

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SAM-VETERAN: AN MLLM-BASED HUMAN-LIKE SAM AGENT FOR REASONING SEGMENTATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Significant progress has been made in reasoning segmentation by combining
012 multi-modal large language models (MLLMs) with the Segment Anything Model
013 (SAM): the former excel in reasoning and vision–language alignment, while the
014 latter offers powerful pixel-level understanding. However, current paradigms
015 fall short in exploiting SAM’s strengths, especially the ability to support iter-
016 ative mask refinement by interactive segmentation, a process that human users
017 can naturally perform. To bridge this gap, we introduce **SAM-Veteran**, an ex-
018 perienced mask-aware SAM agent capable of emulating human interaction with
019 SAM via a reasoning-driven segmentation workflow that integrates (i) generating
020 bounding boxes given image–query pairs for SAM input, (ii) proposing refinement
021 points based on SAM-generated masks, and (iii) adaptively terminating the pro-
022 cess. Aiming for this goal, we propose a multi-task reinforcement learning frame-
023 work based on Group Relative Policy Optimization (GRPO), which enhances the
024 MLLM’s abilities in textual grounding and mask comprehension. Furthermore,
025 we introduce a dynamic sampling strategy tailored for generating both boxes and
026 points to stabilize training. Extensive experiments across diverse datasets show
027 that SAM-Veteran achieves human-like interaction with SAM and establishes new
028 state-of-the-art performance on both in-domain and out-of-domain benchmarks.

1 INTRODUCTION

031 Reasoning segmentation generates pixel-level binary masks by interpreting textual queries through
032 logical reasoning (Yu et al., 2018; Yang et al., 2022; Wang et al., 2022; Liu et al., 2023b; Zou
033 et al., 2023a;b; Yang et al., 2023; Lai et al., 2024; Ren et al., 2024a;b; Rasheed et al., 2024; Liu
034 et al., 2025a). Unlike traditional semantic or instance segmentation, which depends on predefined
035 categorical labels (e.g., *dog* or *baby*), reasoning segmentation is designed to handle more com-
036 plex, context-dependent queries such as *the object held by the person in red*. This setting better
037 reflects real-world needs for intelligent assistants and robots, while also imposing higher demands
038 on the model. It requires advanced capabilities such as nuanced textual understanding and logical
039 reasoning, fine-grained visual perception and image–text alignment, and broad domain knowledge
040 combined with common sense. Multi-modal large language models (MLLMs) (Li et al., 2023; Liu
041 et al., 2023a; Wang et al., 2024; Chen et al., 2024b; Liu et al., 2024; Yang et al., 2025; Bai et al.,
042 2025), owing to their integrated reasoning and multi-modal perception abilities, have thus become a
043 central component in the latest paradigms for this task.

044 Recent studies have investigated two primary MLLM-based paradigms for this task: (1) Supervised
045 Fine-Tuning (SFT), where MLLMs generate special tokens that control a learnable segmentation
046 head or decoder, thereby enabling end-to-end training as a unified model (Yan et al., 2024; Lai et al.,
047 2024; Yan et al., 2025); and (2) Reinforcement Learning (RL), where MLLMs are optimized with
048 reward signals for generating boxes and/or points that are then fed into Segment Anything Model
049 (SAM) (Kirillov et al., 2023) to produce the final segmentation (Liu et al., 2025b; Huang et al.,
050 2025). While SFT-based methods effectively incorporate the reasoning capability of MLLMs into
051 segmentation pipelines, they suffer from two key limitations: (i) catastrophic forgetting of general
052 reasoning abilities, and (ii) poor generalization to out-of-domain data (Chu et al., 2025). RL-based
053 methods, on the other hand, either decouple MLLMs from SAM during training, leading to sub-
optimal segmentation inputs (Liu et al., 2025a), or fail to fully exploit SAM’s capacity for iterative
refinement and interactive segmentation as human users (Huang et al., 2025). SegAgent (Zhu et al.,

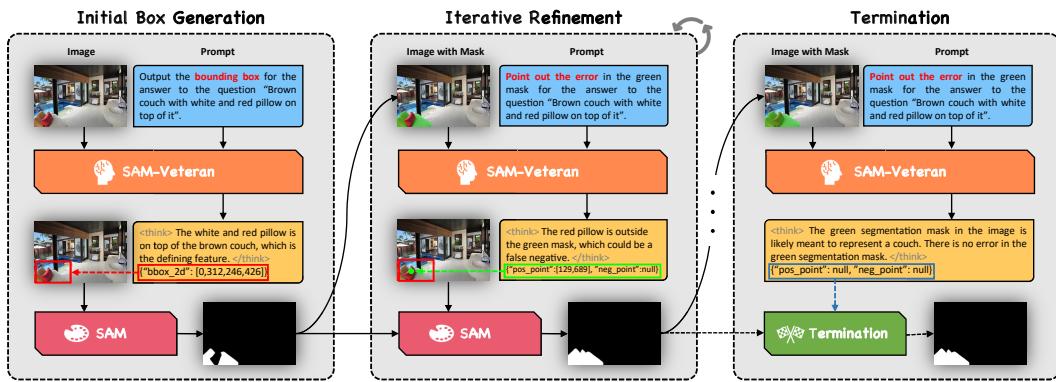


Figure 1: Inference workflow of SAM-Veteran. Given an image-question pair, SAM-Veteran first predicts a bounding box for the target, which SAM converts into an initial mask. SAM-Veteran iteratively refines this mask by generating refinement points for SAM, until either both points are `null` (indicating a satisfactory segmentation) or the maximum refinement step is reached.

2025b) is the first, and so far the only, approach that emulates the behavior of human SAM users, performing SAM-friendly point generation and iterative mask refinement through RL-style optimization. However, it depends on bounding boxes generated by another MLLM as the initial input for SAM and lacks the ability to adaptively terminate the refinement process as humans do. Moreover, the reliance on hand-crafted ground truth for point traces may constrain its exploration of more effective strategies for mask refinement.

To address these limitations, we propose **SAM-Veteran**, an experienced MLLM-based SAM agent designed for human-like SAM usage. As illustrated in Figure 1, SAM-Veteran follows a complete reasoning-driven segmentation workflow that includes: (1) generating bounding boxes given image–query pairs for SAM input, (2) proposing refinement points based on SAM-generated masks, and (3) adaptively terminating the process. This design closely mirrors the intuitive way humans interact with SAM. To enable the MLLM to perform this workflow, we propose a multi-task reinforcement learning framework based on Group Relative Policy Optimization (GRPO) (Shao et al., 2024), designed to enhance its capabilities in textual grounding and mask comprehension. The framework consists of: (i) a **textual grounding task**, where the model learns to generate bounding boxes that maximize both box IoU and mask IoU of SAM-predicted masks; (ii) a **mask comprehension task**, where the model judges whether the SAM-predicted mask is satisfactory and, if not, generates refinement points to effectively improve mask IoU; and (iii) an **auxiliary task**, which further strengthens mask comprehension by requiring the model to identify the centers of flaws in manually corrupted masks with random false positives and/or false negatives. Moreover, to stabilize GRPO-based reinforcement learning, we incorporate the concept of dynamic sampling from DAPO (Yu et al., 2025) into our framework. Extensive experiments demonstrate that SAM-Veteran effectively generates bounding boxes for initial SAM segmentation, produces points for iterative mask refinement, and can adaptively terminate the process. Evaluated on multiple reasoning-based segmentation datasets, it achieves state-of-the-art (SOTA) performance on both in-domain and out-of-domain benchmarks. The contributions of this work are summarized as follows:

- We propose SAM-Veteran, an experienced SAM agent that emulates human usage behavior through a reasoning-driven segmentation workflow encompassing box generation, iterative mask refinement, and adaptive termination. To the best of our knowledge, it is the first model to unify all of these behaviors within a single framework.
- We present a multi-task RL framework consisting of three tasks: a grounding task, which trains the model to generate bounding boxes well-suited for SAM segmentation; a mask comprehension task, which enables the model to evaluate mask quality and provide refinement points when necessary; and an auxiliary task, which further enhances the model’s mask comprehension ability.
- We conduct extensive experiments on both in-domain and out-of-domain datasets. The results demonstrate that SAM-Veteran performs human-like SAM usage and achieves state-of-the-art performance across multiple benchmarks.

108 **2 RELATED WORK**

110 **Supervised Fine-Tuning Approaches.** SFT has been widely adopted to adapt MLLMs for reasoning segmentation (Wei et al., 2024; Zhang et al., 2024a; Bai et al., 2024; Sun et al., 2024; Zhang et al., 2024b; Yuan et al., 2024; Yan et al., 2025). Early efforts, such as LISA (Lai et al., 2024) and its extensions GSVA (Xia et al., 2024), PixelLM (Ren et al., 2024b), and PerceptionGPT (Pi et al., 2024), employ SFT on mixed datasets containing mask labels to finetune large language models (LLMs) utilizing LoRA (Hu et al., 2022) and segmentation modules jointly. Diverging from this paradigm, LLM-Seg (Wang & Ke, 2024) and HReasonSeg (Lin et al., 2025) reformulate the segmentation task as a mask selection problem without the need to train the segmentation modules. These methods rely on implicit semantic tokens or task-specific decoders to generate pixel-level masks, achieving strong performance on in-domain benchmarks. MMCPF (Tang et al., 2024) and GenSAM (Hu et al., 2024) focus on camouflaged object segmentation with SAM by optimizing visual prompts, but neither realizes iterative refinement with mask comprehension.

122 **Reinforcement Learning Approaches.** RL has emerged as a promising alternative, enabling models to learn generalizable segmentation policies through reward signals (Wang et al., 2025c; Wu et al., 2025; Wang et al., 2025b). Seg-Zero (Liu et al., 2025a) initializes its reasoning model with a pretrained MLLM and employs RL to activate reasoning chains without requiring SFT on reasoning data. VisionReasoner (Liu et al., 2025b) broadens this scope by addressing multiple visual perception tasks, including detection, segmentation, and counting, within a unified GRPO framework. More recently, SAM-R1 (Huang et al., 2025) advances this line of research by directly integrating SAM into the RL feedback loop, where segmentation masks serve as fine-grained reward signals. Beyond purely RL-based methods with frozen segmentation modules, recent work explores hybrid strategies that combine SFT and RL. For instance, POPEN (Zhu et al., 2025a) incorporates preference-based optimization to align MLLMs with human preferences via RL. Besides, SegAgent first generates synthetic trajectories using a modified RL based on StaR (Zelikman et al., 2022), and then finetunes the MLLMs on these trajectories to mimic human interactions with SAM.

