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ABSTRACT

Significant progress has been made in reasoning segmentation by combining
multi-modal large language models (MLLMs) with the Segment Anything Model
(SAM): the former excel in reasoning and vision–language alignment, while the
latter offers powerful pixel-level understanding. However, current paradigms
fall short in exploiting SAM’s strengths, especially the ability to support iter-
ative mask refinement by interactive segmentation, a process that human users
can naturally perform. To bridge this gap, we introduce SAM-Veteran, an ex-
perienced mask-aware SAM agent capable of emulating human interaction with
SAM via a reasoning-driven segmentation workflow that integrates (i) generating
bounding boxes given image–query pairs for SAM input, (ii) proposing refinement
points based on SAM-generated masks, and (iii) adaptively terminating the pro-
cess. Aiming for this goal, we propose a multi-task reinforcement learning frame-
work based on Group Relative Policy Optimization (GRPO), which enhances the
MLLM’s abilities in textual grounding and mask comprehension. Furthermore,
we introduce a dynamic sampling strategy tailored for generating both boxes and
points to stabilize training. Extensive experiments across diverse datasets show
that SAM-Veteran achieves human-like interaction with SAM and establishes new
state-of-the-art performance on both in-domain and out-of-domain benchmarks.

1 INTRODUCTION

Reasoning segmentation generates pixel-level binary masks by interpreting textual queries through
logical reasoning (Yu et al., 2018; Yang et al., 2022; Wang et al., 2022; Liu et al., 2023b; Zou
et al., 2023a;b; Yang et al., 2023; Lai et al., 2024; Ren et al., 2024a;b; Rasheed et al., 2024; Liu
et al., 2025a). Unlike traditional semantic or instance segmentation, which depends on predefined
categorical labels (e.g., dog or baby), reasoning segmentation is designed to handle more com-
plex, context-dependent queries such as the object held by the person in red. This setting better
reflects real-world needs for intelligent assistants and robots, while also imposing higher demands
on the model. It requires advanced capabilities such as nuanced textual understanding and logical
reasoning, fine-grained visual perception and image–text alignment, and broad domain knowledge
combined with common sense. Multi-modal large language models (MLLMs) (Li et al., 2023; Liu
et al., 2023a; Wang et al., 2024; Chen et al., 2024b; Liu et al., 2024; Yang et al., 2025; Bai et al.,
2025), owing to their integrated reasoning and multi-modal perception abilities, have thus become a
central component in the latest paradigms for this task.

Recent studies have investigated two primary MLLM-based paradigms for this task: (1) Supervised
Fine-Tuning (SFT), where MLLMs generate special tokens that control a learnable segmentation
head or decoder, thereby enabling end-to-end training as a unified model (Yan et al., 2024; Lai et al.,
2024; Yan et al., 2025); and (2) Reinforcement Learning (RL), where MLLMs are optimized with
reward signals for generating boxes and/or points that are then fed into Segment Anything Model
(SAM) (Kirillov et al., 2023) to produce the final segmentation (Liu et al., 2025b; Huang et al.,
2025). While SFT-based methods effectively incorporate the reasoning capability of MLLMs into
segmentation pipelines, they suffer from two key limitations: (i) catastrophic forgetting of general
reasoning abilities, and (ii) poor generalization to out-of-domain data (Chu et al., 2025). RL-based
methods, on the other hand, either decouple MLLMs from SAM during training, leading to sub-
optimal segmentation inputs (Liu et al., 2025a), or fail to fully exploit SAM’s capacity for iterative
refinement and interactive segmentation as human users (Huang et al., 2025). SegAgent (Zhu et al.,
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Figure 1: Inference workflow of SAM-Veteran. Given an image-question pair, SAM-Veteran first
predicts a bounding box for the target, which SAM converts into an initial mask. SAM-Veteran
iteratively refines this mask by generating refinement points for SAM, until either both points are
null (indicating a satisfactory segmentation) or the maximum refinement step is reached.

2025b) is the first, and so far the only, approach that emulates the behavior of human SAM users,
performing SAM-friendly point generation and iterative mask refinement through RL-style opti-
mization. However, it depends on bounding boxes generated by another MLLM as the initial input
for SAM and lacks the ability to adaptively terminate the refinement process as humans do. More-
over, the reliance on hand-crafted ground truth for point traces may constrain its exploration of more
effective strategies for mask refinement.

To address these limitations, we propose SAM-Veteran, an experienced MLLM-based SAM agent
designed for human-like SAM usage. As illustrated in Figure 1, SAM-Veteran follows a complete
reasoning-driven segmentation workflow that includes: (1) generating bounding boxes given im-
age–query pairs for SAM input, (2) proposing refinement points based on SAM-generated masks,
and (3) adaptively terminating the process. This design closely mirrors the intuitive way humans
interact with SAM. To enable the MLLM to perform this workflow, we propose a multi-task rein-
forcement learning framework based on Group Relative Policy Optimization (GRPO) (Shao et al.,
2024), designed to enhance its capabilities in textual grounding and mask comprehension. The
framework consists of: (i) a textual grounding task, where the model learns to generate bounding
boxes that maximize both box IoU and mask IoU of SAM-predicted masks; (ii) a mask compre-
hension task, where the model judges whether the SAM-predicted mask is satisfactory and, if not,
generates refinement points to effectively improve mask IoU; and (iii) an auxiliary task, which
further strengthens mask comprehension by requiring the model to identify the centers of flaws in
manually corrupted masks with random false positives and/or false negatives. Moreover, to stabi-
lize GRPO-based reinforcement learning, we incorporate the concept of dynamic sampling from
DAPO (Yu et al., 2025) into our framework. Extensive experiments demonstrate that SAM-Veteran
effectively generates bounding boxes for initial SAM segmentation, produces points for iterative
mask refinement, and can adaptively terminate the process. Evaluated on multiple reasoning-based
segmentation datasets, it achieves state-of-the-art (SOTA) performance on both in-domain and out-
of-domain benchmarks. The contributions of this work are summarized as follows:

• We propose SAM-Veteran, an experienced SAM agent that emulates human usage behavior
through a reasoning-driven segmentation workflow encompassing box generation, iterative mask
refinement, and adaptive termination. To the best of our knowledge, it is the first model to unify
all of these behaviors within a single framework.

• We present a multi-task RL framework consisting of three tasks: a grounding task, which trains
the model to generate bounding boxes well-suited for SAM segmentation; a mask comprehen-
sion task, which enables the model to evaluate mask quality and provide refinement points when
necessary; and an auxiliary task, which further enhances the model’s mask comprehension ability.

