Pushing the limits of self-supervised ResNets:
Can we outperform supervised learning without labels on ImageNet?
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Abstract

Despite recent progress made by self-supervised
methods in representation learning with resid-
ual networks, they still underperform supervised
learning on the ImageNet classification bench-
mark. To address this, we propose a novel self-
supervised representation learning method Rep-
resentation Learning via Invariant Causal Mecha-
nisms v2 (RELICv2) (based on (Mitrovic et al.,
2021)) which explicitly enforces invariance over
spurious features such as background and object
style. We conduct an extensive experimental eval-
uation across a varied set of datasets, learning
settings and tasks. RELICv2 achieves 77.1%
top-1 accuracy on ImageNet using linear eval-
uation with a ResNet50 architecture and 80.6%
with larger ResNet models, outperforming pre-
vious state-of-the-art self-supervised approaches
by a wide margin. Moreover, we show a relative
overall improvement of exceeding +5% over the
supervised baseline in the transfer setting and the
ability to learn more robust representations than
self-supervised and supervised models. Most no-
tably, RELICv2 is the first unsupervised repre-
sentation learning method to consistently outper-
form a standard supervised baseline in a like-for-
like comparison across a wide range of ResNet
architectures. Finally, we show that despite us-
ing ResNet encoders, RELICv2 is comparable to
state-of-the-art self-supervised vision transform-
ers.

1. Introduction

Learning visual representations without human supervision
is an important, long-standing problem in machine learning.
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Figure 1. Top-1 linear evaluation accuracy on ImageNet using
ResNet50 encoders with 1x, 2x and 4 x width multipliers and a
ResNet200 encoder with a 2x width multiplier.

In recent years the contrastive approach to unsupervised
learning has made significant strides in this direction (Chen
et al., 2020a; He et al., 2019; Caron et al., 2020; Mitrovic
et al., 2021). However, downstream utility! of these repre-
sentations has until now never exceeded the performance of
supervised training of the same architecture, thus limiting
their usefulness.

In this work, we tackle the question “Can we outperform
supervised learning without labels on ImageNet?”. We hy-
pothesize that one of the key reasons for the current subpar
performance of self-supervised representations in image
classification is the presence of spurious features such as
background and object styles which have been found in
the learned representations (Bordes et al., 2021). While
these features are not directly informative for the task of im-
age classification, they can be spuriously correlated with the
label in the training data resulting in zero training error. Con-
versely, there is no guarantee that this spurious correlation
will hold in the test setting; thus, encoding these spurious
features in the representation can have significant negative
consequences for the model’s generalization performance.

To tackle this, we propose a novel self-supervised repre-

!This is commonly measured by how well a method performs
under a standard linear evaluation protocol on ImageNet.
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sentation learning method, Representation Learning via In-
variant Causal Mechanisms v2 (RELICv2), which avoids
encoding spurious features such as background and object
style in the representation. RELICv2 achieves this by learn-
ing representations through invariant prediction across data
which exhibits variation in object style and background.
Specifically, we propose a novel fully unsupervised saliency
masking method and leverage it to distinguish between se-
mantically relevant and spurious features, i.e. foreground
and background, respectively. Furthermore, we propose
to use a large number of differently augmented and differ-
ently sized views of the data to learn representations that
are invariant across different object styles.

We conduct an extensive experimental evaluation of our
proposed method across different datasets in image clas-
sification and semantic segmentation, and across different
learning settings such as transfer and out-of-distribution
generalization. We also scale up RELICv2 to the Joint
Foto Tree (JFT-300M) dataset (Sun et al., 2017) with 300
million images. RELICv2 achieves a new state-of-the-art
performance in self-supervised learning on a wide range
of ResNet architectures. On top-1 classification accuracy
on ImageNet RELICv2 achieves 77.1% with a ResNet50,
while with a ResNet200 2 x it achieves 80.6%. Furthermore,
RELICV2 is the first unsupervised representation learning
method that outperforms a standard supervised baseline on
linear ImageNet evaluation across ResNet50 1x, 2x and
4x variants as well as on larger ResNet architectures such
as ResNet101, ResNet152 and ResNet200; see Figure 1 and
appendix for results.> We demonstrate the generality of
RELICv2 with its competitive performance across a variety
of tasks including transfer learning, semi-supervised learn-
ing, and robustness and out-of-distribution generalization.
We provide further insights into how RELICv?2 learns repre-
sentations as well as its scaling capabilities by examining
the geometry of the learned latent space in the appendix.

