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Abstract

Reinforcement learning has been shown to improve the performance of
large language models. However, traditional approaches like RLHF or
RLAIF treat the problem as single-step. As focus shifts toward more com-
plex reasoning and agentic tasks, language models must take multiple
steps of text generation, reasoning and environment interaction before
generating a solution. We propose a synthetic data generation and RL
methodology targeting multi-step optimization scenarios. This approach,
called Step-Wise Reinforcement Learning (SWikL), iteratively generates
multi-step reasoning and tool use data, and then learns from that data.
It employs a simple step-wise decomposition that breaks each multi-step
trajectory into multiple sub-trajectories corresponding to each action by
the original model. It then applies synthetic data filtering and RL opti-
mization on these sub-trajectories. We evaluated SWiRL on a number of
multi-step tool use, question answering, and mathematical reasoning tasks.
Our experiments show that SWiRL outperforms baseline approaches by
21.5%, 12.3%, 14.8%, 11.1%, and 15.3% in relative accuracy on GSM8K,
HotPotQA, CofCA, MuSiQue, and BeerQA, respectively. Excitingly, the
approach exhibits generalization across tasks: for example, training only
on HotPotQA (text question-answering) improves zero-shot performance
on GSMSK (a math dataset) by a relative 16.9%.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities in Natural
Language Processing (Gemini Team et al., 2024; Anthropic, 2024; OpenAl et al., 2024).
However, they often struggle to answer complex queries that require reasoning and tool use
across multiple steps (Wu et al., 2024), such as multi-hop question-answering, mathematical
problem-solving, coding, and other agentic tasks, (Yang et al., 2018; Trivedi et al., 2022; Wu
et al., 2024; Cobbe et al., 2021; Jimenez et al., 2024; Ehrlich et al., 2025; Li et al., 2022).

Traditional reinforcement learning (RL) approaches, such as RL From Human Feedback
(RLHF) (Christiano et al., 2023), RL from Al Feedback (RLAIF) (Bai et al., 2022), and RL from
Execution Feedback (RLEF) (Gehring et al., 2025), have focused on single-step optimization,
leaving the challenge of multi-step tasks largely unaddressed. Many real-world problems
require a sequence of interrelated actions; for example, when answering a challenging ques-
tion, a model must determine not just what information to seek, but when to stop searching
and synthesize its findings. Multi-step reasoning creates a compounding challenge, as
incorrect intermediate steps often lead to incorrect final results, making it critical to maintain
accuracy across the entire chain of actions or learn to effectively recover from such errors.
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To address this challenge, we present Step-Wise Reinforcement Learning (SWiRL), an offline
multi-step optimization technique. We consider a setting where the model has access to a
tool, such as a search engine or calculator, and can run a sequence of tool use calls as needed
to answer the question. Our goal is to teach the model how to decompose complex problems
into a sequence of more manageable subtasks, when to call the tool, how to formulate a
call to the tool, when to use the results of these queries to answer the question, and how
to effectively synthesize its findings. In particular, we propose a two stage approach, in
which we first generate multi-step synthetic data and then learn from these data using a
step-wise reinforcement learning method. This approach has the key practical advantage
that we can quickly generate large volumes of multi-step training data via parallel calls to
avoid throttling the training process with slow tool use execution. In addition, this offline
process enables greater reproducibility due to having a fixed dataset.

To generate multi-step synthetic training data, we provide an open-source LLM (Gemma 2
(Gemma Team et al., 2024b)) with access to a relevant tool (e.g., a search engine or calculator).
We iteratively prompt the model to generate multi-step trajectories; at each step, the model
is free to generate a chain of thought, and may either call a tool or produce a final answer,
which we refer to as the model’s action. If the model generates a tool use call, its query is
automatically extracted from the overall response and executed in the environment, and
the result is presented to the model in the next step. The trajectory ends when the model
generates an answer to the original question, which it indicates using special markers. We
convert each trajectory with k actions into k subtrajectories, containing the context from
the beginning of the trajectory up to that action. We then use a step-wise reinforcement
learning approach to optimize over this dataset, employing a generative reward model that
evaluates each action in the context of its subtrajectory.

This granular approach enables us to apply direct feedback after each step of the trajectory,
and to do so in a manner that is contextually aware. Unlike prior RL finetuning approaches
used in frontier open-source models like DeepSeek-R1 (DeepSeek-Al and others, 2025) and
Llama-3 (Grattafiori et al., 2024), we do not solely optimize for final performance, and use
no golden labels; however, by optimizing for the reasonableness of each step given prior
steps, SWIRL does in fact improve final performance.

In addjition to evaluating SWiRkL on challenging multi-hop question-answering and mathe-
matical problem-solving tasks, we also study the generalization properties of this methodol-
ogy. This is of key interest because there is an explosion of agentic applications for language
models, and methods that generalize across datasets and tasks will be easier, cheaper and
faster to adapt to new environments. We also measure the effectiveness of different syn-
thetic data filtering strategies, study SWiRL's ability to generalize across datasets and tasks,
measure the impact of model size and dataset size, and explore the mechanism driving
these performance improvements.

Our contributions are as follows:

* We propose Step-Wise Reinforcement Learning (SWiRkL), an approach to synthetic
data generation and offline RL that advances multi-step reasoning and tool use.

¢ We demonstrate generalization across datasets. For example, training SWiRL on
HotPotQA not only improves performance on the dataset itself, but also yields
superior performance on other multi-hop question-answering datasets, e.g., 21.5%
on GSMS8K (Cobbe et al., 2021), 15.3% on BeerQA (Qi et al., 2021b), 11.1% on
MuSiQue (Trivedi et al., 2022) and 14.8% on CofCA (Wu et al., 2024).

* We also show transfer across disparate tasks, namely mathematical reasoning to
question-answering and vice versa. Training only on multi-hop HotPotQA question-
answering improves performance on GSM8K (Cobbe et al., 2021) (a math dataset)
by 16.9%, and training on GSM8K improves performance on HotPotQA (multi-hop
question-answering) by 9.2%.

* We analyze the impact of synthetic data filtering strategies in a multi-step reasoning
and tool use setting, and demonstrate that models learn best from datasets which
have been filtered step-wise to ensure high-quality reasoning traces, but which are
not filtered by outcome (correct final answer).
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¢ We explore the impact of training dataset size and model size on SWiRL, observing
that significant gains can be achieved even with just 1000 trajectories and that
smaller models (Gemma-2-2b and 9b) can benefit from in-domain SWiRL, but do
not display the same generalization as their larger counterpart, Gemma-2-27b.

¢ We demonstrate that SWiRL effectively improves the average process reward, even
when evaluated on out-of-distribution tasks, suggesting that the downstream per-
formance gains are driven by improved multi-step reasoning.

2 Methodology

Our methodology, Step-Wise Reinforcement Learning (SWiRL), consists of two stages. In
the first stage, we generate and filter synthetic data. In the second stage, we use a step-wise
reinforcement learning approach to optimize a generative base model on the synthetic
trajectories. SWiRL does not require golden labels or human annotations, and instead relies
entirely on model-based judgments for data generation, filtering, and RL optimization. The
overall flow of our methodology is depicted in Figure 1 (Stage 1) and Figure 2 (Stage 2).