• We conduct extensive experiments on both in-domain and out-of-domain datasets. The results
demonstrate that SAM-Veteran performs human-like SAM usage and achieves state-of-the-art
performance across multiple benchmarks.
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2 RELATED WORK

Supervised Fine-Tuning Approaches. SFT has been widely adopted to adapt MLLMs for reason-
ing segmentation (Wei et al., 2024; Zhang et al., 2024a; Bai et al., 2024; Sun et al., 2024; Zhang
et al., 2024b; Yuan et al., 2024; Yan et al., 2025). Early efforts, such as LISA (Lai et al., 2024)
and its extensions GSVA (Xia et al., 2024), PixelLM (Ren et al., 2024b), and PerceptionGPT (Pi
et al., 2024), employ SFT on mixed datasets containing mask labels to finetune large language mod-
els (LLMs) utilizing LoRA (Hu et al., 2022) and segmentation modules jointly. Diverging from
this paradigm, LLM-Seg (Wang & Ke, 2024) and HReasonSeg (Lin et al., 2025) reformulate the
segmentation task as a mask selection problem without the need to train the segmentation modules.
These methods rely on implicit semantic tokens or task-specific decoders to generate pixel-level
masks, achieving strong performance on in-domain benchmarks. MMCPF (Tang et al., 2024) and
GenSAM (Hu et al., 2024) focus on camouflaged object segmentation with SAM by optimizing
visual prompts, but neither realizes iterative refinement with mask comprehension.

Reinforcement Learning Approaches. RL has emerged as a promising alternative, enabling mod-
els to learn generalizable segmentation policies through reward signals (Wang et al., 2025c; Wu
et al., 2025; Wang et al., 2025b). Seg-Zero (Liu et al., 2025a) initializes its reasoning model with a
pretrained MLLM and employs RL to activate reasoning chains without requiring SFT on reasoning
data. VisionReasoner (Liu et al., 2025b) broadens this scope by addressing multiple visual per-
ception tasks, including detection, segmentation, and counting, within a unified GRPO framework.
More recently, SAM-R1 (Huang et al., 2025) advances this line of research by directly integrating
SAM into the RL feedback loop, where segmentation masks serve as fine-grained reward signals.
Beyond purely RL-based methods with frozen segmentation modules, recent work explores hy-
brid strategies that combine SFT and RL. For instance, POPEN (Zhu et al., 2025a) incorporates
preference-based optimization to align MLLMs with human preferences via RL. Besides, SegAgent
first generates synthetic trajectories using a modified RL based on StaR (Zelikman et al., 2022), and
then finetunes the MLLMs on these trajectories to mimic human interactions with SAM.

3 SAM-VETERAN

3.1 TASK FORMULATION

In this work, we empower the MLLM to mimic human behavior when using SAM for reasoning
segmentation. The optimized MLLM is treated as an experienced SAM user, referred to as SAM-
Veteran, which can carry out textual grounding (generate bounding boxes), iterative mask refinement
(output point coordinates), and adaptive termination. Specifically, given an image I and a question
Q, the MLLM is prompted with QB to generate a bounding box b ∈ R4 for the target object. This
image and bounding box are then input to SAM, producing an initial segmentation mask M . Next,
the image and the resulting mask are fed back into the MLLM, which is now prompted with QP to
generate refinement points: a positive point p+ ∈ R2 to recover the false negative region and/or a
negative point p− ∈ R2 to suppress the false positive region. These points, along with the previous
mask, are passed to SAM to generate an updated segmentation M ′. This iterative process continues
until either the MLLM determines that the mask is satisfactory, at which it outputs null for both
points, or the maximum refinement step is reached (forced termination). This process can be framed
as a Markov Decision Process (MDP) (S,A, T,R), where:

• State s ∈ S: Represents the current segmentation result. Since the quality of the mask depends
on the image and the question, we define the state as a triplet, i.e., s = (M, I,Q).

• Action a ∈ A: Refers to the answer from the MLLM for SAM input. Specifically, the initial
action is the bounding box for question grounding, i.e., a = b, while the subsequent actions
are the points for mask refinement, i.e., a ∈ {(p+, p−), (p+,null), (null, p−)}. When mask
refinement is complete, the action is a = (null,null).

• Transition Function T : S × A → S: Defines how the current state transitions to the next state
given a specific action, i.e., s′ = T (s, a). In our approach, the transition function is based on
SAM, which generates a new segmentation mask M ′ given the image I , current mask M , and
current action a from the MLLM.

3
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Figure 2: Multi-task RL framework comprising Textual Grounding, Mask Comprehension, and
Auxiliary Mask Comprehension. Two rollouts (with their rewards) are shown in different colors
(blue and yellow). In the final reward, different bar textures represent different reward functions.

• Reward Function R : S ×S ×A → R: Comprehensively considering the quality of current/next
state and the action, and providing the reward for the current transition, i.e., r = R(s′, s, a). The
details of the reward function are introduced in the following section.

Our goal is to learn a policy πθ(a|s) for the MLLM that enables human-like SAM-using for reason-
ing segmentation, by maximizing the expected reward Ea∼πθ(a|s)[R(s′, s, a)]. By this means, the
optimized SAM-Veteran is capable of using SAM to carry out a complete reasoning segmentation
workflow covering box generation, iterative mask refinement, and adaptive termination, emulating
the intuitive, human-like logic of the process.

3.2 MULTI-TASK REINFORCEMENT LEARNING FOR SAM-VETERAN

To accomplish this workflow, SAM-Veteran relies on two key abilities: (1) textual grounding,
which generates a bounding box around the target, and (2) mask comprehension, which evalu-
ates whether the SAM segmentation is satisfactory and, if not, produces refinement points to guide
SAM in improving the mask. To equip the MLLM with these capabilities, we propose a Multi-Task
Reinforcement Learning Framework for SAM-Veteran, based on GPRO, as illustrated in Figure 2.
Specifically, we provide the MLLM with task-specific prompts (detailed in Appendix A.1), prompt-
ing it to generate multiple responses (rollouts), each including both the reasoning process and the
final answer for the corresponding task. For each rollout, we compute a task-specific reward, which
is then used for GPRO optimization. The details of each task are outlined in the following sections.
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3.2.1 TASK 1: TEXTUAL GROUNDING

This task reinforces the MLLM’s ability to generate a bounding box for the target. Specifically, the
MLLM is prompted to locate the object in an image based on a given question. Formally, given a
pair of an image I and a corresponding question Q, the MLLM receives a grounding-specific prompt
QB, which guides it to generate the reasoning process and bounding box coordinates b. We define
three types of rewards for this task:

• Box Reward: We define our box reward as the combination of box IoU reward RB
IoU and box L1

reward RB
L1

proposed in Seg-Zero. Given the GT box bGT ∈ R4, each component is defined as,

RB
IoU =

{
1, IoU(b, bGT) > 0.5
0, otherwise,

RB
L1

=

{
1,

∑
i |bi − bGT

i |/4 < 10
0, otherwise.

• SAM Reward RSAM: We input the image I and the bounding box b into SAM, which produces
the segmentation mask M = SAM(I, b). The SAM reward RSAM is defined as the IoU between
the predicted mask M and the ground truth mask MGT, i.e., RSAM = IoU(M,MGT). SAM
reward evaluates how well the box supports SAM’s segmentation.

• Formatting Reward: This reward enforces compliance with the required output format. In par-
ticular, the MLLM must encapsulate its reasoning process and final answer within predefined
tags (1 score) and provide the answer in a strictly parsable format (1 score). This reward applies
uniformly across all tasks.

