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Abstract. U-Net has been proved as the most successful segmentation
architecture for medical image processing in recent years. Based on this,
ResUNet imported ResBlock with skip connection focuses more on the
contextual information. In this work, we adopt the 3D ResUNet to build
a whole-volume-based coarse-to-fine segmentation framework for the ab-
dominal multi-organs segmentation task, and the mean Dice Similar-
ity Coefficient (DSC) of the segmentation results has achieved 87.67%,
the mean Normalized Surface Dice (NSD) has achieved 93.16% on the
FLARE2022 validation set. Besides, for each case on the FLARE2022
validation set, the average running time is 19.5614 seconds, and the max
gpu memory consumption is 2657 MB.
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1 Introduction

Abdominal organ segmentation plays an important role in clinical practice. In
recent years, with the development of deep learning, many methods have been
proposed to accomplish the segmentation task automatically. In this paper, we
focus on multi-organ segmentation from abdominal CT scans. According to the
Fast and Low GPU Memory Abdominal Organ Segmentation challenge which
required develop segmentation methods that can segment 13 kinds of abdomi-
nal organs like the liver, kidney, spleen, pancreas, aorta, IVC, adrenal glands,
gallbladder, esophagus, stomach and duodenum simultaneously, we attempted
to design our method based on the original ResUNet [5].

In this paper, based on the original ResUNet, we propose a whole-volume-
based coarse-to-fine framework. In the first stage, i.e., coarse segmentation, we
directly use whole volume CT images and resample it to 128× 128× 128 as the
input. In the fine stage, 13 organs are split into 2 groups: big organs and small
organs. For the big organs, we crop the areas containing the organs based on the
coarse segmentation results, and resample the cropped volumes to 160×160×160
as fine stage input. For the other group, volumes are cropped to 64×256×256 or
128×128×128. Specifically, LAG, RAG, Gallbladder and Esophagus are regarded
as small organs. Backbones for both stages are 3D ResUNet with 4 down-sample
layers encoder and 4 up-sample layers decoders. Notably, the ASPP [3] module
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maybe be used to supply the info-loss caused by the multi down-sample on top
level.

The main contributions of this work are summarized as follows:

– We propose a whole-volume-based coarse-to-fine framework, which can ef-
fectively complete abdominal organs segmentation.

– Based on our proposed framework, we fully utilize the relative position in-
formation between big organs by group neighbour organs, which can better
locate and segment these organs, especially for stomach, pancreas, duodenum
and oesophagus.

– We evaluate our proposed framework on FLARE2022 challenge dataset. The
effectiveness and efficiency can be well demonstrated.

2 Method

Our proposed method is a whole-volume-based coarse-to-fine framework. Details
about the method are described as follows.

2.1 Preprocessing

Our proposed method includes the following preprocessing steps:

– Reorientation image to target direction.
– Cropping strategy: None
– Resampling method for anisotropic data:

Constrained by hardware conditions, the original images are resampled to
128×128×128 for both coarse segmentation and small organs’ fine segmen-
tation task. For the fine segmentation of big organs, images are resampled
to 160× 160× 160.

– Intensity normalization method:
Considering that volumes from different centers have different HU values,
and this phenomenon appears on the different organs. Therefore, images are
clipped to range [-100, 300] and normalized to range [0, 1].

– Others:
To improve the training and testing efficiency, mixed precision is adopted in
the whole process of our framework working.

2.2 Proposed Method

The process of our framework is shown in Figure 1. In our proposed framework,
coarse segmentation always leads to the error location of small organs, so the 3D
ResUNet is cascaded to realize the relocation of small organs. And 8 large organs
are divided into 3 groups since that more relative position information can be
captured. Figure 2 illustrates the applied 3D ResUNet [5], where a U-Shape
architecture is adopted.
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Fig. 1. Process of our proposed framework.

Network architecture details: our proposed method is a whole-volume-based
coarse-to-fine segmentation framework. For both coarse and fine segmentation
stages, the network consists of 4 down-sample layers, 4 up-sample layers for the
final segmentation results, and ASPP module.