2.1 Multi-Step Data Collection

SWIRL Stage 1: Synthetic Data Generation
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Figure 1: In SWiRL Stage 1, we generate and filter multi-step synthetic trajectories. At each
step, the model is free to generate a chain of thought, call a tool such as a search engine or
calculator, and/or produce an answer to original question. Process-filtered data corresponds
to trajectories in which every step is judged to be reasonable by a model judge (Gemini 1.5
Pro Thinking). Outcome-filtered data corresponds to trajectories with a final answer that
matches the golden label.

In Stage 1 (see Figure 1), we generate synthetic trajectories consisting of multiple steps of
reasoning and tool use, which we use as training data for the step-wise RL methodology
described in the next section. To compile a large-scale collection of synthetic trajectories, we
augment a language model with a tool (e.g., a search engine or calculator), and iteratively
prompt the model to generate multi-step trajectories. At each step, the model is asked
to choose whether to call a tool or produce a final answer, and is always free to generate
chains of thought (which it typically does). If the model generates a tool use call, it is parsed
from the overall response, executed in the environment, and the result is presented to the
model in the next step. See Appendix A for the prompt, which contains a question, explicit
instructions regarding multi-step tool utilization, and the results of prior tool use calls.

For each multi-step synthetic trajectory, we define the following annotations. The trajectory
itself is denoted by T = (s1,41,...,5k, ak). The first state s is the original prompt. Each
following state s; contains the entire context so far, containing state s;_1, action 2;_1, and the
environment (tool call) response to a;_1. Each action a; is the model response, given state s;.
The last action, ag, is the model’s answer to the original prompt.
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In this work, we compiled a dataset of 50,000 synthetic trajectories seeded by 10,000 multi-
step questions from the HotPotQA training set (Yang et al., 2018) (i.e., 5 trajectories per
question), and a mathematical reasoning dataset of 37,500 synthetic trajectories seeded by
the 7,500 questions in the GSM8K training set (Cobbe et al., 2021). Note that, for HotPotQA,
we filtered out “Easy” questions, which can typically be answered with a single search
query. To prevent synthetic trajectories from being excessively long, we set a maximum step
count of 5 for HotPotQA questions, and 10 for GSM8K questions (which typically require
2-8 steps to solve).

Having compiled these datasets, we consider four different filtering strategies and measure
their impact on performance (Figure 1): (1) No filtering; (2) Process filtering, where we retain
trajectories in which each step was deemed reasonable given all previous steps. Concretely,
a model (Gemini 1.5 Pro Thinking, in our case) is prompted to render a binary judgment as
to whether action g; is reasonable given the context s;. See Appendix A for our prompt. No
golden labels are used; (3) Outcome filtering, where we select trajectories based solely on
whether the final response, ax, matches the golden answer; and (4) Process and outcome
filtering, in which we take the intersection of both filtering approaches and retain only
trajectories that exhibit both step-wise soundness and correct final outcomes.

Recent approaches to synthetic data distillation, such as Deep-Seek R1 (DeepSeek-Al and
others, 2025), have demonstrated that synthetic data filtered for correct outcomes can lead
to good performance with single-step RL and supervised finetuning (SFT). In this work,
we sought to explore whether this pattern would hold in a multi-step, tool use setting,
and to explore the impact of both outcome and process filters. Like these prior work, we
observed that filtering multi-step trajectories for correctness was effective for SFT, and in
fact critical for good performance. However, we found that SWiRkL, unlike SFT, can learn
even from trajectories that end in incorrect final answers. In fact, we achieve our best results
by including process-filtered data, regardless of the correctness of the outcome.

2.2 Step-Wise Reinforcement Learning Methodology

SWIRL Stage 2: Step-Wise RL Optimization

f 1 “To figure out who is older, | should first search for age of Glenn Hughes.

Prompt =n ! <search_query>age of Glenn Hughes</search_query>" -
“Who is older Glenn I H Reward model
Hughes or Ross Lynch?"- - - - _____! generates score for
Step 1 last action, given

,,,,,,,,,,,,,,, prior steps.

[ actionkt } : [ GciontZ } i “Next, | should find out what Ross Lynch’s age is. .| Reward

Prompt |- Env i i <search_query>Ross Lynch age</search_query>" R
- g ' eward model
“Who is older Glenn Response : !

- generates score for last
P S ——
Hughes or Ross Lynch? Step 1 i Step 2 action, given prior steps

[ Action 1 } ; ' i “Given the results of my previous
clion [ actionk } il ActionN [ previous searches, | have enough —
* [ Env }” [ Env }” ! (Response) | information to answer the question.

Reward model generates

“Who is older Glenn Response Response : ' <answer>Glenn Hughes</answer>" score for last action, given
Hughes or Ross Lynch?” — . decmmm—----o----s
9 4 Step 1 Step 2 Step N prior steps. (no access to
golden answers.)

Figure 2: In SWiRkL Stage 2, we perform step-wise RL to train on the synthetic multi-step
trajectories from Stage 1. Each step contains an action, which corresponds to a tool call or
the final response. The model is free to generate chains of thought during each step. The
environment responses are captured in the prior steps of the synthetic trajectories, which
were generated offline. Granular feedback is provided by a generative reward model, which
is used to perform RL optimization directly on each action, given the prior context.

As shown in Figure 2, we propose a RL approach capable of learning effectively from the
synthetic multi-step trajectories generated in Stage 1. At each step, a base model is optimized
to predict either the next intermediate step or the final response based on preceding context.
At each step i, the model has access to the full contextual history, including the original
prompt, all previous model-generated steps and any applicable environment response
corresponding to those steps.
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Thus, our objective function is the expected sum of stepwise rewards:

](6) = ESNT, a~y(s) [R(IZ|S)]

Here, 71y is the base model parametrized by 6, which is finetuned via SWiRL (Note that
we also use 7y to generate synthetic data.) T denotes the set of all states in the synthetic
multi-step trajectories, i.e. each incremental state s within each trajectory 7. The reward
signal R(a|s) is derived from a generative reward model, specifically Gemini 1.5 Pro in our
experiments, which assesses the quality of the generated response a given the context s. No
golden labels are used.

We optimize the above expected reward using the same policy gradient algorithm as used
in Gemma 2 for optimizing the human feedback reward (Gemma Team et al., 2024a;b). Our
granular, step-by-step finetuning paradigm enables the model to learn both local decision-
making (next-step prediction) and global trajectory optimization (final response generation)
while being guided by immediate feedback on the soundness of each prediction.