3.2.2 TASK 2: MASK COMPREHENSION

Table 1: IoU Imp. Reward.

∆ (-1, 0] (0, 0.1] (0.1, 0.5] (0.5, 1]

R∆ 0 1 2 3

Table 2: Reward combinations in all cases.

Action a Good Enough Need Refinement

(p+, p−) 0
RDCS +R∆(null,null) RDCS + 3

Others RENC

This task trains the MLLM to generate points
that serve as additional inputs for SAM to re-
fine the mask, or to terminate the process if
the mask is already satisfactory. Specifically,
we provide the MLLM with an image over-
laid by a green transparent mask M (following
SegAgent), predicted by SAM, together with
the corresponding question Q. The MLLM
is then prompted with a refinement-specific
prompt QP, from which it predicts a positive
point p+ and/or a negative point p−. The im-
age I , the mask M , and the refinement points
(p+, p−), are fed into SAM, which outputs an
improved mask M ′ = SAM(I,M, p+, p−). Regarding rewards, in addition to the SAM reward
RSAM = IoU(M ′,MGT) and formatting reward, we also incorporate decision reward and an IoU
improvement (IoU imp.) reward for this task:

• Decision Reward RDCS
C : This reward guides the MLLM to terminate the refinement process at

the appropriate time. Given a state (M, I,Q), two cases are considered: (1) the current mask is
unsatisfactory and requires further refinement (Need Refinement), and (2) the mask is sufficiently
accurate and should be accepted (Good Enough). The MLLM receives a score of 1 if it produces
refinement points (a ̸= (null,null)) when the mask is in the Need Refinement case, or if it
terminates the process (a = (null,null)) when the mask is in the Good Enough case. In all
other situations, the reward is set to 0.

• IoU Imp. Reward R∆: This reward evaluates how much the IoU is improved by the current
action if the mask needs refinement. It is defined based on the IoU change ∆ = IoU(M ′,MGT)−
IoU(M,MGT), as shown in Table 1. Specifically, the MLLM receives the highest score of 3 if
the mask shows a significant IoU improvement (∆ > 0.5); the reward is set to 0 if the refinement
process degrades the mask (∆ ≤ 0).

The overall reward of this task is determined by case–action pairs. Table 2 summarizes the combi-
nation of the two rewards for each pair. For consistency, the maximum reward is fixed at 4 in both
the Need Refinement and Good Enough cases. In addition, an encouraging score of RENC = 2 is
granted when the model generates only one type of point in the Good Enough case.

5
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A key challenge in this task lies in explicitly obtaining masks under the two designated scenarios.
To collect the data, we first extract ground-truth (GT) bounding boxes for the target objects in the
training set and then provide each box–image pair to SAM for segmentation. The resulting masks
are categorized as Need Refinement if their IoU is low, and as Good Enough if their IoU is high.
To reduce the impact of imperfect edge annotations in the GT masks and to ensure that the MLLM
focuses on substantive segmentation errors, we adopt a modified IoU calculation that excludes near-
edge pixels1. Under this scheme, masks with IoU = 1 are classified as Good Enough, whereas those
with IoU < 0.9 are deemed Need Refinement. Furthermore, we balance the ratio between these two
categories to avoid training bias.

3.2.3 TASK 3: AUXILIARY MASK COMPREHENSION

When trained solely on the two tasks introduced above, we observe that the MLLM continues refin-
ing the mask indefinitely, even when the mask is already perfect. We hypothesize that this behavior
arises from the MLLM’s limited ability to interpret masks within images, likely due to insufficient
exposure to such data during pretraining. To enhance the model’s mask comprehension, we intro-
duce an auxiliary task, where ground-truth (GT) masks are intentionally corrupted with artificial im-
perfections, including random polygonal inclusions (serve as false positives) and exclusions (serve
as false negatives). Specifically, the MLLM is provided with the image overlaid with the imperfect
mask M and the corresponding question Q. The same refinement-specific question QP is used to
prompt the model, guiding it to predict a positive point p+ and a negative point p−, corresponding
to the centers of the false negative and false positive regions, respectively. To enforce this behavior,
we define the following rewards:

• Decision Reward RDCS
A : This reward encourages the MLLM to output the appropriate type of

point accordingly. Specifically, when a false positive region exists, the model receives a score of
1 for outputting p− ∈ R2. Conversely, if no false positive region is present, it receives a score of
1 for outputting null. An analogous reward scheme is applied to the false negative region.

• Point Reward: This reward encourages the MLLM to generate points at the correct locations.
Specifically, the model receives a score of 1 if the output p− falls within a false positive region,
and an additional score of 1 if its distance from the center of that region is less than τd = 50 pixels.
An analogous reward scheme is defined for p+.

3.3 DYNAMIC SAMPLING

Dynamic Sampling, proposed in DAPO, addresses the issue of gradient vanishing in GRPO. The
original dynamic sampling strategy keeps sampling until the batch is fully filled with samples whose
accuracy is neither 0 nor 1. We adapt and extend this idea to the three training tasks described above.
For the grounding task, we over-sample candidate boxes and then apply Non-Maximum Suppression
(NMS) to remove duplicates. This allows multiple objects or locations within the image to be
sampled, thereby increasing the diversity of rewards across rollouts and enhancing the effectiveness
of the advantage function. For the mask comprehension and auxiliary mask comprehension tasks,
actions can be categorized into four cases: (null,null), (p+,null), (null, p−), and (p+, p−).
We over-sample actions until all four cases are represented. This practice encourages the MLLM to
recognize the differences among possible actions. By ensuring a diverse set of actions with varying
rewards, optimization becomes more stable and effective.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Implementation Details. We adopt Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as our base MLLM
and SAM2-Large (Ravi et al., 2025) as the segmentation module. For training, we configure the
batch size to 16 alongside a rollout number of 8. AdamW (Loshchilov & Hutter, 2017) is exploited as
the optimizer with the learning rate 10−6, weight decay 0.01, and KL coefficient 0.005. To stabilize

1We employ the modified IoU for all IoU-based mask rewards (RSAM and R∆) during training, while the
original IoU is retained in evaluation for fair comparison. The detailed computation is in Appendix A.3.
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Table 3: We compare IoU (%) of different MLLM-based methods (7B version) across both in-
domain and out-of-domain datasets.