135 **3 SAM-VETERAN**

136 **3.1 TASK FORMULATION**

139 In this work, we empower the MLLM to mimic human behavior when using SAM for reasoning segmentation. The optimized MLLM is treated as an experienced SAM user, referred to as SAM-Veteran, which can carry out textual grounding (generate bounding boxes), iterative mask refinement (output point coordinates), and adaptive termination. Specifically, given an image I and a question Q , the MLLM is prompted with Q^B to generate a bounding box $b \in \mathbb{R}^4$ for the target object. This image and bounding box are then input to SAM, producing an initial segmentation mask M . Next, the image and the resulting mask are fed back into the MLLM, which is now prompted with Q^P to generate refinement points: a positive point $p^+ \in \mathbb{R}^2$ to recover the false negative region and/or a negative point $p^- \in \mathbb{R}^2$ to suppress the false positive region. These points, along with the previous mask, are passed to SAM to generate an updated segmentation M' . This iterative process continues until either the MLLM determines that the mask is satisfactory, at which it outputs `null` for both points, or the maximum refinement step is reached (forced termination). This process can be framed as a Markov Decision Process (MDP) $(\mathcal{S}, \mathcal{A}, T, R)$, where:

- 152 • **State** $s \in \mathcal{S}$: Represents the current segmentation result. Since the quality of the mask depends 153 on the image and the question, we define the state as a triplet, i.e., $s = (M, I, Q)$.
- 155 • **Action** $a \in \mathcal{A}$: Refers to the answer from the MLLM for SAM input. Specifically, the initial 156 action is the bounding box for question grounding, i.e., $a = b$, while the subsequent actions 157 are the points for mask refinement, i.e., $a \in \{(p^+, p^-), (p^+, \text{null}), (\text{null}, p^-)\}$. When mask 158 refinement is complete, the action is $a = (\text{null}, \text{null})$.
- 159 • **Transition Function** $T : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$: Defines how the current state transitions to the next state 160 given a specific action, i.e., $s' = T(s, a)$. In our approach, the transition function is based on 161 SAM, which generates a new segmentation mask M' given the image I , current mask M , and current action a from the MLLM.

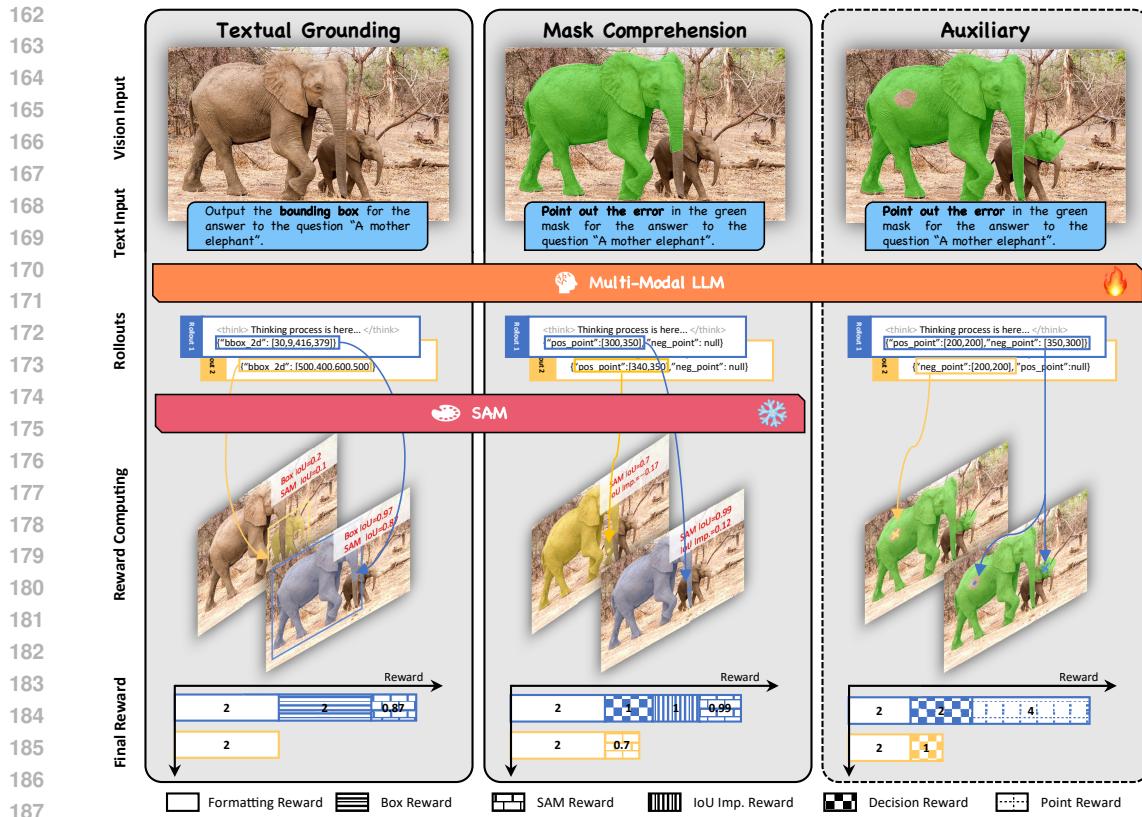


Figure 2: Multi-task RL framework comprising Textual Grounding, Mask Comprehension, and Auxiliary Mask Comprehension. Two rollouts (with their rewards) are shown in different colors (blue and yellow). In the final reward, different bar textures represent different reward functions.

- **Reward Function** $R : \mathcal{S} \times \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: Comprehensively considering the quality of current/next state and the action, and providing the reward for the current transition, i.e., $r = R(s', s, a)$. The details of the reward function are introduced in the following section.

Our goal is to learn a policy $\pi_\theta(a|s)$ for the MLLM that enables human-like SAM-using for reasoning segmentation, by maximizing the expected reward $\mathbb{E}_{a \sim \pi_\theta(a|s)}[R(s', s, a)]$. By this means, the optimized SAM-Veteran is capable of using SAM to carry out a complete reasoning segmentation workflow covering box generation, iterative mask refinement, and adaptive termination, emulating the intuitive, human-like logic of the process.

3.2 MULTI-TASK REINFORCEMENT LEARNING FOR SAM-VETERAN

To accomplish this workflow, SAM-Veteran relies on two key abilities: (1) **textual grounding**, which generates a bounding box around the target, and (2) **mask comprehension**, which evaluates whether the SAM segmentation is satisfactory and, if not, produces refinement points to guide SAM in improving the mask. To equip the MLLM with these capabilities, we propose a Multi-Task Reinforcement Learning Framework for SAM-Veteran, based on GPRO, as illustrated in Figure 2. Specifically, we provide the MLLM with task-specific prompts (detailed in Appendix A.1), prompting it to generate multiple responses (rollouts), each including both the reasoning process and the final answer for the corresponding task. For each rollout, we compute a task-specific reward, which is then used for GPRO optimization. The details of each task are outlined in the following sections.

216 3.2.1 TASK 1: TEXTUAL GROUNDING
217

218 This task reinforces the MLLM’s ability to generate a bounding box for the target. Specifically, the
219 MLLM is prompted to locate the object in an image based on a given question. Formally, given a
220 pair of an image I and a corresponding question Q , the MLLM receives a grounding-specific prompt
221 Q^B , which guides it to generate the reasoning process and bounding box coordinates b . We define
222 three types of rewards for this task:

223 • **Box Reward:** We define our box reward as the combination of box IoU reward R_{IoU}^B and box L_1
224 reward $R_{L_1}^B$ proposed in Seg-Zero. Given the GT box $b^{\text{GT}} \in \mathbb{R}^4$, each component is defined as,
225

$$226 R_{\text{IoU}}^B = \begin{cases} 1, & \text{IoU}(b, b^{\text{GT}}) > 0.5 \\ 0, & \text{otherwise,} \end{cases} \quad R_{L_1}^B = \begin{cases} 1, & \sum_i |b_i - b_i^{\text{GT}}|/4 < 10 \\ 0, & \text{otherwise.} \end{cases}$$

229 • **SAM Reward R^{SAM} :** We input the image I and the bounding box b into SAM, which produces
230 the segmentation mask $M = \text{SAM}(I, b)$. The SAM reward R^{SAM} is defined as the IoU between
231 the predicted mask M and the ground truth mask M^{GT} , i.e., $R^{\text{SAM}} = \text{IoU}(M, M^{\text{GT}})$. SAM
232 reward evaluates how well the box supports SAM’s segmentation.

233 • **Formatting Reward:** This reward enforces compliance with the required output format. In par-
234 ticular, the MLLM must encapsulate its reasoning process and final answer within predefined
235 tags (1 score) and provide the answer in a strictly parsable format (1 score). This reward applies
236 uniformly across all tasks.

237 3.2.2 TASK 2: MASK COMPREHENSION
238

239 This task trains the MLLM to generate points
240 that serve as additional inputs for SAM to re-
241 fine the mask, or to terminate the process if
242 the mask is already satisfactory. Specifically,
243 we provide the MLLM with an image over-
244 laid by a green transparent mask M (following
245 SegAgent), predicted by SAM, together with
246 the corresponding question Q . The MLLM
247 is then prompted with a refinement-specific
248 prompt Q^P , from which it predicts a positive
249 point p^+ and/or a negative point p^- . The im-
250 age I , the mask M , and the refinement points
251 (p^+, p^-) , are fed into SAM, which outputs an
252 improved mask $M' = \text{SAM}(I, M, p^+, p^-)$. Regarding rewards, in addition to the SAM reward
253 $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU
improvement (IoU imp.) reward for this task:

254 • **Decision Reward R_C^{DCS} :** This reward guides the MLLM to terminate the refinement process at
255 the appropriate time. Given a state (M, I, Q) , two cases are considered: (1) the current mask is
256 unsatisfactory and requires further refinement (*Need Refinement*), and (2) the mask is sufficiently
257 accurate and should be accepted (*Good Enough*). The MLLM receives a score of 1 if it produces
258 refinement points ($a \neq (\text{null}, \text{null})$) when the mask is in the *Need Refinement* case, or if it
259 terminates the process ($a = (\text{null}, \text{null})$) when the mask is in the *Good Enough* case. In all
260 other situations, the reward is set to 0.