2.3 Step-Wise Inference-time Evaluation

As shown in Figure 3, at inference time, we iteratively prompt the model to either call
a tool or produce a final answer. If the model generates a search query (indicated by
<search_query> </search_query> tags), we parse out that query, embed it with a Gecko
model, perform a nearest neighbor lookup in the corresponding vector database, and inject
the retrieved article into the model’s context window. If the model generates a calculator
tool call (indicated by <math_exp> </math_exp> tags), we parse out the mathematical
expression, execute it with a SymPy interpreter, and inject the calculated results into the
context window. This process terminates when the model either produces an answer
(signaled by producing <answer> </answer> tags) or reaches the maximum number of
queries (5 for question-answering datasets, and 10 for mathematical reasoning datasets).
See Appendix E for example trajectories.

! SWIRL Multi-Step Inference
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Figure 3: SWiRL Multi-Step Inference. At inference time, we iteratively prompt the model to
call available tools as many times as necessary (up to a limit) before answering the original
question. Here, prompts are truncated for clarity and to adhere to space limitations, but full
trajectories are available in Appendix E.

3 Related Work

Reinforcement Learning for LLM Finetuning. One prominent approach, Reinforcement
Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Christiano et al., 2023), con-
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sists of training a reward model on human preference labels at the response level, followed
by RL optimization using Proximal Policy Optimization (PPO) (Schulman et al., 2017). Build-
ing upon this framework, Reinforcement Learning with AI Feedback (RLAIF) (Bai et al.,
2022) has emerged as a scalable alternative that leverages Al models to generate feedback
based on predefined principles or constitutions, reducing the need for costly human annota-
tions. RL from Execution Feedback (RLEF) (Gehring et al., 2025) uses environment feedback,
such as pass rate on coding test cases, to calculate the reward, which it then optimized via
PPO. Besides PPO, other RL optimizations, such as Direct Preference Optimization (DPO)
(Rafailov et al., 2023) and its successors (e.g., Azar et al. (2023); Ethayarajh et al. (2024);
Meng et al. (2024); Lanchantin et al. (2025)) as well as GRPO (Shao et al., 2024) have also
proven to be effective for finetuning LLMs to maximize a target reward. A limitation of
the above approaches is that they focus on single-step optimization with the reward being
calculated only at the end of the episode, leading to suboptimal performance for multi-step
optimization (Liu et al., 2024; Wang et al., 2024). In SWiRL, we focus on scenarios where mul-
tiple steps of reasoning and tool calls are necessary prior to generating a response. Unlike
the above methods, SWiRL enables the model to receive feedback on its granular stepwise
actions which leads to better multi-step reasoning and tool use across longer horizons.

Multi-step Optimization with RL. Recent work including DQO (Liu et al., 2024) and OREO
(Wang et al., 2024) propose offline reinforcement learning to improve multi-step reasoning
for LLMs. However, neither focuses on enhancing a model’s ability to use tools or interact
with an external environment. Additionally, unlike our approach, which optimizes at the
(reasoning) step level, DQO relies on token-level actions, which as shown in (Wang et al.,
2024), are generally less effective than step-level actions. Moreover, OREO requires training
a separate value network and policy, and relies on iterative co-optimization of both models.
The process of maintaining, training, and serving these two models can be prohibitively
expensive, particularly for larger models. PRIME (Cui et al., 2025) proposes an online
approach to improve multi-step reasoning, but does not enable tool use or offline training.
Tulu-3 (Lambert et al., 2025) uses verifiable rewards to train a language model to do better
at math, but requires access to golden labels.

Reasoning Improvement with Synthetic Data. Several approaches have been proposed for
generating synthetic reasoning data. These methods either rely on golden labels to filter the
data or use a combination of golden labels and process or outcome reward models (Zelikman
et al., 2022; Singh et al., 2024). For example, STaR (Zelikman et al., 2022) generates chain-
of-thoughts (CoT) for reasoning questions, filters for those that result in correct answers,
and performs Supervised Fine-Tuning (SFT) on those reasoning traces. The paper also
proposes an augmentation technique called “rationalization”, in which for each question the
model answered incorrectly, the model is provided with the correct answer and prompted
to generate a CoT that leads to that answer. Rejection finetuning (RFT) (Yuan et al., 2023) is
another method that relies on collecting reasoning traces from the model and using those
with correct outcomes for SFT. ReST (Gulcehre et al., 2023) demonstrates strong performance
on machine translation by iteratively generating data and then finetuning on that data using
either a supervised or reinforcement learning objective. ReSTEM (Singh et al., 2024) is an
extension of ReST which outperforms training on human data alone for math and coding
evaluations, but which plateaus after a few iterations, presumably due to overfitting. Our
method also uses a model-based approach to generate multi-step trajectories. However, we
show that using a model to label the steps within each reasoning trajectory leads to higher
out-of-domain generalization than using only the trajectories which contain correct final
answers, meaning that we do not require golden labels. In addition, we enable the model to
use tools iteratively to perform multi-hop question answering and mathematical reasoning.

Process vs. Outcome Based Optimization. There have been a number of attempts to
compare the effectiveness of process and outcome-based approaches in the domain of math
and reasoning (Lightman et al., 2023; Uesato et al., 2022; Snell et al., 2024). For example,
(Lightman et al., 2023) showed that (Outcome Reward Models) ORMs are more effective than
(Process Reward Models) PRMs at the task of ranking samples from a fixed generator model,
whereas Uesato et al. (2022) demonstrated that outcome supervision yields comparable
accuracy to process supervision at lower cost, but that the reasoning traces from the resulting
model exhibit lower fidelity. Both rely on expensive human annotations and golden labels,
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and do not explore the impact of PRMs and ORM s in reinforcement learning optimization,
or the differential effect of data filtering on supervised vs. RL optimization objectives.

4 Experiments

Datasets HotpotQA | CofCA (Avg) | MuSiQue

Metrics M+ PMt PM+t
Proprietary LLMs
GPT-4 74.8 51.9 63.9
GPT-3.5 62.8 40.7 53.1
Gemini 1.0 Pro 63.5 33.3 46.9
Bing Chat 72.1 41.6 52.3
O1l-preview 76.9 58.5 67.9
Open Source LLMs

Llama 2-7b 38.5 28.9 34.2
Mistral-7b 34.9 25.6 29.2
Qwen 2-7b 39.3 30.7 33.5
Base Gemma 2-27b 58.6 31.7 35.4
SWiRL Gemma 2-27b (Ours) 67.8 39.3 43.6

Table 1: Comparison of Accuracy (PMt: Partial Match) across Multiple Datasets: HotpotQA,
CofCA (Average of 2-hop, 3-hop, and 4-hop), and MuSiQue. Baseline results were drawn
from Wu et al. (2024). The Gemma-2 models, both SWiRL and the base model, were not
given access to the context documents, but were allowed to sequentially query a vector
database. The SWiRL model was trained on HotPotQA using process-filtered data, and for
consistency with baseline results, evaluated on GPT-40 with the same prompts as Wu et al.
(2024) on 300 randomly subsampled questions. See Appendix F for example ids.

4.1 Evaluation Datasets

To evaluate performance on multi-step search tool use, we selected five challenging multi-
hop question-answering and mathematical reasoning datasets:

¢ HotPotQA (Yang et al., 2018) is comprised of multi-hop questions from a variety of
domains. Human annotators constructed the questions to be answerable only by
combining information from multiple paragraphs of Wikipedia.

