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Abstract

Conformal Prediction is a widely studied tech-
nique to construct prediction sets of future ob-
servations. Most conformal prediction methods
focus on achieving the necessary coverage guaran-
tees, but do not provide formal guarantees on the
size (volume) of the prediction sets. We first prove
an impossibility of volume optimality where any
distribution-free method can only find a trivial
solution. We then introduce a new notion of vol-
ume optimality by restricting the prediction sets
to belong to a set family (of finite VC-dimension),
specifically a union of k-intervals. Our main con-
tribution is an efficient distribution-free algorithm
based on dynamic programming (DP) to find a
union of k-intervals that is guaranteed for any dis-
tribution to have near-optimal volume among all
unions of k-intervals satisfying the desired cover-
age property. By adopting the framework of dis-
tributional conformal prediction (Chernozhukov
et al., 2021), the new DP based conformity score
can also be applied to achieve approximate condi-
tional coverage and conditional restricted volume
optimality, as long as a reasonable estimator of the
conditional CDF is available. While the theoreti-
cal results already establish volume-optimality
guarantees, they are complemented by experi-
ments that demonstrate that our method can sig-
nificantly outperform existing methods in many
settings.
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1. Introduction
Conformal inference has emerged as a powerful black-box
method for quantifying uncertainty in model predictions,
providing confidence sets or prediction sets that contain
the true value with a specified probability (Gammerman
et al., 1998; Vovk et al., 2005). Consider a prediction prob-
lem where X is the covariate space (feature space), and Y
is the label space. Given a dataset of n labeled samples
(X1, Y1), . . . , (Xn, Yn) ∈ X × Y , a conformal prediction
algorithm uses these n samples (often called calibration
samples) to construct for a test Xn+1 ∈ X with (unknown)
true value Yn+1 ∈ Y , a prediction set that we will denote
by Ĉ(Xn+1) ⊆ Y ,1 satisfying the coverage requirement for
some desired parameter α ∈ (0, 1):

P
(
Yn+1 ∈ Ĉ(Xn+1)

)
≥ 1− α. (1)

Here the probability P refers to the joint dis-
tribution over all n + 1 pairs of observations
(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) including the
test sample (Xn+1, Yn+1). Unlike traditional approaches,
conformal inference is distribution-free, relying only on the
assumption of exchangeability of the joint distribution P
over the (n+ 1) samples.

While most conformal methods provide guarantees on
coverage, they do not provide any control on the size
or volume of the prediction sets.2 In fact, the choice of
Ĉ(Xn+1) = Y also satisfies the coverage requirement.
Consequently, the size of these sets is often validated
empirically, without formal guarantees. This raises the
important question of volume optimality, which is the focus
of this paper:
Question: Given calibration samples (X1, Y1), . . . ,
(Xn, Yn) drawn i.i.d. from a distribution P , can we find
among all data-dependent sets Ĉ ⊂ Y satisfying the desired
coverage requirement for (Xn+1, Yn+1) ∼ P , the one with

1It may be more accurate to use
Ĉ(X1, Y1, . . . , Xn, Yn, Xn+1) instead of Ĉ(Xn+1) to re-
flect that Ĉ is a function of the calibration samples and
Xn+1.

2Although conformal prediction ensures that the coverage prob-
ability does not exceed 1 − α + 1/n, it does not prevent overly
conservative predictions.
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the smallest volume, as quantified by the Lebesgue measure
vol(Ĉ) = λ(Ĉ)?

The volume of the prediction set in conformal prediction is
also sometimes referred to as ‘efficiency’ has been stated
as an important consideration in many prior works (see e.g.,
Shafer & Vovk, 2008; Vovk et al., 2016; Angelopoulos &
Bates, 2023). However, most works that we are aware of
do not give theoretical guarantees of volume optimality,
and mainly reason about volume control through empirical
evaluations.

There are few works that provide guarantees of volume opti-
mality.3 Notable exceptions include Lei et al. (2013) in the
unsupervised setting, Lei (2014); Vovk et al. (2016); Sadinle
et al. (2016) in the classification setting, Lei et al. (2015)
for functional data and recent works of Izbicki et al. (2020;
2022) and Kiyani et al. (2024) in the regression setting.
As summarized by Angelopoulos et al. (2024), a sufficient
condition that leads to volume optimality of conformal pre-
diction is consistent estimation of the conditional density
function of Y given X . This is essentially the strategy
adopted by previous work (Lei et al., 2013; Izbicki et al.,
2020; 2022). In comparison, our method, by incorporating
a framework of Chernozhukov et al. (2021), builds on the
estimation of the conditional CDF via a new conformity
score computed by dynamic programming, and thus also
works in settings where good conditional density estimation
is impossible or density does not even exist.

1.1. Our Results

An Impossibility Result. We first prove an impossibility re-
sult in a one-dimensional setting where any distribution-free
method that satisfies the coverage requirement can only find
a trivial solution whose volume is sub-optimal. See Theo-
rem 2.1 for a formal statement. This result provides an ex-
planation for the lack of such volume-optimality guarantees
in the conformal prediction literature, and also motivates
our new notion of volume-optimality that we introduce in
this work.

Structured Prediction Sets and Restricted Volume Opti-
mality. Motivated by the impossibility result, our goal is
to find a prediction set Ĉ ∈ C ⊂ 2Y whose volume is com-
petitive with the optimum volume of any set in the family C
as given by

OPTC(P, 1− α) = inf
C∈C

{vol(C) : P (C) ≥ 1− α} . (2)

3Some works also guarantee that the coverage is not much more
than 1−α, e.g., P

(
Yn+1 ∈ Ĉ(Xn+1) | Xn+1

)
≤ 1−α+ o(1)

to argue that the prediction set is not too big. However, smallness
according to the measure P does not necessarily reflect a small
volume (or Lebesgue measure) for the set.

As long as C has bounded VC-dimension, for any distri-
bution P we can obtain good empirical estimates of the
probability measure of any set C ∈ C via a standard uni-
form concentration inequality, which allows us to overcome
the impossibility result in Theorem 2.1. In the rest of the
paper, we focus on the setting when Y = R and C = Ck
which is the collection of unions of k intervals.

Conformalized Dynamic Programming. Equipped with
our new notion of volume optimality, we propose a new
conformity score based on dynamic programming. The pro-
posed method is shown to not only achieve approximate
conditional coverage as in Chernozhukov et al. (2021) and
Romano et al. (2019), but also conditional volume opti-
mality with respect to unions of k intervals, as long as a
reasonable estimator of the conditional CDF is available.
Our method of learning a predictive set via CDF can be
regarded an extension of the framework of Izbicki et al.
(2020); Chernozhukov et al. (2021).

1.2. Paper Organization

We will start with the unsupervised setting with label-only
data in Section 2. The extension of the theory and algorithm
to the supervised setting is given in Section 3. The numer-
ical comparisons between our proposed methodology and
existing methods in the literature are presented in Section
4. Due to the page limit, all technical proofs and additional
numerical experiments will be presented in the appendix.

2. Unsupervised Setting
2.1. Approximate Volume Optimality

Suppose Y1, · · · , Yn, Yn+1 are independently drawn from a
distribution P on R. The goal is to predict Yn+1 based on
the first n samples Y1, · · · , Yn. To be specific, we would
like to construct a data-dependent set Ĉ = Ĉ(Y1, · · · , Yn)
such that

P(Yn+1 ∈ Ĉ) ≥ 1− α. (3)

Among all data-dependent sets that satisfy (3), our goal is
to find the one with the smallest volume, quantified by the
Lebesgue measure vol(Ĉ) = λ(Ĉ). When the distribution
P is known, one can directly minimize λ(C), subject to
P (C) ≥ 1 − α without even using the data. In particular,
when P ≪ λ, an optimal solution is given by the density
level set

Copt =

{
dP

dλ
> t

}
∪D,

for some t > 0 and D is some subset of {dP/dλ = t}.

In general, P may not be absolutely continuous and the
density need not exist. Nonetheless, we can still define the
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optimal volume by

OPT(P, 1− α) = inf{vol(C) : P (C) ≥ 1− α}.

Note that without any assumption on P , the above optimiza-
tion problem may not have a unique solution. Moreover,
it is possible that the infimum cannot be achieved by any
measurable set. Therefore, a natural relaxation is to con-
sider approximate volume optimality. For some ε ∈ (0, α),
a prediction set Ĉ is called ε-optimal if

vol(Ĉ) ≤ OPT(P, 1− α+ ε), (4)

either in expectation or with high probability.

The notion of volume optimality defined by (4) is quite dif-
ferent from those considered in the literature. A popular
quantity that has already been studied is the volume of set
difference vol

(
Ĉ∆Copt

)
(Lei et al., 2013; Izbicki et al.,

2020; Chernozhukov et al., 2021). However, this much
stronger notion requires that the optimal solution Copt must
not only exist but also be unique. Usually additional as-
sumptions need to be imposed in the neighborhood of the
boundary of Copt in order that the set difference vanishes in
the large sample limit. In comparison, the definition (4) only
requires the volume to be controlled, which can be achieved
even if Ĉ is not close to Copt, or when Copt does not even
exist. Indeed, from a practical point of view, any set with
coverage and volume control would serve the purpose of
valid prediction. Insisting the closeness to a questionable
target Copt comes at the cost of unnecessary assumptions
on the data generating process.

Another notion considered in the literature is close to our
formulation (4). Instead of relaxing the coverage probability
level from 1−α to 1−α+ε, one can consider the following
approximate volume optimality,

vol(Ĉ) ≤ OPT(P, 1− α) + ε. (5)

Results of interval length optimality in the sense of (5) have
been studied by Chernozhukov et al. (2021); Kiyani et al.
(2024). However, the ε in (5) is usually proportional to the
scale of the distribution P , or may depend on P in some
other ways. In comparison, the ε in (4) has the unit of proba-
bility, and as we will show later, can be made independent of
the distribution P , which leads to more natural and cleaner
theoretical results with fewer assumptions.

2.2. Impossibility of Distribution-Free Volume
Optimality

It is known that conformal prediction achieves the cover-
age property (3) in a distribution-free sense, meaning that
(3) holds uniformly for all distributions P . One naturally
hopes that the approximate volume optimality (4) can also

be established in a distribution-free way. Perhaps not sur-
prisingly, this goal is too ambitious. The theorem below
rigorously proves the impossibility of the task. The detailed
proof is deferred to Appendix D.1.

Theorem 2.1. Consider observations Y1, Y2, . . . , Yn, Yn+1

sampled i.i.d. from a distribution P on R. Suppose Ĉ =
Ĉ(Y1, · · · , Yn) satisfies P(Yn+1 ∈ Ĉ) ≥ 1 − α for all
distribution P . Then, for any ε ∈ (0, α), there exists some
distribution P on R, such that the expected volume of the
prediction set is at least

E vol(Ĉ) ≥ OPT(P, 1− α+ ε).

The above impossibility result can be regarded as a conse-
quence of a nonparametric testing lower bound. Consider
the following hypothesis testing problem,

H0 : P = P0

H1 : P ∈ {P : TV(P, P0) > 1− δ} .

It is well known that a testing procedure with both vanish-
ing Type-1 and Type-2 errors does not exist without fur-
ther constraining the alternative hypothesis, even when δ
is arbitrarily close to 0 (LeCam & Schwartz, 1960; Barron,
1989). In the setting of distribution-free inference with si-
multaneous coverage and volume guarantees, two different
probability measures naturally arise. The coverage guaran-
tee is defined with respect to the joint distribution Pn+1,
which governs the full dataset of n training samples and one
test point. In contrast, the expected volume of the predic-
tion set is measured under the product distribution Pn ⊗ λ,
where Pn represents the joint distribution of n training sam-
ples. When restricting the support of P to the unit interval
[0, 1], λ becomes the uniform probability, and thus both
Pn+1 and Pn ⊗ λ are probability distributions. It turns
out achieving approximate volume optimality is related to
hypothesis testing between Pn+1 and Pn ⊗ λ with total
variation separation.

2.3. Distribution-Free Restricted Volume Optimality

The impossibility result implies a volume lower bound
OPT(P, 1 − α + ε), where the coverage level 1 − α + ε
can be arbitrarily close to 1. This means that, at least in the
worst case, the volume cannot be smaller than that of the
support of P .