Method
Out-of-Domain In-Domain

ReasonSeg val ReasonSeg test RefCOCO testA RefCOCO+ testA RefCOCOg test

gIoU cIoU gIoU cIoU cIoU cIoU cIoU

Qwen2.5-VL+SAM2 57.2 41.4 53.0 48.1 76.1 71.4 64.8

Supervised Finetuning
LISA (Lai et al., 2024) 53.6 52.3 48.7 48.8 76.5 67.4 68.5
VISA (Yan et al., 2024) 52.7 57.8 — — 75.7 64.8 66.4
PixelLM (Ren et al., 2024b) — — — — 76.5 71.7 70.5
PerceptionGPT (Pi et al., 2024) — — — — 78.6 73.9 71.7
GSVA (Xia et al., 2024) 50.5 56.4 — — 78.9 69.6 73.3

Reinforcement Learning
POPEN (Zhu et al., 2025a) 60.2 64.5 — — 79.9 74.4 74.6
SegAgent (Zhu et al., 2025b) 33.0 25.4 33.5 31.3 80.3 75.5 74.6
Seg-Zero (Liu et al., 2025a) 62.6 62.0 57.5 52.0 80.3 76.2 72.6
SAM-R1 (Huang et al., 2025) 64.0 55.8 60.2 54.3 79.2 74.7 73.1

SAM-Veteran 68.2 67.3 62.6 56.1 80.8 76.6 73.4

the training, we adopt global batch normalization from REINFORCE++ (Hu et al., 2025) instead
of local standard deviation in GRPO. The model is trained for one episode with the verl (Sheng
et al., 2025) framework on eight 96GB GPUs, taking about 30 hours. To balance effectiveness and
efficiency in evaluation, we limit the refinement process to a maximum of 3 steps unless specified.
Following Seg-Zero and SAM-R1, we resize all images to 840×840 for both training and evaluation.
In addition, during each refinement step, we supply SAM with the initial bounding box obtained
from grounding. More implementation details are provided in Appendix A.2.

Datasets and Evaluation Metrics. Regarding datasets, we use RefCOCOg (Yu et al., 2016) to train
our SAM-Veteran (more details in Appendix A.4) and evaluate it on RefCOCO(+/g) (in-domain)
and ReasonSeg (Lai et al., 2024) (out-of-domain). Following Seg-Zero, we use gIoU and cIoU as
the evaluation metrics, where gIoU is the average of per-image Intersection-over-Unions (IoUs), and
the cIoU is the cumulative intersection over the cumulative union.

4.2 COMPARISONS

We compare SAM-Veteran with both SFT-based and RL-based models, with results summarized
in Table 3. For Qwen2.5-VL, segmentation masks are obtained by directly passing its predicted
bounding boxes into SAM. As shown in the table, SAM-Veteran outperforms all SFT-based methods
on both out-of-domain and in-domain benchmarks. Compared with Seg-Zero, it achieves stronger
results across all benchmarks, primarily because our framework integrates SAM’s segmentation out-
puts into the RL reward and enables iterative mask refinement. Although SegAgent reports higher
scores on the RefCOCOg test set, its reliance on SFT with point trajectories limits its generalization
ability, leading to poor performance on out-of-domain data; furthermore, it requires more refinement
steps and lacks adaptive termination. POPEN also achieves the best performance on RefCOCOg
test; however, it relies on a well-trained PixelLM as its initialization and adopts a relatively complex
multi-stage training pipeline. The previous out-of-domain SOTA, SAM-R1, attains strong perfor-
mance by adopting GRPO with SAM reward as guidance. However, unlike SAM-Veteran, it does
not support iterative refinement, resulting in a performance gap. Overall, on in-domain datasets,
SAM-Veteran achieves performance comparable to or exceeding existing methods in terms of IoU,
while on out-of-domain datasets, it consistently surpasses all baselines by a clear margin, underscor-
ing the generalization benefits of our reinforcement learning framework.

4.3 ABLATION STUDY

Iterative Mask Refinement. Figure 3 illustrates the trends in IoU across refinement steps. As
shown, SAM-Veteran demonstrates an obvious trend of improving the IoU compared to the initial
mask generated from a bounding box (step 0), with particularly notable gains on out-of-domain
datasets. In addition, we report the ratio of terminated samples at each step. The figure shows that

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3

2

0

2
 Io

U
 (%

)
0.00

1.58
2.43 2.47

0.00

-2.07 -1.77
-2.48

ReasonSeg val (gIoU)

0 1 2 3

2

0
0.00

0.68 0.95 1.04

0.00

-2.09 -2.38 -2.57

ReasonSeg test (gIoU)

0 1 2 3

4

2

0
0.00 0.19 0.23 0.30

0.00

-3.39
-4.23 -4.16

refCOCO testA (cIoU)

0 1 2 3
4

2

0
0.00

1.00 1.05 1.08

0.00

-3.33 -3.44
-3.98

refCOCOg testA (cIoU)

0

50

100

63
.5

0

74
.5

0

80
.5

0

0

50

100

80
.2

3

89
.2

2

92
.0

4

0

50

100

85
.7

7

92
.7

1

94
.0

8

0

50

100

Te
rm

in
at

io
n 

R
at

io
 (%

)

70
.2

0

82
.5

4

86
.4

2

 IoU (Ours)  IoU (Qwen) Termination Ratio (Ours)

Figure 3: Trends of IoU (∆) and termination ratio over refinement iterations.

Table 4: Ablation study on three training tasks: Textual Grounding (TG), Mask Comprehension
(MC), and Auxiliary (A). We report the IoU along with the termination behavior of the models.

TG MC A ReasonSeg val ReasonSeg test RefCOCO testA RefCOCO+ testA RefCOCOg test Avg. Termination

Qwen+SAM2 57.2 53.0 76.1 71.4 64.8 64.4 Arbitrary

✓ 62.4 62.1 79.3 75.3 72.2 70.3 Arbitrary
✓ ✓ 67.4 62.5 80.6 76.2 73.6 72.1 Never
✓ ✓ ✓ 68.2 62.6 80.8 76.6 73.4 72.2 Adaptive

this termination ratio increases with iterative refinement, indicating that SAM-Veteran progressively
considers more masks satisfactory and is able to adaptively terminate the process when appropriate.
For the original Qwen model, the IoU declines throughout the process, indicating insufficient mask
comprehension to support effective refinement.

Multi-Task Training. Table 4 presents the impact of the three training tasks. For Qwen and our
model trained solely on the textual grounding task, we report results based only on the predicted
bounding boxes. Our pure grounding model outperforms Qwen by a large margin, but both exhibit
arbitrary termination behavior. Incorporating mask comprehension substantially improves accuracy;
however, it leads to indefinite refinement in the absence of an effective termination policy. Introduc-
ing the auxiliary task further strengthens semantic understanding and enables adaptive termination.
When all three tasks are combined, the model achieves the highest overall IoU while maintaining an
adaptive refinement termination strategy.

Reward Design. Table 5 shows the results of the ablation study on our reward design. Specifically,
We study the model trained without SAM reward RSAM, decision reward RDCS

∗ (RDCS
C and RDCS

A ),
or IoU improvement reward R∆. Besides, we also replace R∆ with a hard version R∆

h = 3 ·
1∆>0. As the results show, removing either component leads to consistent performance drops across
datasets, highlighting their complementary roles in guiding effective refinement. Moreover, R∆

h

yields weaker results than the original design, confirming that R∆ is more effective.

Dynamic Sampling and Chain of Thought. The ablation results in Table 6 show that both dynamic
sampling (DS) and chain of thought (CoT) contribute to SAM-Veteran’s performance. Removing
DS leads to noticeable drops across most benchmarks, indicating its role in enhancing robustness.
Meanwhile, removing CoT in all tasks also degrades performance, particularly on ReasonSeg, while
the variant without CoT in mask-related tasks performs better but still lags behind the full model.
These results confirm that DS and CoT are complementary and jointly important for effectiveness.

