dataset. A(p, ) denotes the binding affinity between
a protein p and a ligand /.

The DAVIS affinity distribution is dominated by capped measurements: approximately 70% of pairs
are reported at K; > 10uM (pK4 = 5), over-representing weaker interactions. Among uncapped
values, affinities center at p Ky = 6.48 £ 1.05; median 6.24; IQR 5.68-7.08; range [5.00, 10.80]). To
assess modification effects, we quantify the affinity alternation ApKy = A(p", ly) — A(p™", k),
which has mean —0.21 + 0.84; median -0.04; IQR -0.59-0.30; range [—4.49, 3.02]. However, due
to the 10uM cap, the exact ApK 4 is unobservable for 60% of modified pairs, where the WT, the
modification, or both exceed this threshold. Additional details are provided in section S2-S3.

4 Benchmark Design

We aim to assess whether the proposed state-of-the-art deep learning models can accurately predict
binding affinity by distinguishing subtle differences among protein modifications. To reflect realistic
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Figure 1: (a) DAVIS-Complete is curated by adding modified kinase protein-ligand pairs previ-
ously excluded from DAVIS-Filtered. (b) Example of dataset extension: 14 modifications of the
kinase ABL1 are incorporated alongside its wild-type form. (c) Augmented Dataset Prediction
benchmark: Wild-type and modified protein—ligand pairs are combined and evaluated under three
main splits—new-drug, new-protein, and both-new—each with corresponding sub-splits. (d) Wild-
Type to Modification Generalization benchmark: models trained on wild-type pairs are evaluated
across (1) global modification generalization, (2) same-ligand different-modifications, and (3) same-
modification different-ligands. (e) Few-Shot Modification Generalization: models fine-tuned on
limited modified pairs to assess generalization to unseen variants.

drug discovery scenarios, we design three distinct benchmarking settings—summarized in Table[T}—to
evaluate the model’s predictive performance.

Augmented Dataset Prediction We augment the DAVIS dataset used in prior studies [55} [54} 27,
150150, 25]) by adding modified proteins that were previously ignored. Following prior work [25}147]],
we evaluate model performance under three main train—test splits (Figure[T|c)). In all cases, both
wild-type and modified protein—ligand pairs are included and mixed in the training and test sets,
denoted as P*L. Each main split has corresponding sub-splits. For the new-ligand split, the
ligand-name setting ensures no ligand name overlaps between training and test sets, whereas the
stricter ligand-structure setting requires that ligands in the test set have a Tanimoto similarity < 0.5
(computed using Morgan fingerprints) to any ligand in the training set. For the new-protein split,
the protein-modification setting treats different modification variants of the same kinase as distinct
unseen proteins (e.g., training on ABL1(Q252H) and testing on ABL1(T3151)); the protein-name
setting excludes all variants (including wild-type) of a protein from the test set if any variant appears
in training; and the protein-seqid setting, the strictest version, ensures that kinases in the training
set share < 50% sequence identity with any kinase in the test set. Combining the new-ligand
and new-protein strategies yields six both-new configurations. Our benchmark includes the most
lenient (ligand-name & protein-modification) and the strictest (ligand-structure & protein-seqid)
configurations. The train/validation/test split ratio is kept as close as possible to 70%/10%/20%. The
details of model training can be found in Table. S3. Binding affinity prediction performances are
evaluated using mean squared error (MSE) and Pearson correlation coefficient (12,,).

Wild-Type to Modification Generalization To assess how well models transfer binding-affinity
prediction from wild type to modified proteins, we train each model exclusively on wild-type
protein-ligand pairs (P L) and evaluate under three biologically motivated settings. We report
MSE, R,, and C-index, and compare against two informative baselines: (i) wild-type ground truth



(ywr), which predicts a modified pair’s affinity by reusing the measured affinity of its corresponding
wild-type pair; and (ii) wild-type prediction (gwr), which reuses the model’s prediction for the
wild-type pair. Models that do not surpass these baselines fail to capture modification-specific
effects beyond what is already implied by the wild type. The evaluation settings are: (1) Global
modification generalization: The model is evaluated on a broad set of modified protein-ligand pairs
(Figure[T[d-1)). It reflects the challenge of predicting binding affinity across diverse protein variants
arising from genetic mutations, deletions, or PTM—common in cancer, infectious diseases, and
personalized medicine contexts. (2) Same-ligand, different-modifications: The model is tested on
multiple distinct modifications of a single kinase, all bound to the same ligand (Figure [T[d-2)). This
setting mimics drug resistance studies, where a therapeutic compound must be evaluated across
different mutation profiles of a known target protein (e.g., EGFR inhibitors in lung cancer [9}29]). (3)
Same-modification, different ligands: The model predicts binding affinity for a set of ligands against
a single modified kinase (Figure [I(d-3)). This scenario supports modification-specific drug screening,
where the goal is to identify new compounds that effectively bind a disease-relevant mutant protein
and potentially overcome resistance to existing therapies. The section S7 provides further details for
the baseline calculation.

