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ABSTRACT

Deep learning has been widely applied to electronic health record (EHR) analysis,
offering strong predictive capabilities for clinical outcome prediction. However,
due to inherent disparities across demographic groups (e.g., race, gender), fair-
ness concerns have become increasingly critical. Due to severe instability in
jointly optimizing fairness and performance objectives, existing fairness-aware
approaches often struggle to balance predictive accuracy and fairness. Moreover,
the structured missingness in real-world EHR data further worsens the perfor-
mance and fairness of predictive models, yet they are frequently overlooked in
fairness-aware modeling. In this paper, we propose FEMALA, a novel two-stage
EHR analysis framework by explicitly modeling the structured missing patterns
within EHR and fairness-aware model adaptation. Particularly, we design a dual-
encoder architecture to integrate EHR temporal dynamics and structured missing
patterns, thus enhancing performance while improving fairness by handling miss-
ingness well. Further, we perform adversarial fine-tuning to decorrelate task
and sensitive representations via low-rank adaptation, enabling a better trade-off
between fairness and accuracy. Experiments on MIMIC-III/IV datasets demon-
strate that our framework achieves state-of-the-art performance in both accuracy
and fairness, validating the effectiveness of structured missing pattern model-
ing and fairness adaptation fine-tuning. The code is anonymously available at
https://anonymous.4open.science/r/FEMALA/README . md.

1 INTRODUCTION

The widespread adoption of Electronic Health Records (EHRs) has enabled the collection of rich
longitudinal patient data (Johnson et al., 2016} [2023; [Pollard et al.,|2018), fueling the development of
data-driven models for clinical decision-making. These models show great promise in forecasting
high-stakes outcomes like in-hospital mortality and readmission (Acosta et al., [2022} [Hayat et al.,
2022; Wang et al.,[2024b), paving the way for more timely and personalized interventions.

However, the deployment of these models has raised significant concerns about algorithmic fairness,
as they often exhibit biased performance across demographic groups (Huang et al., 2023 Tarek et al.
2024). This unfairness typically originates from historical biases in healthcare practices embedded
within EHR data. For instance, underprivileged groups may receive less frequent care, leading to
sparser, noisier data and consequently, worse prediction outcomes (Zhang et al.| 2024)). While many
fairness-aware methods have been proposed—ranging from fairness regularization (Lin et al., 2023)
to adversarial debiasing (Wang et al., 2024a)—they often struggle to balance predictive accuracy and
fairness, and crucially, tend to overlook another fundamental challenge of EHR data: missingness.

Missing values are pervasive in EHRSs, but are rarely random. Instead, they often exhibit structured
missingness—systematic patterns that reflect variations in clinical workflows, patient conditions,
or care disparities (Li et al.| 2021} |Getzen et al.| |2023)). For example, patients from certain demo-
graphic groups may be less likely to receive specific diagnostic tests. This presents a critical, yet
underexplored, challenge at the intersection of fairness and missing data. Most prior work treats
these as two separate problems: imputation methods (Du et al., [2023)) aim to fill in missing values
but can inadvertently mask or even amplify the very biases encoded in the missingness patterns,
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while fairness methods typically assume complete or pre-imputed data, ignoring that the pattern
of missingness itself is a potent source of bias (Zhang and Long|, 2021} |Caton et al., |2022). This
oversight leaves a critical gap: how can we build fair predictive models when the very structure of
data absence is intertwined with demographic disparities?

To address this challenge, we argue that structured missingness should not be treated as noise to be
eliminated, but as a rich, informative signal to be explicitly modeled. We propose FEMALA (Fairness-
Aware EHR Analysis via Missing Pattern Modeling and Adversarial Low-Rank Adaptation), a novel
two-stage framework that directly confronts the interplay between structured missingness and fairness.
In the first stage, we introduce a dual-encoder architecture that simultaneously learns from both the
observed clinical events and the patterns of missingness. By adaptively fusing these two heterogeneous
information streams, FEMALA develops a more robust and nuanced patient representation that
mitigates biases arising from data collection disparities. In the second stage, we employ a stable
and parameter-efficient adversarial fine-tuning strategy using low-rank adaptation (LoRA). This
"learn first, correct later" approach allows us to first build a strong predictive model grounded in
a comprehensive understanding of the data, and then precisely remove residual correlations with
sensitive attributes, achieving a superior trade-off between accuracy and fairness.

Our contributions are summarized as follows: (1) We identify and address the critical, underexplored
problem of how structured missingness in EHRs exacerbates algorithmic bias, proposing a novel two-
stage framework, FEMALA, to tackle this challenge; (2) We design a dual-encoder architecture that
explicitly models both temporal EHR signals and structured missingness patterns, integrating them
via a novel fusion module to learn fairer and more robust representations; (3) We introduce a stable
adversarial low-rank adaptation strategy for fairness fine-tuning, which effectively improves fairness
with minimal impact on predictive accuracy; (4) FEMALA achieves state-of-the-art performance on
MIMIC-II and MIMIC-IV datasets, demonstrating significant gains in both accuracy (e.g., a 2.3%
AUROC gain on MIMIC-III) and fairness (e.g., a 2.9% EO reduction) over the strongest baselines.

2 RELATED WORK

Fairness-Aware Predictive Models in Healthcare. Algorithmic fairness is crucial in healthcare,
where biased predictions can worsen disparities and jeopardize patient safety |Creager et al.|(2019);
Oh et al.| (2022)); Pessach and Shmueli| (2022)); |Park et al. (2022} 2021)); [L1 et al.| (2022); |Ktena et al.
(2024); Meng et al.| (2022). A broad spectrum of fairness-aware strategies has been proposed to
mitigate demographic bias, including loss-based regularization Lin et al.| (2023)); |Sivarajkumar et al.
(2023)), adversarial debiasing that suppresses sensitive information in latent representations [Yang
et al.| (2023); Xu et al.[(2024); |Luo et al.| (2024)); |Poulain et al.| (2023); 'Wang et al.| (2024a), and
counterfactual approaches leveraging disentangled representations [Liu et al.| (2023} 2022) or con-
trastive learning Wang et al.| (2024c)). Despite recent advances, most methods assume fully observed
or well-imputed data—an assumption that rarely holds in real-world EHRs with pervasive, structured
missingness. Moreover, single-stage optimization of accuracy and fairness often yields unstable
convergence and brittle trade-offs, as early fairness constraints may suppress informative but biased
signals.

Handling Missing Data in Electronic Health Records. Missingness in EHRs is not only pervasive
but also highly structured—often following non-random patterns that correlate with clinical relevance
and sensitive attributes Mitra et al.| (2023). For example, patients from underserved groups may
receive fewer diagnostic tests, resulting in systematic data gaps that encode structural bias. Standard
approaches rely on imputation |Wu et al.|(2022)); Fortuin et al.| (2020); |Cao et al.| (2018);Yoon et al.
(2018)), which may obscure meaningful patterns or exacerbate disparities Jeanselme et al.|(2022); Goel
et al.|(2021). Recent work has begun addressing fairness under missingness, introducing imputation-
free models Jeong et al.| (2022), graph-based debiasing |Guo et al.| (2023), and missingness-aware
classifiers |[Feng et al.| (2023). However, these methods are typically designed for low-dimensional
or tabular data, and do not generalize well to high-dimensional, temporally structured EHRs, where
missingness itself reflects complex, bias-related structure that remains underexplored.