To avoid this triviality, in this section, we consider a weaker
notion of volume optimality by only considering prediction
sets that are unions of k intervals. We use Ck to denote
the collection of all sets that are unions of k intervals. The
restricted optimal volume with respect to the class Ck is
defined by

OPTk(P, 1−α) = inf
C∈Ck

{vol(C) : P (C) ≥ 1− α} . (6)
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Remark 2.2. We remark that we are still in a distribution-
free setting, since no assumption is imposed on P . Instead,
the restriction only constrains the shape of the prediction set.
From a practical point of view, it is reasonable to require
that Ĉ ∈ Ck, since a more complicated prediction set would
be hard to interpret. Moreover, as long as P admits a density
function with at most k modes, the two notions match,

OPTk(P, 1− α) = OPT(P, 1− α).

More generally, it can be shown that

OPTk(P, 1− α) ≤ OPT(P, 1− α+ ε),

for some ε ∈ (0, α), whenever P can be approximated by
a distribution with at most k modes. This, in particular,
includes the situation where the density of P can be well es-
timated by a kernel density estimator. A rigorous statement
will be given in Appendix C.

Given the observations Y1, · · · , Yn, we define the empiri-
cal distribution Pn = 1

n

∑n
i=1 δYi

. To achieve restricted
volume optimality, one can use

Ĉ = argmin
C∈Ck

{vol(C) : Pn(C) ≥ 1− α} . (7)

According to its definition, the prediction set (7) satisfies
both Pn(Ĉ) ≥ 1−α and vol(Ĉ) = OPTk(Pn, 1−α). The
coverage and volume guarantees under P can be obtained
via

sup
C∈Ck

|Pn(C)− P (C)| = OP

(√
VC(C)/n

)
, (8)

with VC(C) = O(k). Therefore, approximate optimality
can be achieved by (7) whenever (8) holds.

A naive exhaustive search to find (7) requires exponential
computational time. We show that an efficient dynamic
programming algorithm (Algorithm 1) can solve (7) approx-
imately with some additional slack γ ∈ [1/n, α), which
controls the trade-off between volume approximation accu-
racy and the computational complexity.

The dynamic programming table DP (i, j, l) stores the
minimum volume of i intervals that cover lγn points in
Y(1), . . . , Y(j) and the right endpoint of the rightmost inter-
val is at Y(j), where Y(1), . . . , Y(n) are training data points
Y1, . . . , Yn sorted in non-decreasing order. For each state
in DP table, we enumerate all possible left endpoint of the
rightmost interval and the right endpoint of the previous
interval (if it exists). After filling the table, a standard back-
tracking procedure is used to construct the final prediction
set ĈDP.

Theoretical guarantees of Algorithm 1 are given in the fol-
lowing proposition.

Algorithm 1 Dynamic Programming Solving (7)

1: Input: data points Y1, . . . , Yn ∈ R, coverage level
1−α ∈ (0, 1) and slack γ ∈ (0, α), number of intervals
k

2: Output: k intervals that cover ⌈(1− α)n⌉ points with
minimum volume

3: Sort data in non-decreasing order Y(1) ≤ · · · ≤ Y(n)

4: Set DP (i, j, l) = ∞ for all i ∈ [k], j ∈ [n], l ∈ [1/γ]
5: for i = 1 to k, j = 1 to n, l = 1 to ⌈1/γ⌉ do
6: for j′ = i to j do
7: for j′′ = i− 1 to j′ − 1 do
8: Set l′ = l − ⌊(j − j′ + 1)/(γn)⌋
9: if l′ < 0 and i = 1 then

10: DP (i, j, l) = min{DP (i, j, l), Y(j)−Y(j′)}
11: end if
12: if DP (i− 1, j′′, l′) ̸= ∞ then
13: DP (i, j, l) = min{DP (i, j, l), Y(j)−Y(j′)+

DP (i− 1, j′′, l′)}
14: end if
15: end for
16: end for
17: end for
18: Find the minimum volume among all DP (k, j, ⌈(1 −

α)/γ⌉) for j = 1, . . . , n and backtrack to construct the
prediction set ĈDP.

19: Return the set ĈDP.

Proposition 2.3. For any γ ∈ [1/n, α), Algorithm 1 com-
putes a prediction set ĈDP ∈ Ck by dynamic programming
with time complexity O(n3k/γ) such that

1. Pn(ĈDP) ≥ 1− α;

2. vol(ĈDP) ≤ OPTk(Pn, 1− α+ γ).

Together with (8), the coverage and volume guarantees of
the dynamic programming can also be generalized from Pn

to P .

2.4. Conformalizing Dynamic Programming

Having understood the generalization ability of dynamic
programming, we are ready to conformalize the procedure
to achieve a finite-sample coverage property. For simplicity,
we will adopt the framework of split conformal prediction,
though in principle full conformal prediction can also be
applied here.

In the split conformal predicition framework, the data set
is split into two halves. The first half is used to compute
a conformity score, and the second half determines the
quantile level. For convenience of notation, let us assume,
from now on, that the sample size is 2n. The split conformal
procedure is outlined below.
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1. Compute a score function q(·) using Y1, · · · , Yn.

2. Evaluate q(Yn+1), · · · , q(Y2n), and order them as
q1 ≤ · · · ≤ qn.

3. Output the prediction set

Ĉ =
{
y : q(y) ≥ q⌊(n+1)α⌋

}
. (9)

By the exchangeability of Yn+1, · · · , Y2n, Y2n+1, the pre-
diction set Ĉ satisfies

P
(
Y2n+1 ∈ Ĉ

)
≥ 1− α,

where the above probability is over the randomness of
(Y1, · · · , Yn), that of (Yn+1, · · · , Y2n), and that of Y2n+1.

To conformalize the dynamic programming that approxi-
mately computes (7), we will first compute a nested system
S1 ⊂ · · · ⊂ Sm ⊂ R using the data Y1, · · · , Yn. The nested
system is required to satisfy the following assumption.

Assumption 2.4. The sets S1 ⊂ · · · ⊂ Sm ⊂ R are mea-
surable with respect to the σ-field generated by Y1, · · · , Yn.
Moreover, for some positive integer k, some α ∈ (0, 1) and
some δ, γ such that 3δ + γ + n−1 ≤ α, we have

1. Pn(Sj) =
j
m and Sj ∈ Ck for all j ∈ [m].

2. There exists some j∗ ∈ [m], such that
Pn(Sj∗) ≥ 1− α+ n−1 + 3δ and
vol(Sj∗) ≤ OPTk(Pn, 1− α+ 1

n + 3δ + γ).

Here, Pn denotes the empirical distribution 1
n

∑n
i=1 δYi of

the first half of the data.

To construct a nested system {Sj}j∈[m] that satisfies the
above assumption, one only needs to make sure that there
exists one subset Sj∗ in the system that is computed by
the dynamic programming (Algorithm 1) with confidence
level 1 − α + n−1 + 3δ and slack parameter γ. The rest
of the sets in the system can be constructed just to satisfy
Pn(Sj) = j

m . In Section 4.1, we will present a greedy
expansion/contraction algorithm that satisfies Assumption
2.4.

With a nested system {Sj}j∈[m] satisfying Assumption 2.4,
we can define the conformity score as

q(y) =

m∑
j=1

I{y ∈ Sj}. (10)

The equivalence between nested system and conformity
score was advocated by (Gupta et al., 2022). Intuitively,
q(y) quantifies the depth of the location y. A higher score
implies that y is covered by more sets in the nested system,
and thus the location should be more likely to be included

in the prediction set. Applying the standard split conformal
framework, our prediction set based on conformalized dy-
namic programming is defined by (9) with the conformity
score (10).

Theorem 2.5. Consider i.i.d. observations
Y1, · · · , Y2n, Y2n+1 generated by some distribution
P on R. Let ĈCP−DP be the split conformal prediction
set defined by the score (10) based on a nested system
{Sj}j∈[m] satisfying Assumption 2.4. Suppose the parame-

ter δ in Assumption 2.4 satisfies δ ≫
√

k+logn
n . Then the

following properties hold.

1. Coverage: P
(
Y2n+1 ∈ ĈCP−DP

)
≥ 1− α.

2. Restricted volume optimality:
vol(ĈCP−DP) ≤ OPTk

(
P, 1− α+ 1

n + 4δ + γ
)

with probability at least 1− 2δ.

We emphasize that Theorem 2.5 guarantees both
distribution-free coverage and distribution-free volume op-
timality properties. In practice, k is usually chosen to
be a constant for prediction interpretability. By setting

γ = O

(√
logn
n

)
, the volume sub-optimality is at most

1
n + 4δ + γ = O

(√
logn
n

)
.

3. Supervised Setting
3.1. Problem Setting

In this section, we consider conformal prediction
with labeled data. Suppose data points (X1, Y1),· · · ,
(X2n, Y2n),(X2n+1, Y2n+1) are i.i.d. drawn from a distri-
bution P on X ×Y with Y = R. Using the first 2n samples,
our goal is to compute a prediction set Ĉ(x) for each x ∈ X .
We will study the following properties for the prediction set.

1. Marginal Coverage:

P
(
Y2n+1 ∈ Ĉ(X2n+1)

)
≥ 1− α,

where the probability P is jointly over all 2n+ 1 pairs
of observations.

2. Conditional Coverage:

P
(
Y2n+1 ∈ Ĉ(X2n+1) | X2n+1

)
≥ 1− α, (11)

with high probability.

It is well known that the conditional coverage property can-
not be achieved without additional assumptions on P (Vovk,
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2012; Lei & Wasserman, 2014; Foygel Barber et al., 2021).
Therefore, some form of relaxation of (11) is necessary.

In addition to the coverage properties listed above, we will
also extend the notion of restricted volume optimality (6)
from the unsupervised setting to the supervised setting. De-
fine the conditional CDF by

F (y | x) = P (Y2n+1 ≤ y | X2n+1 = x) .

The conditional restricted optimal volume is given by

OPTk (F (· | x), 1− α)

= inf

{
vol(C) :

∫
C

dF (· | x) ≥ 1− α,C ∈ Ck
}
.

With this definition, we can list the following volume re-
quirement.

3. Conditional Restricted Volume Optimality:

vol(Ĉ(X2n+1))

≤ OPTk (F (·|X2n+1), 1− α+ ε) , (12)

with high probability, for some ε ∈ (0, α).

Similar to the conditional coverage property (11), the con-
ditional restricted volume optimality (12) is only required
for a typical value of the design point. We will show that
based on an extension of distributional conformal prediction
(Chernozhukov et al., 2021), these two properties can be
achieved under the same assumption.

3.2. Distributional Conformal Prediction

Conformal prediction based on estimating the conditional
CDF has been considered independently by (Izbicki et al.,
2020; Chernozhukov et al., 2021). We will briefly review
the version by Chernozhukov et al. (2021), and then extend
it to serve our purpose. Suppose F̂ (y | x) is an estimator
of the conditional CDF, which is computed from the first
half of the data (X1, Y1), · · · , (Xn, Yn). The prediction set
proposed by Chernozhukov et al. (2021) is

ĈDCP(X2n+1) =

{
y ∈ R :

∣∣∣∣F̂ (y | X2n+1)−
1

2

∣∣∣∣ ≤ t̂

}
,

where t̂ is an appropriate quantile of{∣∣∣∣F̂ (Yn+1 | Xn+1)−
1

2

∣∣∣∣ , · · · , ∣∣∣∣F̂ (Y2n | X2n)−
1

2

∣∣∣∣} .

Since ĈDCP(X2n+1) is in the form of split conformal pre-
diction, the marginal coverage property is automatically
satisfied. When F̂ (y | x) is close to F (y | x) in some
appropriate sense, it was proved by (Chernozhukov et al.,

2021) that asymptotic conditional coverage also holds. How-
ever, in general, ĈDCP(X2n+1) is not optimal in terms of
its volume. A modification was also proposed in (Cher-
nozhukov et al., 2021) to achieve volume optimality within
the class of intervals. Though not explicitly stated in (Cher-
nozhukov et al., 2021), we believe that the DCP procedure
essentially achieves (12) for k = 1. Our goal is to achieve
the conditional restricted volume optimality for a general k
by combining the ideas of DCP and dynamic programming
(DP).

3.3. DCP meets DP

To achieve (12) for a general k, we will modify the DCP pro-
cedure by considering a different conformity score that gen-
eralizes (10) to the supervised setting. Recall that F̂ (y | x)
is an estimator of the conditional CDF, and it is computed
from the first half of the data (X1, Y1), · · · , (Xn, Yn). Our
first step is to construct a nested system for each x ∈ X .
To be specific, for each x ∈ X , we will construct a collec-
tion of sets {Sj(x)}j∈[m] based on the function F̂ (· | x).
The requirement of the nested system is summarized as the
following assumption.

Assumption 3.1. The sets S1(x) ⊂ · · · ⊂ Sm(x) ⊂ R are
measurable with respect to the σ-field generated by F̂ (· | x).
Moreover, for some positive integer k, some α ∈ (0, 1) and
some δ, γ such that 3δ + γ + n−1 ≤ α, we have

1.
∫
Sj(x)

dF̂ (· | x) = j
m and Sj ∈ Ck for all j ∈ [m].