261 • **IoU Imp. Reward R^{Δ} :** This reward evaluates how much the IoU is improved by the current
262 action if the mask needs refinement. It is defined based on the IoU change $\Delta = \text{IoU}(M', M^{\text{GT}}) -$
263 $\text{IoU}(M, M^{\text{GT}})$, as shown in Table 1. Specifically, the MLLM receives the highest score of 3 if
264 the mask shows a significant IoU improvement ($\Delta > 0.5$); the reward is set to 0 if the refinement
265 process degrades the mask ($\Delta \leq 0$).

266 The overall reward of this task is determined by case–action pairs. Table 2 summarizes the combi-
267 nation of the two rewards for each pair. For consistency, the maximum reward is fixed at 4 in both
268 the *Need Refinement* and *Good Enough* cases. In addition, an encouraging score of $R^{\text{ENC}} = 2$ is
269 granted when the model generates only one type of point in the *Good Enough* case.

Table 1: IoU Imp. Reward.

Δ	(-1, 0]	(0, 0.1]	(0.1, 0.5]	(0.5, 1]
R^{Δ}	0	1	2	3

Table 2: Reward combinations in all cases.

Action a	<i>Good Enough</i>	<i>Need Refinement</i>
(p^+, p^-)	0	
$(\text{null}, \text{null})$	$R^{\text{DCS}} + 3$	$R^{\text{DCS}} + R^{\Delta}$
Others	R^{ENC}	

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}(M', M^{\text{GT}})$ and formatting reward, we also incorporate decision reward and an IoU improvement (IoU imp.) reward for this task:

Table 1: IoU Imp. Reward.

Table 2: Reward combinations in all cases.

Action a *Good Enough* *Need Refinement*

(p^+, p^-) 0

$(\text{null}, \text{null})$ $R^{\text{DCS}} + 3$ $R^{\text{DCS}} + R^{\Delta}$

Others R^{ENC}

Regarding rewards, in addition to the SAM reward $R^{\text{SAM}} = \text{IoU}($

270 A key challenge in this task lies in explicitly obtaining masks under the two designated scenarios.
 271 To collect the data, we first extract ground-truth (GT) bounding boxes for the target objects in the
 272 training set and then provide each box–image pair to SAM for segmentation. The resulting masks
 273 are categorized as *Need Refinement* if their IoU is low, and as *Good Enough* if their IoU is high.
 274 To reduce the impact of imperfect edge annotations in the GT masks and to ensure that the MLLM
 275 focuses on substantive segmentation errors, we adopt a modified IoU calculation that excludes near-
 276 edge pixels¹. Under this scheme, masks with $\text{IoU} = 1$ are classified as *Good Enough*, whereas those
 277 with $\text{IoU} < 0.9$ are deemed *Need Refinement*. Furthermore, we balance the ratio between these two
 278 categories to avoid training bias.
 279

280 3.2.3 TASK 3: AUXILIARY MASK COMPREHENSION

281 When trained solely on the two tasks introduced above, we observe that the MLLM continues refin-
 282 ing the mask indefinitely, even when the mask is already perfect. We hypothesize that this behavior
 283 arises from the MLLM’s limited ability to interpret masks within images, likely due to insufficient
 284 exposure to such data during pretraining. To enhance the model’s mask comprehension, we intro-
 285 duce an auxiliary task, where ground-truth (GT) masks are intentionally corrupted with artificial im-
 286 perfections, including random polygonal inclusions (serve as false positives) and exclusions (serve
 287 as false negatives). Specifically, the MLLM is provided with the image overlaid with the imperfect
 288 mask M and the corresponding question Q . The same refinement-specific question Q^P is used to
 289 prompt the model, guiding it to predict a positive point p^+ and a negative point p^- , corresponding
 290 to the centers of the false negative and false positive regions, respectively. To enforce this behavior,
 291 we define the following rewards:
 292

- 293 • **Decision Reward** R_A^{DCS} : This reward encourages the MLLM to output the appropriate type of
 294 point accordingly. Specifically, when a false positive region exists, the model receives a score of
 295 1 for outputting $p^- \in \mathbb{R}^2$. Conversely, if no false positive region is present, it receives a score of
 296 1 for outputting null. An analogous reward scheme is applied to the false negative region.
- 297 • **Point Reward**: This reward encourages the MLLM to generate points at the correct locations.
 298 Specifically, the model receives a score of 1 if the output p^- falls within a false positive region,
 299 and an additional score of 1 if its distance from the center of that region is less than $\tau_d = 50$ pixels.
 300 An analogous reward scheme is defined for p^+ .

301 3.3 DYNAMIC SAMPLING

302 Dynamic Sampling, proposed in DAPO, addresses the issue of gradient vanishing in GRPO. The
 303 original dynamic sampling strategy keeps sampling until the batch is fully filled with samples whose
 304 accuracy is neither 0 nor 1. We adapt and extend this idea to the three training tasks described above.
 305 For the grounding task, we over-sample candidate boxes and then apply Non-Maximum Suppression
 306 (NMS) to remove duplicates. This allows multiple objects or locations within the image to be
 307 sampled, thereby increasing the diversity of rewards across rollouts and enhancing the effectiveness
 308 of the advantage function. For the mask comprehension and auxiliary mask comprehension tasks,
 309 actions can be categorized into four cases: (null, null), (p^+, null) , (null, p^-) , and (p^+, p^-) .
 310 We over-sample actions until all four cases are represented. This practice encourages the MLLM to
 311 recognize the differences among possible actions. By ensuring a diverse set of actions with varying
 312 rewards, optimization becomes more stable and effective.
 313

314 4 EXPERIMENTS

315 4.1 EXPERIMENT SETTINGS

316 **Implementation Details.** We adopt Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as our base MLLM
 317 and SAM2-Large (Ravi et al., 2025) as the segmentation module. For training, we configure the
 318 batch size to 16 alongside a rollout number of 8. AdamW (Loshchilov & Hutter, 2017) is exploited as
 319 the optimizer with the learning rate 10^{-6} , weight decay 0.01, and KL coefficient 0.005. To stabilize
 320

321 ¹We employ the modified IoU for all IoU-based mask rewards (R^{SAM} and R^Δ) during training, while the
 322 original IoU is retained in evaluation for fair comparison. The detailed computation is in Appendix A.3.
 323

324 Table 3: We compare IoU (%) of different MLLM-based methods (7B version) across both in-
 325 domain and out-of-domain datasets.

327 328 329 330 331 332 333 334 335 336 337 338 339 340	Method	Out-of-Domain				In-Domain		
		ReasonSeg		RefCOCO		RefCOCO+ testA	RefCOCOg test	
		gIoU	cIoU	gIoU	cIoU	cIoU	cIoU	cIoU
Qwen2.5-VL+SAM2	57.2	41.4	53.0	48.1	76.1	71.4	64.8	
Supervised Finetuning								
LISA (Lai et al., 2024)	53.6	52.3	48.7	48.8	76.5	67.4	68.5	
VISA (Yan et al., 2024)	52.7	57.8	—	—	75.7	64.8	66.4	
PixelLM (Ren et al., 2024b)	—	—	—	—	76.5	71.7	70.5	
PerceptionGPT (Pi et al., 2024)	—	—	—	—	78.6	73.9	71.7	
GSVA (Xia et al., 2024)	50.5	56.4	—	—	78.9	69.6	73.3	
Reinforcement Learning								
POOPEN (Zhu et al., 2025a)	60.2	64.5	—	—	79.9	74.4	74.6	
SegAgent (Zhu et al., 2025b)	33.0	25.4	33.5	31.3	80.3	75.5	74.6	
Seg-Zero (Liu et al., 2025a)	62.6	62.0	57.5	52.0	80.3	76.2	72.6	
SAM-R1 (Huang et al., 2025)	64.0	55.8	60.2	54.3	79.2	74.7	73.1	
SAM-Veteran	68.2	67.3	62.6	56.1	80.8	76.6	73.4	

341
 342 the training, we adopt global batch normalization from REINFORCE++ (Hu et al., 2025) instead
 343 of local standard deviation in GRPO. The model is trained for one episode with the verl (Sheng
 344 et al., 2025) framework on eight 96GB GPUs, taking about 30 hours. To balance effectiveness and
 345 efficiency in evaluation, we limit the refinement process to a maximum of 3 steps unless specified.
 346 Following Seg-Zero and SAM-R1, we resize all images to 840×840 for both training and evaluation.
 347 In addition, during each refinement step, we supply SAM with the initial bounding box obtained
 348 from grounding. More implementation details are provided in Appendix A.2.

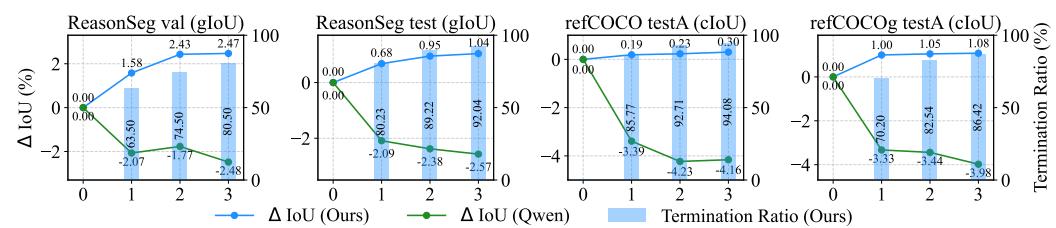
349
 350 **Datasets and Evaluation Metrics.** Regarding datasets, we use RefCOCOg (Yu et al., 2016) to train
 351 our SAM-Veteran (more details in Appendix A.4) and evaluate it on RefCOCO(+g) (in-domain)
 352 and ReasonSeg (Lai et al., 2024) (out-of-domain). Following Seg-Zero, we use gIoU and cIoU as
 353 the evaluation metrics, where gIoU is the average of per-image Intersection-over-Unions (IoUs), and
 354 the cIoU is the cumulative intersection over the cumulative union.