Low-Rank Adaptation for Fine-Tuning. Parameter-efficient fine-tuning (PEFT) methods such
as LoRA |Hu et al.| (2022)) adapt large pretrained models by updating only a small set of low-rank
parameters. While initially proposed for efficiency, LoRA has been extended to fairness-critical
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tasksDas et al.|(2024); Liu et al.; Ding et al.| (2024)). For example, FairLoRA [Sukumaran et al.| (2024)
adds fairness-specific regularization, FairTune Dutt et al.| uses bi-level optimization to adjust adapter
masks, and other approaches remove bias without relying on sensitive attributes Kamalaruban et al.
(2025). However, LoRA remains largely unexplored in clinical prediction, where balancing fairness
and accuracy is particularly challenging due to the high dimensionality and structured missingness of
EHR data.
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Figure 1: Overview of our FEMALA framework. Stage I encodes EHR sequences and structured
missingness via a Segment-Aware Temporal Encoder and a Structured Missingness Encoder, which
are fused through a Missingness-Guided Adaptive Fusion module. Stage II applies adversarial
fine-tuning on low-rank adapters to enforce fairness by minimizing mutual information between task
and sensitive representations.

3 METHOD
3.1 PRELIMINARIES AND FRAMEWORK OVERVIEW

Problem Formulation. Consider a cohort of N patients, where each admission is represented as

a multivariate time series X = [CEt,d]th’? d=1 € RT>D with T denoting the number of time steps

and D the number of clinical variables. A corresponding binary mask M € {0,1}7*? indicates

missing entries, where m; 4 = 0 if z; q is unobserved. Each patient is also associated with & sensitive
attributes A = [ay, . .., ax], where aj, € {0, 1} denotes a one-hot encoding of attribute categories
(e.g., race, gender). Our goal is to learn a predictive model fo : (X, M) — ¢ € ) that estimates
a clinical outcome y (e.g., in-hospital mortality), while minimizing performance disparities across
subgroups defined by A.

Low-Rank Adaptation. Low-Rank Adaptation (LoRA) (Hu et al.,2022)) enables parameter-efficient
fine-tuning by injecting low-rank updates into frozen pretrained weights. For a projection matrix
W e Ruxdn T oRA introduces a trainable update AW = BA, where

W« W+AW, AcR™>¥  BeRW™ " < min(dey, di)-

This reduces trainable parameters from doydin t0 7(dou + din), and incurs no inference overhead, as
AW can be merged post-training.

Overview of Our Framework. Figure [I|illustrates the overall framework. FEMALA follows a
two-stage strategy combining pretraining and fine-tuning to achieve fairness-aware EHR prediction.
In the first stage, we enhance representation learning by jointly modeling temporal patterns and
structured missingness. A segment-aware temporal encoder and a structured missingness encoder
extract complementary features, which are fused via a missing pattern-guided adaptive fusion module
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to improve both accuracy and fairness while properly handling the missing data. In the second stage,
we obtain the sensitive attribute embedding through an autoencoder-based architecture, and further
estimate the mutual information (i.e., dependence) between these embeddings and task representations.
We apply adversarial fine-tuning via low-rank adaptation to reduce this dependence, achieving stable
fairness improvements with minimal impact on predictive performance.

3.2 ENHANCED EHR REPRESENTATION WITH STRUCTURED MISSING PATTERN LEARNING

Segment-Aware Temporal Encoder. To capture the temporal dynamics of multivariate time-series
EHR data X € RT*P we divide it into non-overlapping segments of fixed length L (e.g., 4 hours),
which demonstrated effective in time-seiries process (Zhang and Yanl, |[2023)). The segmented input is
reshaped into {xsﬁd}f’:DL 4—1» Where S = T'/L and each segment x 4 € R% corresponds to variable
d in segment s. Each segment is projected into a dj,-dimensional embedding space via a shared linear
projection
hs,(i = Wsegxs,da Wseg S RnxL, (nH

To encode both temporal and feature-wise semantics, we add learnable positional embeddings along
two axes

hs,d = hs,d + ptime(s) + Pfeat (d)a Ptime; Pfeat € Rdh~ (2)
Here, ptime(s) encodes the temporal position of segment s, and Preat(d) encodes the identity of
clinical variable d. The resulting tokens are reshaped into a sequence Hgeg € REXSDP*dn where B
is the batch size. A transformer encoder |Vaswani et al.|(2017)) is then applied to capture contextual
interactions across time and variables

Ege, = Transformer(Hgey), Egeg € RBxSDxdn 3)

Structured Missing Pattern Encoder. To model the structured missingness patterns, we enrich
the time point-level missingness mask M with global missing pattern information. Specifically, we
compute two summary vectors: the time-wise average missingness per feature and the feature-wise
average missingness per time step as

1 X

S
t=1

After that, we concatenate these global missingness with the original mask to form M’ =

[M, mime, Mfeat]. An 1 x 1 convolution is then, respectively, applied to project the tokens into a
shared embedding space,

D T

D
1
€ RD: Mfeat = [D ;mt,d] S RT. 4)

t=1

Mtime =

d=1

Hmask S RBXNmaSkthz Nmask =T+ 27

where B is the batch size and d}, is the embedding dimension. Finally, a Transformer encoder is used
to model contextual dependencies among the mask tokens, yielding

Enask = Transformer(Hyp ) € REX Nmasiox<dn,

Missing Pattern-Guided Adaptive Fusion. After obtaining the segment-aware EHR embeddings
Egcg and the structured missingness embeddings Eq,as1, we apply a dual cross-attention mechanism
to enable mutual enrichment between the two representations

Eseg = MHA(Esega Emask)7 Emask = MHA(Emask; Eseg)y (5)

where MHA denotes multi-head attention. To obtain compact representations, we further apply mean
pooling to E .5k, yielding a summary vector z,sx € R4 . For the segment embeddings Egcg, we
employ adaptive attention pooling guided by the learned missing pattern. Specifically, attention
weights a € [0, 1]2*5D are computed using the mask embedding

a; = softmax (Waﬁ)mask,i) . W, € RSDXNmaac (6)
The weighted sum then produces the aggregated segment-level embedding

Zseg = Z Q- Eseg,i' @)

4
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Finally, we combine Zgcs and zmask using a learnable gating mechanism
z=g O] Zseg + (]- - g) O] Zmask; g= f (Zseg S Zmask) ) (8)
where ® denotes element-wise multiplication, & denotes vector concatenation, and f is an MLP-

based gating function. The final fused representation z is passed to an MLP classifier to produce the
final prediction g.