2. There exists some j∗ ∈ [m], such that∫
Sj∗ (x)

dF̂ (· | x) ≥ 1− α+ n−1 + 3δ

and vol(Sj∗) ≤ OPTk(F̂ (· | x), 1−α+ 1
n +3δ+ γ).

The construction of nested systems satisfying Assumption
3.1 is similar to that in the unsupervised setting. That is,
one can apply dynamic programming (Algorithm 1) and
obtain Sj∗(x), and the rest of the sets can be constructed
via the greedy expansion/contraction procedure described
in Section 4.1 to satisfy

∫
Sj(x)

dF̂ (· | x) = j
m . The main

difference here is that Algorithm 1 is directly applied to the
data in the unsupervised setting, while we only have access
to F̂ (· | x) in the supervised setting. This issue can be
easily addressed by computing quantiles Y1(x), · · · , YL(x)

from F̂ (· | x) on a grid, and then apply Algorithm 1 with
Y1(x), · · · , YL(x) as input. Indeed, since the distance be-
tween F̃ (· | x) and F̂ (· | x) can be controlled by the size of
the grid with F̃ (y | x) = 1

L

∑L
l=1 I{Yl(x) ≤ y}, Assump-

tion 3.2, which will be stated later in Section 3.4, is also
satisfied by F̃ (y | x) (with a slightly larger value of δ) by
triangle inequality.
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The computational cost of constructing {Sj(x)}j∈[m]

for a single x ∈ X is O(L3k/γ). Note that there
is no need to repeat the construction for each indi-
vidual x ∈ X . Since the split conformal frame-
work only requires evaluating the conformity score at
(Xn+1, Yn+1), · · · , (X2n, Y2n), (X2n+1, y), it is sufficient
to compute {Sj(Xi)}j∈[m] for i = n+1, · · · , 2n+1, which
leads to the total computational cost O(nL3k/γ).

With nested systems satisfying Assumption 3.1, the confor-
mity score in the supervised setting is defined as

q(y, x) =

m∑
j=1

I{y ∈ Sj(x)}.

Let q1 ≤ · · · ≤ qn be the order statistics computed from the
set

{q(Xn+1, Yn+1), · · · , q(X2n, Y2n)} .

The prediction set for Y2n+1 is constructed as

ĈDCP−DP(X2n+1) =
{
y : q(y,X2n+1) ≥ q⌊(n+1)α⌋

}
.

3.4. Theoretical Guarantees

We will show in this section that ĈDCP−DP(X2n+1) satis-
fies marginal coverage. Moreover, when F̂ (y | x) is close
to F (y | x) in some appropriate sense, it also satisfies ap-
proximate conditional coverage and conditional restricted
volume optimality. Given two CDFs F̂ and F , we define
the (k,∞) norm of the difference by

∥F̂ − F∥k,∞ = sup
C∈Ck

∣∣∣∣∫
C

dF̂ −
∫
C

dF

∣∣∣∣ .
Assumption 3.2. The estimated conditional CDF F̂ (y | x)
satisfies

P
(
∥F̂ (· | X2n+1)− F (· | X2n+1)∥k,∞ ≤ δ

)
≥ 1− δ,

where δ takes the same value as the one in Assumption 3.1.

The theoretical properties of ĈDCP−DP(X2n+1) are given
by the theorem below.

Theorem 3.3. Consider i.i.d. observations (X1, Y1),
. . . , (X2n, Y2n), (X2n+1, Y2n+1) generated by some dis-
tribution P on X × R. The conformal prediction
set ĈDCP−DP(X2n+1) is computed from nested systems
{Sj(·)}j∈[m] and F̂ (· | ·) satisfying Assumption 3.1 and
Assumption 3.2. Suppose the parameter δ in the two assump-
tions satisfies δ2 ≥ log(2

√
n)

2n . Then the following properties
hold.

1. Marginal coverage,

P
(
Y2n+1 ∈ ĈDCP−DP(X2n+1)

)
≥ 1− α.

2. Approximate conditional coverage,

P
(
Y2n+1 ∈ ĈDCP−DP(X2n+1)|X2n+1

)
≥1−α−3δ,

with probability at least 1− δ.

3. Conditional restricted volume optimality,

vol
(
ĈDCP−DP(X2n+1)

)
≤OPTk

(
F (· | X2n+1), 1− α+

1

n
+ 4δ + γ

)
,

with probability at least 1− 2δ.

Note that the marginal coverage does not depend on δ, which
reflects the estimation error of the conditional CDF in As-
sumption 3.2. Therefore, the marginal coverage guarantee
always holds and does not rely on Assumption 3.2. Theo-
rem 3.3 can be regarded as a generalization of Theorem 2.5.
Indeed, when F (· | x) does not depend on x and F̂ (· | x)
is defined as the empirical CDF of Y1, · · · , Yn, Theorem
3.3 recovers Theorem 2.5. Moreover, since the volume
optimality is over all sets that are unions of k intervals, it
also covers the length optimality of intervals considered by
(Chernozhukov et al., 2021). The case k ≥ 2 will be impor-
tant if the conditional density of Y given X has multiple
modes; Gaussian mixture is a leading example.

4. Numerical Experiments
We complement our theoretical guarantees with an evalu-
ation of our methods for both the unsupervised setting of
Section 2 and the supervised setting of Section 3.

4.1. Construction of Nested Systems

We first describe a procedure that generates a nested system
{Sj}j∈[m] that satisfies Assumption 2.4. The construction
involves the following steps:

1. Generate Sj∗ by Dynamic Programming. For j∗ =
⌈(1 − α + n−1 + 3δ)m⌉, we generate Sj∗ by ap-
plying Algorithm 1 with coverage level 1 − j∗/m
and slack γ = 1/m. The discretization level m and
statistical tolerance δ are chosen as m = 50 and
δ =

√
(k + log n)/n,4 where k is the number of inter-

vals in the prediction set.

2. Generate Sj∗+1, · · · , Sm by Greedy Expansion. For
each j > j∗, we iteratively identify the closest un-
covered data point to the boundary of the current k

4We can choose m ∈ (1/α, n], where larger m yields finer
discretization of the nested system. The parameter δ reflects the
statistical error in estimating the (conditional) CDF.
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intervals and expand the nearest interval to cover it.
Once the intervals cover ⌈jn/m⌉ data points, we de-
fine the union as Sj and move on to the construction
of Sj+1.

3. Generate S1, · · · , Sj∗−1 by Greedy Contraction. For
each j < j∗, we iteratively remove a boundary point
of the current k intervals that results in the maximum
volume reduction. Once the intervals after contraction
cover exactly ⌈jn/m⌉ data points, we define the union
as Sj and move on to the construction of Sj−1.

In the supervised setting, the above procedure will be ap-
plied to quantiles Y1(x), · · · , YL(x) computed from F̂ (· |
x) with L = m for all x ∈ {Xn+1, · · · , X2n+1}.

4.2. Comparison in Unsupervised Settings

(a) The histogram of the dataset and the
prediction set given by conformalized DP
with k = 3 intervals (The first interval
is at [−6.03,−5.97].). The volume of
the prediction sets is 3.1438.
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(b) The kernel density estimation with
bandwidth ρ = 0.25 and the prediction
set given by conformalized KDE (Lei
et al., 2013). The volume of the predic-
tion sets is 3.7944.
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(c) Volumes of prediction sets by confor-
malized DP is not sensitive to the choice
of k.
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(d) Volumes of prediction sets by confor-
malized KDE is highly sensitive to the
choice of ρ.

Figure 1. Conformal prediction sets on the mixture of Gaussians
data from P = 1

3
N(−6, 0.0001)+ 1

3
N(0, 1)+ 1

3
N(8, 0.25). The

target coverage is 0.8. The theoretically optimal volume for this
target coverage is 3.0178.

The algorithm in Section 2 is compared against the method
based on kernel density estimation due to Lei et al. (2013)
and evaluated on several different distributions. Though
the original conformalized KDE was proposed in the full
conformal framework, we will consider its split conformal
version for a direct comparison. We believe the comparison
between the full conformal versions of the two methods
will lead to the same conclusion. For the conformalized DP
method, the conformity score is constructed based on the
nested system described in Section 4.1. The conformalized
KDE is also in the form of (9), with the conformity score

given by qKDE(x) = 1
nρ

∑n
i=1 K

(
y−Yi

ρ

)
, where K(·) is

the standard Gaussian kernel and ρ is the bandwidth param-
eter. Both methods involve a single tuning parameter, k for
conformalized DP and ρ for conformalized KDE.

Figure 1, Tables 1 and 2 summarize the results using data
generated from a mixture of Gaussians 1

3N(−6, 0.0001) +
1
3N(0, 1) + 1

3N(8, 0.25). We report the mean and standard
deviation of the results over 20 independent runs. Additional
experiments on other distributions, including standard Gaus-
sian, censored Gaussian, and ReLU-transformed Gaussian,
will be presented in Appendix B.

Table 1. Conformalized KDE on the mixture of Gaussians data
Bandwidth Volume Coverage

0.01 3.8929 ± 0.2504 0.7899 ± 0.0258
0.25 3.8747 ± 0.2673 0.7963 ± 0.0231
0.5 4.3663 ± 0.3388 0.7938 ± 0.0244
0.75 4.7162 ± 0.3681 0.7931 ± 0.0224
1 4.9462 ± 0.5119 0.7933 ± 0.0231

Table 2. Conformalized DP on the mixture of Gaussians data
k Volume Coverage

1 13.9017 ± 0.1112 0.7947 ± 0.0309
2 7.5980 ± 0.2159 0.7883 ± 0.0373
3 3.1888 ± 0.3403 0.8024 ± 0.0356
4 3.3459 ± 0.3003 0.8174 ± 0.0278
5 3.4250 ± 0.3818 0.8202 ± 0.0306

The two methods are also evaluated on two real-world
datasets (Acidity and Enzyme) used in density estimation
literature (Richardson & Green, 1997). The experiments
target a coverage level of 0.8. We report the means and
standard deviations of the results over 50 independent runs.
As shown in Tables 3 and 4, our conformalized DP outputs a
smaller volume prediction set than the conformalized KDE
with the best bandwidth for almost all k ≥ 2. The results
for the Enzyme dataset are given in Appendix B.

Table 3. Conformalized KDE on Acidity Dataset

Bandwidth Volume Coverage

0.1 2.4927 ± 0.1960 0.8401 ± 0.0226
0.3 2.3934 ± 0.2044 0.8092 ± 0.0261
0.5 2.5749 ± 0.2571 0.8133 ± 0.0315
0.7 2.7617 ± 0.2038 0.8013 ± 0.0256
0.9 2.8196 ± 0.2587 0.8021 ± 0.0294
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Table 4. Conformalized DP on Acidity Dataset

k Volume Coverage

1 2.5999 ± 0.1937 0.8121 ± 0.0476
2 2.3627 ± 0.1755 0.8507 ± 0.0224
3 2.4099 ± 0.1832 0.8552 ± 0.0245
4 2.3615 ± 0.1452 0.8582 ± 0.0196
5 2.2172 ± 0.1349 0.8341 ± 0.0253

4.3. Comparison in Supervised Settings

The algorithms for the supervised setting are compared
against conformalized quantile regression (CQR) (Romano
et al., 2019), distributional conformal prediction methods
(DCP-QR and DCP-QR*) of Chernozhukov et al. (2021),
and CD-Split and HPD-Split methods (Izbicki et al., 2022)
against benchmark simulated datasets in Romano et al.
(2019); Izbicki et al. (2020) (Figures 2 and 3). The imple-
mentation details of all methods are given in Appendix B.

Figure 2. Results in the supervised setting on a synthetic data from
Romano et al. (2019) for target coverage 0.7. The left plot shows
the output of DCP-QR*, the state of the art method by Cher-
nozhukov et al. (2021), which outputs prediction sets with average
volume 1.29 and empirical coverage 0.7106. The right plot shows
the output of our method with k = 5 intervals, which achieves
a significantly improved average volume of 0.45 with empirical
coverage 0.7236.

Figure 3. Results in the supervised setting on a synthetic data with
20 dimensional feature from Izbicki et al. (2020) for target cov-
erage 0.7. The left plot shows the output of HPD-Split method
by Izbicki et al. (2022), with average volume 3.60. The right plot
shows the output of our method with k = 2 intervals, which has
an average volume 3.55.