Few-Shot Modification Generalization Building on the same-ligand, different-modifications and
same-modification, different-ligands scenarios from the Wild-Type to Modification Generalization
benchmark, we further examine model adaptability by fine-tuning on a limited set of modified protein-
ligand pairs, as illustrated in Figure. [I[e). 80% of the available modified protein-ligand pairs are used
for model fine-tuning, and the remaining 20% for evaluation. The details of model fine-tuning can
be found in Table. S4. This few-shot generalization scenario closely aligns with precision medicine
contexts, where personalized treatments often depend on accurately predicting drug responses from
sparse, patient-specific genetic or proteomic data. Enhancing model performance in such settings is
essential for effectively guiding individualized therapeutic decisions.

Table 1: Summary of benchmarks, sub-tasks, and dataset splits. Training, fine-tuning, and test sets
are represented using the introduced notations.

Benchmark | Sub-task | Training Fine-tuning  Test
New-ligand P*L - P’
. ” 5!
Augmented Dataset Prediction N;‘:{}E rr?e[:vm 1];2 : 1}; /f,
Global modification generalization PYL - P™L
Wild-Type to Modification Generalization | Same-ligand, different-modifications PYL - Pl
Same-modification, different-ligands | P*L - Py L
BT . _ . . W m; m;
Few-Shot Modification Generalization | S2™® llgaqd, dlfferenF {IIOdlﬁC.atlons P, L Py b b i
Same-modification, different-ligands PYL p; g P; g

5 Experiments

We benchmark five docking-free models—DeepDTA [55]], AttentionDTA [54], GraphDTA [27],
DGraphDTA [15]], and MGraphDTA [50]—and two docking-based models, FDA [47] and Boltz-
2 [32], on the curated, complete DAVIS dataset. Details of input preprocessing and all models are
provided in Section S4-S5. All models are trained from scratch except Boltz-2, which we evaluate in
inference-only mode on the test sets (no fine-tuning or hyperparameter optimization). Because of
this mismatch in training protocol, Boltz-2 is not directly comparable; its numbers are reported for
reference only and excluded from model rankings. Our evaluation covers following three benchmarks:

5.1 Augmented Dataset Prediction

We define seven train—test split settings to evaluate prediction performance: ligand-name, ligand-
structure, protein-modification, protein-name, protein-seqid, ligand-name & protein-modification,
and ligand-structure & protein-seqid. Table[2]reports results on the complete test set, as well as on two
subsets: one containing wild-type protein—ligand pairs (wild-type subset) and the other containing
modified protein—ligand pairs (modification subset). Across all splits except protein-modification
and protein-name, the FDA method consistently outperforms docking-free models, achieving higher



R, and lower MSE values. This trend holds for both the wild-type and modification subsets. In
the most challenging both-new split (ligand-structure & protein-seqid), AttentionDTA performs on
par with FDA. In the protein-modification split, all models except Boltz-2 generally demonstrate
stronger performance compared to other train-test splits (MSE < 0.5, R,, > 0.6). However, the FDA
model loses its top-ranked position and is outperformed by three comparably performing docking-free
models—DeepDTA, AttentionDTA, and MGraphDTA—on the complete test set. On the modification
subset, FDA exhibits a more pronounced decline in ranking, placing second to last—only ahead of
GraphDTA.

The observation from these splits suggests that binding affinity prediction performance depends
strongly on whether proteins or ligands are seen during training. For new-ligand tests, R, is
consistently higher under the ligand-name split than under the stricter ligand-structure split, reflecting
the added difficulty of enforcing structural novelty. In the new-protein splits, similarly, performance
declines as the test proteins become more dissimilar to those in training (protein-modification —
protein-name — protein-seqid). Comparing new-ligand and new-protein splits, models generally
perform worse in new-ligand, indicating a higher dependency on ligand familiarity. Overall, models
perform worse in the both-new setting than in the corresponding new-ligand or new-protein splits,
with the strictest ligand-structure & protein-seqid configuration yielding the lowest performance.

In particular, we found that this dependency is even more evident among docking-free methods. By
examining the degree of performance decline across different splits, it is clear that docking-free
models suffer sharper drops in accuracy when proteins, ligands, or both are not present in the training
data, highlighting their stronger reliance on seen training examples, which is consistent with previous
findings [43| 16} 49| 42]]. Besides, when proteins and ligands are included in the training set, most of
docking-free methods consistently outperform the docking-based FDA model. This suggests that
docking-free approaches may be better at learning direct mappings between known protein-ligand
pairs and their binding affinities, whereas the docking-based FDA model, which relies on binding
conformation, may not benefit as much from the simple presence of proteins or ligands in the training
phase.