Table 5: Ablation study on reward design, including removing SAM reward RSAM, decision reward
RDCS

∗ , and IoU improvement reward R∆, and replacing R∆ with a hard version R∆
h .

Model ReasonSeg val ReasonSeg test RefCOCO testA RefCOCO+ testA RefCOCOg test Avg.

SAM-Veteran 68.2 62.6 80.8 76.6 73.4 72.2
w/o RSAM 67.0 60.7 80.4 76.1 72.2 71.3
w/o RDCS

∗ 64.1 60.6 80.4 75.7 72.1 70.6
w/o R∆ 64.1 60.2 79.4 75.9 72.3 70.4
R∆ → R∆

h 67.5 61.9 81.0 76.2 73.0 71.9
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Table 6: Ablation study on dynamic sampling (DS) and chain of thought (CoT).

Model ReasonSeg val ReasonSeg test RefCOCO testA RefCOCO+ testA RefCOCOg test Avg.

SAM-Veteran 68.2 62.6 80.8 76.6 73.4 72.2
w/o DS 66.8 60.8 79.3 75.4 71.8 70.8
w/o CoT 64.4 60.1 80.0 75.5 73.0 70.6
w/o Mask CoT 66.1 61.5 80.3 76.8 73.3 71.6

The area that displays the time.

<think> The target object likely contains the display showing 
the current time. It should be a digital clock face where 
numbers are displayed to show hours and minutes.</think>  
<answer>{"bbox_2d": [243, 18, 697, 305]}</answer>

<think> The green segmentation mask seems correctly 
aligned with the display showing '11:28'. There is no 
apparent error as it accurately covers the time display 
without any overlap or omission.</think>
<answer>{"pos_point": null, "neg_point": null}</answer>

Foremost guy in sweatshirt.

<think> The image shows two people standing near what 
appears to be luggage on a conveyor belt. The person closest 
to the camera is wearing a dark-colored sweatshirt and has 
their hand resting on some luggage. This individual seems to 
be the foremost one based on their position relative to 
others.</think>
<answer>{"bbox_2d": [430, 0, 839, 837]}</answer>

<think> … There seems to be an issue with the green 
segmentation mask as it incorrectly identifies part of one leg 
(the right leg) as belonging to the person in the green shirt 
instead of being part of another individual's clothing or 
body... </think>
<answer>{"pos_point": [684, 597], "neg_point": null} 
</answer>

Full size bed with two pillows.

<think> The image shows multiple beds, but only one 
appears to be a full-size bed based. This particular bed has a 
checkered pattern and includes two white pillows placed at 
each end.</think>
<answer>{"bbox_2d": [500, 324, 729, 498]}</answer>

<think> … There is also a green segmented object that 
appears to be another piece of furniture or possibly an art 
installation. However, this green segmented object does not 
seem to have any part resembling a pillow…</think>
<answer> {"pos_point": [619, 405], "neg_point": null} 
</answer>

Woman nearest camera.

<think> … I need to identify which person is "nearest" to me 
based on their position relative to my viewpoint. In this case, 
it appears that the woman wearing black pants and a dark 
top is closest to the camera as she is positioned more towards 
the foreground compared to others.</think>
<answer>{"bbox_2d": [368, 59, 764, 830]}</answer>

<think> The image shows a woman who is partially 
segmented into green coloration. There appears to be an 
issue where her lower leg/foot is not fully covered by this 
green segmentation, which might indicate either a missing 
part . </think>
<answer> {"pos_point": [457, 768], "neg_point": null} 
</answer>

<think> The green segmentation mask covers most of this 
second person's body but does not seem to cover their hand 
properly… The foremost guy in the sweatshirt (the one in 
green) has his hand visible outside the green segmentation 
mask…</think>
<answer>{"pos_point": [768, 714], "neg_point": [539, 20]} 
</answer>

<think> The image shows two people standing next to each 
other, one wearing a dark shirt and jeans, and another 
person on the right side who is only partially visible due to 
being cut off from the frame... However, there doesn't seem to 
be an issue or error related to the foremost guy in a 
sweatshirt ...</think>
<answer>{"pos_point": null, "neg_point": null}</answer>

<think> ... The green segmented mask appears to cover an 
entire bed without any visible errors or missing parts. 
There's nothing indicating any part of this bed should be 
excluded from the segmentation due to incorrect 
labeling.</think>
<answer>{"pos_point": null, "neg_point": null}</answer>

<think> … There doesn't appear to be any part of her body 
missing from the mask, nor does it seem like there's any part 
where she should have been segmented but wasn’t. The entire 
arm appears to be covered by the green... </think>
<answer>{"pos_point": null, "neg_point": null}</answer>

Figure 4: Examples of the workflow with SAM-Veteran. In each example, the first column presents
the visual input at each step, the second column shows the text response, and the third column
displays the SAM prediction given the boxes/points. Positive/Negative points are shown as •/×.

Visualization. Figure 4 presents examples of the segmentation workflow performed by SAM-
Veteran. In each case, the first column shows the visual input at each step, the second column
displays the SAM-Veteran response, and the third column provides the SAM prediction given the
boxes/points. We illustrate three representative scenarios, corresponding to 0, 1, and 2 refinement
steps. These visualizations demonstrate that SAM-Veteran is capable of human-like usage of SAM,
including providing the target box, identifying segmentation errors, and terminating once the mask
is satisfactory. Moreover, the process is reasoning-driven, as the model generates a plausible chain
of thought to guide the final prediction. More visualizations are in Appendix B.6.

5 CONCLUSION

We propose SAM-Veteran, an MLLM-based agent designed to perform human-like SAM usage for
reasoning segmentation. Given an image and a text query, SAM-Veteran executes a complete work-
flow: (1) generating a bounding box as input to SAM for initial mask prediction, (2) iteratively
producing refinement points that serve as additional inputs for mask refinement, and (3) adaptively
terminating the process once the mask is deemed satisfactory. To equip the MLLM with these capa-
bilities for the workflow, we develop a multi-task reinforcement learning framework that explicitly
rewards accurate bounding textual grounding and mask comprehension. Quantitative evaluations
and qualitative visualizations demonstrate that SAM-Veteran achieves state-of-the-art performance
on both in-domain and out-of-domain benchmarks, while also exhibiting human-like behavior in
SAM-based reasoning segmentation.
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A REPRODUCIBILITY: MORE IMPLEMENTATION DETAILS

A.1 PROMPTS USED

We illustrate our prompts for textual grounding, mask comprehension, and auxiliary mask compre-
hension in Figure 5.