As shown in Tables 5 and 6, our method outperforms previ-
ous methods by outputting prediction sets that are unions of
intervals. Among all other methods, the CD-split and HDP-
split (Izbicki et al., 2020) are also able to produce unions of

intervals. However, since these methods rely on consistent
estimation of the conditional density, our conformalized DP
still produces prediction sets with smaller volumes. The
comparison is more pronounced on the first dataset (see
Figure 2 and Table 5), where it would be inappropriate to as-
sume a smooth conditional density, but our method is based
on conformalizing the estimation of conditional CDF, and
thus works in much more general settings. Table 6 shows
results where the conditional density is smooth and can
be accurately estimated, favoring density-based methods.
Even in this case, the conformalized DP with k = 2 is still
competitive against CD-split and HPD-split.

Table 5. Comparison on simulated data in Romano et al. (2019).

Method Average Volume Coverage

CQR 1.4237 ± 0.0743 0.7036 ± 0.0146
DCP-QR 1.4218 ± 0.0647 0.7021 ± 0.0100
DCP-QR* 1.8854 ± 0.9772 0.7054 ± 0.0124
CD-split 1.7118 ± 0.1934 0.6330 ± 0.0166
HPD-split 1.7557 ± 0.1145 0.6874 ± 0.0165
C-DP (k=1) 1.0897 ± 0.0792 0.7119 ± 0.0171
C-DP (k=5) 0.4660 ± 0.0218 0.7152 ± 0.0177

Table 6. Comparison on simulated data in Izbicki et al. (2020).

Method Average Volume Coverage

CQR 4.0428 ± 0.0992 0.7060 ± 0.0116
DCP-QR 3.9933 ± 0.0854 0.6987 ± 0.0160
DCP-QR* 4.0701 ± 0.1141 0.7004 ± 0.0162
CD-split 3.6320 ± 0.1126 0.7002 ± 0.0161
HPD-split 3.6084 ± 0.1121 0.7014 ± 0.0133
C-DP (k = 1) 4.1450 ± 0.1150 0.7126 ± 0.0165
C-DP (k = 2) 3.6774 ± 0.1298 0.7152 ± 0.0138

5. Conclusion
We study conformal prediction with volume optimality in
both the unsupervised setting and the supervised setting, by
proposing a new conformity score computed via dynamic
programming. In the supervised setting, when consistent
estimation of the conditional CDF is available, we prove
that the proposed method not only achieves conditional cov-
erage, but the output of prediction set also has approximate
conditional volume optimality with respect to the class of
unions of k intervals.

Our method is especially suitable to settings where the data
generating process is multi-modal or has a mixture structure.
The numerical experiments show that the performance of
the method is quite insensitive to the choice of k, whenever
it is not smaller than the number of modes of the distribution.
For future work, it would be interesting to study restricted
volume optimality in more general response settings and
under other notions of coverage in conformal prediction.
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A. Related Work
Comparison to Lei et al. (2013) The influential work of Lei et al. (2013) gave the first theoretical guarantees of volume
control or optimality to the best of our knowledge. In fact Lei et al. (2013) and subsequent follow-up works including
Sadinle et al. (2016); Chernozhukov et al. (2021) with theoretical guarantees on volume control study a stricter quantity that
corresponds to the volume of set difference vol

(
Ĉ∆Copt

)
(Lei et al., 2013; Sadinle et al., 2016; Chernozhukov et al., 2021).

However, this much stronger notion requires that the optimal solution Copt must not only exist but also be unique. Usually
additional assumptions need to be imposed in the neighborhood of the boundary of Copt in order that the set difference
vanishes in the large sample limit. Specifically, the work of (Lei et al., 2013) assumes that the density is smooth, and in
addition is strictly increasing or decreasing significantly. In comparison, our notion of volume optimality only requires the
volume to be controlled, which can be achieved even if Ĉ is not close to Copt, or when Copt does not even exist. Moreover,
we do not need to make any assumptions on the smoothness of the density. In fact, the density may not even exist, and can
have discrete point masses or δ functions as shown in the experiments. Indeed, from a practical point of view, any set with
coverage and volume control would serve the purpose of valid prediction. Insisting the closeness to a questionable target
Copt comes at the cost of unnecessary assumptions on the data generating process.

Comparison to Izbicki et al. (2020; 2022) The work of Izbicki et al. (2020; 2022) provided conformal prediction methods
that can produce a union of intervals in a supervised setting. Specifically, their methods, CD-split and HPD-split, are
designed to leverage level sets of an estimated conditional density function. CD-split achieves local and marginal validity
by partitioning the feature space adaptively but does not guarantee conditional coverage in general. In contrast, HPD-split
simplifies tuning by using a conformity score based on the cumulative distribution function of the conditional density.
Under certain assumptions of density estimation accuracy and the uniqueness of the optimal solution, HPD-split achieves
asymptotic conditional coverage and converges to the highest predictive density set which is the smallest volume set with the
desired coverage. In comparison, our method outputs a union of intervals with the smallest length from a direct estimator of
the conditional CDF, which only requires the accuracy of conditional CDF estimation. Estimating the conditional CDF
is statistically simpler than estimating the conditional density, which usually requires additional smoothness or regularity
conditions.

Comparison to Kiyani et al. (2024) In very recent independent work, Kiyani et al. (2024) considered a min-max approach
for conformal prediction in the covariate shift setting with a view towards length optimality of their intervals. They
proposed a new method based on minimax optimization to optimize the average volume of prediction sets in the context of
covariate shift, which generalizes the marginal or group-conditional coverage setting. Their method uses a given (predefined)
conformity score, and optimizes the choice of the thresholds h(X) for different covariates X ∈ X to minimize the average
prediction interval length, while maintaining the marginal or group-conditional coverage. Under certain assumptions that
the conformity score is consistent with a volume optimal prediction set, they show that solving their minimax optimization
will give a volume-optimal solution. However the problem of finding the best threshold function h(X) is a non-convex
problem that may be computational inefficient in theory; but they use SGD to find a good heuristic solution in practice. This
work is incomparable to this paper in multiple ways. While Kiyani et al. (2024) considers the covariate shift setting with
a specific focus on marginal coverage and group coverage, we focus more on the unlabeled setting, and the conditional
coverage setting of Chernozhukov et al. (2021). In contrast to their method that uses an off-the-shelf conformity score (and
optimizes the thresholds h(X)), our method introduces a new conformity score function based on dynamic programming
to find volume-optimal unions of intervals. This also suggests that our methods and the methods of Kiyani et al. (2024)
may potentially be complementary. Finally, by restricting the prediction sets to unions of k intervals, we got theoretical
guarantees of volume optimality and get polynomial time algorithms based on dynamic programming to achieve them.
Hence, while both their work and our work try to address the important consideration of volume optimality, they are
incomparable in terms of the setting, the results and the techniques.

Other Related work In the non-conformal setting, the work of (Scott & Nowak, 2006) studied the problem of finding
minimal volume sets from a certain set family given samples drawn i.i.d from a distribution, with at least 1− α fraction of
probability mass. However this work mostly focused on statistical efficiency, and did not consider the conformal inference
setting. In the past few years, there has been an explosion of literature in conformal inference that develops new conformal
methods for various settings (see e.g., Barber et al., 2021; Stutz et al., 2022; Kumar et al., 2023; Barber et al., 2023; Xie
et al., 2024, and references therein).
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While our work is focused on the framework split conformal prediction, one interesting future extension is to consider
various other frameworks, especially the class of cross-validation-style aggregation of split conformal sets (Vovk, 2015;
Vovk et al., 2018; Barber et al., 2021; Kim et al., 2020). Another related direction to volume optimality is model selection or
prediction set selection based on efficiency (Liang et al., 2024; Yang & Kuchibhotla, 2025).

B. Additional Numerical Experiments
B.1. Construction of Nested Systems

Recall the construction of the nested system described in Section 4.1. It immediately follows Proposition 2.3 that the
construction satisfies Assumption 2.4 in the unsupervised setting.

In the supervised setting, the construction of the nested system is based on F̂ (y | x). For each x ∈ {Xn+1, · · · , X2n+1},
we generate Y1(x), · · · , YL(x) according to the quantile level

Yl(x) = argmax{y : F̂ (y | x) ≤ l/L}.

Then, the greedy expansion and contraction procedure described in Section 4.1 is applied on Y1(x), · · · , YL(x). Effectively,
this is equivalent to using F̃ (y | x) = 1

L

∑L
l=1 I{Yl(x) ≤ y} as input. By its definition, F̃ (y | x) is a uniform approximation

to F̂ (y | x) with error 1/L. Thus, Assumption 3.1 is still satisfied for F̃ (y | x). In all of our experiment, we set L = m.
Remark B.1. It is clear that the details of the greedy expansion step and the greedy contraction step do not matter much
for Assumption 2.4 or 3.1 to be satisfied. However, different choices will indeed affect practical performance, especially
in the supervised setting when F̂ (y | x) is not close to F (y | x). To be more specific, sensible choices of expansion and
contraction sets from the Sj∗ generated by DP will serve as a safety net against model misspecification. We discuss this in
more detail in Section B.3, see e.g. Figure 17.

B.2. Unsupervised Setting

Given i.i.d. observations Y1, Y2, . . . , Y2n ∈ R drawn from some distribution P , the goal is to find a prediction set
Ĉ = Ĉ(Y1, . . . , Y2n) such that P(Y2n+1 ∈ Ĉ) ≥ 1− α for an independent future observation Y2n+1 drawn from the same
P . We implement the proposed conformalized dynamic programming (DP) method ĈCP−DP, and compare it with the
conformalized kernel density estimation (KDE) proposed by (Lei et al., 2013) on the following synthetic datasets: (1)
Gaussian; (2) Censored Gaussian; (3) Mixture of Gaussians; (4) ReLU-Transformed Gaussian.

Though the original conformalized KDE was proposed in the full conformal framework, we will consider its split conformal
version for a direct comparison. We believe the comparison between the full conformal versions of the two methods will
lead to the same conclusion. For the conformalized DP method, the conformity score is constructed based on the nested
system described in Section B.1 with m = 50 and δ =

√
(k + log n)/n. The conformalized KDE is also in the form of (9),

with the conformity score given by

qKDE(x) =
1

nρ

n∑
i=1

K

(
y − Yi

ρ

)
,

where K(·) is the standard Gaussian kernel and ρ is the bandwidth parameter. Both methods involve a single tuning
parameter, k for conformalized DP and ρ for conformalized KDE.

Gaussian: Our first distribution is P = N(0, 1), which is a benign example for sanity check. We consider sample size
being 100, and set the coverage probability 1− α = 30% for a more transparent comparison between the two methods. The
conformalized DP is computed with number of intervals k ranging from 1 to 10. It turns out that the output of the prediction
set is quite stable when k varies (Figure 5). Even for k = 10, our method still produces a single interval in this unimodal
distribution.

The conformalized KDE is implemented with bandwidth ρ ranging from 0.001 to 0.005. We observe that the quality of the
prediction set is quite sensitive to the choice of the bandwidth. As is shown by Figure 4, if the bandwidth of KDE is too
small, the conformal prediction will output almost the entire support of the data set. This is because if the KDE overfits the
training samples, the level set of the KDE will likely not cover the future observation. Therefore, a conformal procedure,
which guarantees finite sample coverage, has to be conservative by outputting the entire support. Figure 5 shows that this
issue will be alleviated as the bandwidth gets larger.
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Figure 4. Conformal prediction sets on the Gaussian dataset. The left plot shows the histogram of the dataset and the prediction set
produced by conformalized DP with k = 1; the right plot shows the kernel density estimation with bandwidth ρ = 0.001 and the
prediction set given by the conformalized KDE.
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Figure 5. Volumes of prediction sets of the two methods on the Gaussian dataset (blue) and the benchmark OPT1(N(0, 1), 0.3) = 0.7706
(red). The blue curves are computed by averaging 100 independent experiments.

Censored Gaussian: We next consider P being a censored Gaussian distribution. We take the sample size to be 100, and
each sample can be generated according to Yi = σ(Zi + 1)− σ(Zi − 1) with Zi ∼ N(0, 1) and σ(t) = max(t, 1) being
the ReLU transform. This is equivalently a truncated Gaussian distribution, which has a standard Gaussian density on (0, 2)
and a point mass at 0 with probability P(Zi ≤ −1) and another point mass at 2 with probability P(Zi ≥ 1). Again, for the
sake of comparison, we set the coverage probability to be 1− α = 30%.

Since P(|Zi| ≤ −1) ≥ 1−α, the population optimal volume is OPT(P, 0.3) = OPT2(P, 0.3) = 0 due to the point masses
at {0, 2}. By setting k = 2 for the conformalized DP procedure, the prediction set concentrates on the two point masses
(Figure 6). Moreover, it produces very similar results as we increase k up to 10. Figure 7 shows that the only exception is
k = 1, since one short interval obviosly cannot cover two points that are far away from each other.