3.3 ADVERSARIAL LOW-RANK FINE-TUNING FOR FAIRNESS-AWARE ANALYSIS

Learning Sensitive Attribute Embeddings. We map the sensitive attributes A into the same latent
space as the task representation z, so that we can estimate the mutual information between them.
As illustrated in Figure 2] we adopt an autoencoder-  cenier, mate, renster

b d h. b . o . .b Race: [ASIAN, BLACK, HISPANIC, WHITE, MULTI, OTHER];
- Insurance: [Medicare, Medicare, Government, Self Pay, Privatel;
ased architecture to obtain sensitive attributes em-  Insurance: tieas
Marital status: [MARRIED, SINGLE, WIDOWED, DIVORCED, SEPARATED, LIFE PARTNER]

bedding e,;. Each sensitive attribute is further en- 252 st D, S vbod, P, S0TD LILWIEL

1
coded into a binary vector a; € R%, where dj, is | LEEEE b Y6000 :
the number of subgroups in attribute k. The concate- ! ¥ EE RN ) :
nated vector A = [ay, ..., ay] serves as the input to ! Encoder 1 i
an encoder fy, implemented as a two-layer MLP i v 1

| Decoder; Decoder, Decoder; Decoder, Decoders
es = fy(A) € R, ©) | i i i i T

To ensure e, retains full information about the sensi-
tive attributes, we reconstruct the sensitive attribute Figure 2: Sensitive attribute embedding learn-
via attribute-specific decoders Dy, : Rén — Rk, in(g architecture

ay, = softmax(Dy(es)). (10)

Mutual Information Estimation. To quantify the dependence between the sensitive attribute embed-
ding e, and the task representation z, we adopt the Mutual Information Neural Estimation (MINE)
framework (Belghazi et al.l [2018)). A neural critic network T is trained to distinguish between
joint samples from p(z, e5) and independent samples from the product of marginals p(z)p(es). The
mutual information is estimated as

Ty(z;€5) = Epe) [T4(2,€5)] —log Epzypce.) [er»(ives)} , (11)

where z denotes a shuffled or independently sampled task embedding. The first term approximates
the expected critic score under the joint distribution, while the second approximates the score under
the independent baseline. The critic T} is optimized to maximize this difference, thereby producing a
tight lower bound on the true mutual information.

Adversarial Fine-Tuning with Low-Rank Adaptation. To achieve fairness, we perform adversarial
fine-tuning over the low-rank adapters A6, encouraging the final representation z’ to be invariant to
sensitive attributes. The training objective is formulated as a minimax game: The mutual information

estimator T is trained to maximize f¢(z’ ; €5), improving the estimation quality. Simultaneously, the

low-rank adapters A are trained to minimize Z,(z'; e,), while preserving task performance. This
adversarial objective encourages the model to learn task-relevant representations decorrelated from
sensitive attributes.

3.4 OBIJECTIVES

In the pre-training stage, we optimize the representation framework via a binary cross-entropy loss
for clinical outcome prediction

N
1 R . N
Liask = N ; [yilog i + (1 —yi)log(1 —4:)], 9 = fo(Xi, M), (12)

In the second stage, the overall adversarial fine-tuning objective for updating low-rank adapters Af
can be represented as

N
1 N N o .
Law =~y D lyilog g + (1 —y:)log(1 — 3)] + AZo(zes), 8 = forno(Xi, M), (13)
=1

where Ay controls the mutual information regularization strength and is empirically set to 0.5.
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Table 1: Summary statistics of the datasets used.

Dataset MIMIC-III MIMIC-IV

Split Training  Validation Test Training  Validation Test
Total 12,672 1,833 3,638 15,112 2,188 4,473
Missing rate 72.81% 7271%  72.73% | 71.16% 71.17%  71.23%
Positive (IHM) 1,481 237 446 1,702 243 511
Positive (READM) | 2,268 364 647 2,648 390 814

4 EXPERIMENT
4.1 EXPERIMENTAL SETUP

Datasets. We evaluate FEMALA on two large-scale, real-world EHR datasets: MIMIC-III (Johnson
et al., 2016) and MIMIC-IV (Johnson et al., 2023)). Both datasets contain de-identified health records
of patients admitted to intensive care units (ICUs) or emergency departments at Beth Israel Deaconess
Medical Center (BIDMC), comprising multivariate time-series data (e.g., vital signs, lab tests) and
demographic information. Following established preprocessing protocols (Harutyunyan et al., 2019;
Wang et al., 2024c), we extract 26 continuous-valued clinical variables from MIMIC-III and 25 from
MIMIC-1V, sampled hourly during the first 48 hours of ICU admission. Table[T| summarizes dataset
statistics. We obtain 18,143 ICU stays from MIMIC-III and 21,773 from MIMIC-IV, randomly
splitting each into training, validation, and test sets using a 7:1:2 ratio. Additional preprocessing and
variable details are provided in Appendix [C|

Tasks & Evaluation Metrics. Following common practices in clinical prediction (Hayat et al.,2022;
Wau et al., 2024} Wang et al.| [2024c} [Zhang et al.,[2022)), we evaluate FEMALA on two widely studied
prediction tasks: (1) In-Hospital Mortality (IHM) prediction, which identifies whether a patient will
die during hospitalization; and (2) Readmission (READM) prediction, which assesses whether a
patient will be readmitted within 30 days of discharge. We report predictive performance metrics
including AUROC, AUPR, and F1 score. To evaluate group fairness, we adopt Equalized Odds
(EO) and Error Distribution Disparity Index (EDDI) following (Wang et al., 2024c). Fairness metric
definitions are provided in Appendix [C.2] All reported metrics include 95% confidence intervals
computed via 1,000 bootstrap samples.

Implementation Details. We train all models using the Adam optimizer |[Kingma and Ba| (2014} with
a learning rate of 4e-4 and a batch size of 128. Early stopping is employed if the validation AUROC
does not improve for 10 consecutive epochs. All experiments are conducted on a single NVIDIA
RTX 4090 GPU. Further details are in Appendix [D.T]

Compared Methods. We compare FEMALA with three categories of baselines: (1) Backbone-
only models without fairness constraints: Transformer Vaswani et al.| (2017), LSTM |Graves and
Graves| (2012), RNN [Elman|(1990), CNN |LeCun et al.[(1998); (2) General fairness-aware models:
FFVAE |Creager et al.| (2019), FarconVAE |Oh et al.| (2022); and (3) Clinical fairness baselines:
FairEHR-CLP Wang et al.| (2024c), FLMD [Liu et al.|(2023). See Appendix for details.