Loss function: we use the summation between Dice loss and Cross-Entropy
loss because compound loss functions have been proved to be robust in various
medical image segmentation tasks [9].

2.3 Post-processing

To avoid the impact of noise, the connected component analysis [13] is used, and
we choose the maximum connected component as the final segmentation results.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [12], KiTS [6,7], AbdomenCT-1K [10],
and TCIA [4]. The training set includes 50 labelled CT scans with pancreas
disease and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas
diseases. The validation set includes 50 CT scans with liver, kidney, spleen, or
pancreas diseases. The testing set includes 200 CT scans where 100 cases has
liver, kidney, spleen, or pancreas diseases and the other 100 cases has uterine
corpus endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases.
All the CT scans only have image information and the center information is not
available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
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Fig. 2. Our proposed network architecture. For the Res Block layer, the stride of the
final 1× 1× 1 conv is set as 2, that’s how we downsample the volumes.

under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 18.04.06 LTS
CPU Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
RAM 4×32GB; 3200MT/s
GPU (number and type) Four NVIDIA RTX A6000 48G
CUDA version 11.4
Programming language Python 3.7
Deep learning framework Pytorch (Torch 1.7.1+cu110, torchvision 0.8.2)
Specific dependencies
(Optional) Link to code

Training protocols In our training process, we performed the following data
augmentation with project MONAI [11] : 1). randomly crop the volumes from
range -0.5 to 0.5; 2). add brightness and contrast on the volumes from range
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-0.4 to 0.4. 3). random elastic transform with prob=0.5 with sigma from range
3 to 5 and magnitude from range 100 to 200; 4). clip volumes from range 0 to 1.
Details of our training protocols are shown in Table 2 and Table 3.

Different organs combination will bring different localization information,
which is helpful for fine segmentation. Therefore, we divided the large organs
into three groups: (liver, spleen, left and right kidneys); (stomach, pancreas and
duodenum); (aorta and IVC). The other four small organs (LAG, RAG, gall-
bladder, esophagus) are localized by the 3D ResUNet firstly and then refined by
another 3D ResUNet respectively.

Table 2. Training protocols.

Network initialization “he" normal initialization
Batch size 8
Patch size 128×128×128
Total epochs 100
Optimizer ADAMW [8] (weightdecay = 1e− 4)
Initial learning rate (lr) 1e-4
Lr decay schedule halved by 20 epochs
Training time 18 hours
Loss Function Summation of Cross Entropy and Dice loss
Number of model parameters 15.17M
Number of flops 93.43G

Table 3. Training protocols for the refine model.

Network initialization “he" normal initialization
Batch size 8
Patch size 160×160×160
Total epochs 120
Optimizer ADAMW [8] (weightdecay = 1e− 4)
Initial learning rate (lr) 1e-4
Lr decay schedule halved by 20 epochs
Training time 18 hours
Loss Function Summation of Cross Entropy and Dice loss
Number of model parameters 15.17M
Number of flops 182.49G
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4 Results and discussion

4.1 Quantitative results on validation set

As shown in Table 4, our proposed method has achieved mean DSC as 0.8767
and mean NSD as 0.9316 on validation set. The segmentation performance is
quite well, especially for the organs with big-size, such as liver, spleen, aorta and
kidneys.

With Unlabelled data. In the process of our experiments, we tried to train-
ing our model by self-supervised learning with those unlabelled 2000 cases. In
summary, we have tried classical methods like MOCOV2 [1], SimSam [2], etc.
We also tried to random crop from the original volumes and segment the un-
labelled cases by our trained coarse segmentation network and then masked
RAG by the segmentation results, then using pix2pix GAN to restore the origi-
nal volumes, the generator of the pix2pix GAN is utilized as pretrained model.
However, all these methods have little effect, and have consumed us much time
to attempt these methods. The best mean DSC value on validation set derived
from our method, masked RAG and then utilized generator of the pix2pix GAN
as pretrained model, with unlabelled data is 0.8416. Moreover, we have tried to
combined predicted pseudo label from unlabeled 2000 images with the labeled
50 images, results show that pseudo labels are helpful.