We also run conformalized KDE with bandwidth ρ ranging from 0.001 to 1. Since the distribution does not even have a
density function on the entire support, KDE is not really suitable for this setting. Not surprisingly, for a typical choice of
bandwidth that is not too small, the conformalized KDE will not identify the two point masses due to smoothing (Figure 6).
Figure 7 reports the volume of the prediction set as we vary bandwidth, and the volume of the prediction set is close to
optimal only when the bandwidth is extremely close to 0.
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Figure 6. Conformal prediction sets on the censored Gaussian dataset. The left plot shows the histogram of the dataset and the prediction
set given by conformalized DP with k = 2 intervals (The prediction set is two zero-length intervals at 0.0 and 2.0). The right plot shows
the kernel density estimation with bandwidth ρ = 0.2 and the prediction set by conformalized KDE.
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Figure 7. Volumes of prediction sets of the two methods on the censored Gaussian dataset (blue) and the optimal volume (red). The blue
curves are computed by averaging 100 independent experiments.

Mixture of Gaussians: In this experiment, we consider P = 1
3N(−6, 0.0001) + 1

3N(0, 1) + 1
3N(8, 0.25). The sample

size and coverage probability are set as 600 and 1− α = 80%, respectively. The two methods are compared with k ranging
from 1 to 10 in conformalized DP and bandwidth ρ ranging from 0.001 to 5 in conformalized KDE.

(a) k = 2 (b) k = 3 (c) k = 6

Figure 8. Prediction sets provided by the conformalized DP method with the number of intervals k = 2, 3, 6 on the mixture of Gaussians
dataset.
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(a) ρ = 0.01
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(b) ρ = 0.5
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(c) ρ = 5.0

Figure 9. Prediction sets provided by the conformalized KDE using bandwidth ρ = 0.01, 0.5, 5.0 on the mixture of Gaussians dataset.

We report typical results of conformalized DP with k ∈ {2, 3, 6} in Figure 8 and report those of conformalized KDE with
ρ ∈ {0.01, 0.5, 5.0} in Figure 9. The proposed method based on DP produces similar prediction sets close to optimal as long
as k ≥ 3 (Figure 10). This is because OPT(P, 0.8) = OPT3(P, 0.8) with P being a Gaussian mixture of three components.
In comparison, the results based on KDE are quite sensitive to the bandwidth choice, since different bandwidths lead to
kernel density estimators with completely different numbers of modes. Figure 10 shows that for the optimal choice of
bandwidth around 0.5, the KDE successfully identifies the three modes of the Gaussian mixture. However, even with the
optimal bandwidth, the volume of the prediction set is in general still greater than that of the conformalized DP. This is
partly because the three components of the Gaussian mixture do not have the same variance parameters, and thus cannot be
optimally estimated by KDE with a single bandwidth.
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Figure 10. Volumes of prediction sets of the two methods on the mixture of Gaussians dataset (blue) and the optimal volume
OPT(P, 0.8) = 3.0178 (red). The blue curves are computed by averaging 100 independent experiments.

ReLU-Transformed Gaussian: The ReLU-Transformed Gaussian is generated according to Xi =
∑t

j=1 aj ∗ σ(wj ∗
Zi + bj) with Zi ∼ N(0, 1). It includes the censored Gaussian as a special case. Here, we take t = 7 and take a randomly
generated set of coefficients. The resulting density function is plot in Figure 11 (a). The sample size and coverage probability
are taken as 600 and 1− α = 80%, respectively.

Figure 11 also shows a typical prediction set produced by conformalized DP with k = 4 and one produced by conformalized
KDE with bandwidth ρ = 0.02. Figure 12 gives a more thorough comparison. The proposed conformalized DP achieves
near optimality when k ≥ 4, since the distribution has 4 modes. The KDE solutions are sensitive to the choice of bandwidth
for this complicated distribution.
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(c) Conformalized KDE with ρ = 0.02

Figure 11. (a) Density of The ReLU-Transformed Gaussian and prediction set with optimal volume; (b) Conformalized DP with k = 4;
(c) Conformalized KDE with ρ = 0.02.
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Figure 12. Volumes of prediction sets of the two methods on the ReLU-transformed Gaussian dataset (blue) and the optimal volume
OPT(P, 0.8) = 5.1361 (red). The blue curves are computed by averaging 100 independent experiments.

Effects of Sample Sizes and Coverage Probabilites: Finally, we study the effects of sample sizes and coverage
probabilities for the two methods. Specifically, we examine how the volume of the prediction set decays as the sample size
increases and how it varies with different coverage probabilities. The experiments will be conducted with data generated
from the following two distributions:

1. 1
3N(−6, 0.0001) + 1

3N(0, 1) + 1
3N(8, 0.25).

2. The ReLU-Transformed Gaussian Yi =
∑t

j=1 aj ∗ σ(wj ∗ Zi + bj) with Zi ∼ N(0, 1), t = 7 and coefficients are the
same as in the previous experiment.

For conformalized DP, we will set k = 3 for the first distribution and k = 4 for the second one to match the number
of modes in the two cases. For conformalized KDE, since the method is sensitive to the choice of bandwidth, we will
scan the bandwidth ρ from 0.001 to 0.2, and only report the one with the smallest volume. We also benchmark the
performances of the two methods by the optimal volume and a standard split conformal procedure with conformity score
qstandard(y) = −

∣∣y − 1
n

∑n
i=1 Yi

∣∣.
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Figure 13. Volume of prediction set against sample size. Left: 1
3
N(−6, 0.0001) + 1

3
N(0, 1) + 1

3
N(8, 0.25). Right: ReLU-Transformed

Gaussian. All curves are plotted by averaging results from 100 independent experiments.
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Figure 14. Volume of prediction set against coverage probability. Left: 1
3
N(−6, 0.0001) + 1

3
N(0, 1) + 1

3
N(8, 0.25). Right: ReLU-

Transformed Gaussian. All curves are plotted by averaging results from 100 independent experiments.

Figure 13 shows the results with sample size ranging from 200 to 1000 with the coverage probability fixed by 1− α = 80%.
Both conformalized DP and conformalized KDE produce smaller prediction sets as sample size increase. Even with the
bandwidth optimally tuned for conformalized KDE, which is not feasible in practice, the proposed conformalized DP tends
to achieve smaller volumes in most cases. In setting of the ReLU-Transformed Gaussian, we observe that the volume of
conformalized KDE prediction set barely decreases after sample size 600, since in this case density estimation is very hard
for KDE.

Figure 14 considers coverage probability ranging from 0.1 to 0.9, with sample size fixed at 600. The conformalized DP
constantly achieves smaller volume than the conformalized KDE even though the later is computed with optimally tuned
bandwidth. This demonstrates the robustness of the conformalized DP in handling varying coverage requirements while
maintaining efficiency in volume.

Real-World Dataset: We compare the performance of conformalized KDE and conformalized dynamic programming (DP)
methods on the Enzyme dataset in Table 7 and 8. For conformalized KDE, we report results across a range of bandwidths
from 0.1 to 0.9; for conformalized DP, we vary the number of intervals k = 1, · · · , 5. We output the average and standard
deviation for volume and empirical coverage over 50 trials and 80% target coverage. We observe that conformalized DP
achieves higher coverage with lower volume, indicating more efficient coverage compared to conformalized KDE.
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Table 7. Conformalized KDE on Enzyme Dataset

Bandwidth Volume Coverage

0.1 0.9826 ± 0.0969 0.8081 ± 0.0217
0.3 1.4640 ± 0.0940 0.8056 ± 0.0231
0.5 1.5218 ± 0.1332 0.7999 ± 0.0268
0.7 1.4526 ± 0.1809 0.7962 ± 0.0272
0.9 1.3867 ± 0.1799 0.7971 ± 0.0236

Table 8. Conformalized DP on Enzyme Dataset

k Volume Coverage

1 1.2207 ± 0.1188 0.8101 ± 0.0461
2 0.8997 ± 0.1414 0.8144 ± 0.0353
3 1.0118 ± 0.1975 0.8416 ± 0.0390
4 1.0131 ± 0.1878 0.8458 ± 0.0379
5 1.0520 ± 0.2002 0.8558 ± 0.0353

B.3. Supervised Setting

In the supervised setting, we validate our results on the simulated datasets in Romano et al. (2019) and Izbicki et al. (2020).
We compare against the methods of Conformalized Quantile Regression (CQR) of Romano et al. (2019) and Distributional
Conformal Prediction (DCP) of Chernozhukov et al. (2021) and CD-split and HPD-split of Izbicki et al. (2022).

Simulated Dataset (Romano et al., 2019): We first describe the simulated dataset in Romano et al. (2019). In this data,
each one-dimensional predictor variable Xi is sampled uniformly from the range [0, 5]. The response variable is then
sampled according to

Yi ∼ Pois(sin2(Xi) + 0.1) + 0.03 Xi ε1,i + 25 1{Ui < 0.01} ε2,i,

where Pois(λ) is the Poisson distribution with mean λ, ε1,i and ε2,i are independent standard Gaussian noise, and Ui is
drawn uniformly on the interval [0, 1]. The first component of the distribution, Pois(sin2(Xi)+0.1), generates a distribution
that is clustered around positive integer values of Y , with variance that changes periodically in X . The second component
of the distribution, 0.03 Xi ε1,i, adds some additional variance to each of the integer centered clusters, where the magnitude
of the variance increases with X . The final component, 25 1{Ui < 0.01} ε2,i, adds a small fraction of outliers to the
distribution. We generate 2000 training examples, and 5000 test examples, as in the work of (Romano et al., 2019). The
same subset of training and test examples are used in the illustration of each of these methods. The set of test examples is
visualized in Figure 15, with the full range of Y values including the outliers. In the plots associated with our conformal
output, we zoom in on the Y axis for readability, leaving the outliers off the chart.

Simulated Dataset (Izbicki et al., 2020): We now describe the simulated dataset in Izbicki et al. (2020). In this data, the
predictor variables X = (X1, . . . , Xd) with d = 20 dimensions are independently and uniformly sampled from the range
[−1.5, 1.5]. The response variable Y is then generated according to the following bimodal conditional distribution:

Y | X ∼ 0.5N (f(X)− g(X), σ2(X)) + 0.5N (f(X) + g(X), σ2(X)).

where the functions f(X), g(X), and σ2(X) are defined as:

f(X) = (X1 − 1)2(X1 + 1), g(X) = 2I(X1 ≥ −0.5)
√

X1 + 0.5, σ2(X) =
1

4
+ |X1|.

Here, N (µ, σ2) denotes a normal distribution with mean µ and variance σ2, and the indicator function I(X1 ≥ −0.5)
accounts for the bimodal nature of the data, introducing a piecewise behavior in the response variable. The first term f(X)
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Figure 15. Simulated data of Romano et al. (2019), including outliers.

Figure 16. Simulated data from Izbicki et al. (2020), illustrating the bimodal distribution of the response variable.

captures a polynomial relationship with X1, while the second term g(X) introduces an asymmetric bimodal effect depending
on the value of X1. The variance σ2(X) increases linearly with |X1|, adding heteroscedasticity to the distribution.

We generate 2000 training examples and 5000 test examples. The same training and test sets are used consistently across
all experiments to ensure reproducibility. The test set is visualized in Figure 16, showcasing the full range of Y values,
including the effects of bimodality and variance heterogeneity.

Methods: We compare our conformalized DP with the following methods: Conformalized Quantile Regression (CQR) of
Romano et al. (2019) and Distributional Conformal Prediction via Quantile Regression (DCP-QR) and Optimal Distributional
Conformal Prediction via Quantile Regression (DCP-QR*) of Chernozhukov et al. (2021) and CD-split and HPD-split of
Izbicki et al. (2022).

We now describe the implementation of these methods. The compared methods, CQR, DCP-QR, DCP-QR*, and our
conformalized DP rely on quantile regression. For simulated dataset (Romano et al., 2019) with single dimensional
predictor variable, we use the package sklearn-quantile (Roebroek, 2023) to implement the quantile regression,
which implements the method of Quantile Regression Forests, due to Meinshausen (2006). The CD-Split and HPD-Split
methods require the conditional density estimation, which is achieved by the R package FlexCoDE (Izbicki & Lee,
2017). For simulated dataset (Izbicki et al., 2020) with high dimensional predictor variables, the quantile regression by
sklearn-quantile is not informative. For CQR, DCP-QR, DCP-QR*, and our conformalized DP, we first use the R
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package FlexCoDE to generate the conditional density estimation and then integrate the conditional density estimation
to get quantile regression and conditional CDF. The CD-Split and HPD-Split methods again use the conditional density
estimation provided by FlexCoDE. All methods are implemented within the split conformal framework, where the training
data is randomly divided into two equal parts. Specifically, half of the data is allocated for model training, while the
remaining half is used as the calibration set to ensure valid coverage guarantees.