4.2 PERFORMANCE AND FAIRNESS ANALYSIS

Overall Performance. Table |2| summarizes the main results. Our analysis proceeds in two steps,
mirroring our two-stage framework. First, in the pre-training (PT) stage, our model (PT) already
establishes a new state-of-the-art in both predictive accuracy and fairness, outperforming all backbone
models. By explicitly modeling structured missingness, our approach achieves a 2.2% AUROC gain
on MIMIC-II THM and, crucially, also reduces fairness disparities without any explicit fairness
supervision. This result provides strong evidence for our core hypothesis: properly handling structured
missingness is a critical first step towards achieving algorithmic fairness. Second, in the fine-tuning
(FT) stage, it further enhances fairness, achieving the best fairness metrics (EO and EDDI) across
nearly all settings. In contrast to baselines like FLMD, which trade accuracy for fairness, our
adversarial low-rank tuning preserves high predictive performance while substantially reducing bias.
This demonstrates the stability and effectiveness of our "learn first, correct later" strategy. Although
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Table 2: Performance and fairness evaluation across two datasets: MIMIC-III and MIMIC-IV. All
results(%) are reported with 95% confidence intervals. The best results are highlighted in bold, and
the second-best results are underlined. Avg. Rank indicates the average ranking of each method
across five evaluation metrics.

Model In-Hospital Mortality Readmission
© AUROC (1) AUPR (1) FI (1) EO () EDDI(])  Avg Rank | AUROC (1) AUPR (1) Fl (1) EO (1) EDDI(l)  Avg. Rank
Dataset 1: MIMIC-III
Transformer|Vaswani et al J2017] | 80.49s5s. 8245 38543395, 4361)  41.09G7.64,44.56) 46 7026785, 7249 38.8Tas 00,4315 404337514336 44
LSTM (Graves and Graves J012] | 82410558038 42340766, 4760 43763056, 47.19) 3.6 72390017709 3935ass.435) 4158880445 3
RNN[EIman §1990 81.39031, 8350, 43.38(38.45, 4806 432 46.98) ) 3 71600417381 3893s15,4201) 408837044357 38
CNN (LeCun et al. J1998 8228150308417 44.193937,4907)  44.031a035,47.47) 4.583.69.6.11) 28 74.153214.7630)  42.553850,4678)  43.181a0.42,46.00) 26
OUrs(PT) 8459071503 82515309 $T88asans1m) Bt ) 1 76490130, a0 0zs0512m 4634350 1920) 12
FairEHR-CLP (Wang et al.:2024c| | 79.700763. 8185 35.83a161,4020)  40.3536.79,4375) 4 46 73.72q141,7598) 38960505 4330)  41.6530.09, 4397 38
FLMD {Liu etal. 12023 81.777974, 8372 T27.13,4601)  43.5L3087,47.12) 4. 34 41081376, 45.40) 421813041 44.89) 28
FFVAE [Creager et al. 12019 821950278006 41.060623,4585 41738084520  6.86/632 3 3 37505, 417 40.57a792, 4205 & 42
FarconVAE {Oh ct al.$ 2022 82275021, 80100 40.80035.06,4581) 42.93(30.17,4656 738510, 15.42)  2.40, ) 28 73707152, 7583 39.56035.80, 4381)  42.05(38.91,45.14) 32
Ours (FT) 83495163 8549 46.664193 513)  48.18ses 5139) 5375041006 19504400 1 74.600234. 7683 45.4201.17.4959) 44550157, 4765 1
Dataset 2: MIMIC-IV

Transformer|Vaswani et al 120171 | 8235618016 4098G650,4571)  42.9400.56.4623) 4 71966902, 7395  398Tges5,4369  42.056922,4500) 38
LSTM (Graves and Graves | 20T7] | 82.93(s1.05, 8453 45.56u059, 9995 4350008, 46.60) 38 73.0901 436300044685 42.98035, 4539, 34
RNN[EIman §1990 82390468008 43.653037,4806 44181052, 47.79) 36 72.66(70. o) 4232G875.4587)  43.20u088, 4565 32
CNN {LeCun et al [T998 83.565166,85.27) 466 st 4457u00s 4803 26 13740107566 424608034500 44070129, 46.46) 32
Ours(PT) 84.04i230.8565 47120253, 5131) 4589018, 40.07) 1 74.667288. 7647 45120186, 3865 4494221, 47.63) 14
FairEHR-CLP (Wang ct al.12024c] | 83451655519 42.070763,4657 40480638, 44.17) 4 743602307630 41620795508 42.60(30.73,45.40) 4
FLMD {Liu etal. #2023 83.69178,85.50)  44.80u016,49.45  434047,4733) 26 74.2: 614y 4243a868,4605) 42873083, 4603 403 26
FFVAE (Creager et al. 12019 82465050, 8028)  4144367,4620) 427408 36 73.20a116,75.14)  41.9a8.5.4585) 42376061, 4526) 4.2
FarconVAE (U et al. $2027 83.14(5130, 888 40.30035.66,45.10)  42.5403s, ) 36 7342714675357 42473800, 4601) 440104121, 47.08) ) 54,3.47) 26
OursTFTY 839Lg 16,8547 46.3604160. 5044)  45.81ia235,40.13) 12 T3TMais4.7569 430700, 4649 4348(061,4620) ) 204079, 3.69) L6

Table 3: Ablation study on the contribution of each module in FEMALA. We compare against a
vanilla Transformer (“TF’) and evaluate our key components: the Segment-aware Temporal Encoder
(STE), the Structured Missingness Encoder (SME), naive concatenation (‘Concat’), and our proposed
Missing-pattern-guided Adaptive Fusion (MAF).

Model IHM READM

AUROC (1) AUPR(1) Fl(f) EO() EDDI(]) | AUROC (1) AUPR(}) FI(1) EO(|) EDDI()
& TF only 79.09 3745 4056 1022 347 71.48 3803 4184 959 4.70
g SME only 69.53 2359 3173 8.10 351 63.93 2752 3431 894 5.32
g STE only 83.34 48.14 4748 821 3.38 75.87 4696 4592 9.08 5.53
3 TF+SME+MAF 80.32 3997 4200  7.39 3.46 72.20 3831 4046 9.02 5.58
& STE+SME+Concat. 8332 4651 4631 791 333 75.90 4519 4511 9.0 575
STE+SME+MAF 84.59 4822 4788 678 3.28 76.49 4700 4634  8.85 4.60
& TF only 78.78 3726 4161 7.68 274 7220 3873 4299  5.94 3.03
2 SME only 69.48 2377 3190 73l 239 6231 2672 3407 722 5.18
2 STE only 83.24 46.14 4808 7.2 2.15 74.08 4571 4403 6.69 3.69
2 TF+SME+MAF 80.38 3971 4279 6.22 2.68 72.32 3826 4237 681 381
£ STE+SME+Concat. 82.27 4590 4647 640 2.13 73.26 4238 4340 614 3.15
STE+SME+MAF 83.49 46.66 4818  5.37 1.95 74.60 4542 4455 492 2.80

some performance gains may appear modest, statistical significance tests in Appendix [E.2|confirm
that our improvements are statistically significant (p < 0.05) in most cases.

Impact of Missingness Modeling on Subgroups. To directly validate our hypothesis that structured
missingness is linked to demographic bias, we analyze the performance gains from our Structured
Missingness Encoder (SME) across different racial subgroups. As shown in Figure [ the SME
provides the most significant AUROC improvements for minority groups, particularly for HISPANIC
patients (+3.49). This finding strongly suggests that our model successfully captures non-random,
subgroup-specific missingness patterns—potentially reflecting disparities in care—which are ignored
by other models. This analysis not only explains the source of our model’s superior performance but
also empirically establishes a crucial link between structured missingness and algorithmic fairness.