* MuSiQue (Trivedi et al., 2022) is a multi-hop question-answering dataset con-
structed by chaining together multiple single-hop questions.

* CofCA (Wu et al., 2024) is a multi-hop dataset constructed to be answerable only by
querying a counterfactual version of Wikipedia. It contains 2- to 4-hop questions.

* BeerQA (Qi et al.,, 2021a) is an extension of HotPotQA designed to include an even
greater number of hops than the original dataset.

* GSMSK (Cobbe et al., 2021) is a dataset composed of grade school math word
problems, which typically take 2-8 steps to solve.

For question-answering datasets, we set up a vector database containing all articles from
each data split using Gecko-1B with 768-dimensional embeddings (English) (Lee et al., 2024).

For the experiments in Table 1, we follow the same procedure as Wu et al. (2024), evaluating
performance on 300 randomly subsampled examples from the target dataset, using the same
language model as a judge (GPT40) and the same prompt. For every other experiment in
this paper, we used Gemma-2-27b as our judge, as this was more cost effective, with the
exception of GSM8K for which we used Gemini 1.5 Pro as it exhibited noticeably better
numeric evaluation. Model-based evaluation is emerging as a scalable and less brittle
alternative to exact match and F1 metrics (Zheng et al., 2023; Gu et al., 2025), but does
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introduce a new source of stochasticity into the evaluation. See Appendix D for our own
manual inspection and error analysis of three different model judges.

As described in Section 2.3, for each question, we iteratively prompt the model to either
call a tool or produce a final answer, and limit the maximum number of queries to 5 for
question-answering datasets, and 10 for mathematical reasoning datasets.

4.2 Results and Discussion

12 Impact of Data Filtering, Inference Method: Multi-Step Tool Use
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Figure 4: Impact of Data Filtering on Model Performance. Synthetic data for training is
derived from HotPotQA. SWiRL learns to perform multi-hop question answering even
when trained on unfiltered synthetic data. SWiRL’s best performance comes from training
on process-only filtered data, where the data is selected based on the soundness of each step
within its reasoning traces, but which includes both correct and incorrect responses.

Impact of Data Filtering on Model Performance: We evaluated the influence of various
filtering mechanisms on downstream task accuracy, as shown in Figure 4. Concretely, we
consider 4 different types of filtering: no filtering, outcome-based filtering that ensures
correct final answers, process-based filtering that ensure that each step is correct as judged
by a model, and both process and outcome-based filtering.

In all experiments, we fix the number of trajectories used for finetuning (with the exception
of our ablation study on the impact of scaling dataset size), and we provided all models
with access to an appropriate tool. Notably, process-only filtering consistently yields the
highest accuracy, suggesting that focusing on the procedural aspects of data refinement
is more important than the correctness of a training trajectory. While both unfiltered and
filtered data demonstrated an improvement over the baseline model, filtering for correctness
usually harms performance; with the exception of MuSiQue, outcome-filtered or outcome
and process-filtered data is less effective than unfiltered data. We hypothesize that this is
because SWiRL actually benefits from having access to both positive and negative examples.
These results underscore the relative unimportance of outcome-based filtering, which
requires golden labels. They also demonstrate that our process RL method can effectively
learn from even trajectories with incorrect final answers.

Generalization Across Disparate Tasks: To measure generalization across training tasks, we
evaluated the mathematical reasoning capabilities of a model trained on multi-hop question-
answering with search tool use (HotPotQA). Specifically, we evaluated the performance of
this model on GSM8K, a mathematical reasoning task, providing the model with a SymPy
interpreter to use as a calculator. This experiment was run on a different random subsample
of 300 examples. As shown in Table 2, applying SWiRL on out-of-distribution data and tasks
still improves performance.

Effect of Tool Use: As discussed in Section 2.3, at inference time, we use the proposed
multi-step eval as shown in Figure 3 and we iteratively prompt the model to make tool calls
as necessary to answer the question. As shown in Figure 5, both base and SWiRL models
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GSMS8K  HotPotQA CofCA BeerQA MuSiQue

(math) (qa) (qa) (qa) (qa)
Base Model 0.65 0.65 0.54 0.59 0.45
SWIRL on GSM8K (math)  0.79 0.71 0.56 0.68 0.49
SWIRL on HotPotQA (qa)  0.76 0.73 0.62 0.68 0.50

Table 2: SWiRL Generalization Performance. Finetuning on synthetic traces from HotPotQA
or GSMS8K improves performance on both in-distribution and out-of-distribution tasks.
Interestingly, training on a different domain and tool (e.g. math and a calculator) improves
performance on question-answering with a search engine and vice versa, suggesting the
effectiveness of SWiRL in improving general multi-step reasoning and tool use capability.

Performance of Base vs. SWIiRL Models With and Without Tool Use

Gemma-2-27b, Inference Method: No Tool Use
SWiRL-Gemma-2-27b, Inference Method: No Tool Use
B Gemma-2-27b, Inference Method: Multi-Step Tool Use

0.8 B SWiRL-Gemma-2-27b, Inference Method: Multi-Step Tool Use
0.
0.0

HotPotQA MuSiQue CofCA BeerQA GSM8k

Accuracy
o o
N = o

Figure 5: Performance of SWiRL With and Without Multi-Step Tool Use. SWiRL's multi-
step tool use inference improves the performance of both the base model and the SWiRL-
finetuned model, but benefits the latter substantially more. Even without access to a tool,
the SWiRL model outperforms, suggesting that SWiRL training improves the model’s ability
to break down complex problems into multiple manageable subtasks.

improve with SWiRL's multi-step tool use inference, but SWiRL-training offers even further
improvements. Notably, the SWiRL model exhibits substantial improvements, even without
access to a tool, suggesting that SWiRL training improves the model’s ability to break down
complex problems into multiple manageable subtasks.

Impact of Scaling Finetuning Dataset and Model Size: Our experiments on scaling the
fine-tuning dataset size reveal a clear trend: SWiRL has the ability to leverage larger datasets,
even when using only process-filtered data, as shown in Figure 6. As the fine-tuning dataset
size increases, a consistent enhancement in model performance is observed across our target
multi-step reasoning tasks. While a limited dataset of 100 data points appears insufficient
for the model to effectively generalize, a significant improvement is evident with 1,000
data points, showing solid gains across all datasets. Furthermore, scaling up to 10,000 data
points continues to yield further performance enhancements, confirming the efficacy of our
method in capitalizing on larger datasets for improved reasoning capabilities.

We also varied model size, observing that smaller models (2b and 9b) may benefit from
in-domain SWiRL, but do not display the same generalization as their larger counterpart,
Gemma 2 27b. See results in Appendix B.