For convenience, we will refer to the qth estimated quantile of Y given X = x as Q̂(q, x). Some of the following methods
use quantile regression to estimate the whole conditional c.d.f. of Y given X , by estimating a set of quantiles from a fine
grid. This gives us an estimate of the conditional c.d.f., which gives us access to F̂ (y | x), the inverse of Q̂. (That is,
F̂ (y | x) = q, such that y = Q̂(q, x). Since we only have Q̂ for values of q in the grid, we set F̂ (y | x) to be the smallest q
in the grid such that y ≤ Q̂(q, x).)

• Conformalized Quantile Regression (CQR), (Romano et al., 2019): This method fits a model to two quantiles of the
data, qlow = α

2 and qhigh = 1− α
2 . On a new test example Xtest, CQR uses the model to estimate the low and high

quantile, and the conformal procedure will output the interval[
Q̂(qlow, Xtest)− b, Q̂(qhigh, Xtest) + b

]
,

where b is a buffer value chosen in the calibration step of the conformal procedure to guarantee coverage.

• Distributional Conformal Prediction via Quantile Regression (DCP-QR), (Chernozhukov et al., 2021): In this frame-
work, we assume access to a model F̂ that can estimate the conditional c.d.f. of the distribution of Y given X , which
we estimate via quantile regression. Similar to CQR, we start with qlow = α

2 and qhigh = 1− α
2 . In DCP, instead of

adding the buffer in the Y space, the buffer is added in the quantile space. That is, on a new test example Xtest, DCP
will output the interval [

Q̂(qlow − b,Xtest), Q̂(qhigh + b,Xtest)
]
,

where b is a buffer value chosen in the calibration step of the conformal procedure to guarantee coverage.

• Optimal Distributional Conformal Prediction via Quantile Regression (DCP-QR*), (Chernozhukov et al., 2021): The
optimal DCP is very similar to DCP, except that qlow and qhigh need not be symmetric around the median (q = 1

2 ).
Instead, they are chosen to provide the minimum volume interval that achieves the desired coverage. We note that the
buffer is still applied symmetrically in the quantile space. That is, the lower quantile is lowered by some value b, and
the upper quantile is raised by the same value b.

• CD-Split (Izbicki et al., 2020; 2022): This method provides prediction sets based on the conditional density estimation
and a partitioning of the feature space. The conformity score in CD-split is based on a conditional density estimator,
which allows the method to approximate the highest predictive density (HPD) set. The feature space is partitioned
based on the profile of the conditional density estimator, and the cut-off values are computed locally within each
partition. This approach enables CD-split to achieve local and asymptotic conditional validity while providing more
informative prediction sets, especially for multimodal distributions.

• HPD-Split (Izbicki et al., 2022): The HPD-split method outputs prediction sets based on the highest predictive density
(HPD) sets of the conditional density estimation. Unlike CD-split, which partitions the feature space, HPD-Split
uses the conformity score based on the conditional CDF of the condition density estimator. Since this conditional
CDF is independent of the feature variable, HPD-Split does not require the partition of the feature space and tuning
parameters for that as in CD-Split. When the conditional density estimation is accurate, HPD-Split converges to the
highest predictive density (HPD) sets.

• Conformalized Dynamic Programming, k = 1 and k = 5: We implement a modification of the procedure described in
this work. In the unsupervised setting, we described the dynamic programming procedure that outputs the minimum
volume set of k intervals that contain a desired fraction of samples. In this setting, given a new test example X , we do
not have access to samples. Instead, we have access to a grid of estimated quantiles of Y given X . We implement a
version of the dynamic programming procedure that operates on this quantile grid instead of a set of points, to output
the minimum volume set of k intervals that cover at least the desired probability mass. We can also modify our greedy
contraction and expansion procedures to provide a nested system of sets for different coverage levels.
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Discussion: The results of our experiments are illustrated in Figure 18. Our experiments show that Conformalized Quantile
Regression (CQR) and Distributional Conformal Prediction via Quantile Regression (DCP-QR) perform approximately as
well as each other on this dataset, achieving average volume 1.42 and 1.48 respectively (see Figures 18a, 18b).

Optimal Distributional Conformal Prediction via Quantile Regression (DCP-QR*) achieves a significant improvement over
DCP-QR on this data, achieving average volume 1.29 (see Figure 18c). This is due to the fact that the distribution of Y
values is not symmetric around, or peaked at the median Y value. Thus, DCP-QR suffers a disadvantage, because it outputs
intervals that are centered around the median in quantile space, and does not take into account the relative volumes of the
quantiles in Y space. DCP-QR* on the other hand, is able to take advantage of the fact that, for this data, quantiles close to
0 have very low volume, and output intervals that use these quantiles.

While DCP-QR* uses information about the relative volume of the quantiles to choose qlow and qhigh, which define the output
intervals before conformalization, it does not take the volume into account during the conformalization step. Expanding the
interval by a buffer value b that is small in quantile space, can lead to a large difference in Y space, increasing the volume of
the output interval significantly. For example in Figure 18c, the intervals for X just larger than 4 stretch very far into the
negative Y region, as a small adjustment in quantile space is a large adjustment in Y space.

This issue is avoided by our Conformalized Dynamic Programming (Conformalized DP) method with greedy expansion
and contraction for k = 1 interval. Before conformalization, the interval output by Conformalized DP and DCP-QR* is
the same: it is the volume optimal interval that achieves a given coverage according to the estimated c.d.f.. However, our
method takes the relative volume of different quantiles into account in the conformalization step, and avoids the issue of
expanding the interval in quantile space in directions that add too much volume in Y space. This allows the method to
achieve an improved average volume of 1.14 (see Figure 18f).

An illustration of this issue is given in Figure 17. Suppose that for a new test example X , the estimated conditional
distribution of Y is skewed. (In this illustration it is χ2(5).) Suppose that our target coverage was 0.5, and in the calibration
phase we are required to expand coverage to 0.7. Both ConformalizedDP and DCP-QR* will start by calculating the
minimum volume interval that captures 0.5 of the probability mass. In this case it is the red region from x = 1.58 to
x = 5.14 (i.e., the set of x such that f(x) > 0.12, where f(x) is the p.d.f. of the distribution). Then, each method must
expand this interval to capture 0.7 of the probability mass. DCP-QR* does this by adding two blue regions, each of which
capture an additional 0.1 probability mass. This results in expanding the interval significantly to the right, even though the
density is low. ConformalizedDP takes the volume (i.e., density) into account when expanding the interval, and produces the
minimum volume interval that captures 0.7 of the distribution (i.e., the set of x such that f(x) > 0.085), in this example.
(We note that the expansion and contraction procedure of ConformalizedDP does not always result in the volume optimal
prediction set for the adjusted coverage, only the original target coverage. However, in this case, since the distribution is
unimodal and k = 1, we do indeed recover the volume optimal set even for the adjusted coverage.)

Finally, we also implement Conformalized DP with k = 5 intervals. This allows us to fit to the multimodal shape of the Y
data, and achieve a much lower average volume of 0.45 (see Figure 18g).
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(a) When expanding from the red region, coverage 0.5, to a region of coverage 0.7,
DCP-QR* chooses the blue region with additional volume 2.56.

(b) When expanding from the red region, coverage 0.5, to a region of coverage 0.7,
Conformalized DP chooses the blue region with additional volume 1.96.

Figure 17. We illustrate the difference between DCP-QR* and Conformalized DP for k = 1, on the example where the estimated
conditional distribution of Y for a new Xtest is χ2(5). We plot the intervals that are chosen by the methods against the p.d.f. of the
estimated distribution.

(a) Conformalized Quantile Regression (CQR), (Romano et al., 2019), achieves average
volume 1.42 and empirical coverage 70.62%.
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(b) Distributional Conformal Prediction (DCP), (Chernozhukov et al., 2021), achieves
average volume 1.48 and empirical coverage 71.6%.

(c) Optimal Distributional Conformal Prediction (DCP-QR*), (Chernozhukov et al.,
2021), achieves average volume 1.29 and empirical coverage 71.06%.

(d) CD-split Conformal Prediction, (Izbicki et al., 2022), achieves average volume 1.83
and empirical coverage 69.94%.

(e) HPD-split Conformal Prediction, (Izbicki et al., 2022), achieves average volume
1.75 and empirical coverage 69.44%.

(f) Conformalized Dynamic Programming (k = 1), achieves average volume 1.14 and
empirical coverage 74.04%.

(g) Conformalized Dynamic Programming (k = 5), achieves average volume 0.45 and
empirical coverage 72.36%.

Figure 18. Comparison of supervised conformal prediction methods on simulated data from (Romano et al., 2019). All results are for a
target coverage of 0.70.
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(a) CQR, achieves average volume 4.10 and empirical coverage 71.54%.

(b) DCP-QR, achieves average volume 4.04 and empirical coverage 70.85%. (c) DCP-QR*, achieves average volume 4.05 and empirical coverage 69.66%.

(d) CD-Split, achieves average volume 3.69 and empirical coverage 69.86%. (e) HPD-Split, achieves average volume 3.60 and empirical coverage 69.64%.
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(f) Conformalized Dynamic Programming (k = 1), achieves average volume 4.00 and
empirical coverage 68.98%.

(g) Conformalized Dynamic Programming (k = 2), achieves average volume 3.55 and
empirical coverage 69.42%.

Figure 19. Comparison of supervised conformal prediction methods on simulated data from (Izbicki et al., 2020). All results are for a
target coverage of 0.70.

Real-World Dataset (Dhillon et al., 2024). We evaluate our method along with several baselines on two real-world
regression datasets from the UCI repository: AirFoil and WineQuality. These two datasets were previously considered in the
conformal prediction study by Dhillon et al. (2024). For each dataset, we compare the empirical coverage, average volume,
and runtime of the prediction sets output by different methods, with a shared preprocessing time (for conditional CDF
estimation using FlexCoDE) excluded from reported runtimes. For AirFoil and WineQuality, we repeat each experiment
20 times and report the mean and standard deviation of all results with target coverage 0.8.

Recall that our method for the supervised setting requires a conditional CDF estimator. When the feature space is high-
dimensional in our experiments, this is constructed by using as a black-box the conditional density estimator of Izbicki &
Lee (2017) that underlies CD-split and HPD-split. When the conditional density estimate is used as a black-box, the optimal
volume set is produced by taking an appropriate level set of the conditional density as taken by CD-split and HPD-split;
hence we do not expect our method to outperform CD-split and HPD-split in these experiments. However, we observe that
our method is still competitive in these experiments, as described below.

Interpretation: Among the competitive methods, CQR, DCP-QR, DCP-QR* all output a single interval and are more suitable
for unimodal distributions. On the other hand, CD-split and HPD-split output a union of intervals and are suitable for data
generated by multimodal distributions. The experiments show that our proposed framework of Dynamic Programming is
competitive against both settings with different values of k. To be specific, for the dataset in Table 9, DP with k = 1 is
competitive with the DCP-QR and DCP-QR* which achieves the smallest volume, while in Table 10, DP with k = 5 is
competitive with HPD-split and CD-split which achieve the smallest volume. In practice, the value of k can be tailored
based on the distribution, or chosen adaptively using the ideas in Bai et al. (2022).

Table 9. Comparison of methods on the dataset AirFoil. Reported runtimes exclude a shared preprocessing time of 6.3819± 0.1456(s)
for estimating the conditional CDF using FlexCoDE common to all methods.

Method Average Volume Empirical Coverage Runtime (s)

CQR 7.1167 ± 0.4479 0.8061 ± 0.0266 0.3536 ± 0.0528
DCP-QR 6.4662 ± 0.4478 0.8032 ± 0.0268 0.8185 ± 0.0613
DCP-QR* 6.4612 ± 0.4078 0.7953 ± 0.0240 0.9003 ± 0.0555
CD-split 7.5517 ± 0.5343 0.7962 ± 0.0269 0.1311 ± 0.0110
HPD-split 7.3650 ± 0.6549 0.8013 ± 0.0278 1.8243 ± 0.0556
DP (k = 1) 6.8287 ± 0.3548 0.8065 ± 0.0245 32.3420 ± 0.1109
DP (k = 5) 7.5002 ± 0.5302 0.8032 ± 0.0211 206.3317 ± 196.6624
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Table 10. Comparison of methods on the dataset WineQuality. Reported runtimes exclude a shared preprocessing time of 68.3879 ±
2.8636(s) for estimating the conditional CDF using FlexCoDE common to all methods.