Let's find out "{Question}" with bbox step by step. 
Output the thinking process in <think> </think> and final answer in <answer> 
</answer> tags. Output the bbox of the target object in JSON format. 
Here is an example: 
<think> thinking process here </think>
<answer> {"bbox_2d": [x1, y1, x2, y2]} </answer>

Prompt for Textual Grounding (𝑸𝐁)

Please point out any errors in the green segmentation mask according to the 
question "{Question}". 
Output the thinking process in <think> </think> and final answer in <answer> 
</answer> tags. Output the center point of the error area in JSON format, 
with the key "pos_point" for the false negative and "neg_point" for the 
false positive. Set the point to null if there are no errors.  i.e., 
<think> thinking process here </think> 
<answer> {"pos_point": null, "neg_point": [x,y]} </answer>

Prompt for Mask Comprehension and Auxiliary (𝑸𝐏)

Figure 5: Prompts used for textual grounding, mask comprehension, and the auxiliary task.

A.2 MORE CONFIGURATION DETAILS

In our dynamic sampling strategy for bounding boxes, we apply Non-Maximum Suppression (NMS)
with an IoU threshold of 0.8 to eliminate duplicates. For refinement points, we generate samples
in counts of (1, 2, 2, 1) corresponding to the cases (null,null), (p+,null), (null, p−), and
(p+, p−), respectively. The pseudocode for dynamic sampling of bounding boxes and refinement
points is provided in Algorithm 1 and Algorithm 2. To accelerate training, dynamic sampling is
disabled after 300 iterations. Following DAPO, we increase the upper clipping bound to 0.28 to
encourage exploration. During evaluation, a repetition penalty of 1.1 is applied to reduce redundant
token generation. Full configurations can be found in Figure 6.

Algorithm 1: Dynamic Sampling for Box
Input: Actor model M , image I , text prompt

P , number of rollouts R, maximum
attempts A, maximum error count E,
IoU threshold τ

Output: Valid rolloutsR
R ← ∅, B ← ∅, ne← 0;
for a← 1 to A− 1 do
C ←M(I, P ), B′ ← B;
np ← |B|, ridx ← {−1}|B|

i=1;
foreach rollout r with index j in C do

if |R| = R: returnR;
if ¬ correctFormat(r) and ne < E :
R ← R∪ {r}, ne ← ne +1;
continue;

B′ ← B′ ∪ {getBox(r)};
ridx ← ridx ∪ {j};

foreach k ∈ NMS(B′, τ)[: R] do
if k ≥ np and |B| < R :
B ← B ∪ {B′[k]};
R ← R∪ {C[ridx[k]]};

if R− |R| > 0 :
C ←M(I, P ),R ← R∪ C[: (R− |R|)];

returnR;

Algorithm 2: Dynamic Sampling for Point
Input: Actor model M , image I , text prompt

P , number of rollouts R, maximum
attempts A

Output: Valid rolloutsR
R ← ∅;
ne ← 0;
cases← {error : 2, terminate : 1, positive :
2, negative : 2, both : 1};

for a← 1 to A− 1 do
C ←M(I, P ) ;
foreach rollout r ∈ C do

if |R| = R :
returnR;

c← getCase(r);
if cases[c] > 0 :
R ← R∪ {r};
cases[c]← cases[c] −1;

if R− |R| > 0 :
C ←M(I, P );
R ← R∪ C[: (R− |R|)];

returnR;
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data:
max_prompt_length: 1300
max_response_length: 1300
tasks:

- task: "Textual Grounding"
train_files: data/refCOCOg_9k_840_mask
repeat: 1

- task: "Mask Comprehension"
train_files: data/refCOCOg_600_700_840_mask
repeat: 5

- task: "Auxiliary"
train_files: data/refCOCOg_9k_840_mask
repeat: 1

algorithm:
adv_estimator: grpo
use_batch_std: true

worker:
actor:

global_batch_size: 16
use_kl_loss: true
kl_loss_coef: 5.0e-3
clip_low: 0.2
clip_high: 0.28
optim:

optimizer: AdamW
lr: 1.0e-6
weight_decay: 1.0e-2

rollout:
temperature: 1.0
n: 8
dynamic_sample:

max_try: 3
stop_iter: 300
tasks:

- task: "Textual Grounding"
meta_infos:

iou_thr: 0.8
max_error_cnt: 2

- task: "Mask Comprehension"
meta_infos:

required_cases: [1, 2, 2, 1]
max_error_cnt: 2

- task: "Auxiliary"
meta_infos:

required_cases: [1, 2, 2, 1]
max_error_cnt: 2

reward:
tasks:

- task: "Textual Grounding"
reward_list: ["formatting reward","sam reward","box reward"]

- task: "Mask Comprehension"
reward_list: ["formatting reward","sam reward","decision reward","iou imp. reward"]

- task: "Auxiliary"
reward_list: ["formatting reward","decision reward","point reward"]

trainer:
total_episodes: 1

Figure 6: Full configurations for the training of SAM-Veteran.

A.3 IOU EXCLUDING NEAR-EDGE PIXELS

As mentioned in SegAgent, the masks in refCOCO(+/g) (Yu et al., 2016) were annotated with poly-
gons, resulting in imperfect alignment with boundaries. So we refine the IoU computation in calcu-
lating rewards by excluding pixels near the object boundaries, as the Python code shown in Figure
7. In addition, we also visualize the near-edge pixels computed from our algorithm in Figure 8.

A.4 TRAINING DATA

For the grounding task, we follow Seg-Zero and use the same 9,000 samples from the full training
set of RefCOCOg. For the mask comprehension task, we also use these 9,000 samples, obtaining
SAM predictions from the ground-truth bounding boxes. We then compute the edge-pixel-excluded
IoU between the SAM masks and ground-truth masks. 600 samples with IoU = 1 are treated as
Good Enough, while around 700 samples with IoU < 0.9 are categorized as Need Refinement. For
the auxiliary mask comprehension task, we randomly augment the 9,000 ground-truth masks by
adding polygon-region inclusion or exclusion, each applied independently with probability 0.5. The
examples of data in the mask-related tasks are shown in Figure 9. To balance the data across tasks,
we upsample the mask comprehension data by repeating it five times during training.
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import numpy as np
import cv2

def compute_iou(pred_mask: np.ndarray, gt_mask: np.ndarray,
ignore_edge: int = 20) -> float:↪→
pred_mask = pred_mask.astype(bool)
gt_mask = gt_mask.astype(bool)
# Create ignore mask
if ignore_edge > 0:

# Use Canny to detect edges
edges = cv2.Canny(gt_mask.astype(np.uint8) * 255, 100, 200)
kernel = np.ones((ignore_edge, ignore_edge), np.uint8)
ignore_mask = cv2.dilate(edges, kernel,

iterations=1).astype(bool)↪→
else:

ignore_mask = np.zeros_like(gt_mask, dtype=bool)
# Apply ignore mask
valid_pred = np.logical_and(pred_mask, ˜ignore_mask)
valid_gt = np.logical_and(gt_mask, ˜ignore_mask)
intersection = np.logical_and(valid_pred, valid_gt).sum()
union = np.logical_or(valid_pred, valid_gt).sum()
if union == 0:

return 1 # avoid NaN, if both masks are empty
return intersection / union

Figure 7: Python code to compute IoU excluding pixels near the object boundaries.