Effect on Mean Process Label Accuracy: In the previous subsections, we evaluated the effect
of SWiRL on downstream task accuracy. Here, we take a deeper look to understand how
SWIRL achieves these performance improvements. In Table 3, we show the average process
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Impact of Dataset Size on SWiRL. Training Data: HotPotQA, Process Filtered

HotPotQA MuSiQue CofCA BeerQA GSMBK

Accuracy
o o
o @ -
o w

0.55
—e— SWiRL-Gemma-2-27b

0.50{ ---- Gemma-2-27b
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Figure 6: Performance as a Function of Synthetic Dataset Size. Synthetic training data is
derived from HotPotQA, and accuracy is evaluated by Gemma 2 27b. As we scale the
dataset size, we observe consistent improvements in model performance. With only 1000
data points, the model robustly improves both on in- and out- of distribution datasets.

label accuracy for the baseline model vs. a SWiRL finetuned model on 500 trajectories
(seeded by 100 questions) for both HotPotQA and GSMS8K. To calculate the score per step,
we use the same model and prompt as we used for process filtering, as described in Section
4. We take a macro-average of the process label scores within and then across trajectories.
We observe that both for in-distribution and out-of-distribution tasks, the SWiRL model
generates trajectories with higher average process labels, suggesting that the higher final
accuracies are driven by better multi-step reasoning.

HotPotQA GSMSK
(in distribution)  (out of distribution)
Base (Mean Process Label) 82.5% 87.5%
SWiRL on HotPotQA (Mean Process Label) 91.0% 91.6%

Table 3: Impact of SWiRL on Process Correctness. After our multi-step RL optimization, we
observe that the average correctness of each step improves over the base model on both in-
and out- of distribution tasks.

5 Conclusion

In this work, we propose a synthetic data generation and offline reinforcement learning
approach to multi-step reasoning and tool use. This approach outperforms baselines by an
average 15% across challenging multi-hop question-answering and mathematical reasoning
tasks. We explore the effect of different data filtering strategies in a multi-step, tool use
setting, and find that our RL approach is effective even on unfiltered data, but performs
best on process-filtered data. Unlike supervised finetuning, our RL approach can learn from
trajectories with incorrect final answers and actually benefits from the presence of a mixture
of both correct and incorrect final answers. SWiRL demonstrates strong generalization
properties, improving performance on mathematical reasoning (GSM8K) by 16.9% when
trained on multi-hop question-answering (HotPotQA) and 9.2% vice versa.
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A Prompts for Synthetic Data Generation, Filtering, and Evaluation

In this work, we use the following prompts for data generation, filtering, and evaluation.

Prompt Type Prompt Text

Prompt for Multi-Step Synthetic | <start_of_turn>user

Data Generation for Question- | Please help me answer the following question in just a few
Answering with Search Tool Use words. If you think it would help to do a search, please
generate a search query enclosed by <search_query>
QUERY </search_query> tags.

Some questions may require multiple searches in order to
answer, so I will allow you to make up to {} sequential
queries before answering the question.

Please do not repeat queries you have already issued, as
this is a waste of time.

I'will provide search results in the following format:
QUERY -+ RESULT.

Once you have enough information, generate an answer
enclosed by <answer>ANSWER</answer> tags.

Please either issue a search query or answer the question,
but not both.

The question is: {}

<end.of _turn>

Prompt Type Prompt Text

Prompt for Multi-Step Synthetic | <start_of_turn>user

Data Generation for Mathemati- | Please help me answer the following question in just a few
cal Reasoning with Calculator Tool | words. If you think it would help to use a calculator,

Use please generate a mathematical query enclosed by
<math_exp> MATH EXP </math_exp> tags.

Some questions may benefit from using a calculator
multiple times in order to answer, so I will allow you to
make up to {} sequential queries before answering the
question.

Please do not repeat queries you have already issued, as
this is a waste of time.

I'will provide results in the following format:

QUERY -+ RESULT.

Once you have enough information, generate an answer
enclosed by <answer>ANSWER</answer> tags.

Please either issue a search query or answer the question,
but not both.

The question is: {}

<end_of_turn>
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Prompt Type

Prompt Text

Prompt for Process-Filtering on
Multi-Step Search Tool Use Trajec-
tories

<start_of_turn>user

My boss asked me to answer the following question with
the help of a search engine: {}

This means that I might need to decompose the question
into a sequence of searches before being able to answer
the question.

I am trying to learn how to do this more effectively, so
please provide feedback on my last message.

Please take a look at our conversation so far: {}

When evaluating a message, please only consider the last
message and do not penalize or reward me for previous
messages.

When evaluating an answer, please consider only whether
the answer follows from the search results, and not
whether you believe the answer to be correct.

If there is not enough information from the search results
to answer the question, you should rate any answer as
"BAD”. Pay close attention as it may initially seem like the
answer is present when it is not.

When evaluating a search query, please consider whether
it is likely to help me answer the original question.
Explain your reasoning and then answer with either
”"GOOD” or "BAD”.

<end_of_turn>

Prompt Type

Prompt Text

Prompt for Evaluation / Outcome-
Filtering on Multi-Step Trajectories
with Search Tool Use

<start_of_turn>user

Ineed you to help me grade the answer to the following
question: “{}”.

The answer key says: {}, and my answer is {}. Am I
correct?

Please explain your reasoning and then answer "YES” or
"NO”.

Do not use your own knowledge to the decide, but simply
check whether I gave the answer in the answer key.
<end_of_turn>

Prompt Type

Prompt Text

Prompt for Evaluation / Outcome-
Filtering on Multi-Step Trajectories
with Calculator Tool Use

<start_of_turn>user

I'need you to help me grade the answer to the following
question: "{}”.

The answer key says: {}, and my answer is {}. Am I
correct?

Please explain your reasoning and then answer "YES” or
"NO”.

There are multiple ways to write the same answer. For
example, “10”, ”10.00”, ”$10”, and “$10.00” are all
equivalent.

<end_of _turn>
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B Impact of Model Size on Effectiveness of SWiRL

The trend is that models are growing in parameter count over time (Sevilla et al., 2022), so
measuring the impact of model size on the effectiveness of a method can provide insight into
its longevity and future impact. It is also interesting to see whether larger models are able to
learn more general patterns from the training process, and therefore exhibit greater transfer
learning across datasets and even domains (e.g. math vs. question-answering). As shown
in Figure 7, SWiRL demonstrates a clear performance boost over the baseline Gemma 2-27b
model, showcasing consistent improvements across both in-domain (HotPotQA) and out-
of-domain datasets (MuSiQue, COFCA, and BeerQA); while the 2b and 9b Gemma models
also exhibit enhanced performance on in-domain data, their generalization performance on
out-of-domain data is less consistent. This suggests that the effectiveness of SWiRL grows
with increased model size, which is consistent with the observation that methods such as
RLHF (Ouyang et al., 2022) and RLAIF (Bai et al., 2022) are more effective for larger models.