Method Average Volume Empirical Coverage Runtime (s)

CQR 1.1251 ± 0.2066 0.8058 ± 0.0135 5.0441 ± 0.5437
DCP-QR 0.9980 ± 0.0771 0.8042 ± 0.0122 7.2799 ± 0.7250
DCP-QR* 0.9514 ± 0.0721 0.8030 ± 0.0115 7.6734 ± 0.9398
CD-split 0.5066 ± 0.7077 0.7759 ± 0.0368 2.6191 ± 0.1664
HPD-split 0.2694 ± 0.0163 0.8010 ± 0.0154 9.0277 ± 0.0973
C-DP(k = 1) 0.9389 ± 0.0555 0.8074 ± 0.0134 191.8998 ± 213.9385
C-DP(k = 5) 0.2947 ± 0.0215 0.8048 ± 0.0127 704.8169 ± 40.4745

C. KDE Optimality Implies DP Optimality
Suppose a distribution P on R admits a density function p. The kernel density estimator depending on k i.i.d. samples
Z1, · · · , Zk is defined by

pk(y) =
1

kρ

k∑
j=1

K

(
y − Zj

ρ

)
, (13)

where K(·) is a standard Gaussian kernel and ρ is a bandwidth parameter. The conformal prediction method by (Lei et al.,
2013) is based on the idea that the level set of pk is close to that of p as long as pk is close to p. In this section, we will
show that as long as pk is close to p, the dynamic programming also finds a prediction set whose volume is nearly optimal
compared with the level set of p. This implies that DP always requires no stronger assumption to achieve volume optimality.

The existence of a KDE close to p can be even weakened into the following assumption.

Assumption C.1. For any positive integer k, there exists some εk > 0 and some Gaussian mixture Pk =
∑k

j=1 wjN(µj , σ
2
j )

such that TV(Pk, P ) ≤ εk.

In particular, the KDE (13) based on k samples is a special case of the Gaussian mixture, given that Gaussian kernel is
used. Though the characterization of the closeness between pk and p is through ℓ∞ norm by (Lei et al., 2013), similar error
bounds also apply to the ℓ1 norm, which is the total variation distance. For example, suppose P has bounded support and
the Hölder smoothness is β ∈ (0, 2]. Then, one can take εk = Θ̃

(
k−

β
2β+1

)
with an appropriate choice of the bandwidth,

where Θ̃ hides some logarithmic factor of k.

Theorem C.2. Consider i.i.d. observations Y1, · · · , Yn, Yn+1 generated by some distribution P on R that satisfies Assump-

tion C.1. For any α, δ, γ ∈ (0, 1) such that δ ≫
√

k+logn
n and γ + 2δ + 2εk < α, let ĈDP ∈ Ck be the output of Algorithm

1 with coverage level 1− α+ δ and slack γ. Then, with probability at least 1− δ, we have

1. P
(
Yn+1 ∈ ĈDP | Y1, · · · , Yn

)
≥ 1− α;

2. vol(ĈDP) ≤ OPT(P, 1− α+ γ + 2δ + 2εk).

The result of Theorem C.2 can also be conformalized as in Section 2.4, so that the restricted volume optimality OPTk(P, ·)
in Theorem 2.5 can be strengthened to OPT(P, ·) without restriction whenever P satisfies Assumption C.1, which, in
particular, includes the situation where the density of P can be well estimated by KDE.

The volume sub-optimality given by Theorem C.2 is γ + 2δ+ 2εk. When the distribution P is β-smooth, the sub-optimality

is of order Θ̃
(√

k
n + k−

β
2β+1

)
by taking εk = Θ̃

(
k−

β
2β+1

)
, δ = Θ̃

(√
k
n

)
, and γ sufficiently small. Thus, optimizing

this bound over k leads to the rate Θ̃
(
n− β

4β+1

)
. In comparison, the KDE achieves a faster rate Θ̃

(
n− β

2β+1

)
(Lei et al.,

2013) for smooth densities. This is actually a technical artifact by specializing Assumption C.1 to the KDE (13). In fact,
when the density of P is β-smooth, it is well known that Assumption C.1 is satisfied with a better εk = Θ̃(k−β) (Ghosal &
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van der Vaart, 2007; Kruijer et al., 2010), which then leads to the volume sub-optimality Θ̃

(√
k
n + k−β

)
that leads to the

near optimal rate Θ̃
(
n− β

2β+1

)
with k = Θ̃(n

1
2β+1 ).

C.1. Proof of Theorem C.2

We first state a lemma that shows that a level set of a Gaussian mixture with k components must belong to the class Ck.

Lemma C.3. For a Gaussian mixture Pk =
∑k

j=1 wjN(µj , σ
2
j ) and any α ∈ (0, 1),

OPTk(Pk, 1− α) = OPT(Pk, 1− α).

The proof of the lemma will be given in Appendix D.4. Now we are ready to state the proof of Theorem C.2.

Proof of Theorem C.2. By Proposition 2.3, we know that ĈDP satisfies Pn(ĈDP) ≥ 1 − α + δ and vol(ĈDP) ≤
OPTk(Pn, 1 − α + δ + γ). The condition on δ implies that supC∈Ck

|Pn(C) − P (C)| ≤ δ with probability at least
1− δ (Devroye & Lugosi, 2001). Therefore, the coverage probability is

P
(
Yn+1 ∈ ĈDP | Y1, · · · , Yn

)
≥ Pn(ĈDP)− δ ≥ 1− α,

and the volume can be bounded by

vol(ĈDP) ≤ OPTk(Pn, 1− α+ δ + γ)

≤ OPTk(P, 1− α+ 2δ + γ)

≤ OPTk(Pk, 1− α+ 2δ + γ + εk)

= OPT(Pk, 1− α+ 2δ + γ + εk)

≤ OPT(P, 1− α+ 2δ + γ + 2εk),

where the identity above is by Lemma C.3.

D. Additional Proofs
D.1. Proof of Theorem 2.1

The proof relies on the following technical lemma, whose proof will be given in Appendix D.4.

Lemma D.1. For any δ, ε > 0 and any integer n > 0, there exists some distribution Π supported on

Pε = {P : supp(P ) ⊂ [0, 1],TV(P, λ) ≥ 1− ε} ,

such that TV
(
λn,
∫
PndΠ

)
≤ δ.

Now we are ready to state the proof of Theorem 2.1.

Proof of Theorem 2.1. By Lemma D.1, there exist Πn,δ and Πn+1,δ supported on Pδ , such that TV
(
λn,
∫
PndΠn,δ

)
≤ δ

and TV
(
λn+1,

∫
Pn+1dΠn+1,δ

)
≤ δ.

Since Pn+1(Yn+1 ∈ Ĉ(Y1, · · · , Yn)) ≥ 1− α for all P , we have∫
Pn+1(Yn+1 ∈ Ĉ(Y1, · · · , Yn))dΠn+1,δ ≥ 1− α.

By TV
(
λn+1,

∫
Pn+1dΠn+1,δ

)
≤ δ, we have

E
Y1,...,Yn∼λn

(λ(Ĉ(Y1, · · · , Yn))) = λn+1(Yn+1 ∈ Ĉ(Y1, · · · , Yn)) ≥ 1− α− δ.
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By TV
(
λn,
∫
PndΠn,δ

)
≤ δ, we have∫

E
Y1,...,Yn∼Pn

λ(Ĉ(Y1, · · · , Yn))dΠn,δ ≥ 1− α− 2δ.

Then, there must exists some P ∈ supp(Πn,δ) ⊂ Pδ , such that

E
Y1,...,Yn∼Pn

λ(Ĉ(Y1, · · · , Yn)) ≥ 1− α− 2δ.

The fact that P ∈ Pδ implies TV(P, λ) ≥ 1 − δ. By the definition of total variation, there exists some set B such that
P (B)− λ(B) ≥ 1− δ, which implies P (B) ≥ 1− δ and λ(B) ≤ δ. Therefore, OPT(P, 1− δ) ≤ δ.

We finally have for any ε ∈ (0, α), the expected volume of prediction set is

E
Y1,...,Yn∼Pn

vol(Ĉ(Y1, · · · , Yn)) ≥ 1− α− 2δ

≥ δ

≥ OPT(P, 1− δ)

≥ OPT(P, 1− α+ ε),

as long as δ is sufficiently small so that δ < min{(1− α)/3, α− ε}. The proof is complete.

D.2. Proof of Theorem 2.5

Theorem 2.5 is a special case of Theorem 3.3 in the setting where F (· | x) does not depend on x and F̂ (· | x) is defined
as the empirical CDF of Y1, · · · , Yn. Then, Assumption 3.2 is automatically satisfied by a standard VC dimension bound
(Devroye & Lugosi, 2001).

D.3. Proof of Theorem 3.3

We will prove the three properties of Theorem 3.3 separately. We note that the marginal coverage property holds without
Assumptions 3.1 and 3.2. It is a standard consequence of applying the split conformal framework, but we still include a
proof here for completeness.

Proof of Theorem 3.3 (marginal coverage). By the construction of ĈDCP−DP(X2n+1), we have

P
(
Y2n+1 ∈ ĈDCP−DP(X2n+1)

)
= P

(
q(Y2n+1, X2n+1) ≥ q⌊(n+1)α⌋

)
.

Since the conformity score q is constructed from F̂ (· | ·), it is independent from the second half of the data. Thus,
q(Y2n+1, X2n+1) is exchangeable with q(Yn+1, Xn+1), · · · , q(Y2n, X2n), which implies the desired conclusion by the
definition of q⌊(n+1)α⌋.

Next, we establish the conditional coverage property. We need the following property of the conformity score that is
computed based on a nested system.

Lemma D.2. For any j ∈ [m+ 1], y ∈ Sj(x) if and only if q(y, x) ≥ m− j + 1, where the set Sm+1(x) is defined as R.

The proof of the lemma will be given in Appendix D.4.

Proof of Theorem 3.3 (approximate conditional coverage). We first note that Assumption 3.2 implies

E∥F̂ (· | X2n+1)− F (· | X2n+1)∥k,∞ ≤ 2δ. (14)

We use F2n to denote the σ-field generated by the random variables (X1, Y1), · · · , (X2n, Y2n). Let EX2n+1
and EF2n

be
the expectation operators under the marginal distributions of X2n+1, and of (X1, Y1), · · · , (X2n, Y2n), respectively. Then,
we have

P
(
q(Y2n+1, X2n+1) ≥ q⌊(n+1)α⌋

)
= E

F2n

E
X2n+1

P
(
q(Y2n+1, X2n+1) ≥ q⌊(n+1)α⌋|X2n+1,F2n

)
.
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By Lemma D.2, q(Y2n+1, X2n+1) ≥ q⌊(n+1)α⌋ is equivalent to Y2n+1 ∈ Sĵ(X2n+1) for some ĵ measurable with respect to
F2n. Then, we have

E
F2n

E
X2n+1

P
(
q(Y2n+1, X2n+1) ≥ q⌊(n+1)α⌋|X2n+1,F2n

)
= EF2n

EX2n+1
P
(
Y2n+1 ∈ Sĵ(X2n+1)|X2n+1,F2n

)
= EF2nEX2n+1

∫
Sĵ(X2n+1)

dF (y | X2n+1).

Since Sĵ(X2n+1) ∈ Ck, by (14), we have

EF2n
EX2n+1

∫
Sĵ(X2n+1)

dF (y | X2n+1) ≤EF2n
EX2n+1

∫
Sĵ(X2n+1)

dF̂ (y | X2n+1)

+ E∥F̂ (· | X2n+1)− F (· | X2n+1)∥k,∞

≤EF2n
EX2n+1

∫
Sĵ(X2n+1)

dF̂ (y | X2n+1) + 2δ.

By Assumption 3.1, we have
∫
Sĵ(X2n+1)

dF̂ (y | X2n+1) =
ĵ
m , which is independent of X2n+1, since ĵ measurable with

respect to F2n. Thus, we have

EF2n
EX2n+1

∫
Sĵ(X2n+1)

dF̂ (y | X2n+1) + 2δ = EF2n

∫
Sĵ(X2n+1)

dF̂ (y | X2n+1) + 2δ.

By Assumption 3.2, we have with probability at least 1− δ,

EF2n

∫
Sĵ(X2n+1)

dF̂ (y | X2n+1) + 2δ ≤EF2n

∫
Sĵ(X2n+1)

dF (y | X2n+1) + 3δ

=P
(
q(Y2n+1, X2n+1) ≥ q⌊(n+1)α⌋ | X2n+1

)
+ 3δ.