355 4.2 COMPARISONS

356
 357 We compare SAM-Veteran with both SFT-based and RL-based models, with results summarized
 358 in Table 3. For Qwen2.5-VL, segmentation masks are obtained by directly passing its predicted
 359 bounding boxes into SAM. As shown in the table, SAM-Veteran outperforms all SFT-based methods
 360 on both out-of-domain and in-domain benchmarks. Compared with Seg-Zero, it achieves stronger
 361 results across all benchmarks, primarily because our framework integrates SAM’s segmentation out-
 362 puts into the RL reward and enables iterative mask refinement. Although SegAgent reports higher
 363 scores on the RefCOCOg test set, its reliance on SFT with point trajectories limits its generalization
 364 ability, leading to poor performance on out-of-domain data; furthermore, it requires more refinement
 365 steps and lacks adaptive termination. POOPEN also achieves the best performance on RefCOCOg
 366 test; however, it relies on a well-trained PixelLM as its initialization and adopts a relatively complex
 367 multi-stage training pipeline. The previous out-of-domain SOTA, SAM-R1, attains strong perfor-
 368 mance by adopting GRPO with SAM reward as guidance. However, unlike SAM-Veteran, it does
 369 not support iterative refinement, resulting in a performance gap. Overall, on in-domain datasets,
 370 SAM-Veteran achieves performance comparable to or exceeding existing methods in terms of IoU,
 371 while on out-of-domain datasets, it consistently surpasses all baselines by a clear margin, underscor-
 372 ing the generalization benefits of our reinforcement learning framework.

373 4.3 ABLATION STUDY

374
 375 **Iterative Mask Refinement.** Figure 3 illustrates the trends in IoU across refinement steps. As
 376 shown, SAM-Veteran demonstrates an obvious trend of improving the IoU compared to the initial
 377 mask generated from a bounding box (step 0), with particularly notable gains on out-of-domain
 datasets. In addition, we report the ratio of terminated samples at each step. The figure shows that

Figure 3: Trends of IoU (Δ) and termination ratio over refinement iterations.Table 4: Ablation study on three training tasks: Textual Grounding (*TG*), Mask Comprehension (*MC*), and Auxiliary (*A*). We report the IoU along with the termination behavior of the models.

<i>TG</i>	<i>MC</i>	<i>A</i>	ReasonSeg val	ReasonSeg test	RefCOCO testA	RefCOCO+ testA	RefCOCOg test	Avg.	Termination
Qwen+SAM2			57.2	53.0	76.1	71.4	64.8	64.4	Arbitrary
✓			62.4	62.1	79.3	75.3	72.2	70.3	Arbitrary
✓	✓		67.4	62.5	80.6	76.2	73.6	72.1	Never
✓	✓	✓	68.2	62.6	80.8	76.6	73.4	72.2	Adaptive

this termination ratio increases with iterative refinement, indicating that SAM-Veteran progressively considers more masks satisfactory and is able to adaptively terminate the process when appropriate. For the original Qwen model, the IoU declines throughout the process, indicating insufficient mask comprehension to support effective refinement.

Multi-Task Training. Table 4 presents the impact of the three training tasks. For Qwen and our model trained solely on the textual grounding task, we report results based only on the predicted bounding boxes. Our pure grounding model outperforms Qwen by a large margin, but both exhibit arbitrary termination behavior. Incorporating mask comprehension substantially improves accuracy; however, it leads to indefinite refinement in the absence of an effective termination policy. Introducing the auxiliary task further strengthens semantic understanding and enables adaptive termination. When all three tasks are combined, the model achieves the highest overall IoU while maintaining an adaptive refinement termination strategy.

Reward Design. Table 5 shows the results of the ablation study on our reward design. Specifically, We study the model trained without SAM reward $R_{\text{SAM}}^{\text{SAM}}$, decision reward R_{*}^{DCS} (R_C^{DCS} and R_A^{DCS}), or IoU improvement reward R^{Δ} . Besides, we also replace R^{Δ} with a hard version $R_h^{\Delta} = 3 \cdot \mathbb{1}_{\Delta > 0}$. As the results show, removing either component leads to consistent performance drops across datasets, highlighting their complementary roles in guiding effective refinement. Moreover, R_h^{Δ} yields weaker results than the original design, confirming that R^{Δ} is more effective.

Dynamic Sampling and Chain of Thought. The ablation results in Table 6 show that both dynamic sampling (DS) and chain of thought (CoT) contribute to SAM-Veteran’s performance. Removing DS leads to noticeable drops across most benchmarks, indicating its role in enhancing robustness. Meanwhile, removing CoT in all tasks also degrades performance, particularly on ReasonSeg, while the variant without CoT in mask-related tasks performs better but still lags behind the full model. These results confirm that DS and CoT are complementary and jointly important for effectiveness.

Table 5: Ablation study on reward design, including removing SAM reward $R_{\text{SAM}}^{\text{SAM}}$, decision reward R_{*}^{DCS} , and IoU improvement reward R^{Δ} , and replacing R^{Δ} with a hard version R_h^{Δ} .

Model	ReasonSeg val	ReasonSeg test	RefCOCO testA	RefCOCO+ testA	RefCOCOg test	Avg.
SAM-Veteran	68.2	62.6	80.8	76.6	73.4	72.2
w/o $R_{\text{SAM}}^{\text{SAM}}$	67.0	60.7	80.4	76.1	72.2	71.3
w/o R_{*}^{DCS}	64.1	60.6	80.4	75.7	72.1	70.6
w/o R^{Δ}	64.1	60.2	79.4	75.9	72.3	70.4
$R^{\Delta} \rightarrow R_h^{\Delta}$	67.5	61.9	81.0	76.2	73.0	71.9

Table 6: Ablation study on dynamic sampling (DS) and chain of thought (CoT).

Model	ReasonSeg val	ReasonSeg test	RefCOCO testA	RefCOCO+ testA	RefCOCOg test	Avg.
SAM-Veteran	68.2	62.6	80.8	76.6	73.4	72.2
w/o DS	66.8	60.8	79.3	75.4	71.8	70.8
w/o CoT	64.4	60.1	80.0	75.5	73.0	70.6
w/o Mask CoT	66.1	61.5	80.3	76.8	73.3	71.6

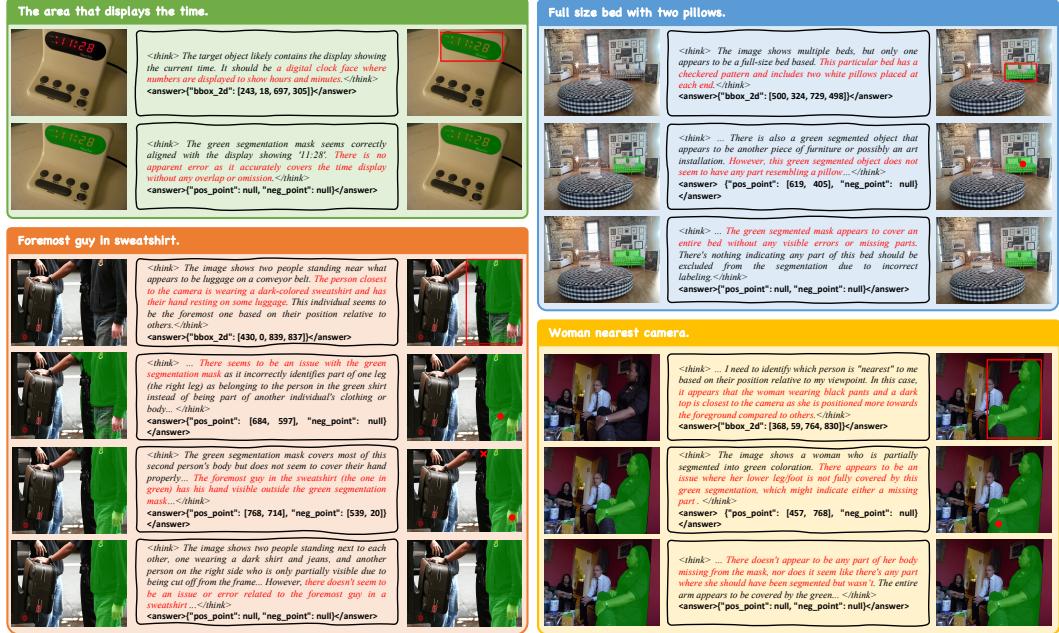


Figure 4: Examples of the workflow with SAM-Veteran. In each example, the first column presents the visual input at each step, the second column shows the text response, and the third column displays the SAM prediction given the boxes/points. Positive/Negative points are shown as ●/✗.

Visualization. Figure 4 presents examples of the segmentation workflow performed by SAM-Veteran. In each case, the first column shows the visual input at each step, the second column displays the SAM-Veteran response, and the third column provides the SAM prediction given the boxes/points. We illustrate three representative scenarios, corresponding to 0, 1, and 2 refinement steps. These visualizations demonstrate that SAM-Veteran is capable of human-like usage of SAM, including providing the target box, identifying segmentation errors, and terminating once the mask is satisfactory. Moreover, the process is reasoning-driven, as the model generates a plausible chain of thought to guide the final prediction. More visualizations are in Appendix B.6.

5 CONCLUSION

We propose SAM-Veteran, an MLLM-based agent designed to perform human-like SAM usage for reasoning segmentation. Given an image and a text query, SAM-Veteran executes a complete workflow: (1) generating a bounding box as input to SAM for initial mask prediction, (2) iteratively producing refinement points that serve as additional inputs for mask refinement, and (3) adaptively terminating the process once the mask is deemed satisfactory. To equip the MLLM with these capabilities for the workflow, we develop a multi-task reinforcement learning framework that explicitly rewards accurate bounding textual grounding and mask comprehension. Quantitative evaluations and qualitative visualizations demonstrate that SAM-Veteran achieves state-of-the-art performance on both in-domain and out-of-domain benchmarks, while also exhibiting human-like behavior in SAM-based reasoning segmentation.

486 REFERENCES
487

488 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
489 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
490 *arXiv preprint arXiv:2308.12966*, 1(2):3, 2023.

491 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
492 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
493 2025.

494 Zechen Bai, Tong He, Haiyang Mei, Pichao Wang, Ziteng Gao, Joya Chen, Zheng Zhang, and
495 Mike Zheng Shou. One token to seg them all: Language instructed reasoning segmentation in
496 videos. *Advances in Neural Information Processing Systems*, 37:6833–6859, 2024.