Performance Gains of SWIRL over Base Model as a Function of Model Size

-0.05

Eval Dataset
~0.10 MuSiQue
BeerQA
mmm CofCA
= HotPotQA

Performance Difference (SWIRL Score - Base Model Score)
° °
8 3

9b 27b
Model Size

Figure 7: SWiRL Performance vs. Model Size. Synthetic data for training is derived from
HotPotQA. Step-Wise RL finetuning robustly improves performance over baseline for
the 27b model across both in-domain (HotPotQA) and out-of-domain datasets (MuSiQue,
CofCA, and BeerQA). However, while the in-domain improvements hold for smaller models,
the out-of-domain performance is mixed, suggesting that the relative effectiveness of SWiRL
is higher for larger models.
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C Comparison of Supervised Finetuning and SWiRL

Figure 8 compares the performance of Supervised Fine-Tuning (SFT) and SWiRL on down-
stream tasks. The results show that SFT leads to worse overall performance when compared
to SWiIiRL across all data filtering strategies. We observe that SFT performs better if we apply
it to data that is both process and outcome-filtered, rather only process-filtered. However,
interestingly, SWiRL learns best from data that is only process-filtered. We attribute this
to SFI’s tendency to memorize, rather than generalize (Chu et al., 2025; Setlur et al., 2024),
which can hinder the model’s performance on new, unseen scenarios. In contrast, SWiRL
has the ability to improve model performance by targeting per-step reward maximization.
SWIRL enables the model to develop a deeper understanding of the necessary steps of query
generation and retrieval, which leads to enhanced planning and generalization.

Performance of Supervised Finetuning vs. SWiRL, Inference Method: Multi-Step Tool Use

1.01 3 SFT-Gemma-2-27b, Training Data: Process and Outcome Filtered
I SFT-Gemma-2-27b, Training Data: Process Filtered
Bl SWiRL-Gemma-2-27b, Training Data: Process and Outcome Filtered

0.8 I SWiRL-Gemma-2-27b, Training Data: Process Filtered

Accuracy
o
o

I
S

0.2

0.0-

BeerQA

HotPotQA MuSiQue

Figure 8: Comparison of SFT and SWiRL. Synthetic data for training is derived from
HotPotQA, and to derive accuracy, Gemma 2 27b evaluates whether the model’s answer
matches the golden answer. SWiRL greatly benefits from process-only filtered traces, and
unlike SFT, is capable of learning from traces with both correct and incorrect outcomes.
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D Error Analysis of Three LLM Judges

Table 4: Error Rates for Gemma-2-27b Judgments on HotPotQA (N=100)
Metric Rate (%)

False Positive Rate (FPR) 4
False Negative Rate (FNR) 1

Table 5: Manual Analysis of LLM Math Grading Accuracy (N=100)

Model FPR FNR Notes

Gemma-2-27b 15 0 Overly permissive (“nice”);
all errors involved units.

GPT-40 0 10 Overly harsh; all errors in-

volved units.

Gemini 1.5 Pro 4 0 Accurate, slightly permissive;
all errors involved units.

To evaluate the suitability of language models to serve as evaluators (i.e., check the correct-
ness of a model answer, given a golden answer), we manually checked the correctness of
100 model judgments from Gemma-2-27b on HotPotQA questions. As shown in Table 4, we
found that the error was relatively low (4% false positives and 1% false negatives), justifying
the use of this low cost open-source model as our LLM judge.

However, we noticed that Gemma-2-27b made more errors when it came to numeric quanti-
ties, so we decided to run a separate analysis for GSM8K, manually evaluating 100 model
judgments each for three language models (Gemma-2-27b, GPT-40, and Gemini 1.5 Pro).
Interestingly, we found that Gemma-2-27b tended to be overly “permissive” in its grading,
but had zero false negatives, whereas GPT-40 had a relatively high false negative rate but no
false positives. We also observed that relative results were consistent across model judges; if
GPT-4o0 gave a higher accuracy score to a particular model, Gemma-2-27b did as well, even
if the absolute scores differed. To reduce noise, we chose to use Gemini 1.5 Pro as the LLM
judge for GSMS8K, in spite of its higher cost.
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E Example Trajectories

For clarity, we provide example trajectories from question-answering and mathematical
reasoning datasets, which showcase both search and calculator tool use.

Trajectory Type Trajectory Text

Example Multi-Hop Question- | <start_of_turn>user

Answering Trajectory with Search | Please help me answer the following question in just a few
Tool Use Generated by SWiRL | words. If you think it would help to do a search, please
model on HotPotQA generate a search query enclosed by <search_query>
QUERY </search_query> tags.

Some questions may require multiple searches in order to
answer, so I will allow you to make up to 5 sequential
queries before answering the question.

Please do not repeat queries you have already issued, as
this is a waste of time.

I'will provide search results in the following format:
QUERY - RESULT.

Once you have enough information, generate an answer
enclosed by <answer>ANSWER</answer> tags.

Please either issue a search query or answer the question,
but not both.

The question is: What company published both The
Scorch Trials and The Death Cure?

<end_of_turn>

<start_of_turn>model

<search_query>the scorch trials publisher
</search_query>

<end_of_turn>

<start_of_turn>user

the scorch trials publisher -; The Scorch Trials is a 2010
young adult post-apocalyptic dystopian science fiction
novel written by American author James Dashner and the
second book, fourth chronologically, in “The Maze
Runner” series. The novel was published on September
18, 2010 by Delacorte Press. It is preceded by “The Maze
Runner”, and followed by “The Death Cure”. A was
released on September 18, 2015 by 20th Century Fox.
<end_of_turn>

<start_of_turn>model

<search_query>The Death cure publisher
</search_query>

<end_of_turn>

<start_of_turn>user

The Death cure publisher -; The Death Cure is a 2011
young adult dystopian science fiction novel written by
American writer James Dashner and the third book, fifth
chronologically, in the “Maze Runner” series. It was
published on October 11, 2011 by Delacorte Press and was
preceded by "The Maze Runner” and “The Scorch Trials”
and followed by the series prequels, “The Kill Order and
The Fever Code.” <end_of_turn>

<start_of_turn>model

janswer;Delacorte Pressj/answer; <end_of_turn><eos>
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Trajectory Type

Trajectory Text

Example Multi-Step Math Reason-
ing Trajectory with Calculator Tool
Use Generated by SWiRL model on
GSMS8K

<start_of_turn>user

Please help me answer the following question in just a few
words. If you think it would help to use a calculator,
please generate a mathematical query enclosed by
<math_exp> QUERY </math_exp> tags.

Some questions may benefit from using a calculator
multiple times in order to answer, so I will allow you to
make up to 10 sequential calls before answering the
question.

Please do not repeat queries you have already issued, as
this is a waste of time.

I will provide search results in the following format:
QUERY - RESULT.

Once you have enough information, generate an answer
enclosed by <answer>ANSWER</answer> tags.

Please either issue a math query or answer the question,
but not both.