Qualitative Analysis. Figure [3| presents t-SNE visualizations of the learned representations. Com-
pared to baselines that exhibit clear subgroup clustering (e.g., FairEHR-CLP, FLMD), FEMALA
produces a more homogeneous latent space, especially after fine-tuning. This visually confirms the
effectiveness of our adversarial tuning in removing sensitive information while maintaining a coherent
representation space. Figure 5| further details the EO scores across all sensitive attributes. FEMALA
consistently achieves lower (better) EO values, with the most pronounced challenges remaining in
mitigating biases related to Race and Age, reflecting deep-rooted systemic disparities.

4.3  ABLATION STUDIES AND COMPARATIVE ANALYSIS

4.3.1 IMPACT OF ARCHITECTURAL COMPONENTS

We evaluate the contribution of each component in FEMALA in Table[3] The Segment-aware Temporal
Encoder (STE) alone significantly outperforms a vanilla Transformer, confirming its effectiveness.
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Figure 3: The t-SNE visualization of the learned representations on the MIMIC-III dataset.

EOs on READM

Age

Figure 4: AUROC gains from the Structured RraRor — R T — rom —om
Missingness Encoder (SME) across racial sub-

groups, highlighting the disproportionate ben- Figure 5: The Equalized Odds of FEMALA on sen-
efit for minority groups. sitive attributes on MIMIC-III dataset.

While the Structured Missingness Encoder (SME) offers modest gains independently, its true value
is realized through principled integration. Notably, naive concatenation (‘STE+SME+Concat’)
degrades performance, validating the necessity of our proposed Missingness-guided Adaptive Fusion
(MAF) module (‘STE+SME+MAF), which yields the best overall performance. Finally, the results
consistently show that adversarial low-rank fine-tuning effectively enhances fairness (lower EO/EDDI)
with minimal impact on predictive accuracy, demonstrating its robustness.

4.3.2 JUSTIFICATION FOR DESIGN CHOICES AND STRATEGY COMPARISONS

To further validate our methodological choices, we compare our key strategies against strong alterna-
tives.

Missing Data Handling. As shown in Table @ we compare our explicit missingness modeling
against standard imputation-based approaches. Our method significantly outperforms all alternatives,
including powerful imputation models like SAITS and CSDI. This highlights that treating structured
missingness as an informative signal is more effective than treating it as noise to be imputed or
masked.

Fairness-aware Training. Table [5confirms the superiority of our two-stage, low-rank adaptation
strategy. One-stage adversarial training proves unstable, degrading both fairness and accuracy. While
full-model fine-tuning restores performance, it fails to mitigate bias effectively. In contrast, our
decoupled approach (‘Adv. Low-rank FT’) achieves the best trade-off, preserving task-specific
knowledge while precisely mitigating bias.
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Table 4: Comparison of missing data handling strategies on the MIMIC-III dataset.

Model THM READM
AUROC () AUPR (1) FI1(1) EO() EDDI(]) | AUROC(1) AUPR() FI(f) EO() EDDI()

B Concat. 80.40 3759 4037 959 4.00 7126 3698 4085  9.82 5.16
£ Zero IMP. 79.31 3942 3983 9.09 467 7276 4158 4161 10.10 6.64
£ SAITSDuetal|2023) 82.69 4541 4335 734 4.09 74.83 4434 4327 957 5.02
£ CSDI[Tashiro et al.|(2021] 82.23 4399 4191 777 3.92 7437 4327 4140 997 552

Ours(PT) 84.59 4822 4788 678 3.28 76.49 4700 4634 885 4.60
2 Concat. 80.01 3844 4183 7.60 2.32 71.49 3766 4158 755 4.15
E Zero IMP. 74.74 36.15 3930 5.60 297 68.33 3707 3931 548 3.19
2 SAITS[Du et al|2023) 81.71 4363 4361 597 337 72.90 4242 4184 561 5.02
£ CSDI[Tashiro et al.|(2021] 81.09 4186 4222 571 354 7241 4125 4002 576 552

Ours(FT) 83.49 46.66  48.18 537 1.95 74.60 4542 4455 492 2.80

Table 5: Comparison of different fairness-aware training strategies on the MIMIC-III dataset.

Model HM READM
AUROC (1) AUPR({) FI(1) EO(|) EDDI(]) | AUROC() AUPR({) FI(1) EO(]) EDDI(])
PT | 8459 4822 4788 678 328 | 7649 4700 4634 885 4.60
Adv. One-stage Training 82.80 4764 4698 9.1 3.17 74.91 4575 4195  8.16 433
Adv. Full Model FT 84.39 4765 4729 895 320 74.76 4343 4298 556 3.63
Adv. Low-rank FT 83.49 4666 ~ 48.18 537 1.95 74.60 4542 4455 492 2.80

Segmentation Strategy. To address a key concern from prior reviews, we empirically justify our
use of fixed-length segmentation. Table [6]shows that our fixed-length approach outperforms both
variable-length and event-based Transformer encoders. We attribute this to its better stability and
effectiveness in capturing local temporal patterns in our datasets, confirming our design choice.

Table 6: Compared with variable-length segments and event-based Transformer encoders.

Model IHM READM
AUROC (1) AUPR() FI1(f) EO(/) EDDI(]) | AUROC(f) AUPR(f) FI1() EO(]) EDDI(])

Variable-length segments 83.64 46.10 4623 7.0 3.95 74.20 45.03 4525  9.04 393

£ Event-based Transformer encoder 83.60 46.40 46.20 9.16 3.71 68.81 40.91 40.24 9.39 6.25
Ours(PT) 84.59 48.22 4788  6.78 3.28 76.49 47.00 46.34  8.85 4.60
Variable-length segments 81.92 45.32 4539 6.29 2.74 71.50 43.63 43.70 499 3.57

£ Event-based Transformer encoder 82.51 43.47 4412 7.03 3.07 66.46 38.74 38.74 534 4.11
Ours (FT) 83.49 46.66 48.18 537 1.95 74.60 45.42 4455 492 2.80

5 CONCLUSION

We present FEMALA, a two-stage framework designed to mitigate demographic bias and effectively
handle missing data in clinical outcome prediction. In the first stage, we combine a segment-aware
time-series encoder with a structured missingness encoder to capture representations that reflect both
the observed data and the underlying missingness patterns. In the second stage, we apply adversarial
fine-tuning with low-rank adapters to encourage the model to retain task-relevant signals while
minimizing reliance on sensitive attributes. We evaluate FEMALA on the MIMIC-IIT and MIMIC-IV
datasets, where it achieves state-of-the-art performance in both predictive accuracy and fairness.