497 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
498 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
499 models? *Advances in Neural Information Processing Systems*, 37:27056–27087, 2024a.

500 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
501 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
502 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
503 2024b.

504 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
505 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
506 model post-training. In *Forty-second International Conference on Machine Learning*, 2025.

507 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
508 Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
509 large language models. In *The Thirty-ninth Annual Conference on Neural Information Processing
Systems Datasets and Benchmarks Track*, 2025.

510 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A
511 Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but
512 not perceive. In *European Conference on Computer Vision*, pp. 148–166. Springer, 2024.

513 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
514 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

515 Jian Hu, Jiayi Lin, Shaogang Gong, and Weitong Cai. Relax image-specific prompt requirement in
516 sam: A single generic prompt for segmenting camouflaged objects. In *Proceedings of the AAAI
Conference on Artificial Intelligence*, volume 38, pp. 12511–12518, 2024.

517 Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with
518 robustness to both prompt and reward models. *arXiv preprint arXiv:2501.03262*, 2025.

519 Jiaqi Huang, Zunnan Xu, Jun Zhou, Ting Liu, Yicheng Xiao, Mingwen Ou, Bowen Ji, Xiu Li, and
520 Kehong Yuan. Sam-r1: Leveraging sam for reward feedback in multimodal segmentation via
521 reinforcement learning. *Advances in Neural Information Processing Systems*, 2025.

522 Donggon Jang, Yucheol Cho, Suin Lee, Taehyeon Kim, and Daeshik Kim. Mmr: A large-scale
523 benchmark dataset for multi-target and multi-granularity reasoning segmentation. In *The Thir-
524 teenth International Conference on Learning Representations*, 2025.

525 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
526 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
527 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

528 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
529 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
530 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems prin-
531 ciples*, pp. 611–626, 2023.

540 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Re-
 541 reasoning segmentation via large language model. In *Proceedings of the IEEE/CVF Conference on*
 542 *Computer Vision and Pattern Recognition*, pp. 9579–9589, 2024.

543

544 Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao Zhang, and Ying Shan. Seed-bench-2-plus:
 545 Benchmarking multimodal large language models with text-rich visual comprehension. *arXiv*
 546 *preprint arXiv:2404.16790*, 2024.

547 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 548 pre-training with frozen image encoders and large language models. In *International conference*
 549 *on machine learning*, pp. 19730–19742. PMLR, 2023.

550

551 Weihuang Lin, Yiwei Ma, Xiaoshuai Sun, Shuting He, Jiayi Ji, Liujuan Cao, and Rongrong Ji.
 552 Hrseg: High-resolution visual perception and enhancement for reasoning segmentation. *arXiv*
 553 *preprint arXiv:2507.12883*, 2025.

554 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 555 *in neural information processing systems*, 36:34892–34916, 2023a.

556

557 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 558 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 559 pp. 26296–26306, 2024.

560

561 Jiang Liu, Hui Ding, Zhaowei Cai, Yuting Zhang, Ravi Kumar Satzoda, Vijay Mahadevan, and
 562 R Manmatha. Polyformer: Referring image segmentation as sequential polygon generation. In
 563 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18653–
 18663, 2023b.

564

565 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
 566 zero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint*
 567 *arXiv:2503.06520*, 2025a.

568

569 Yuqi Liu, Tianyuan Qu, Zhisheng Zhong, Bohao Peng, Shu Liu, Bei Yu, and Jiaya Jia. Vision-
 570 reasoner: Unified visual perception and reasoning via reinforcement learning. *arXiv preprint*
 571 *arXiv:2505.12081*, 2025b.

572

573 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 574 *arXiv:1711.05101*, 2017.

575

576 Renjie Pi, Lewei Yao, Jiahui Gao, Jipeng Zhang, and Tong Zhang. Perceptiongpt: Effectively fusing
 577 visual perception into llm. In *Proceedings of the IEEE/CVF conference on computer vision and*
 578 *pattern recognition*, pp. 27124–27133, 2024.

579

580 Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham
 581 Cholakkal, Rao M Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. Glamm: Pixel
 582 grounding large multimodal model. In *Proceedings of the IEEE/CVF Conference on Computer*
 583 *Vision and Pattern Recognition*, pp. 13009–13018, 2024.

584

585 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 586 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
 587 and videos. In *The Thirteenth International Conference on Learning Representations*, 2025.

588

589 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
 590 Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
 591 tasks. *arXiv preprint arXiv:2401.14159*, 2024a.

592

593 Zhongwei Ren, Zhicheng Huang, Yunchao Wei, Yao Zhao, Dongmei Fu, Jiashi Feng, and Xiaojie
 594 Jin. Pixellm: Pixel reasoning with large multimodal model. In *Proceedings of the IEEE/CVF*
 595 *Conference on Computer Vision and Pattern Recognition*, pp. 26374–26383, 2024b.

596

597 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 598 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 599 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

594 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 595 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings*
 596 *of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

597

598 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 599 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF*
 600 *conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.

601

602 Guangyan Sun, Mingyu Jin, Zhenting Wang, Cheng-Long Wang, Sici Ma, Qifan Wang, Tong Geng,
 603 Ying Nian Wu, Yongfeng Zhang, and Dongfang Liu. Visual agents as fast and slow thinkers.
 604 *arXiv preprint arXiv:2408.08862*, 2024.

605

606 Lv Tang, Peng-Tao Jiang, Zhi-Hao Shen, Hao Zhang, Jin-Wei Chen, and Bo Li. Chain of visual
 607 perception: Harnessing multimodal large language models for zero-shot camouflaged object de-
 608 tection. In *Proceedings of the 32nd ACM international conference on multimedia*, pp. 8805–8814,
 609 2024.

610

611 Fei Wang, Xingyu Fu, James Y Huang, Zekun Li, Qin Liu, Xiaogeng Liu, Mingyu Derek Ma, Nan
 612 Xu, Wenxuan Zhou, Kai Zhang, et al. Muirbench: A comprehensive benchmark for robust multi-
 613 image understanding. In *The Thirteenth International Conference on Learning Representations*,
 614 2025a.

615

616 Junchi Wang and Lei Ke. Llm-seg: Bridging image segmentation and large language model reason-
 617 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 618 pp. 1765–1774, 2024.

619

620 Lingfeng Wang, Hualing Lin, Senda Chen, Tao Wang, Changxu Cheng, Yangyang Zhong, Dong
 621 Zheng, and Wuyue Zhao. Alto: Adaptive-length tokenizer for autoregressive mask generation.
 622 *arXiv preprint arXiv:2505.16495*, 2025b.

623

624 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 625 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 626 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

627

628 Song Wang, Gongfan Fang, Lingdong Kong, Xiangtai Li, Jianyun Xu, Sheng Yang, Qiang Li, Jianke
 629 Zhu, and Xinchao Wang. Pixelthink: Towards efficient chain-of-pixel reasoning. *arXiv preprint*
 630 *arXiv:2505.23727*, 2025c.

631

632 Zhaoqing Wang, Yu Lu, Qiang Li, Xunqiang Tao, Yandong Guo, Mingming Gong, and Tongliang
 633 Liu. Cris: Clip-driven referring image segmentation. In *Proceedings of the IEEE/CVF conference*
 634 *on computer vision and pattern recognition*, pp. 11686–11695, 2022.

635

636 Cong Wei, Haoxian Tan, Yujie Zhong, Yujiu Yang, and Lin Ma. Lasagna: Language-based segmen-
 637 tation assistant for complex queries. *arXiv preprint arXiv:2404.08506*, 2024.

638

639 Yonghuang Wu, Wenwen Zeng, Xuan Xie, Chengqian Zhao, Guoqing Wu, and Jinhua Yu. Sampo:
 640 Visual preference optimization for intent-aware segmentation with vision foundation models.
 641 *arXiv preprint arXiv:2508.02464*, 2025.

642

643 xAI. Grok-1.5 vision preview. <https://x.ai/news/grok-1.5v>, 2024.

644

645 Zhuofan Xia, Dongchen Han, Yizeng Han, Xuran Pan, Shiji Song, and Gao Huang. Gsva: Gen-
 646 eralized segmentation via multimodal large language models. In *Proceedings of the IEEE/CVF*
 647 *Conference on Computer Vision and Pattern Recognition*, pp. 3858–3869, 2024.

648

649 Cilin Yan, Haochen Wang, Shilin Yan, Xiaolong Jiang, Yao Hu, Guoliang Kang, Weidi Xie, and
 650 Efstratios Gavves. Visa: Reasoning video object segmentation via large language models. In
 651 *European Conference on Computer Vision*, pp. 98–115. Springer, 2024.

652

653 Ziang Yan, Zhilin Li, Yinan He, Chenting Wang, Kunchang Li, Xinhao Li, Xiangyu Zeng, Zilei
 654 Wang, Yali Wang, Yu Qiao, et al. Task preference optimization: Improving multimodal large
 655 language models with vision task alignment. In *Proceedings of the Computer Vision and Pattern*
 656 *Recognition Conference*, pp. 29880–29892, 2025.

648 Rui Yang, Lin Song, Yicheng Xiao, Runhui Huang, Yixiao Ge, Ying Shan, and Hengshuang
 649 Zhao. HaplovL: A single-transformer baseline for multi-modal understanding. *arXiv preprint*
 650 *arXiv:2503.14694*, 2025.

651 Senqiao Yang, Tianyuan Qu, Xin Lai, Zhuotao Tian, Bohao Peng, Shu Liu, and Jiaya Jia. Lisa++:
 652 An improved baseline for reasoning segmentation with large language model. *arXiv preprint*
 653 *arXiv:2312.17240*, 2023.

654 Zhao Yang, Jiaqi Wang, Yansong Tang, Kai Chen, Hengshuang Zhao, and Philip HS Torr. LavT:
 655 Language-aware vision transformer for referring image segmentation. In *Proceedings of the*
 656 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 18155–18165, 2022.

657 Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
 658 in referring expressions. In *European conference on computer vision*, pp. 69–85. Springer, 2016.

659 Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, Mohit Bansal, and Tamara L Berg. Mat-
 660 ttnet: Modular attention network for referring expression comprehension. In *Proceedings of the*
 661 *IEEE conference on computer vision and pattern recognition*, pp. 1307–1315, 2018.