Table 4. Results of our proposed method on validation set.

Organ DSC NSD
Liver 0.9695± 0.0211 0.9832± 0.0350
RK 0.9203± 0.1899 0.9448± 0.1956

Spleen 0.9420± 0.0197 0.9807± 0.0421
Pancreas 0.8711± 0.0459 0.9643± 0.0442

Aorta 0.9426± 0.0248 0.9813± 0.0312
IVC 0.9049± 0.0825 0.9272± 0.0885
RAG 0.7703± 0.2240 0.8807± 0.2313
LAG 0.8009± 0.2352 0.8948± 0.2315

Gallbladder 0.8070± 0.2417 0.7943± 0.2475
Esophagus 0.8482± 0.1205 0.9315± 0.1207
Stomach 0.9122± 0.1430 0.9553± 0.1245

Duodenum 0.8102± 0.1023 0.9424± 0.0611
LK 0.8977± 0.1746 0.9302± 0.1799

Average 0.8767± 0.1250 0.9316± 0.1256
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4.2 Qualitative results on validation set

Figure 3 shows some failed and successful examples on validation set. It can be
found that our proposed method cannot segment gallbladder well on case #2
since that size of gallbladder on this case is too small. Besides, for case #3,
because that the stomach is squeezed and displaced, in this caes, stomach was
mistakenly segmented as esophagus. Moreover, in case #31, some lesions like
tumors in liver may look like gallbladder, this also will influence gallbladder
segmentation performance. In case #6, 8 and 35, no lesion in volumes look like
neighbour organs, sizes of organs are normal, therefore organs in abdominal can
achieve satisfactory segmentation performance.
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Fig. 3. Some failed and successful examples. Columns from left to right are original
volumes, ground truth and our predicted results, respectively.

4.3 Segmentation efficiency results on validation set

Our segmentation efficiency results on the validation set is shown in Table 5.
The average running time of each case in validation set is 19.5614 seconds, the
max gpu memory consumption is 2657 MB. The total AUC of GPU time and
CPU time are 1,597,650 and 18,215.44, respectively.

4.4 Results on final testing set

Our test phase results are shown in table 6, the average DSC and NSD value of
13 organs is 0.8774 and 0.9358, respectively.
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Table 5. Segmentation efficiency results of our proposed method on validation set.

Average Running Time Max Gpu Memory AUC of GPU Time AUC of CPU Time
19.5614 Seconds 2657 MB 1,597,650 18,215.44

Table 6. Results of our proposed method on test set.

Organ DSC NSD
Liver 0.9722± 0.0105 0.9893± 0.0181
RK 0.8979± 0.2279 0.9240± 0.2359

Spleen 0.9175± 0.1520 0.9587± 0.1616
Pancreas 0.8394± 0.0866 0.9485± 0.0886

Aorta 0.9218± 0.0638 0.9621± 0.0632
IVC 0.9099± 0.0777 0.9400± 0.0919
RAG 0.8471± 0.1237 0.9488± 0.1324
LAG 0.8484± 0.1604 0.9429± 0.1646

Gallbladder 0.8034± 0.2629 0.7977± 0.2683
Esophagus 0.8292± 0.1157 0.9277± 0.1132
Stomach 0.9175± 0.0983 0.9553± 0.0964

Duodenum 0.8020± 0.1063 0.9376± 0.0955
LK 0.9001± 0.1950 0.9338± 0.2017

Average 0.8774± 0.1292 0.9358± 0.1331

4.5 Limitation and future work

In this paper, the performance of small organ segmentation is still not satisfied. In
the future, we will focus on the segmentation of those organs, such as gallbladder
and adrenal gland. Moreover, self-supervised learning with unlabelled data will
also be considered as our future work, and the careful adjustment will further
improve the segmentation performance.

5 Conclusion

The proposed method can work well on abdominal organs, especially for the or-
gans with big-size, such as liver, spleen and kidneys. Disappointing performance
is obtained for AGs and gallbladder because the blurred edges and small-size.
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