Limitations and Future Work. This work focuses on binary classification tasks using multivariate
time-series data and categorical sensitive attributes. Future extensions may include adapting FEMALA
to handle multi-modal clinical inputs—such as text and medical images—with more complex missing-
ness patterns, as well as accommodating continuous or high-cardinality sensitive variables. Moreover,
exploring alternative fine-tuning strategies, such as Direct Preference Optimization (DPO), may offer
additional improvements in the fairness—accuracy trade-off.
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APPENDIX OVERVIEW

This appendix provides supplementary material to support the main paper. We first clarify the role of
Large Language Models (LLMs) and outline our reproducibility resources in Section[A]and Section [B]
respectively. We then provide additional details on the datasets, prediction tasks, and fairness metrics
in Section [C] Following that, Section[D]describes the implementation details, hyperparameter settings,
and baseline methods. Finally, Section [E| presents additional experimental results, including further
baseline comparisons, statistical significance tests, and computational cost analysis.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used in this work solely for language polishing and improving
the clarity of writing. No LLMs contributed to research ideation, experimental design, analysis, or
the development of core scientific content. All conceptual and technical contributions are original to
the authors.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a comprehensive set of resources. Our full
implementation is available as an anonymous code repository, linked in the abstract, which includes
all necessary code and usage instructions to replicate our experiments.

C ADDITIONAL INFORMATION ON DATASETS AND TASKS

We extract five categories of continuous-valued clinical predictors from the MIMIC-III and MIMIC-
IV datasets: vital signs, blood gases, renal function, metabolic panel, and hematology. We focus
exclusively on the first 48 hours of patient data recorded after ICU admission, sampling observations
at hourly intervals. Admissions with fewer than 48 hours of recorded data are excluded. Detailed
predictor information is summarized in Table [/| We preprocess the raw data using the pipeline
proposed by [Harutyunyan et al.| (2019). Notably, due to the extreme sparsity of arterial oxygen
pressure data in MIMIC-IV, we include this predictor only for the MIMIC-III dataset. Consequently,
the total number of predictors is 26 for MIMIC-III and 25 for MIMIC-IV.

Table 7: Summary of clinical predictors in longitudinal data for MIMIC-III/IV datasets, * indicates
the predictor is only available in MIMIC-IIL.

Category | Predictors

Heart Rate, Systolic Blood Pressure, Diastolic Blood Pressure, Mean Blood Pressure,

Vital Signs Respiratory Rate, Body Temperature, Oxygen Saturation

Arterial Base Excess, Arterial Carbon Dioxide Pressure,

Blood Gases Arterial Oxygen Pressure®, Arterial pH

Renal Function \ Blood Urea Nitrogen, Creatinine

Ionized Calcium, Serum Chloride, Serum Glucose, Fingerstick Glucose, Anion Gap,

Metabolic Panel . . . .
etabolic Fane Serum Bicarbonate, Magnesium, Serum Potassium, Serum Sodium

Serum Hematocrit, Hemoglobin,
Platelet Count, White Blood Cell Count

Hematology

We also extract five sensitive attributes from the MIMIC-III and MIMIC-1V datasets: insurance type,
marital status, race, gender, and age. Each attribute contains several subgroups, whose compositions
vary between the two datasets. For instance, the insurance attribute comprises five subgroups
(Medicare, Medicaid, Government, Self Pay, and Private) in MIMIC-III, whereas it includes only
three subgroups (Medicare, Medicaid, and Other) in MIMIC-IV due to differences in recording
standards. The distributions of sensitive attributes across MIMIC-IIT and MIMIC-IV are presented in
Figure[6] Notably, the subgroup distributions in MIMIC-III exhibit greater imbalance compared to
those in MIMIC-IV, reflecting the more diverse subgroup categorization in certain sensitive attributes.
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MIMIC-III: Insurance MIMIC-IIl: Marital status MIMIC-IIl: Race MIMIC-IIl: Gender MIMIC-IIl: Age
== MARRIED: 49.57% w— ASIAN: 2.61%
SINGLE: 26.62% BLACK: 10.90%
s WIDOWED: 15.79% = HISPANIC: 3.66%
DIVORCED: 6.80% WHITE: 80.38% - F:45.43% - >=75:67.28%
= SEPARATED: 1.20% m—OTHER: 2.17% M: 54.57% <75:32.72%
MIMIC-IV: Insurance MIMIC-IV: Marital status MIMIC-IV: Race MIMIC-IV: Gender MIMIC-IV: Age

O

m— ASIAN: 3.31%
= MARRIED: 48.73% BLACK: 11.68%
= Medicare: 48.22% SINGLE: 29.44% = HISPANIC: 4.21%
Medicaid: 6.77% = WIDOWED: 14.12% WHITE: 76.94% - F44.73% - >=75:66.48%
= Other: 45.01% DIVORCED: 7.71% m= OTHER: 3.47% M: 55.27% <75:33.52%

Figure 6: Distribution of sensitive attributes in MIMIC-III and MIMIC-IV datasets.

C.1 TASKS

In-Hospital Mortality (IHM) Prediction. The In-Hospital Mortality (IHM) task involves predicting
whether a patient will pass away during their hospital stay. As summarized in Table [T} the MIMIC-
IIT dataset contains 1,484 positive samples in the training set with a missing data rate of 72.81%.
Similarly, the MIMIC-IV dataset includes 1,702 positive samples in the training set, with a slightly
lower missing data rate of 71.16%. Readmission (READM) Prediction. The Readmission (READM)

task aims to forecast whether a patient will be readmitted to the hospital within 30 days after discharge.
In this task, both patients who are readmitted and those who pass away during hospitalization are
treated as positive cases. As shown in Table|[T] the MIMIC-III dataset contains 2,268 positive samples
in the training set with a missing data rate of 72.81%. The MIMIC-IV dataset has 2,648 positive
samples in the training set, and a missing data rate of 71.16%.

C.2 FAIRNESS METRICS

Equalized Odds (EO) is a widely adopted group-fairness metric that measures disparities in predic-
tion errors across different subgroups. Specifically, EO quantifies the discrepancy in True Positive
Rates (TPR) and False Positive Rates (FPR) between privileged and unprivileged groups. Lower EO
values signify more equitable model predictions.

Given multiple sensitive attributes, each containing multiple subgroups, we calculate EO by averaging
pairwise disparities across all subgroup pairs within each attribute. Formally, the EO for each sensitive
attribute is computed as:

1
EOrpr = W Z Z | TPR,, — TPR,, |, (14)
2 a; aj>a;
1
EOppr =~ Z Z | FPR,, — FPR,,|. (15)
( 2 ) a; aj;>a;

Here, A denotes the set of subgroups within a sensitive attribute (e.g., Insurance = {Medicaid,

Medicare, ... }), and (“;‘) represents the total number of subgroup pairs. For each subgroup a € A,
we define:

TP, FP,

TPR, = —— % .  FPR,= — % |
R TP, + FN, R FP, + TN,

where TP,, FP,, FN,, and TN, represent the subgroup-specific confusion matrix components.
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The EO score for each sensitive attribute is then obtained by averaging the disparities in TPR and
FPR:

1
EO = 3 (EOtpr + EOgpR) -

The overall EO is finally computed by averaging across all sensitive attributes.