5.2 Wild-Type to Modification Generalization

To assess the models’ ability to generalize from wild-type to modified kinase proteins, we train each
model exclusively on wild-type protein-ligand pairs (P L). We then evaluate their performance
across three distinct test scenarios. In the first scenario, termed Global modification generalization
(P™L), all modified kinase proteins are included. We additionally stratify results into four subsets
defined by whether the wild-type (WT) and modification affinities are capped or uncapped (Details in
Section S3). Results are reported in Table[3] In the WT-uncapped & modification-uncapped subset,
DeepDTA, AttentionDTA, DGraphDTA, and MGraphDTA perform similarly well on MSE, R,,, and C-
index, while GraphDTA and FDA lag behind. However, for these docking-free models the predictions
for modification pairs are highly correlated with their own WT predictions (high R, (g, gwr)), whereas
this correlation is much lower for the docking-based FDA. Notably, about 84% of affinity changes
lie within [—1, 1] in this category (Fig. S3(a)). For the stronger docking-free models, R, is nearly
identical to R, (y, §wr), indicating overfitting to WT: because the modification-WT differences are
majorly small, simply echoing the seen WT prediction yields seemingly strong performance. By
contrast, in the WT-capped & modification-uncapped and WT-uncapped & modification-capped
subsets, models can no longer rely on guessing the WT value; both R, and C-index drop markedly,
the advantage of WT-overfitting models diminishes, and FDA becomes relatively stronger. Finally, in
the WT-capped & modification-capped subset, WT overfitting docking-free models again appear to
perform well, mirroring the pattern observed in the WT-uncapped & modification-uncapped case.

Furthermore, in real-world biological scenarios, a kinase protein often exhibits multiple distinct muta-
tions across different populations, potentially leading to varied binding affinities for the same ligand.
To capture this biologically relevant variability, we introduce a second evaluation scenario—same-
ligand, different-modifications—to examine whether models pre-trained solely on wild-type proteins
can effectively distinguish variations in binding affinity caused by diverse protein modifications
when interacting with the same ligand. Notably, in contrast to the global setting that mixes multiple
ligands and kinases, this benchmark isolates a fixed kinase—ligand pair (p"#l}) and restricts evalua-
tion to WT-uncapped & modification-uncapped pairs, varying only the kinase modification to test
fine-grained sensitivity. Results are shown in Table (). In terms of MSE, DeepDTA, AttentionDTA,



DGraphDTA, and MGraphDTA perform comparably, whereas GraphDTA and FDA show weaker
performance. Notably, only MGraphDTA nominally exceeds the ywr baseline; however, given the
large standard deviation, this difference is not meaningful. Simply using the wild-type ground-truth
affinity (ywr) matches or exceeds these models. Furthermore, the consistently low R, (below 0.2) and
marginally better-than-random C-index (just above 0.5) suggest that current models fail to capture
or generalize protein modifications from the wild-type training data. Among these approaches,
docking-free methods fare worse than docking-based ones. A case study on EGFR variants with
staurosporine (Fig. S4) illustrates this: the docking-free MGraphDTA overfits to the wild type and
produces nearly identical predictions across variants, whereas the docking-based FDA better tracks
the affinity trends.

In another biologically relevant scenario, we may need to rank different ligands for a modified
protein. To assess this, we introduce the third scenario—same-modification, different-ligands—which
tests whether models trained only on wild-type proteins can distinguish ligand affinities for the
same modified kinase. This benchmark fixes a kinase-ligand pair (p"*¢l;) and also evaluates only
WT-uncapped & modification-uncapped cases, varying only the ligand to probe sensitivity. The
results of this evaluation are summarized in Table [d(b). The models perform notably better in the
same-modification, different-ligands scenario compared to the same-ligand, different-modifications
setting, particularly in terms of I, and C-index. However, in the case of EGFR(L858R, T790M)
with various ligands (Fig. S5), MGraphDTA predictions closely follow the binding affinity trend
of the wild-type, again reflecting its tendency to overfit to wild-type data. Additionally, in most
cases (44 out of 55), such as EGFR(G719C) (Fig. S6), we observe strong consistency between
wild-type and modified protein-ligand affinity profiles, with 12, values above 0.8. This suggests that
ligand often plays a more dominant role than protein modification, and the effect of modification on
binding affinity is generally smaller. Consequently, the WT—overfitting docking-free models can still
outperform the docking-based method in this scenario. Nonetheless, a model’s ability to surpass the
ywr baseline remains a meaningful indicator of its sensitivity to subtle affinity shifts.