662 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 663 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 664 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

665 Yuqian Yuan, Wentong Li, Jian Liu, Dongqi Tang, Xinjie Luo, Chi Qin, Lei Zhang, and Jianke Zhu.
 666 Osprey: Pixel understanding with visual instruction tuning. In *Proceedings of the IEEE/CVF*
 667 *Conference on Computer Vision and Pattern Recognition*, pp. 28202–28211, 2024.

668 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
 669 reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

670 Tao Zhang, Xiangtai Li, Hao Fei, Haobo Yuan, Shengqiong Wu, Shunping Ji, Chen Change Loy,
 671 and Shuicheng Yan. Omg-llava: Bridging image-level, object-level, pixel-level reasoning and
 672 understanding. *Advances in neural information processing systems*, 37:71737–71767, 2024a.

673 Zheng Zhang, Yeyao Ma, Enming Zhang, and Xiang Bai. Psalm: Pixelwise segmentation with large
 674 multi-modal model. In *European Conference on Computer Vision*, pp. 74–91. Springer, 2024b.

675 Lanyun Zhu, Tianrun Chen, Qianxiong Xu, Xuanyi Liu, Deyi Ji, Haiyang Wu, De Wen Soh, and Jun
 676 Liu. Popen: Preference-based optimization and ensemble for lvlm-based reasoning segmentation.
 677 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 30231–30240,
 678 2025a.

679 Muzhi Zhu, Yuzhuo Tian, Hao Chen, Chunluan Zhou, Qingpei Guo, Yang Liu, Ming Yang, and
 680 Chunhua Shen. Segagent: Exploring pixel understanding capabilities in mllms by imitating hu-
 681 man annotator trajectories. In *Proceedings of the Computer Vision and Pattern Recognition Con-*
 682 *ference*, pp. 3686–3696, 2025b.

683 Xueyan Zou, Zi-Yi Dou, Jianwei Yang, Zhe Gan, Linjie Li, Chunyuan Li, Xiyang Dai, Harkirat
 684 Behl, Jianfeng Wang, Lu Yuan, et al. Generalized decoding for pixel, image, and language. In
 685 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15116–
 686 15127, 2023a.

687 Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Wang, Lijuan Wang, Jian-
 688 feng Gao, and Yong Jae Lee. Segment everything everywhere all at once. *Advances in neural*
 689 *information processing systems*, 36:19769–19782, 2023b.

690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 APPENDIX CONTENTS
703

704 **A Reproducibility: More Implementation Details**
705

706 A.1 Prompts Used
707 A.2 More Configuration Details
708 A.3 IoU Excluding Near-Edge Pixels
709 A.4 Training Data
710

712 **B More Experiments and Analysis**
713

714 B.1 More Reasoning Segmentation Benchmarks
715 B.2 General MLLM Benchmarks
716 B.3 Model Scalability
717 B.4 Hyperparameter Analysis
718 B.5 Inference Complexity
719 B.6 More Visualization
720 B.7 Failure Cases
721

722 **C Limitations**
723

724 **D Use of Large Language Models**
725

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A REPRODUCIBILITY: MORE IMPLEMENTATION DETAILS
757758 A.1 PROMPTS USED
759760 We illustrate our prompts for textual grounding, mask comprehension, and auxiliary mask comprehension in Figure 5.
761
762

764 Prompt for Textual Grounding (Q^B)	765 Prompt for Mask Comprehension and Auxiliary (Q^P)
766 Let's find out "{Question}" with bbox step by step. 767 Output the thinking process in <code><think></code> <code></think></code> and final answer in <code><answer></code> 768 <code></answer></code> tags. Output the bbox of the target object in JSON format. 769 Here is an example: 770 <code><think></code> thinking process here <code></think></code> 771 <code><answer></code> {"bbox_2d": [x1, y1, x2, y2]} <code></answer></code>	772 Please point out any errors in the green segmentation mask according to the 773 question "{Question}" 774 Output the thinking process in <code><think></code> <code></think></code> and final answer in <code><answer></code> 775 <code></answer></code> tags. Output the center point of the error area in JSON format, 776 with the key "pos_point" for the false negative and "neg_point" for the 777 false positive. Set the point to null if there are no errors. i.e., 778 <code><think></code> thinking process here <code></think></code> 779 <code><answer></code> {"pos_point": null, "neg_point": [x,y]} <code></answer></code>

770
771 Figure 5: Prompts used for textual grounding, mask comprehension, and the auxiliary task.
772
773774 A.2 MORE CONFIGURATION DETAILS
775776 In our dynamic sampling strategy for bounding boxes, we apply Non-Maximum Suppression (NMS)
777 with an IoU threshold of 0.8 to eliminate duplicates. For refinement points, we generate samples
778 in counts of (1, 2, 2, 1) corresponding to the cases (null, null), (p^+ , null), (null, p^-), and
779 (p^+ , p^-), respectively. The pseudocode for dynamic sampling of bounding boxes and refinement
780 points is provided in Algorithm 1 and Algorithm 2. To accelerate training, dynamic sampling is
781 disabled after 300 iterations. Following DAPO, we increase the upper clipping bound to 0.28 to
782 encourage exploration. During evaluation, a repetition penalty of 1.1 is applied to reduce redundant
783 token generation. Full configurations can be found in Figure 6.
784785 **Algorithm 1:** Dynamic Sampling for Box
786

Input: Actor model M , image I , text prompt P , number of rollouts R , maximum attempts A , maximum error count E , IoU threshold τ

Output: Valid rollouts \mathcal{R}

```

 $\mathcal{R} \leftarrow \emptyset, \mathcal{B} \leftarrow \emptyset, n_e \leftarrow 0;$ 
for  $a \leftarrow 1$  to  $A - 1$  do
   $\mathcal{C} \leftarrow M(I, P), \mathcal{B}' \leftarrow \mathcal{B};$ 
   $n_p \leftarrow |\mathcal{B}|, r_{\text{idx}} \leftarrow \{-1\}_{i=1}^{|\mathcal{B}|};$ 
  foreach rollout  $r$  with index  $j$  in  $\mathcal{C}$  do
    if  $|\mathcal{R}| = R$ : return  $\mathcal{R}$ ;
    if  $\neg \text{correctFormat}(r)$  and  $n_e < E$ :
       $\mathcal{R} \leftarrow \mathcal{R} \cup \{r\}, n_e \leftarrow n_e + 1;$ 
      continue;
     $\mathcal{B}' \leftarrow \mathcal{B}' \cup \{\text{getBox}(r)\};$ 
     $r_{\text{idx}} \leftarrow r_{\text{idx}} \cup \{j\};$ 
  foreach  $k \in \text{NMS}(\mathcal{B}', \tau)[: R]$  do
    if  $k \geq n_p$  and  $|\mathcal{B}| < R$ :
       $\mathcal{B} \leftarrow \mathcal{B} \cup \{\mathcal{B}'[k]\};$ 
       $\mathcal{R} \leftarrow \mathcal{R} \cup \{\mathcal{C}[r_{\text{idx}}[k]]\};$ 
  if  $R - |\mathcal{R}| > 0$ :
     $\mathcal{C} \leftarrow M(I, P), \mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{C}[: (R - |\mathcal{R}|)];$ 
return  $\mathcal{R};$ 

```

785 **Algorithm 2:** Dynamic Sampling for Point
786

Input: Actor model M , image I , text prompt P , number of rollouts R , maximum attempts A

Output: Valid rollouts \mathcal{R}

```

 $\mathcal{R} \leftarrow \emptyset;$ 
 $n_e \leftarrow 0;$ 
 $\text{cases} \leftarrow \{\text{error} : 2, \text{terminate} : 1, \text{positive} : 2, \text{negative} : 2, \text{both} : 1\};$ 
for  $a \leftarrow 1$  to  $A - 1$  do
   $\mathcal{C} \leftarrow M(I, P);$ 
  foreach rollout  $r \in \mathcal{C}$  do
    if  $|\mathcal{R}| = R$ :
      return  $\mathcal{R};$ 
     $c \leftarrow \text{getCase}(r);$ 
    if  $\text{cases}[c] > 0$ :
       $\mathcal{R} \leftarrow \mathcal{R} \cup \{r\};$ 
       $\text{cases}[c] \leftarrow \text{cases}[c] - 1;$ 
  if  $R - |\mathcal{R}| > 0$ :
     $\mathcal{C} \leftarrow M(I, P);$ 
     $\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{C}[: (R - |\mathcal{R}|)];$ 
return  $\mathcal{R};$ 

```

```

810
811 data:
812     max_prompt_length: 1300
813     max_response_length: 1300
814     tasks:
815         - task: "Textual Grounding"
816             train_files: data/refCOCOg_9k_840_mask
817             repeat: 1
818         - task: "Mask Comprehension"
819             train_files: data/refCOCOg_600_700_840_mask
820             repeat: 5
821         - task: "Auxiliary"
822             train_files: data/refCOCOg_9k_840_mask
823             repeat: 1
824     algorithm:
825         adv_estimator: grpo
826         use_batch_std: true
827     worker:
828         actor:
829             global_batch_size: 16
830             use_kl_loss: true
831             kl_loss_coef: 5.0e-3
832             clip_low: 0.2
833             clip_high: 0.28
834             optim:
835                 optimizer: AdamW
836                 lr: 1.0e-6
837                 weight_decay: 1.0e-2
838             rollout:
839                 temperature: 1.0
840                 n: 8
841             dynamic_sample:
842                 max_try: 3
843                 stop_iter: 300
844                 tasks:
845                     - task: "Textual Grounding"
846                         meta_infos:
847                             iou_thr: 0.8
848                             max_error_cnt: 2
849                     - task: "Mask Comprehension"
850                         meta_infos:
851                             required_cases: [1, 2, 2, 1]
852                             max_error_cnt: 2
853                     - task: "Auxiliary"
854                         meta_infos:
855                             required_cases: [1, 2, 2, 1]
856                             max_error_cnt: 2
857             reward:
858                 tasks:
859                     - task: "Textual Grounding"
860                         reward_list: ["formatting reward", "sam reward", "box reward"]
861                     - task: "Mask Comprehension"
862                         reward_list: ["formatting reward", "sam reward", "decision reward", "iou imp. reward"]
863                     - task: "Auxiliary"
864                         reward_list: ["formatting reward", "decision reward", "point reward"]
865     trainer:
866         total_episodes: 1
867

```

Figure 6: Full configurations for the training of SAM-Veteran.