The question is: Natalia sold clips to 48 of her friends in
April, and then she sold half as many clips in May. How
many clips did Natalia sell altogether in April and May?
<end_of_turn>

<start_of_turn>model

<math_exp>48 / 2 </math_exp>

<end_of_turn>

<start_of_turn>user

48 /2-524.0

<end_of_turn>

<start_of_turn>model

<math_exp>48 + 24</math_exp>

<end_of_turn>

<start_of_turn>user

48 + 24 -; 72.0 <end_of _turn>

<start_of_turn>model

janswer;72;/answer; <end_of_turn><eos>
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F Example Ids

For reproducibility, we provide the ids of the examples used for evaluation.

HotPotQA Example Ids

5ab46a295542990594badc1c,
5a82a0fc55429954d2e2eb87,
5a83e4195542990548d0b243,
5a7{714c5542992097ad2f6e,
5aba5b2455429939ce03dc9c¢,
5adfbf3155429906c02daa29,
5a7ae77b554299042af8f6b0,
5a77d6025542995d83181301,
5a72321£55429971e9dc934a,
5abc39485542997009d782b,
5ab1e5975542997061209590,
5ac16eb355429964131belf5,
5a8901d9554299515336125b,
5a8da5c355429941ael4dffe,
5a74fcbe5542996¢70cfae67,
5a7b65bf55429931da12ca86,
5a7b5d795542992d025e6825,
5a85d69f5542997175ce2062,
5a8658c4554299211dda2b02,
5a727e£15542992359bc30c5,
5a864d835542994775f6073c,
5a8bd3375542997f31a41dd3,
5adfdf4a55429906c02daa7c,
5ae4d41355429908b6326488,
5abddeb55542991f66106083,
5ae142a4554299422ee9964a,
5adfa5405542992d7e9f93ca,
5ae18e37554299234fd0428f,
5abedd105542993fe9a41d63,
5a7222¢ce55429971€9dc92c7,
5ae329e45542991a06ce993e,
5a7918ec554299148911{9%%f,
5a82ef725542995ce29dcd0a,
5aeb35f55542993aec5ecl7c,
5a8af82c55429950cd6bafc31,
5ae69a455542996d980e7c48,
5abc428955429959677d6a67,
5abce73b5542993a06baf9a2,
5a8090105542996402f6a55¢,
5a8a7bfb5542996c9b8d5eff,
5ab5eab35542992aa134a3dd,
5a87ae9d5542994846¢1cdc6,
5a8e16d355429917b4a5bd 18,
5ae7d4f4554299540e5a5659,
5a77aa565542992a6e59df6a,
5abd512655429924427fcfb4,
5ae24d1a5542992decbdccab,
5adec5955542992fa25da83f,
5a7¢1¢595542990527d55456,

5adcb8205542994ed6169bd2,

5abeaf8a5542997ec76fd346,
5a7a9b4755429941d65f26ef,
5abe3ac35542993£32c2a0ac,
5abae3eb5542996cc5e49¢e2,
5ae0027b55429942ec259bda,
5ac5262755429924173fb60f,
5ab98fee554299131ca4237c,
5a7cbe0f55429909bec767ee,
5aba9cff5542994dbf01997¢,
5abedbfa5542993fe9a41d5f,
5adc375055429944faac246¢,
5ae63c8{5542992663a4f27c,
5ac2312755429964131be2c3,
5a8e1e4b554299068b959¢63,
5a8053cf5542992097ad2fe0,
5a8d48({f5542994ba4e3dc5a,
5a8¢38235542995e66a4755f,
5abe833d5542993f32¢2a140,
5a8a73dd5542996c9b8d5eee,
5a7a57935542990783324f1d,
5a7cfdda55429907fabef095,
5a7b93e05542995eb53be961,
5ac0ab335542992a796ded5d,
5ade5664554299728e26c6d5,

5a85ad925542997b5ce40023,
5adc2c9355429947££173904,
5ab3239b554299194fa93574,
5ab639c055429953192ad2aa,
5a7173b45542994082a3e83c,
5abf1fed5542990832d3a127,
5ae293{b5542996483e649fe,
5a89¢2715542993b751ca990,
5ac440355542995c82c4ad0d,
5a8a7cb255429930£f3c0df8,
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5ac31c9d554299741d48a203,
5adc134b5542994650320c5c¢,
5a8454e85542992ef85e23be,
5ac4fa8c55429924173fb536,
5a8a4bdc55429930£f3c0d8c,
5abd7cb855429924427fd00a,
5a7a52745542996c55b2d d4f,
5ae614055542996de7b71b2a,
5ae664955542992ae0d1631b,
5acla5cd5542994d76dcce94,
5ae546e85542992663a4f1b5,
5a7a02235542996¢55b2dcd3,

5ac4fa8c55429924173fb536, 5a8beddd5542995d1e6£1468, 5abd90545542996e802b47d7, 5a7e39515542995ed0d166da
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MuSiQue Example Ids