Table 2: Performance comparison of docking-free and docking-based methods on the complete test
set, wild-type subset, and modification subset across seven train—test splits. Results are reported as
mean (std) over five random splits. Pearson correlation coefficient (R,,) and Mean Squared Error
(MSE) are computed from predicted vs. true pK; values. Boltz-2 was evaluated in inference-only
mode (no training on our dataset). Its results are shown for reference and are excluded from rankings.

| New-ligand | New-protein | Both-new
Model | Ligand-name |  Ligand-structure | Protei ification | Protei | Protein-seqid | Ligand. & Protei fication | Ligand-structure & Protein-seqid
| MSE| R,t | MSE| R,t | MSE| R,t | MSE| R,t | MSE| R,t | MSE| Ryt | MSE| R,
Complete Test Set
DeepDTA | 0.71(0.11) 031 (0.05) | 0.69 (0.08) 0.26 (0.07) | 0.29 (0.03) 0.81(0.02) | 0.38 (0.06) 0.74 (0.04) | 0.54(0.12) 0.68 (0.02) | 0.7 (0.12) 0.30 (0.04) 0.97 (0.14) 0.12(0.10)
AttentionDTA | 0.71 (0.09) 029 (0.09) | 071 (0.10)  0.26 (0.07) | 0.32(0.03) 0.79 (0.02) | 0.37 (0.04) 0.74 (0.02) | 0.59 (0.15) 0.64 (0.04) | 1.00 (0.18) 0.27(0.10) 089 (0.13) 0.26 (0.10)
GraphDTA | 0.79 (0.14)  0.30 (0.11) | 0.85 (0.15) 0.15(0.11) | 0.39(0.05) 0.74(0.02) | 045 (0.06) 0.67 (0.06) | 0.71 (0.13) 0.53 (0.06) | 0.87 (0.15) 0.24(0.09) 1.07(0.27) 0.08 (0.15)
DGraphDTA | 0.71 (0.16) 022 (0.14) | 076 (0.08)  0.10(0.10) | 0.41 (0.05) 0.73 (0.02) | 0.46 (0.06) 0.67 (0.03) | 0.73 (0.11) 050 (0.06) | 0.85 (0.13) 0.23(0.05) 0.98 (0.17) -0.05 (0.04)
MGraphDTA | 0.68 (0.09) 0.34(0.08) | 0.80 (0.18) 028 (0.08) | 0.32(0.04) 0.79(0.02) | 0.39 (0.05) 0.72(0.04) | 0.63 (0.10) 0.60 (0.06) | 0.81 (0.13) 0.33 (0.09) 0.97 (0.16) 0.15 (0.08)
FDA 0.60 (0.13)  0.42(0.07) | 0.66 (0.08) 0.36(0.10) | 0.33(0.02) 0.78 (0.01) | 0.36 (0.04) 0.75(0.02) | 0.49 (0.09) 0.70 (0.01) | 0.59 (0.15) 0.48 (0.04) 0.89 (0.13) 0.28 (0.07)
Boltz-2 118 (0.08) 041 (0.08) | 1.11(0.13) 045(0.05) | 1.17(0.03) 0.50 (0.01) | 117 (0.03) 0.50 (0.03) | 1.08 (0.03) 0.55(0.02) | 1.17 (0.10) 0.40 (0.09) 1.02(0.11) 0.54 (0.06)
‘Wild-type Subset
DeepDTA | 0.60 (0.09) 026 (0.06) | 0.60 (0.07)  0.23 (0.08) | 0.30 (0.03) 0.75(0.01) | 0.31(0.03) 0.74(0.03) | 044 (0.06) 0.67 (0.03) | 0.69 (0.14) 0.23 (0.06) 078 (0.13) 0.10 (0.08)
AttentionDTA | 0.60 (0.08) 024 (0.08) | 0.62(0.09) 0.23(0.05) | 033 (0.03) 0.72(0.01) | 0.32(0.02) 0.73(0.01) | 0.47 (0.09) 0.64 (0.04) | 0.92(0.16) 020 (0.11) 075 (0.14) 0.17 (0.08)
GraphDTA | 0.66 (0.13)  0.27 (0.11) | 0.73(0.14) 0.11(0.10) | 0.38 (0.04) 0.68 (0.01) | 038 (0.03) 0.6 (0.03) | 0.54 (0.05) 0.56 (0.02) | 0.74 (0.16) 0.19 (0.06) 0.90 (0.29) 0.03 (0.13)
DGraphDTA | 0.58 (0.14) 020 (0.14) | 0.66 (0.07)  0.05 (0.09) | 0.43 (0.05) 0.63 (0.02) | 0.42(0.04) 0.63(0.02) | 0.61 (0.05) 049 (0.02) | 0.72 (0.14) 0.14 (0.08) 0.78 (0.14) -0.05 (0.04)
MGraphDTA | 058 (0.07)  0.30(0.10) | 0.69 (0.15) 0.23(0.06) | 0.34(0.04) 0.72(0.02) | 034 (0.03) 071 (0.02) | 0.51 (0.06) 0.60(0.02) | 0.68 (0.17) 0.26 (0.10) 0.79 (0.14) 0.12(0.05)
0.53(0.12) 035 (0.10) | 0.59(0.08)  0.30(0.09) | 0.32(0.03) 0.72(0.01) | 0.31(0.02) 0.74(0.01) | 0.41(0.04) 0.69 (0.01) | 0.53 (0.17) 0.38 (0.03) 076 0.13) 0.21(0.07)
Bolz2 | 118 (0.08) 0.39(0.08) | 1.13(0.13) 041 (0.05) | 1.18(0.02) 046 (0.02) | 119 (0.04) 047 (0.02) | 1.12(0.04) 0.52(0.01) | 1.17 (0.09) 0.38 (0.09) | 106 (0.12) 0.49 (0.07)
Modification Subset