A.3 IoU EXCLUDING NEAR-EDGE PIXELS

As mentioned in SegAgent, the masks in refCOCO(+/g) (Yu et al., 2016) were annotated with polygons, resulting in imperfect alignment with boundaries. So we refine the IoU computation in calculating rewards by excluding pixels near the object boundaries, as the Python code shown in Figure 7. In addition, we also visualize the near-edge pixels computed from our algorithm in Figure 8.

A.4 TRAINING DATA

For the grounding task, we follow Seg-Zero and use the same 9,000 samples from the full training set of RefCOCOg. For the mask comprehension task, we also use these 9,000 samples, obtaining SAM predictions from the ground-truth bounding boxes. We then compute the edge-pixel-excluded IoU between the SAM masks and ground-truth masks. 600 samples with $\text{IoU} = 1$ are treated as *Good Enough*, while around 700 samples with $\text{IoU} < 0.9$ are categorized as *Need Refinement*. For the auxiliary mask comprehension task, we randomly augment the 9,000 ground-truth masks by adding polygon-region inclusion or exclusion, each applied independently with probability 0.5. The examples of data in the mask-related tasks are shown in Figure 9. To balance the data across tasks, we upsample the mask comprehension data by repeating it five times during training.

```
864
865 import numpy as np
866 import cv2
867
868 def compute_iou(pred_mask: np.ndarray, gt_mask: np.ndarray,
869     ignore_edge: int = 20) -> float:
870     pred_mask = pred_mask.astype(bool)
871     gt_mask = gt_mask.astype(bool)
872     # Create ignore mask
873     if ignore_edge > 0:
874         # Use Canny to detect edges
875         edges = cv2.Canny(gt_mask.astype(np.uint8) * 255, 100, 200)
876         kernel = np.ones((ignore_edge, ignore_edge), np.uint8)
877         ignore_mask = cv2.dilate(edges, kernel,
878             iterations=1).astype(bool)
879     else:
880         ignore_mask = np.zeros_like(gt_mask, dtype=bool)
881     # Apply ignore mask
882     valid_pred = np.logical_and(pred_mask, ~ignore_mask)
883     valid_gt = np.logical_and(gt_mask, ~ignore_mask)
884     intersection = np.logical_and(valid_pred, valid_gt).sum()
885     union = np.logical_or(valid_pred, valid_gt).sum()
886     if union == 0:
887         return 1 # avoid NaN, if both masks are empty
888     return intersection / union
```

Figure 7: Python code to compute IoU excluding pixels near the object boundaries.

Figure 8: Visualization of GT mask (green) and the corresponding near-edge pixels (blue). We exclude the near-edge pixels in IoU computation for training process only.

B MORE EXPERIMENTS AND ANALYSIS

B.1 MORE REASONING SEGMENTATION BENCHMARKS

To further demonstrate the effectiveness of our SAM-Veteran, we evaluated it on two more reasoning segmentation benchmarks, i.e., MMR ([Jang et al., 2025](#)) and MUSE ([Ren et al., 2024b](#)). For MMR, we adopt the object-only version for fair comparison. Because a query in MMR may refer to multiple objects, we merge the corresponding instance masks and treat the merged mask as the ground-truth segmentation. For MUSE (test set), its original setting involves multi-target and multi-referring segmentation, which differs from the widely used benchmarks. To align with our evaluation protocols, we convert each sample into a classic triplet of image, single-object mask, and mask caption. We then feed the image and mask caption into the model and compare the predicted mask with the single-object ground-truth mask. Table 7 presents the results of different models on the two benchmarks. Qwen+SAM2 provides the baseline performance on both datasets. Seg-Zero delivers a substantial improvement over this baseline. In contrast, SegAgent performs poorly on MUSE and nearly fails on MMR, reflecting the limited generalization ability introduced by its SFT-

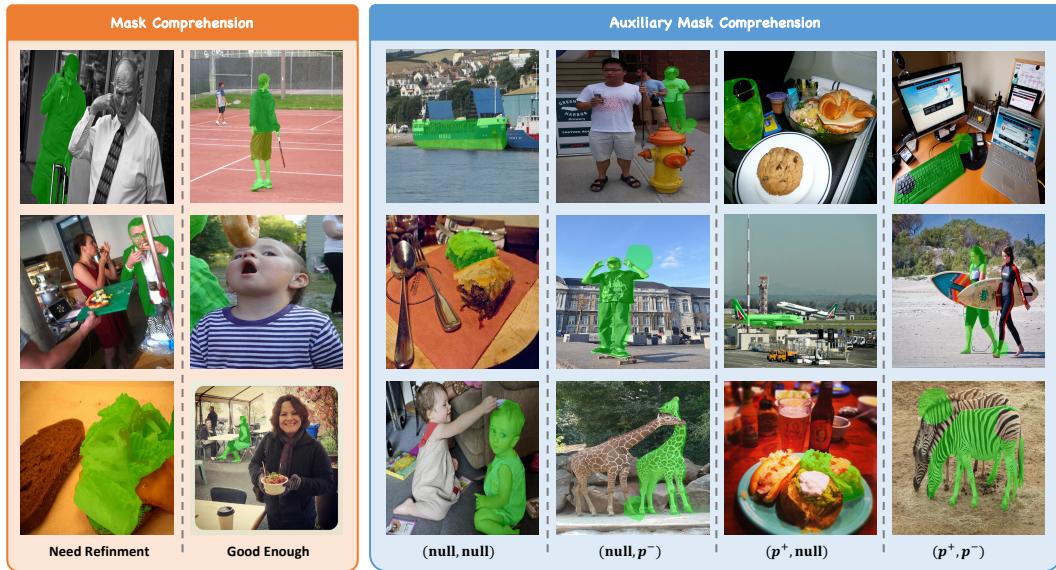


Figure 9: Examples of visual inputs for the task of mask comprehension and the task of auxiliary mask comprehension.

Table 7: Results on MMR and MUSE.

Method	MMR (Jang et al., 2025)		MUSE (Wang et al., 2025c)	
	gIoU	cIoU	gIoU	cIoU
Qwen+SAM2	33.18	26.63	43.28	45.79
Seg-Zero (Liu et al., 2025a)	37.91	29.44	52.16	54.38
SegAgent (Zhu et al., 2025b)	13.34	16.56	37.29	43.48
SAM-Veteran	40.38	30.74	53.63	57.42

based training. Our SAM-Veteran further surpasses Seg-Zero by a clear margin on both benchmarks, demonstrating the effectiveness of our RL-based multi-task training framework.

B.2 GENERAL MLLM BENCHMARKS

To substantiate our claim that the proposed RL framework mitigates catastrophic forgetting of general reasoning ability, we evaluate SAM-Veteran—along with several baseline models—on standard general-purpose MLLM benchmarks (results shown in Table 8). As observed, the RL-based methods, Seg-Zero and our SAM-Veteran, maintain performance comparable to their respective base MLLM (Qwen2.5-VL), demonstrating that RL training preserves general reasoning capability. In contrast, the SFT-based model SegAgent exhibits a clear decline in performance on general vision-language benchmarks relative to its base model, Qwen-VL-Chat (Bai et al., 2023), indicating significant loss of generalization ability. These results confirm that SFT-based training is prone to catastrophic forgetting, whereas RL-based methods effectively avoid this issue.

B.3 MODEL SCALABILITY

To evaluate the scalability of our method, we scale the MLLM from 7B to 32B and conduct experiments on Qwen2.5-VL-32B using the same settings as the 7B model. To further test scalability in the refinement step, we increase the maximum refinement steps from 3 to 5 for the 32B model. The results of the 32B variant across different datasets are presented in Table 9. As observed, the 32B version of SAM-Veteran achieves further improvements on most in-domain and out-of-domain datasets, confirming the scalability of our approach.

972 Table 8: Results of different models on general MLLM benchmarks. * means re-evaluation by in
973 our environment.
974

975 Dataset	976 Qwen2.5-VL	977 Qwen2.5-VL*	978 Seg-Zero*	979 SAM-Veteran	980 Qwen-VL-Chat*	981 SegAgent*
OCR-Related Understanding						
SEED-Bench-2-Plus (Li et al., 2024)	70.4	69.6	69.5	69.5	44.6	9.7
TextVQA _{val} (Singh et al., 2019)	84.9	85.3	85.4	84.2	60.2	1.29
General Visual Question Answering						
MMStar (Chen et al., 2024a)	63.9	59.9	61.3	60.5	29.0	5.3
MME _{sum} (Fu et al., 2025)	2347	2303	2286	2328	1834	753
MUIRBench (Wang et al., 2025a)	59.6	58.3	57.4	59.2	27.9	12.23
BLINK (Fu et al., 2024)	56.4	54.3	55.3	54.0	14.4	4.42
RealWorldQA (xAI, 2024)	68.5	67.8	68.9	66.0	45.8	1.57

983 Table 9: Results of SAM-Veteran of 7B and 32B.
984

985 Model	986 ReasonSeg val		987 ReasonSeg test		988 RefCOCO testA		989 RefCOCO+ testA		RefCOCOg test	
	986 gIoU	987 cIoU	987 gIoU	987 cIoU	988 cIoU	988 cIoU	989 cIoU	989 cIoU	989 cIoU	989 cIoU
SAM-Veteran-7B	68.2	67.3	62.6	56.1	80.8	76.6	73.4	73.4	73.4	73.4
SAM-Veteran-32B	72.3	70.0	62.9	58.2	80.4	77.4	73.4	73.4	73.4	73.4