GT Mask Near-Edge Pixels GT Mask Near-Edge Pixels

Figure 8: Visualization of GT mask (green) and the corresponding near-edge pixels (blue). We
exclude the near-edge pixels in IoU computation for training process only.

B MORE EXPERIMENTS AND ANALYSIS

B.1 MORE REASONING SEGMENTATION BENCHMARKS

To further demonstrate the effectiveness of our SAM-Veteran, we evaluated it on two more reason-
ing segmentation benchmarks, i.e., MMR (Jang et al., 2025) and MUSE (Ren et al., 2024b). For
MMR, we adopt the object-only version for fair comparison. Because a query in MMR may re-
fer to multiple objects, we merge the corresponding instance masks and treat the merged mask as
the ground-truth segmentation. For MUSE (test set), its original setting involves multi-target and
multi-referring segmentation, which differs from the widely used benchmarks. To align with our
evaluation protocols, we convert each sample into a classic triplet of image, single-object mask, and
mask caption. We then feed the image and mask caption into the model and compare the predicted
mask with the single-object ground-truth mask. Table 7 presents the results of different models on
the two benchmarks. Qwen+SAM2 provides the baseline performance on both datasets. Seg-Zero
delivers a substantial improvement over this baseline. In contrast, SegAgent performs poorly on
MUSE and nearly fails on MMR, reflecting the limited generalization ability introduced by its SFT-
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Auxiliary Mask ComprehensionMask Comprehension

Need Refinment Good Enough (𝐧𝐮𝐥𝐥, 𝐧𝐮𝐥𝐥) (𝐧𝐮𝐥𝐥, 𝒑!) (𝒑", 𝐧𝐮𝐥𝐥) (𝒑", 𝒑!)

Figure 9: Examples of visual inputs for the task of mask comprehension and the task of auxiliary
mask comprehension.

Table 7: Results on MMR and MUSE.

Method MMR (Jang et al., 2025) MUSE (Wang et al., 2025c)

gIoU cIoU gIoU cIoU

Qwen+SAM2 33.18 26.63 43.28 45.79
Seg-Zero (Liu et al., 2025a) 37.91 29.44 52.16 54.38
SegAgent (Zhu et al., 2025b) 13.34 16.56 37.29 43.48

SAM-Veteran 40.38 30.74 53.63 57.42

based training. Our SAM-Veteran further surpasses Seg-Zero by a clear margin on both benchmarks,
demonstrating the effectiveness of our RL-based multi-task training framework.

B.2 GENERAL MLLM BENCHMARKS

To substantiate our claim that the proposed RL framework mitigates catastrophic forgetting of gen-
eral reasoning ability, we evaluate SAM-Veteran—along with several baseline models—on stan-
dard general-purpose MLLM benchmarks (results shown in Table 8). As observed, the RL-based
methods, Seg-Zero and our SAM-Veteran, maintain performance comparable to their respective
base MLLM (Qwen2.5-VL), demonstrating that RL training preserves general reasoning capabil-
ity. In contrast, the SFT-based model SegAgent exhibits a clear decline in performance on general
vision-language benchmarks relative to its base model, Qwen-VL-Chat (Bai et al., 2023), indicating
significant loss of generalization ability. These results confirm that SFT-based training is prone to
catastrophic forgetting, whereas RL-based methods effectively avoid this issue.

B.3 MODEL SCALABILITY

To evaluate the scalability of our method, we scale the MLLM from 7B to 32B and conduct exper-
iments on Qwen2.5-VL-32B using the same settings as the 7B model. To further test scalability
in the refinement step, we increase the maximum refinement steps from 3 to 5 for the 32B model.
The results of the 32B variant across different datasets are presented in Table 9. As observed, the
32B version of SAM-Veteran achieves further improvements on most in-domain and out-of-domain
datasets, confirming the scalability of our approach.
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Table 8: Results of different models on general MLLM benchmarks. ∗ means re-evaluation by in
our environment.

Dataset Qwen2.5-VL Qwen2.5-VL∗ Seg-Zero∗ SAM-Veteran Qwen-VL-Chat∗ SegAgent∗

OCR-Related Understanding
SEED-Bench-2-Plus (Li et al., 2024) 70.4 69.6 69.5 69.5 44.6 9.7
TextVQAval (Singh et al., 2019) 84.9 85.3 85.4 84.2 60.2 1.29

General Visual Question Answering
MMStar (Chen et al., 2024a) 63.9 59.9 61.3 60.5 29.0 5.3
MMEsum (Fu et al., 2025) 2347 2303 2286 2328 1834 753
MUIRBench (Wang et al., 2025a) 59.6 58.3 57.4 59.2 27.9 12.23
BLINK (Fu et al., 2024) 56.4 54.3 55.3 54.0 14.4 4.42
RealWorldQA (xAI, 2024) 68.5 67.8 68.9 66.0 45.8 1.57

Table 9: Results of SAM-Veteran of 7B and 32B.

Model ReasonSeg val ReasonSeg test RefCOCO testA RefCOCO+ testA RefCOCOg test

gIoU cIoU gIoU cIoU cIoU cIoU cIoU

SAM-Veteran-7B 68.2 67.3 62.6 56.1 80.8 76.6 73.4
SAM-Veteran-32B 72.3 70.0 62.9 58.2 80.4 77.4 73.4

B.4 HYPERPARAMETER ANALYSIS

We conduct more analysis on hyperparamters as follows, with the results shown in Table 10.

Task 1 RB
IoU. We explore different designs of RB

IoU in Task 1. Specifically, we evaluate several
hard-threshold settings—0.3, 0.7, and the baseline 0.5—as well as a soft variant defined as RB

IoU =
IoU(b, bGT). The results indicate that the soft formulation performs worse than all hard-threshold
versions, and among the hard thresholds, 0.5 yields the best performance.

Task 2 Reward. First, we replace R∆ in Task 2 with a linear variant whose maximum reward is 3,
increasing linearly from 0 with respect to the IoU change ∆, i.e., R∆ = 3 · ReLU(∆). Second, we
set the encouraging score to RENC = 0. Both modifications lead to a slight decrease in performance
compared to the baseline.

Task 3 τd. We experiment with different values of τd in Task 3—10, 30, and the baseline 50. The
results show that τd = 50 achieves the best overall performance.

Training Rollout. For the training hyperparameters, we experiment with different numbers of roll-
outs in GRPO—4, 16, and the baseline 8. The results show that using 8 rollouts yields the best
overall performance.

B.5 INFERENCE COMPLEXITY

We compare the inference-time efficiency of different models using two metrics: the average number
of MLLM inference steps and the average time cost per sample on the RefCOCO testA dataset. The
results are shown in Table 11. For Qwen, we report the results of generating boxes for SAM. For

Table 10: Results of different hyperparameter configurations.

Parameter Value ReasonSeg val ReasonSeg test RefCOCO testA RefCOCO+ testA RefCOCOg test Avg.