DeepDTA | 1.52(0.31) 030 (0.09) | 134(0.20) 0.25(0.10) | 0.21(0.06) 0.94(0.02) | 0.79(035) 070 (0.13) | 0.88 (0.37) 0.66 (0.04) | 1.35 (0.18) 037 (0.09) 1.67(0.55) -0.02 (0.20)
AttentionDTA | 149 (0.29) 0.31(0.17) | 1.36(027) 029 (0.14) | 0.22(0.08) 093 (0.02) | 0.71(0.13) 0.74 (0.07) | 0.9 (0.33) 0.56 (0.15) | 148 (0.47) 038 (0.20) 143 (0.41) 030(0.15)
GraphDTA | 1.67(027)  0.25(0.14) | 1.66 (0.22) 012 (0.14) | 0.47 (0.18)  0.86 (0.04) | 0.87 (0.34) 0.65(0.15) | 1.15(0.31) 043 (0.17) | 1.74(030) 024 (0.12) 1.74 (0.61) 0.03(0.28)
DGraphDTA | 1.63(0.38) 018 (0.18) | 147(0.25) 0.12(0.11) | 025(0.13) 0.93(0.03) [ 0.81 (028) 0.73(0.10) | 1.21 (0.41) 045 (0.23) | 1.76 (0.34) 0.27 (0.06) 1.64(0.47) 012 (0.08)
MGraphDTA | 1.43 (0.26)  0.36(0.09) | 1.56 (0.53) 029 (0.18) | 022(0.07) 0.93(0.02) | 0.73(0.23) 0.72(0.10) | 1.12(0.29) 0.52(0.25) | 1.64 (0.46) 0.38 (0.16) 1.61 (0.54) 0.13(0.16)
FDA 1.11(0.23)  0.53(0.07) | 1.15(0.23)  0.45(0.13) | 0.39(0.08) 0.88(0.02) | 0.71(0.16) 0.74(0.07) | 0.74(0.26) 0.71(0.03) | 0.95 (0.16) 0.60 (0.06) 1.37(0.29) 0.32(0.10)
Boltz-2 1.18(0.07)  0.53(0.10) | 0.97 (0.11)  0.63(0.05) | 1.10(0.07) 0.64(0.03) | 1.12(0.31) 0.64(0.09) | 0.96 (0.05) 0.66 (0.05) | 1.21 (0.18) 0.50 (0.12) 0.84 (0.10) 0.69 (0.09)

5.3 Few-Shot Modification Generalization

In the same-ligand, different-modifications setting, the evaluation results are summarized in Ta-
ble. Eka), which reports model performance before () and after fine-tuning (grr) across three metrics:
MSE, R,, and C-index. All docking-free models show improved performance after fine-tuning,
demonstrating the value of even limited modified kinase data in enhancing generalization at the
protein modification level. However, in terms of R, and C-index, all models still exhibit low
performance—remaining below 0.6, which is often considered the threshold for effective prediction.

In the same-modification, different-ligands setting, the benchmark results are shown in Table. Ekb).
All models except the docking-based FDA model similarly show noticeable improvements across



Table 3: Performance comparison of docking-free models and a docking-based method trained
exclusively on wild-type protein—-ligand pairs (P" L) and evaluated on modified kinase protein—ligand
pairs (P™L). The P™ L test set is partitioned into four distinct subsets depending on whether affinity
values are capped or not. Results are reported as mean (standard deviation) over five independent runs
using identical train—test splits but different model parameter initialization. MSE, R,,, and C-index
are computed between predicted and true p/; values. Boltz-2 was evaluated in inference-only mode
(no training on our dataset); its results are shown for reference and excluded from rankings.