Therefore, with probability at least 1− δ, the approximate conditional coverage holds

P
(
q(Y2n+1, X2n+1) ≥ q⌊(n+1)α⌋ | X2n+1

)
≥ P

(
q(Y2n+1, X2n+1) ≥ q⌊(n+1)α⌋

)
− 3δ ≥ 1− α− 3δ.

Finally, we prove the last property on volume optimality.

Proof of Theorem 3.3 (conditional restricted volume optimality). By Assumption 3.1, there exists some j∗ ∈ [m], such that

E
∫
Sj∗ (X2n+1)

dF̂ (y | X2n+1) ≥ 1− α+
1

n
+ 3δ.

Assumption 3.2 implies that

P (Y2n+1 ∈ Sj∗(X2n+1)) = E
∫
Sj∗ (X2n+1)

dF (y | X2n+1)

≥ E
∫
Sj∗ (X2n+1)

dF̂ (y | X2n+1)

−E∥F̂ (· | X2n+1)− F (· | X2n+1)∥k,∞

≥ 1− α+
1

n
+ δ.

By Hoeffding’s inequality and the condition on δ, we have

1

n

2n∑
i=n+1

I{Yi ∈ Sj∗(Xi)} ≥ P (Y2n+1 ∈ Sj∗(X2n+1))− δ,
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with probability at least 1− δ. Combining the two inequalities above and Lemma D.2, we get

1

n

2n∑
i=n+1

I{q(Yi, Xi) ≥ m− j∗ + 1} ≥ 1− α+
1

n
,

with probability at least 1− δ. This immediately implies q⌊nα⌋ = q⌊n(α−n−1)+1⌋ ≥ m− j∗ + 1 by the definition of order
statistics. Therefore, the volume of the prediction set ĈDCP−DP(X2n+1) is at most

vol
({

y ∈ R : q(y,X2n+1) ≥ q⌊(n+1)α⌋
})

≤vol
({

y ∈ R : q(y,X2n+1) ≥ q⌊nα⌋
})

≤vol ({y ∈ R : q(y,X2n+1) ≥ m− j∗ + 1})
=vol(Sj∗(X2n+1)),

where the last identiy is by Lemma D.2. The volume of Sj∗(X2n+1) can be controlled by Assumption 3.1,

vol(Sj∗(X2n+1)) ≤OPTk

(
F̂ (· | X2n+1), 1− α+

1

n
+ 3δ + γ

)
≤OPTk

(
F (· | X2n+1), 1− α+

1

n
+ 4δ + γ

)
,

where the last inequality, which holds with probability at least 1 − δ, is by Assumption 3.2. Combining the inequalities
above with union bound, we get the conclusion.

D.4. Proofs of Proposition 2.3, Lemma C.3, Lemma D.1 and Lemma D.2

Dynamic Programming Algorithm. The dynamic programming table DP (i, j, l) stores the minimum volume of i intervals
that collectively cover lγn points from the sorted training data Y(1), . . . , Y(j), where the right endpoint of the rightmost
interval is fixed at Y(j). Here, Y(1), . . . , Y(n) are the training data points Y1, . . . , Yn sorted in non-decreasing order. For each
state in the DP table, we iterate over all possible left endpoints of the rightmost interval, as well as the right endpoint of the
preceding interval (if it exists). This allows us to systematically compute the optimal solution for each state by the following
formula:

If i = 1, DP (i, j, l) = Y(j) − Y(j−⌈lγn⌉+1),

If i > 1, DP (i, j, l) = min
i−1≤j′′<j′≤j

{Y(j) − Y(j′) +DP (i− 1, j′′, l′)},

where l′ = l−⌊(j− j′+1)/(γn)⌋. Finally, we find the minimum volume solution among all entries DP (k, j, ⌈(1−α)/γ⌉)
for all 1 ≤ j ≤ n. Then, we use the standard backtrack approach on the DP table to find the prediction set ĈDP .

Proof of Proposition 2.3. Without loss of generality, we assume that 1/γ is an integer, otherwise, we can decrease γ to
make this hold. For any i ∈ [k], j ∈ [n], l ∈ [1/γ], we use the dynamic programming table entry DP (i, j, l) to store the
minimum volume of i intervals that cover ⌈l · γn⌉ points in Y(1), . . . , Y(j) and the right endpoint of the rightmost interval is
at Y(j). If there is no feasible solution for this subproblem, we set DP (i, j, l) = ∞. This dynamic programming is shown in
Algorithm 1. This dynamic programming runs in time O(n3k/γ).

We then find the solution with the minimum volume among all subproblems DP (k, j, ⌈(1− α)/γ⌉) for 1 ≤ j ≤ n. It is
easy to see that there exists a feasible solution. Let ĈDP ∈ Ck be a union of k intervals in this solution. This solution covers
at least ⌈(1− α)/γ · (nγ)⌉ = ⌈(1− α)n⌉ points in X1, . . . , Xn. Thus, we have

Pn(ĈDP) ≥ 1− α.

If the restricted optimal volume OPTk(Pn, ((1−α)/γ+1) · (nγ)/n) is smaller than the volume of ĈDP, then this solution
cannot have the minimum volume among all subproblems DP (k, j, ⌈(1− α)/γ⌉) for 1 ≤ j ≤ n. Thus, the volume of this
solution must satisfy

vol(ĈDP) ≤OPTk(Pn, ((1− α)/γ + 1) · (nγ)/n)
=OPTk(Pn, 1− α+ γ).

The proof is thus complete.
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Proof of Lemma C.3. By (Carreira-Perpinán & Williams, 2003), there are k′ ≤ k local maxima for the density function pk.
We will use k′ intervals and define the rest of the intervals to be empty. Suppose u1 ≤ u2 ≤ · · · ≤ uk′ ∈ R are the local
maxima of pk. The density pk(y) is differentiable, and its local minima and local maxima have to alternate. Hence there
are exactly k′ − 1 local minima, denoted by ℓ1, ℓ2, . . . , ℓk′−1 with ℓj ∈ [uj , uj+1] for all j ∈ {1, 2, . . . , k′ − 1}. (Note that
there are no local minima less than u1 or greater than uk′ since pk(y) → 0 as y → ±∞). For notational convenience let
ℓ0 = −∞, ℓk′ = ∞. Let C∗ ⊂ R satisfies Pk(C

∗) ≥ 1− α and vol(C∗) = OPT(Pk, 1− α).

We now show that there exist I1, · · · , Ik′ ∈ C1 such that uj ∈ Ij ⊂ [ℓj−1, ℓj ] for all j ∈ [k′], Pk(∪k′

j=1Ij) ≥ 1 − α, and
vol(∪k′

j=1Ij) ≤ vol(C∗). This would imply the desired conclusion. Consider Sj = S∗ ∩ [ℓj−1, ℓj ] for all j ∈ [k′]. Next
we observe for all j ∈ [k′], pk is monotonically increasing in the interval [ℓj−1, uj ] and is monotonically decreasing in the
intervals [uj , ℓj ], with a local maximum at uj . Hence if Sj comprises multiple disjoint intervals within [ℓj−1, ℓj ], we can
pick one interval with the same volume within [ℓj−1, ℓj ] that also includes uj and covers at least as much probability mass.
This establishes the property of ∪k′

j=1Ij , and hence the lemma.

Proof of Lemma D.1. First, we construct a family of distributions supported on subsets of [0, 1]. Consider an integer m. We
partition the interval [0, 1] into m intervals with length 1/m each and define the subinterval Aj =

[
j−1
m , j

m

)
for j ∈ [m].

We next define a family of distributions supported on these subintervals. For any vector Z ∈ {0, 1}m, let AZ =
⋃

j:Zj=1 Aj

denote the union of intervals corresponding to the indices where Zj = 1. Then, we define the density function

pZ(y) =
I{y ∈ AZ}
1
m

∑m
j=1 Zj

,

where I is the indicator function. Let PZ be the corresponding distribution.

We then construct the weight distribution Π. Given any ε > 0, we now provide a restricted set of vectors Z ∈ {0, 1}m
such that the distribution PZ has at least 1− ε total variation distance to the uniform distribution λ. We pick a parameter
β ∈ (0, 1) depending on ε and m. Then, we define a set of vectors Z with AZ covering approximately β fraction of [0, 1],

Z =

Z ∈ {0, 1}m :

∣∣∣∣∣∣ 1m
m∑
j=1

Zj − β

∣∣∣∣∣∣ ≤
(
β

m

)1/3
 .

For any Z ∈ Z , we have the total variation distance

TV(PZ , λ) ≥ λ(Ac
Z) = 1− 1

m

m∑
j=1

Zj ≥ 1− β −
(
β

m

)1/3

.

Therefore, as long as β +
(

β
m

)1/3
≤ ε, we have PZ ∈ Pε for all Z ∈ Z . We construct the weight distribution Π supported

on the {PZ : Z ∈ Z}. Let Π̃ = ⊗m
j=1Bernoulli(β) be the product distribution on {0, 1}m such that each coordinate is 1

with probability β. Then, we define Π to be the distribution Π̃ conditioning on Z , Π(Z) = Π̃(Z∩Z)

Π̃(Z)
.

We bound TV(λn,
∫
Pn
ZdΠ(Z)) by chi-squared divergence,

1

2
TV

(
λn,

∫
Pn
ZdΠ(Z)

)2

≤
∫
[0,1]n

(∫
Z

pnZdΠ(Z)

)2

dx− 1.

Since
∫
Pn
ZdΠ(Z) is a mixture of product distributions over {Pn

Z : Z ∈ Z} with weights Π, we can expand the first term in
the right-hand side as ∫

[0,1]n

(∫
Z

pnZdΠ(Z)

)2

dx = E
Z,Z′iid∼Π

(∫
pZ(y)pZ′(y)dx

)n

.

By taking the density pZ(y) =
I{x∈AZ}
1
m

∑m
j=1 Zj

into the equation, we have

E
Z,Z′iid∼Π

(∫
pZ(y)pZ′(y)dx

)n

= E
Z,Z′iid∼Π

 1
1
m

∑m
j=1 Zj

· 1
1
m

∑m
j=1 Z

′
j

· 1

m

m∑
j=1

ZjZ
′
j

n

.

32



Volume Optimality in Conformal Prediction with Structured Prediction Sets

According to the construction of Z , for any vector Z ∈ Z , we have 1
m

∑m
j=1 Zj ≥ β −

(
β
m

)1/3
. Since Π̃ is the product of

Bernoulli distribution with probability β, by the Chernoff bound, we have Π̃(Z ∈ Z) ≥ 1− (β/m)1/3. Thus, we have

E
Z,Z′iid∼Π

(∫
pZ(y)pZ′(y)dx

)n

≤

(
β −

(
β

m

)1/3
)−2n

E
Z,Z′iid∼Π

 1

m

m∑
j=1

ZjZ
′
j

n

=

(
β −

(
β

m

)1/3
)−2n E

Z,Z′iid∼ Π̃

(
1
m

∑m
j=1 ZjZ

′
j

)n
I{Z ∈ Z}I{Z ′ ∈ Z}

Π̃(Z ∈ Z)2

≤

(
β −

(
β

m

)1/3
)−2n(

1−
(
β

m

)1/3
)−2

E
Z,Z′iid∼ Π̃

 1

m

m∑
j=1

ZjZ
′
j

n

.

The last term on the right-hand side can be bounded by

E
Z,Z′iid∼ Π̃

 1

m

m∑
j=1

ZjZ
′
j

n

≤

(
β2 +

(
β2

m

)1/3
)n

+ Π̃

 1

m

m∑
j=1

ZjZ
′
j > β2 +

(
β2

m

)1/3


≤

(
β2 +

(
β2

m

)1/3
)n

+

(
β2

m

)1/3

,

where the first inequality is using 1
m

∑m
j=1 ZjZ

′
j ≤ 1 for 1

m

∑m
j=1 ZjZ

′
j > β2 +

(
β2

m

)1/3
and the second inequality is

from the Chernoff bound on the sum of m Bernoulli variables with probability β2. Combining all bounds above, we have

1

2
TV

(
λn,

∫
Pn
ZdΠ(Z)

)2

≤

(
β2 +

(
β2

m

)1/3)n

+
(

β2

m

)1/3
(
β −

(
β
m

)1/3)2n(
1−

(
β
m

)1/3)2 − 1.

It is clear that the above bound tends to zero when m → ∞. Therefore, for any δ > 0, we have TV
(
λn,
∫
Pn
ZdΠ(Z)

)
≤ δ

for a sufficiently large m.

Proof of Lemma D.2. The result is a direct consequence of the nested property of {Sj(x)}j∈[m].
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