2hop-.376129.44537,  2hop..764465.126539,  3hop1.434518.136629.55288,  2hop-353084.36340, 2hop_344450_160798,
2hop-.637856_351187,  2hop-.760990.44191,  3hop1..162325.11248.3752,  2hop-.326799.278127,  2hop-.239927 62031,
2hop--153813_69936, 3hop1..213491.782843_75255, 2hop--2846.2741, 2hop--3880-909, 2hop--347735.36735, 2hop--144393_87372,
4hop1..709382.146811.31223.45305, 2hop--143434.20122, 2hop--21457.74218, 3hop1--129597_517267 451901, 2hop--469317.776926,
2hop--27032.5400, 3hop2..83954.32417.24628, 3hop2-.14790.57411.86234, 2hop-.78490.49700, 3hopl..228008-354329.5303,
2hop--631861-160851, 3hop1..662283.507729.351187, 2hop-482727 20661, 3hop1--858308-102146-84004, 2hop-.565717_.77346,
3hop1..470555.668347-492654, 2hop-25478.65517, 2hop--129389.31248, 2hop-.527889.5365, 2hop--20857.20779,
2hop_.770.919, 2hop__375649_80178, 3hop1..332614.131794.17114, 2hop_.144295_211364, 2hop_-108160-159045,
2hop.-.46545_88521, 2hop..518906.44191, 2hop_733628.131886, 4hopl_28235.74795.84660.15312, 2hop_.104341.92821,
2hop-_445544_127008, 2hop-_46766_79233, 2hop__342213_185893, 2hop_528837_126102, 2hop_497897_541630,
3hop1_4861926424 581618, 2hop__87287_83906, 4hop1_411538_805015.475503_32631, 2hop_658198_72962, 2hop._42307_120207,
2hop--30878.555599, 3hop1..8373_87072.45358, 3hop2_.337255_48727_83343, 2hop_.251450_8796, 3hop1._.161080-639509_644660,
2hop--558231.52667, 2hop..424189.49441, 3hopl..821692_74047.756423, 2hop..531731.79705, 3hopl..257981.259472 611044,
2hop--370765-14904, 2hop-.446352_14183, 2hop__81087-13292, 2hop_684971_333904, 2hop--234176_69926, 2hop_858097_121880,
4hop2_.724536.444580.75897_631997, 2hop--492509_70585, 4hop1_405751.4520.65397_49736, 2hop--128610-126060,
3hop1..325154.786384.42990,  2hop-34130.56335,  2hop-.145997_63766,  2hop-.146446_690423,  2hop-225632.11125,
2hop--856457_495, 2hop--129234_330515, 2hop--15674.42467, 3hop1_161946.84298 53741, 2hop--48959_83539,
2hop--64650-20556, 3hop1..316518.395352.131877, 2hop--136618.92216, 2hop--199336.185893, 2hop-.930.57555,
3hop1..31942.48661.15069,  2hop.-35105-160978,  2hop-.128804.351187,  2hop-.153004.86587,  2hop-715365_565667,
2hop--401484.135138, 2hop-.52622_67783, 2hop--713501.58946, 2hop--300786-39199, 2hop--5430.5348, 3hop2.29467.132027.73594,
3hop1..225298.755188.480696, 2hop--367037.80178, 2hop--343473.53204, 2hop--848923.66214, 3hop1..369072.287321.161879,
2hop--250315.64214, 3hop1..104311.833580-61459, 2hop--1835.322987, 3hopl..836616.291186.4303, 2hop--531924.1094,
2hop--131831.84128, 2hop--328708.90697, 2hop--704691.82816, 2hop--80353.3001, 2hop--196785.61424, 2hop--130964.47336,
3hop1-.761109-548045.159613, 3hop1-4525.52205.55099, 3hop1-.58522.787757.69397, 2hop--58284.37793, 2hop--487591.7672,
2hop-.250913.58115, 2hop__131095.85298, 2hop_.144937_8600, 3hop2_62563925582.21116, 3hop2_.30023_63595.53125,
2hop-.584872_88978, 2hop..116643.351162, 2hop_826203_62031, 2hop__85036.909, 2hop_62996.299942, 2hop_ 236731229413,
2hop--15169_87091, 2hop--143791.75878, 2hop..658198_90536, 2hop__70321.15755, 2hop__131105_68117, 2hop_143162_438686,
2hop--20771.65517, 2hop-65149_46180, 2hop-251426_88653, 3hop1..238983_403313_61770, 2hop--28291.709757,
2hop--391909_3430, 3hop1.266733.291186.50964, 2hop_205685.160137, 2hop..343141.702969, 3hop1l..383692.434040.59381,
2hop--240975.736878, 2hop.--507864_368521, 3hop1..723003_593059.76293, 2hop_--109234_62766, 4hop1..16401_4520_65397_52251,
2hop--140591.256194,  2hop-.104757.74309, 2hop--194976.55566, 2hop-361127_140822, 3hop1..108774.104782.14771,
4hop3..393686.620110.61746_261712, 2hop-324178_83854, 3hop1..849536.301867-127418, 2hop--24408_541630,
2hop-.54755.729624, 2hop_693650-61232, 3hop1_.89787_49283_632017, 4hop1..104663221169_833580_61459, 2hop__664573_36741,
3hop1..702271.823374.26254, 2hop--129892_62851, 3hopl..659125.39490_23352, 2hop.--222162.386543, 2hop-446009.412262,
2hop-.781841.77980, 3hop1_706183.20196.10585, 2hop..809948.162428, 3hop1..458602.681261.369731, 2hop_529082_114112,
3hop1..388966.508834.145463,  2hop_582169.370960,  2hop-.225632.52135, 2hop..302491.81463, 2hop..136889.52356,
2hop--81363.42667, 3hop1-.599980.544161.92922, 2hop-.504710.513189,  2hop--145939_11443,  2hop--320353.4018,
2hop--27033_85063, 2hop--145110-861627, 2hop--149891.44359,  2hop-376266.37939, 3hop2-.10879.37094-161133,
3hop2..159915.8509-19700, 4hop1..15118_31258.43153.32993, 3hop1-.522518.132413.16066, 2hop--129782.517267,
3hop1..252998.715836-26008, 4hop1..205937-144938.83779.44678, 2hop--131318.47465, 2hop--338405.68172,
4hop3..3153_3356-11988.24628, 2hop--106465.54210, 2hop-397761.404718, 4hop1-.632232.164954_6975_6891, 2hop--121872.708662,
2hop--73501.31113, 2hop-378511.191233, 3hop1..85045.96305-25007, 3hopl..755950-592709-78102, 2hop--811421.377891,
3hop2..63595_391767_53125, 2hop__131380_84859, 3hop1..158678_48408_37793, 3hop1..7312_830682_68600, 2hop_207212.21032,
3hop1..10725_695397_74345, 2hop_ 445228 774871, 4hop1..603090.818753.783943 26110, 2hop__177131_646483,
3hop1..801682.192919.16121, 2hop_243908.500443, 3hop2..89818.157704.4107, 2hop_160546_26427, 2hop_.128772_745471,
2hop-.62588.20779,  2hop-.661636.82027,  2hop_.105388.89066, = 2hop_368185.131944,  3hopl_153577.411195_8682,
2hop-.327451.90697,  2hop_.647590_134798,  3hop2_30796.804098 24137,  2hop_.146227.42328,  2hop_.152881_620955,
2hop--11693_42892, 2hop-_753498_7606, 2hop-.27952741, 3hop1_373317.533132_1660, 2hop_229374_333904,
3hop1..370820.301867.127418, 3hop1..713250.4016.83854, 2hop--130414_68117, 4hop1..7312.84360-334118_41330,
2hop--65149_68376, 2hop--182310.565529, 3hop1_.136299.84467 89676,  2hop_454055_86874, 2hop--604878_40786,
2hop--307569.51671,  2hop--854082_159115,  2hop--198557.55566,  3hop1..352446_506157_44678,  2hop-.468848_44537,
2hop--207571-126101, 4hop2_53235.18485.57802311656, 2hop--451164.140822, 3hop1..37692_84298_53741,
3hop1..672119.196807-760519, 3hop2_-131210-661360.54023, 2hop__8531.24846, 3hop2..77886_64137_69951, 2hop__730762.8600,
2hop-.350323.45731,  2hop--131117.53519,  3hop1..157534.275705.81669,  2hop..185628.677577,  2hop--77119.20732,
2hop--67755.82010, 3hop1-.790278.593059-76293, 3hop2--162189.611045.73761, 2hop-568848.50788, 2hop-.45625.61952,
2hop--146207-30651, 2hop-57439.78714, 2hop-3756.52135, 3hop1..501828_348668_856982, 3hopl.-106423.35178.686699,
2hop--103203.23140,  3hop1-77985.66386-16350, = 2hop--664921.579740,  2hop--106125.20644, 2hop--400998.61424,
3hop1..35884.161545.16532,  2hop--584521.755188,  2hop--80508.400874,  2hop--664137.58115,  2hop-.453207-80674,
3hop1--29335-30907.24600, 2hop--144364.68900, 2hop-226817-482901, 4hop3--39198.75897_8509-19700, 2hop--713863-64008,
2hop-.71269.36735,  2hop..504228_64689,  2hop_604878.18657,  2hop_81372.303417,  3hopl..674688_707133_72062,
2hop..157766_18657
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