Model | MSE] Ry T C-index T Ry(y,9wr) Rp(9,9wr) | MSE] Ryt C-index T Rp(y,9wr)  Rp(9,9wr)
| WT-uncapped & modification-uncapped | WT-capped & modification-uncapped

DeepDTA 0.63(0.04) 0.79(0.01) 0.79 (0.01) 0.79 (0.01) 1.00(0.00) | 0.35(0.01) 0.11(0.05) 0.53(0.03) 0.08(0.02) 0.87(0.20)
AttentionDTA | 0.66 (0.07) 0.80 (0.02) 0.80 (0.01) 0.79(0.02) 0.99 (0.01) | 0.37 (0.01) 0.06 (0.04) 0.50(0.02) 0.05(0.04) 0.84 (0.20)
GraphDTA 1.17(0.12)  0.64 (0.02) 0.74 (0.01) 0.76 (0.03) 0.87 (0.02) | 0.34 (0.03) 0.00(0.07) 0.51(0.02) 0.03(0.07) 0.89(0.09)
DGraphDTA | 0.64 (0.02) 0.80 (0.01) 0.80 (0.00) 0.80 (0.00) 1.00(0.00) | 0.33(0.01) 0.03(0.06) 0.51(0.02) 0.04(0.06) 0.97 (0.04)
MGraphDTA | 0.61 (0.04) 0.80 (0.01) 0.80(0.01) 0.79(0.01) 0.99(0.01) | 0.37 (0.01) 0.05(0.07) 0.54(0.03) 0.02(0.08) 0.92(0.09)

FDA 1.47 (0.05)  0.62(0.01) 0.72(0.00) 0.78 (0.02) 0.58(0.02) | 0.30 (0.01) 0.13(0.02) 0.53(0.01) 0.07 (0.07) 0.09 (0.09)
Boltz-2 | 1.17(0.00)  0.54(0.00) 0.68 (0.00) 0.54(0.00) 0.94(0.00) | 0.61(0.00) 0.24 (0.00) 0.58(0.00) 0.15(0.00) 0.93 (0.00)

| WT-uncapped & modification-capped | WT-capped & modification-capped
DeepDTA 1.89 (0.20) - - - 0.99 (0.00) | 0.01 (0.00) - - - 0.96 (0.03)
AttentionDTA | 2.06 (0.40) - - - 0.93(0.13) | 0.01 (0.01) - - - 0.92 (0.04)
GraphDTA 1.76 (0.14) - - - 0.99 (0.00) | 0.03 (0.01) - - - 0.67 (0.03)
DGraphDTA | 1.92 (0.14) - - - 1.00 (0.00) | 0.01 (0.00) - - - 0.98 (0.00)
MGraphDTA | 1.51 (0.14) - - - 0.90 (0.04) | 0.01 (0.00) - - - 0.95 (0.04)
FDA 0.65 (0.03) - - - 0.50 (0.05) | 0.05 (0.00) - - - 0.11 (0.03)
Boltz-2 | 1.46 (0.00) - - - 0.70 (0.00) | 1.02 (0.00) - - - 0.92 (0.00)

Table 4: Wild-Type to Modification Generalization benchmark (a) Same-ligand, different-
modifications: models are trained on all wild-type pairs and evaluated on modified variants of
the same kinase protein with a fixed ligand. (b) Same-modification, different-ligands: models are eval-
uated on distinct ligands for a fixed kinase modification. Metrics are mean (std) across kinase-ligand
combinations. Boltz-2 was evaluated in inference-only mode (no training on our dataset). Its results
are shown for reference and are excluded from rankings.

Model \ MSE | \ R, 1 \ C-index 1
‘ Ywr Jwr 9 ‘ Ywr Jwr ] ‘ Ywr Jwr ]
(a) Same-ligand, different-modifications

DeepDTA 0.61 (0.72) 0.63(0.59) 0.62 (0.57) - - 0.10 (0.31) - - 0.53 (0.11)
AttentionDTA | 0.61 (0.72) 0.68 (0.76)  0.65 (0.73) - - 0.10 (0.28) - - 0.53 (0.10)
GraphDTA 0.61 (0.72) 0.73 (0.68) 1.07 (1.46) - - -0.02 (0.31) - - 0.50 (0.12)
DGraphDTA | 0.61 (0.72) 0.61 (0.65) 0.62 (0.64) - - 0.03 (0.26) - - 0.52 (0.11)
MGraphDTA | 0.61 (0.72) 0.61 (0.63) 0.59 (0.61) - - 0.11(0.32) - - 0.53 (0.12)
FDA 0.61 (0.72) 0.83(1.04) 1.41(1.89) - - 0.18 (0.46) - - 0.56 (0.18)
Boltz-2 \ 0.61 (0.72) 1.06(1.27) 1.06 (1.30) \ - - 0.25 (0.48) \ - - 0.59 (0.20)