991 **B.4 HYPERPARAMETER ANALYSIS**

993 We conduct more analysis on hyperparamters as follows, with the results shown in Table 10.

994 **Task 1 R_{IoU}^B .** We explore different designs of R_{IoU}^B in Task 1. Specifically, we evaluate several
995 hard-threshold settings—0.3, 0.7, and the baseline 0.5—as well as a soft variant defined as $R_{IoU}^B =$
996 $\text{IoU}(b, b^{\text{GT}})$. The results indicate that the soft formulation performs worse than all hard-threshold
997 versions, and among the hard thresholds, 0.5 yields the best performance.
998999 **Task 2 Reward.** First, we replace R^Δ in Task 2 with a linear variant whose maximum reward is 3,
1000 increasing linearly from 0 with respect to the IoU change Δ , i.e., $R^\Delta = 3 \cdot \text{ReLU}(\Delta)$. Second, we
1001 set the encouraging score to $R^{\text{ENC}} = 0$. Both modifications lead to a slight decrease in performance
1002 compared to the baseline.1003 **Task 3 τ_d .** We experiment with different values of τ_d in Task 3—10, 30, and the baseline 50. The
1004 results show that $\tau_d = 50$ achieves the best overall performance.1005 **Training Rollout.** For the training hyperparameters, we experiment with different numbers of roll-
1006 outs in GRPO—4, 16, and the baseline 8. The results show that using 8 rollouts yields the best
1007 overall performance.
10081009 **B.5 INFERENCE COMPLEXITY**1010 We compare the inference-time efficiency of different models using two metrics: the average number
1011 of MLLM inference steps and the average time cost per sample on the RefCOCO testA dataset. The
1012 results are shown in Table 11. For Qwen, we report the results of generating boxes for SAM. For
1013

1016 Table 10: Results of different hyperparameter configurations.

1017 Parameter	1018 Value	ReasonSeg val	ReasonSeg test	RefCOCO testA	RefCOCO+ testA	RefCOCOg test	Avg.
	Baseline	68.2	62.6	80.8	76.6	73.4	72.3
Task 1 R_{IoU}^B	Hard 0.7	65.7	61.2	80.5	75.9	73.0	71.3
	Hard 0.3	67.1	61.2	80.6	77.3	72.5	71.7
	Soft	65.9	60.0	80.2	75.7	72.0	70.7
Task 2 Reward	$R^\Delta = 3 \cdot \text{ReLU}(\Delta)$	68.1	61.5	80.2	77.0	73.2	72.0
	$R^{\text{ENC}} = 0$	66.8	62.0	80.2	76.6	72.9	71.7
Task 3 τ_d	10	67.3	62.1	80.3	76.6	72.0	71.6
	30	68.3	61.8	79.9	76.4	72.8	71.8
Rollout	4	66.5	62.0	79.9	76.1	72.0	71.3
	16	66.4	61.9	80.3	76.7	73.4	71.7

Table 11: Inference cost comparison of different MLLMs.

Method	Inference Backend	Average Step	Average Time (s)
Qwen+SAM2	Transformers	1	3.11
SegZero (Liu et al., 2025a)	Transformers	1	3.43
SegAgent (Zhu et al., 2025b)	Transformers	7	8.95
SAM-Veteran	Transformers vLLM	2.08 2.21	5.09 2.47

Seg-Zero, the MLLM outputs both the bounding boxes and the points for SAM in a single step, whereas SegAgent adopts a fixed number of 7 refinement iterations for mask prediction.

As shown in the results, Qwen and Seg-Zero finish the task in a single step (about 3s), but their segmentation performance is inferior to that of multi-step refinement methods, as evidenced in Table 1. SegAgent, on the other hand, requires a fixed 7-step MLLM inference pipeline (about 9s), leading to low efficiency. Our SAM-Veteran achieves stronger performance with substantially fewer steps (< 2.5 steps on average, about 5s each sample). Our method is slower per sample per step than SegAgent because CoT introduces more response tokens, resulting in improved performance at the cost of extra time. Nevertheless, our method strikes a more favorable balance between segmentation quality and inference efficiency. Furthermore, we improve efficiency by replacing the Transformers backend with the vLLM (Kwon et al., 2023) backend, which significantly reduces the inference time—approximately cutting the time consumption in half. This optimization is applied to all evaluations in our experiments.

B.6 MORE VISUALIZATION

More visualization of SAM-Veteran is provided in Figure 10. For each example, we show the original image, the initial SAM output from a bounding box, and the masks refined iteratively with points. As the figure demonstrates, SAM-Veteran can accurately locate targets based on the posed question. When the initial segmentation is imperfect, it identifies the error regions, and with additional points as guidance, SAM produces progressively improved masks. Remarkably, the model can capture not only obvious omissions, such as boxes on a shelf, but also subtle, hard-to-detect errors, like imperfect segmentation on a fork and the lawn mower.

As SegAgent also adopts a multi-step mask-refinement framework for reasoning segmentation, we compare its prediction workflow with that of our SAM-Veteran in Figure 11, using both in-domain and out-of-domain examples. As illustrated, SegAgent performs a fixed seven refinement steps and sometimes generates ineffective or irrelevant points. In contrast, SAM-Veteran consistently generates accurate bounding boxes and refinement points, while also being able to dynamically determine when to terminate the procedure. These qualitative results further highlight the advantages of our method over SegAgent.

B.7 FAILURE CASES

We present several failure cases of SAM-Veteran in Figure 12, categorized into four representative types in different colors. The blue examples illustrate grounding deficiencies, where the model either localizes the wrong target or fails to capture certain instances. The orange examples highlight confusion with green objects or regions in the image, which resemble the green mask. The green examples demonstrate cases where the model generates redundant or wrong points. Finally, the yellow example reveals a flaw in the reasoning process, where the model incorrectly interprets the green mask as part of a human outfit.

C LIMITATIONS

While SAM-Veteran is capable of performing general human-like SAM usage, it does not yet support fully free-form behavior. For example, it cannot generate new bounding boxes after the initial step or revoke previous actions when the mask quality degrades. Enabling such capabilities would

1080 require a more sophisticated action space and additional data, which we leave for future work. More-
1081 over, following SegAgent, we overlay the mask on the image as input to the MLLM. This changes
1082 the object’s color and may lead to performance degradation on color-sensitive queries. In future
1083 work, we plan to investigate presenting segmentation results to the MLLMs in a more effective way.
1084

1085 D USE OF LARGE LANGUAGE MODELS

1086 During the preparation of this manuscript, we employed a Large Language Model (ChatGPT) solely
1087 as a writing assistant. Its use was restricted to **refining grammar, improving sentence structure,**
1088 **and enhancing the clarity and readability of the text.** All methods, claims, experimental results,
1089 and conclusions were conceived and developed exclusively by the authors.
1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133



Figure 10: Examples of the segmentation workflow performed by SAM-Veteran. Each example shows the original image, the initial SAM output from a bounding box, and the masks iteratively refined with points. Different number of refinement steps (0, 1, and 2) are in different colors.

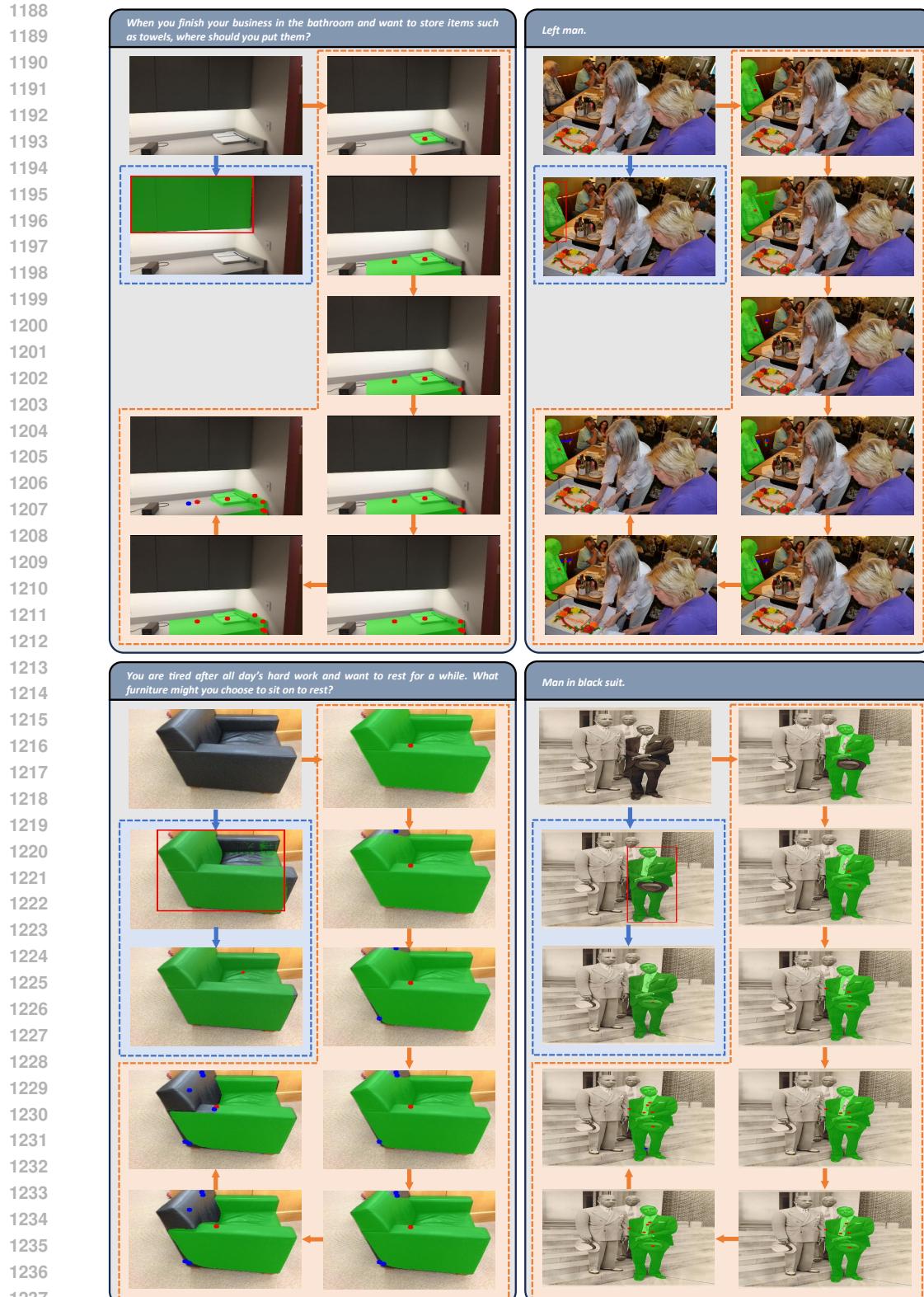


Figure 11: Comparison of the segmentation workflows of SAM-Veteran and SegAgent. The blue and orange flows correspond to SAM-Veteran and SegAgent, respectively. The two examples on the left are out-of-domain cases, while the two on the right are in-domain. Negative points of SegAgent are shown as blue dots •.