Error Distribution Disparity Index (EDDI) complements EO by quantifying the consistency of
prediction errors across demographic groups. Following |Wang et al.|(2024c), EDDI measures the
extent to which the subgroup-specific error rates deviate from the overall error rate. Formally, given a
set of subgroups A within a sensitive attribute and a subgroup a € A:

|ER, — OER |
EDDI =
|A\ Z max(OER, 1 — OER)’

where subgroup error rate (ER,) and overall error rate (OER) are defined as:

N
ER, Nz]lyz7éyz OER = — g (yi # 9i)-

1€a

Here, y; and y; are the true and predicted labels, respectively, [N, is the number of samples in
subgroup a, and N is the total dataset size. EDDI normalizes each subgroup’s error-rate deviation by
the maximum possible error deviation (max(OER, 1 — OER)), providing a standardized measure of
fairness. Lower EDDI values indicate greater fairness, reflecting more uniform prediction accuracy
across demographic subgroups.

D MORE ON BASELINE METHODS AND IMPLEMENTATION DETAILS
D.1 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

Implementation Details. FEMALA is implemented in Python 3.11 using PyTorch 2.0. All exper-
iments are conducted on a single NVIDIA RTX-4090 GPU with a batch size of 128. Models are
trained for a maximum of 100 epochs using the Adam optimizer, with early stopping triggered if
validation AUROC does not improve for 10 consecutive epochs. The best-performing model on the
validation set is selected for final evaluation on the test set. For calculating F1 score and fairness
metrics, we use the threshold that yields the best F1 score on the validation set. For adversarial fine-
tuning, we initiate the process after pre-training the MINE module for 30 epochs. For all baselines,
we concatenate the time-series data with its corresponding missingness mask as the model input.

Hyperparameter Tuning. We tune key hyperparameters via grid search on the validation set. The
search spaces are as follows:

* Dropout ratio: {0,0.1,0.2,0.3}
* Learning rate: {1 x 107%,5 x 107°,1 x 107°}

All reported results use the optimal hyperparameter settings identified through this process.

Sensitivity Analysis of Segment Length (L) and LoRA Rank (7). We investigate the sensitivity of
FEMALA to two key hyperparameters: segment length L and LoRA rank r. As shown in Figure
shorter segments (L) slightly improve performance on IHM, while longer segments benefit READM,
suggesting that optimal temporal resolution is task-specific. Figure [§|indicates that increasing the
LoRA rank r enhances predictive performance but may also amplify bias. Moderate values (e.g.,
r = 8) offer the best trade-off, achieving strong accuracy while maintaining fairness.
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Figure 7: Effect of segment length L. Figure 8: Effect of rank r.

Sensitivity Analysis of the Mutual Information Coefficient (\yy). We investigate the impact of the
mutual information regularization coefficient, Ay, on the trade-off between predictive performance
and fairness. As shown in Table [8] we vary Ay from 0.1 to 1.0 and observe its effect on the
READM task. The results reveal a clear trend: as Ayj increases, the model places greater emphasis
on minimizing the mutual information between the specific and shared representations. This leads
to improved fairness, as evidenced by the decreasing Equalized Odds (EO) and Error Distribution
Disparity Index (EDDI). However, this fairness enhancement comes at the cost of a slight reduction
in predictive performance, reflected in the lower AUROC, AUPR, and F1 scores. Based on these
findings, we selected Ay = 0.5 for our main experiments, as it strikes an effective balance, achieving
substantial fairness gains without excessively compromising predictive accuracy.

Table 8: Sensitivity analysis of the mutual information coefficient (Ayy).

N MIMIC-III READM
ML AUROC (1) AUPR (1) FI1 (1) EO(]) EDDI(})
PT | 7649 47.00 4634  8.85 4.60
0.1 76.39 46.88 46.58  7.95 4.39
0.2 75.58 46.14 4575  6.98 4.17
0.5 74.60 45.42 4455 492 2.80
0.7 74.44 4473 4421 490 2.81
1.0 74.02 43.92 4381  4.87 2.77

D.2 DETAILED DESCRIPTIONS OF BASELINE METHODS

Baselines without fairness strategies:

* CNN (LeCun et al.,|1998)): Convolutional Neural Networks utilize convolutional layers to
automatically extract hierarchical representations, enabling the learning of complex decision
boundaries for predictive tasks.

* RNN (Elman, 1990): Recurrent Neural Networks process sequential data by recursively
passing hidden states through time steps, making them effective for modeling temporal
dependencies.

* LSTM (Graves and Graves| 2012): Long Short-Term Memory networks are specialized
recurrent architectures designed to effectively capture long-term dependencies and mitigate
the vanishing gradient problem inherent in standard RNNs.

* Transformer (Vaswani et al., 2017): Transformer architectures leverage self-attention
mechanisms, allowing models to efficiently capture global dependencies without recurrent
connections, thus demonstrating excellent generalization across multiple domains.

Baselines with fairness strategies:

* FFVAE (Creager et al., 2019): It employs adversarial decorrelation within a variational au-
toencoder framework to disentangle sensitive attributes from latent representations, ensuring
fairness in downstream predictions.
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* FarconVAE (Oh et al.| 2022): It combines variational autoencoder techniques with con-
trastive learning objectives to achieve fair representation learning through disentanglement.

e FairEHR-CLP (Wang et al.l 2024c)): This model integrates generative adversarial networks
for synthesizing counterfactual patient data, followed by contrastive learning to explicitly
reduce prediction biases across demographic groups.

* FLMD (L1u et al., [2023): It employs deconfounder theory to infer and incorporate latent
confounders, improving fairness by addressing unobserved biases within the dataset.

Imputation Baselines:

e SAITS (Du et al. [2023): Self-Attention-based imputation for Time Series utilizes
transformer-based architectures with self-attention mechanisms to effectively impute missing
values in multivariate time series.

* CSDI (Tashiro et al.| [2021): Diffusion-based imputation adopts diffusion probabilistic
models to provide robust and probabilistically sound imputation for multivariate time-series
data.

E MORE ON EXPERIMENTAL RESULTS

E.1 EXPERIMENTS ON ADDITIONALLY BASELINES

To further validate the effectiveness of FEMALA, we conduct additional experiments comparing it
with more baseline methods on the MIMIC-III dataset, including Adversarial Training (Yang et al.
2023)), Adapting Fairness (Feng et al.,|2023)), and FairLoRA (Sukumaran et al., 2024)). The results,
presented in Table [0] demonstrate that FEMALA consistently outperforms these baselines in both
predictive performance and fairness metrics. This further substantiates the robustness and efficacy of
our proposed approach in achieving fair and accurate predictions in clinical settings.

Table 9: Performance and fairness evaluation across two tasks on MIMIC-III.