(b) Same-modification, different-ligands

DeepDTA | 053 (0.59) 0.58 (0.49) 0.56 (0.47) | 0.86 (0.16) 0.84 (0.16) 0.84 (0.15) | 0.84 (0.08) 0.83 (0.08) 0.83 (0.07)
AttentionDTA | 0.53(0.59) 0.62(0.57) 0.59 (0.53) | 0.86 (0.16) 0.84 (0.16) 0.84 (0.15) | 0.84 (0.08) 0.83 (0.08) 0.84 (0.08)
GraphDTA | 053 (0.59) 0.90 (0.66) 1.26 (1.08) | 0.86(0.16) 0.79 (0.15)  0.70 (0.26) | 0.84 (0.08) 0.82(0.06) 0.79 (0.09)
DGraphDTA | 0.53 (0.59) 0.58 (0.50) 0.58 (0.49) | 0.86 (0.16) 0.84(0.15) 0.84 (0.15) | 0.84 (0.08) 0.83(0.07) 0.83 (0.07)
MGraphDTA | 0.53 (0.59) 0.57 (0.53) 0.54 (0.50) | 0.86 (0.16) 0.84 (0.16)  0.85 (0.14) | 0.84 (0.08) 0.83 (0.08) 0.84 (0.08)
FDA 0.53(0.59) 0.76 (0.68) 1.30 (0.66) | 0.86 (0.16) 0.83(0.16) 0.67 (0.17) | 0.84 (0.08) 0.83(0.08) 0.75 (0.09)

Boltz-2 | 0.53(0.59) 1.23(0.46) 1.23(0.48) | 0.86(0.16) 0.50(0.23)  0.50 (0.24) | 0.84 (0.08) 0.69 (0.14)  0.69 (0.14)

evaluation metrics—MSE, R,,, and C-index—after fine-tuning on few-shot samples. Among all
models, AttentionDTA achieves the best overall performance, with its MSE decreasing from 0.62
to 0.42, IR, increasing from 0.77 to 0.80, and C-index improving from 0.81 to 0.82. These results
suggest that AttentionDTA is particularly effective at adapting to ligand-induced variability. In
contrast, the FDA model is the only method that does not benefit from fine-tuning; rather than
improving, its performance deteriorates after incorporating the few-shot examples, suggesting a need
for more effective fine-tuning strategies.

6 Limitation

Despite the addition of modified protein-ligand pairs, bringing the DAVIS dataset to 31,824 entries,
its size remains limited for training data-intensive deep learning models. Its kinase-centric focus
further restricts generalizability, as kinases represent only a fraction of the proteome. A more intrinsic



Table 5: Few-shot Modification Generalization benchmark. (a) Same-ligand, different-modifications:
models are fine-tuned on limited modified protein—ligand pairs and evaluated on additional variants of
the same kinase with a shared ligand. (b) Same-modification, different-ligands: models are fine-tuned
and tested on distinct ligands targeting the same kinase modification. Metrics are mean (std) across

kinase—ligand combinations.
Model | MSE | | Ryt | C-index
| Ywr Jwr i Jrr | Ywr Jw i Jrr | Ywr Jwr g Jrr
(@s§s ligand, differ dificati

20.06 (0.51)  0.17 (0.52)
-0.03(0.54)  0.09 (0.61)
-0.16 (0.68)  0.02(0.71)
-0.03 (0.46)  0.05 (0.51)
-0.06 (0.46)  -0.04 (0.50)
0.20(0.75)  0.21(0.70)

(b) S: dification, different-ligand:

DeepDTA | 0.56 (0.87) 0.63 (0.74) 0.62(0.67) 0.54(0.41) | 0.78 (0.28) 0.76 (0.28) 0.76 (0.26)  0.78 (0.25) | 0.82(0.14) 0.80(0.13) 0.80 (0.13) 0.81(0.12)
AttentionDTA | 0.56 (0.87) 0.67 (0.89) 0.62(0.75) 0.42(0.45) | 0.78 (0.28) 0.77(027) 0.77(0.26) 080 (0.24) | 0.82(0.14) 0.81(0.13) 0.81(0.13) 0.82(0.12)
GraphDTA | 0.56 (0.87) 1.10(1.09) 1.45(1.44) 1.20(1.18) | 0.78 (0.28) 0.75(0.26) 0.66 (0.34)  0.70 (0.29) | 0.82(0.14) 0.79(0.12) 0.76 (0.13) 0.78 (0.11)
DGraphDTA | 0.56 (0.87) 0.63 (0.82) 0.64 (0.80) 0.50 (0.61) | 0.78 (0.28) 0.78 (0.28) 0.78 (0.28) 0.78 (0.28) | 0.82(0.14) 0.81(0.13) 0.80(0.13) 0.81 (0.13)
MGraphDTA | 0.56 (0.87) 0.59(0.79) 0.55(0.67) 0.45(0.39) | 0.78 (028) 0.77(0.29) 0.78(0.27)  0.80 (0.24) | 0.82 (0.14) 0.80(0.14) 0.81(0.13) 0.82(0.12)
FDA 056 (0.87) 0.79(1.08) 1.15(1.09) 227(1.62) | 0.78(0.28) 0.75(027) 0.67(0.21) 056 (0.31) | 0.82(0.14) 0.80(0.12) 0.74(0.10) 0.70 (0.12)