Baseline 68.2 62.6 80.8 76.6 73.4 72.3

Task 1 RB
IoU

Hard 0.7 65.7 61.2 80.5 75.9 73.0 71.3
Hard 0.3 67.1 61.2 80.6 77.3 72.5 71.7
Soft 65.9 60.0 80.2 75.7 72.0 70.7

Task 2 Reward R∆ = 3 · ReLU(∆) 68.1 61.5 80.2 77.0 73.2 72.0
RENC = 0 66.8 62.0 80.2 76.6 72.9 71.7

Task 3 τd
10 67.3 62.1 80.3 76.6 72.0 71.6
30 68.3 61.8 79.9 76.4 72.8 71.8

Rollout 4 66.5 62.0 79.9 76.1 72.0 71.3
16 66.4 61.9 80.3 76.7 73.4 71.7
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Table 11: Inference cost comparison of different MLLMs.

Method Inference Backend Average Step Average Time (s)

Qwen+SAM2 Transformers 1 3.11
SegZero (Liu et al., 2025a) Transformers 1 3.43
SegAgent (Zhu et al., 2025b) Transformers 7 8.95

SAM-Veteran Transformers 2.08 5.09
vLLM 2.21 2.47

Seg-Zero, the MLLM outputs both the bounding boxes and the points for SAM in a single step,
whereas SegAgent adopts a fixed number of 7 refinement iterations for mask prediction.

As shown in the results, Qwen and Seg-Zero finish the task in a single step (about 3s), but their
segmentation performance is inferior to that of multi-step refinement methods, as evidenced in Ta-
ble 1. SegAgent, on the other hand, requires a fixed 7-step MLLM inference pipeline (about 9s),
leading to low efficiency. Our SAM-Veteran achieves stronger performance with substantially fewer
steps (< 2.5 steps on average, about 5s each sample). Our method is slower per sample per step
than SegAgent because CoT introduces more response tokens, resulting in improved performance
at the cost of extra time. Nevertheless, our method strikes a more favorable balance between seg-
mentation quality and inference efficiency. Furthermore, we improve efficiency by replacing the
Transformers backend with the vLLM (Kwon et al., 2023) backend, which significantly reduces the
inference time—approximately cutting the time consumption in half. This optimization is applied
to all evaluations in our experiments.

B.6 MORE VISUALIZATION

More visualization of SAM-Veteran is provided in Figure 10. For each example, we show the orig-
inal image, the initial SAM output from a bounding box, and the masks refined iteratively with
points. As the figure demonstrates, SAM-Veteran can accurately locate targets based on the posed
question. When the initial segmentation is imperfect, it identifies the error regions, and with addi-
tional points as guidance, SAM produces progressively improved masks. Remarkably, the model
can capture not only obvious omissions, such as boxes on a shelf, but also subtle, hard-to-detect
errors, like imperfect segmentation on a fork and the lawn mower.

As SegAgent also adopts a multi-step mask-refinement framework for reasoning segmentation, we
compare its prediction workflow with that of our SAM-Veteran in Figure 11, using both in-domain
and out-of-domain examples. As illustrated, SegAgent performs a fixed seven refinement steps
and sometimes generates ineffective or irrelevant points. In contrast, SAM-Veteran consistently
generates accurate bounding boxes and refinement points, while also being able to dynamically
determine when to terminate the procedure. These qualitative results further highlight the advantages
of our method over SegAgent.

B.7 FAILURE CASES

We present several failure cases of SAM-Veteran in Figure 12, categorized into four representative
types in different colors. The blue examples illustrate grounding deficiencies, where the model
either localizes the wrong target or fails to capture certain instances. The orange examples highlight
confusion with green objects or regions in the image, which resemble the green mask. The green
examples demonstrate cases where the model generates redundant or wrong points. Finally, the
yellow example reveals a flaw in the reasoning process, where the model incorrectly interprets the
green mask as part of a human outfit.

C LIMITATIONS

While SAM-Veteran is capable of performing general human-like SAM usage, it does not yet sup-
port fully free-form behavior. For example, it cannot generate new bounding boxes after the initial
step or revoke previous actions when the mask quality degrades. Enabling such capabilities would
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require a more sophisticated action space and additional data, which we leave for future work. More-
over, following SegAgent, we overlay the mask on the image as input to the MLLM. This changes
the object’s color and may lead to performance degradation on color-sensitive queries. In future
work, we plan to investigate presenting segmentation results to the MLLMs in a more effective way.

D USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we employed a Large Language Model (ChatGPT) solely
as a writing assistant. Its use was restricted to refining grammar, improving sentence structure,
and enhancing the clarity and readability of the text. All methods, claims, experimental results,
and conclusions were conceived and developed exclusively by the authors.
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A car with a color that is closer to lips/ck 
color. A gentleman wearing glasses tying a necktie.

If we need to store a large number of books, what 
object in the picture should we use for storage?

The half of grapefruit on the right.

A bowl of pasta and meat.

The objects that can protect the snail and 
prevent it from ge=ng injured. Laptop on right that is white.

Maintaining a well-groomed lawn requires 
regular cu=ng of the grass. What object in 
the picture could be used for this task?

LeD kid. Woman on right holding phone. Male. In the picture, what part of the car directly 
contacts the floor when it is parked?

Figure 10: Examples of the segmentation workflow performed by SAM-Veteran. Each example
shows the original image, the initial SAM output from a bounding box, and the masks iteratively
refined with points. Different number of refinement steps (0, 1, and 2) are in different colors.
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When you finish your business in the bathroom and want to store items such
as towels, where should you put them? Left man.

Man in black suit.You are =red a>er all day’s hard work and want to rest for a while. What 
furniture might you choose to sit on to rest?

Figure 11: Comparison of the segmentation workflows of SAM-Veteran and SegAgent. The blue
and orange flows correspond to SAM-Veteran and SegAgent, respectively. The two examples on the
left are out-of-domain cases, while the two on the right are in-domain. Negative points of SegAgent
are shown as blue dots •.
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A boy ea(ng pizza with cheese. Child.

Something that avoids falling down.Girl in front row, tan, white hat. Person in the black pants in background. Woman

Magician.

<think> The image shows two people on stage. One 
person appears to be dressed as a magician, wearing 
a top hat, formal attire, and holding what looks like a 
wand or stick… I can identify that the first person is 
likely the one meant for describing as the "magician". 
</think>
<answer>{"bbox_2d": [96, 25, 403, 831]}</answer>

<think> … The green coloration seems consistent 
throughout the magician's outfit… However, based on 
typical magician costumes, which often include 
elements like a top hat or wand, this particular green 
outfit appears to align well with what we would expect 
from such a character.</think>
<answer>{“pos_point”: [178,569], “neg_point”: null} 
</answer>

<think> … There doesn't appear to be any part of her 
body missing from the mask, nor does it seem like 
there's any part where she should have been 
segmented but wasn’t. The entire arm appears to be 
covered by the green... </think>
<answer>{“pos_point”: null, “neg_point”: null} 
</answer>

Figure 12: Failure cases of SAM-Veteran. Different types of errors are highlighted in different
colors. The GT mask is shown in purple.
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