In-Hospital Mortality Readmission

Model ‘ AUROC (1) AUPR () FI(1) EO(}) EDDI() ‘ AUROC (1) AUPR () F1(1) EO(}) EDDI()
Adversarial Training |~ 82.25 4255 4345 7.66 403 72.41 40.18 4143 743 5.88
Adapting Fairness 80.46 4214 4322 842 5.08 71.96 4121 4131 8.14 6.02
FairLoRA 78.95 3779 4168  7.13 2.88 7253 3893 4294 541 351
Ours(PT) 84.59 4822 4788 678 3.28 76.49 4700 4634 885 4.60
Ours (FT) 83.49 46.66  48.18 537 1.95 74.60 4542 4455 492 2.80

E.2 STATISTICAL SIGNIFICANCE ANALYSIS

To rigorously evaluate the statistical significance of our results, we conduct two-sample bootstrapped
t-tests with a significance level of 0.05. This analysis provides a detailed comparison of FEMALA
against various benchmarks and internal configurations, with the results summarized in Tables [I0]to
Metrics highlighted in red indicate instances where FEMALA is outperformed.

Comparison with SOTA Baselines. As shown in Table[I0] we compare FEMALA against both fair
and non-fair state-of-the-art baselines. The results demonstrate that FEMALA achieves statistically
significant improvements in most performance and fairness metrics. In the few cases where a baseline
shows slightly better predictive performance (e.g., on MIMIC-IV), FEMALA consistently delivers
statistically superior fairness, underscoring its effectiveness in balancing accuracy and equity.

Ablation Study on Model Components. Table [I] presents an ablation study that assesses the
contribution of each module within FEMALA. The p-values confirm that each component provides a
statistically significant benefit to the model’s overall performance and fairness, validating our design
choices.

Comparison of Missing Data Handling Strategies. In Table|12| we compare our proposed strategy
for handling missing data against other state-of-the-art imputation methods. The results show that our
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approach leads to statistically significant gains in both predictive accuracy and fairness, highlighting
its superiority.

Comparison of Fairness-Aware Training Strategies. Finally, Table [I3|compares our adversarial
fine-tuning strategy with alternative fairness-aware training methods. The analysis confirms that our
approach is significantly more effective at enhancing fairness, often while maintaining or improving
predictive performance.

Collectively, these statistical tests validate that FEMALA not only surpasses existing methods but also
benefits significantly from its unique architectural components and training strategies.

Table 10: P-values of two-sample bootstrapped ¢-test of FEMALA compared to SOTA non-fair / fair
SOTAs. We observe that most of the tests are significant under 0.05 significance level.

Model IHM READM
AUROC (1) AUPR ()  FI (1) EO (/) EDDI(]) | AUROC (f) AUPR(1) FI(}) EO(l) EDDI(})

MIMIC-II v.s. non-fair | 3.16E-125  1.50E-66  2.05E-105 / / 140E-106  1.69E-98  2.04E-107 /

MIMIC-II v.s. fair 420E-41  279E-121 4.32E-140 9.82E-37 8.70E-16 | 6.08E-17  230E-96 1.8IE-64 292E-99 1.31E-29

MIMIC-1V v.s. non-fair | 3.11E-09 0.025  4.44E-16 / / 1.0IE-26  1.06E-20  1.29E-12 /

MIMIC-1V v.s. fair 0.0081 9.57E-14  262E-42 S577E-43 026 433E-09 000022  822E-05 2.15E-20 5.68E-16

Table 11: P-values of two-sample bootstrapped ¢-test for the ablation study on model components,
comparing the full FEMALA model against its variants.

Model READM
AUROC (1) AUPR (1)  FI(1) EO (/) EDDI(|) | AUROC (1) AUPR()  Fl(}) EO(}) EDDI(})
FEMALA w/ STE vs FEMALA w/ TF | 5.51E-264  1.25E-190 3.07E-198 / / 392E-235 4.92E-258 1.65E-260 / /
£ FEMALA vs. STE 1.22E-42  373E-01  1.81E-02 / / 441E-10  390E-01  3.02E-03 / /
FEMALA vs. STE+SME+Concat. 247E-43  3.88E-14  3.60E-19 / / 6.16E-09  2.68E-20  8.20E-21 / /
FEMALA w/ STE vs FEMALA w/ TF | 7.55E-175 242E-152 5.73E-183 282E-49 1.50E-74 | 6.23E-91  4.26E-203 3.04E-48 3.58E-54 1.23E-50
£ FEMALA vs. STE 9.17E-02  2.29E-02  3.28E-01 1.50E-91 106E-04 | 7.02E-07  1.19E-01  5.07E-04 3.10E-56 8.76E-39
FEMALA vs. STE+SME+Concat. 482E-38  7.58E-04  1.34E-25 2.19E-18 7.88E-04 | 6.70E-36  348E-53  276E-17 5.05E-24 4.64E-06

Table 12: P-values of two-sample bootstrapped t-test compare the SOTA missing data handling
strategies with FEMALA.

Model THM READM

AUROC (1) AUPR(1) FL (D) EO (/) EDDI(]) | AUROC(1) AUPR(1) FI (D EO()) EDDI(])
PT 3.09E-92  2.22E-35 3.66E-135 / / 1.70B-60  4.41B-41  1.22E-102 / /
FT 7.19E-79  3.05E-40 1.08E-135 4.80E-02 3.82E-11 | 4.36E-55  826E-52 947E-81 1.52E-05 1.58E-05

Table 13: P-values of two-sample bootstrapped t¢-test compare different fairness-aware training
strategies with FEMALA.

Model THM READM

AUROC () AUPR(1) FI(}) EO(l) EDDI(]) | AUROC (1) AUPR () FI(1) EO(]) EDDI(})
Adv. One-stage Training | 8.69E-14  1.82E-05 9.27E-13 1.I17B-150 8.07E-86 | 3.04E-03  8.83E-02 2.88E-78 1.30E-131 6.19E-64
Adv. Full Model FT 4.54E-24  1.10E-05 2.96E-07 565E-143 131E-116 | 1.03E-01  1.76E-25 1.77E-30 148E-07 1.70E-26

E.3 COMPUTATIONAL COST ANALYSIS

We provide a detailed analysis of the computational costs for all models in Table[T4] including param-
eter counts and training times. The results demonstrate that FEMALA achieves superior performance
and fairness while maintaining computational costs comparable to the baselines, highlighting its
practicality and scalability.
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Table 14: Computational cost compare.

Model |  Trainable Params Total Params  Training time per epoch ~ Converge Epoch
Transformer 13.77 MB 13.77 MB 9.22s 15
LSTM 2.88 MB 2.88 MB 7.16s 19
RNN 0.72 MB 0.72 MB 7245 25
CNN 0.51 MB 0.51 MB 6.50 s 16
FairEHR-CLP 14.01 MB 14.01 MB 6.14s 22
FLMD 1.54 MB / 18.56 MB 20.10 MB 21.16s/15.51 s 163/22
FFVAE 0.75 MB /0.13 MB 0.88 MB 9.40s/7.15s 100/10
FarconVAE 1.89 MB / 0.0005 MB 1.89 MB 13.46s/7.18 s 300/14
FEMALA(PT) 15.54 MB 15.54 MB 13.72s 30
FEMALA(FT) 2.61 MB 18.14 MB 11.16 s 35
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