DeepDTA 0.64 (0.94) 0.63(0.75) 0.62(0.73) 0.33(0.43)
AttentionDTA | 0.64 (0.94) 0.70 (0.94) 0.68 (0.92) 0.34 (0.45)
GraphDTA 0.64 (0.94) 0.71(0.81) 1.32(2.09) 0.83(1.18)
DGraphDTA | 0.64 (0.94)  0.62(0.82) 0.63 (0.81) 0.37 (0.49)
MGraphDTA | 0.64 (0.94) 0.62 (0.83) 0.62(0.82) 0.43 (0.55)
FDA 0.64 (0.94) 0.87(1.22) 1.28(1.80) 0.36 (0.45)

0.46 (0.24)  0.56 (0.23)
0.47 (0.26)  0.53 (0.28)
0.43(0.33)  0.50 (0.34)
0.48 (0.21)  0.52(0.25)
0.45(0.23) 0.48(0.22)
0.60 (0.35)  0.56 (0.33)

limitation is the truncation of dissociation constants (/;): roughly 70% of K4 values are capped at
10 M, obscuring weaker interactions and reducing data granularity. This censoring complicates the
interpretation of modification-induced affinity changes, where ApK 4 often represents only a lower
bound or becomes entirely untrackable, thereby impairing predictive modeling. These limitations
highlight the need for specialized algorithms and larger, more diverse datasets.

Benchmarking docking-based approaches such as Folding-Docking-Affinity (FDA) presents addi-
tional challenges. Although FDA demonstrates stronger zero-shot generalization than docking-free
models, potential data leakage arises from overlaps between DAVIS proteins and the training data of
AlphaFold-Multimer [11] and DiffDock [7]], two componens of FDA, even if exact protein—ligand
pairs were rarely shared [47]. These overlaps highlight the need for entirely new benchmark datasets
that exclude previously seen proteins, ligands, and their combinations.

Furthermore, intuitively, one might expect the docking-based FDA model to outperform docking-
free models completely, as it explicitly captures atom-level protein—ligand interactions, potentially
reflecting the structural effects of protein modifications. Our structural investigations, however,
suggest that the structure prediction models, including those for protein folding and molecular
docking, are not yet fully capable of capturing the structural variations introduced by modifications.
For example, we observed that AlphaFold3 [4] predicts a phosphorylated state for both the non-
phosphorylated and phosphorylated forms of the ABL1 protein, failing to distinguish between the two.
The result is consistent with a recent study [33]]. This underscores that subtle structural changes from
protein modifications are not yet adequately captured by existing models, limiting the effectiveness
of downstream binding affinity predictions.

7 Conclusion

Protein modifications significantly impact protein—ligand interactions and binding affinity, yet experi-
mentally homogeneous datasets incorporating these modifications remain scarce. We address this
gap by curating a complete version of the DAVIS dataset with previously ignored modified kinase
proteins. Using three benchmarks—Augmented Dataset Prediction, Wild-Type to Modification
Generalization, and Few-Shot Modification Generalization—we evaluate state-of-the-art models’
abilities to distinguish protein modifications. Results indicate docking-based models demonstrate
superior generalization in zero-shot scenarios. Conversely, docking-free models frequently overfit to
wild-type proteins, encountering difficulty with unseen modifications; however, their performance
improves notably after fine-tuning on a limited number of modified examples. This curated dataset
and benchmarks offer valuable resources to advance generalizable affinity prediction models and
precision medicine.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims mentioned in abstract and introduction are fully supported by the
results and discussion in section 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please check Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please check the Model Training Details section in the supplementary material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code and data are available at https://github.com/ZhiGroup/
DAVIS-complete

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please check the Model Training Details section in the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The all results are accompanied by error bars and please check section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please check https://github.com/ZhiGroup/DAVIS-complete|for com-
puter resource information.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Please check https://github.com/ZhiGroup/DAVIS-complete
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: On the positive side, we emphasizes advancing precision medicine by im-
proving binding affinity prediction for modified proteins, which supports personalized drug
discovery (Section 1, Abstract). On the negative side, we highlights dataset limitations—such
as kinase bias and truncated binding affinity values—that may limit generalizability and
model reliability (Section 6)

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The DAVIS dataset and the benchmark models are appropriately cited in
the paper. The license of DAVIS dataset is CC-BY 4.0. For the version and the license

of benchmark models, please check the Benchmark Models section in the supplementary
information.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The introduced DAVIS-complete dataset is well documented and please
check the document in the Details of Protein Modification section in the supplemen-
tary material. The benchmark code is documented in https://github.com/ZhiGroup/
DAVIS-complete.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is used solely for rephrasing and language refinement.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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