2. Method

RELICv2 learns representations by enforcing invariance
over data which exhibits variability in background and ob-
ject style. We obtain this data by (a) leveraging differently
augmented data views of varying sizes, and (b) building a
novel unsupervised saliency masking method that separates
foreground from background.

Views of varying sizes. We propose to use a large number
of views encoding the whole randomly augmented image as
well as a small number of smaller views which contain only
a portion of the randomly augmented image.*> By explicitly

2Concurrent work in (Lee et al., 2021) outperforms the same
standard supervised baseline only on a ResNet50 2 encoder.
*Most other methods use only 2 data views of the whole image.

enforcing invariance over this set of increasingly varied ob-
ject styles, RELICV2 is able to learn representations which
are increasingly invariant to the spurious features of object
style. Incorporating small views which are random crops
of part of the original image serves two purposes. First, as
these views represent a small part of the original image, it
is likely that some parts of the objects of interest might be
occluded which enables us to learn representations which
are more robust to object occlusions, a common issue in real-
world data. Second, we hypothesize that small crops play a
synergistic role to saliency masking as taking a small crop
of the image is likely to remove potentially large parts of the
background; see the appendix for experimental validation.

Saliency masking. To localize the semantically relevant
parts of the image, we propose to use saliency masking.
We develop a new fully unsupervised saliency estimation
method that leverages the self-supervised refinement mech-
anism of DeepUSPS (Nguyen et al., 2019). In contrast to
DeepUSPS, we use a ResNet50 2x network that was trained
on ImageNet using a self-supervised objective as the back-
bone for the saliency detection networks. We also use dif-
ferent base handcrafted saliency methods than DeepUSPS.
The pseudo-labels from each handcrafted method are refined
using the self-supervision mechanism of DeepUSPS with
the saliency detection network trained by fusing the refined
pseudo-labels. During RELICv2 pre-training, we then ran-
domly apply the saliency mask (computed by the saliency
detection network) to the large views with a certain probabil-
ity to separate the image foreground from the background.
By enforcing invariance over views with the background
removed, RELICv2 removes spurious background features
and better captures the discriminative foreground features.

Method. Given a randomly sampled batch of datapoints
{x;}; with N the batch size, RELICv2 learns an en-
coder f that outputs the representation z, i.e. z; = f(z;).
Following (Chen et al., 2020a; Grill et al., 2020), we aug-
ment the input data with the data augmentation pipeline
proposed in (Chen et al., 2020a) and randomly add saliency
masking with a small probability; we denote the resulting
augmentation pipeline with 7,,;. In contrast to most previ-
ous work, RELICv?2 creates a large number of large views
and a small number of small views* by randomly sampling
augmentations from 7y, applying them to the input data
and cropping the augmented images to the appropriate size.

RELICvV2 learns representations by comparing pairs of
views. Thus, let ¢,t' ~ T,q yield two augmented batches
{1}V | and {z! }&,. Following the idea of RELIC, we

*SWAV (Caron et al., 2020) propose to use small views in
addition to large views, but they argue for having 3 more small
views than large views.
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learn by maximizing the following probability
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where ¢ (z;,z;) = (h(f(z;)),q(g(z;)))/T measures the
similarity between embeddings with 7 the temperature pa-
rameter. RELICV2 adopts the target network setting of
(Grill et al., 2020) such that f and g have the same architec-
ture, but the weights of g are an exponential moving average
of the weights of f; h and ¢ are multi-layer perceptrons
with h playing the role of the composition of the projector
and predictor from (Grill et al., 2020) and ¢ being the ex-
ponential moving average of the projector network. N (z;)
represents the set of negatives, i.e. datapoints with which
to minimize the similarity; we construct N (x;) as a small
uniformly randomly sampled subset of the current batch
following (Mitrovic et al., 2020).

In addition to maximizing the above probability, RELICv2
also adopts the invariance loss from RELIC defined as the
Kullback-Leibler divergence between the likelihood of the
two augmented views of the data as

/

Dxr.(p(x)|p(x] ) =sg [Ep(zg;zg’) logp(atszl)| (@)
~ Byt log P(2 3 27).
The invariance loss enforces that the similarity of f(x}) and
f(z!") relative to the points in N (z;) is the same.

Let z! denote a large size view and Z! be a small size view
under augmentation ¢ ~ 7T, respectively. To learn repre-
sentations RELICv2 optimizes across both large and small
differently augmented views the following loss
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with t;, ~ Tgy and t5, ~ T randomly sampled data augmen-
tations, and L and S the number of large and small views,
respectively. We use the large views both for updating the
encoder f as well as for computing learning targets through
the target network g, i.e. x?' appears on both sides of p. On
the other hand, we only use the small views for updating the
encoder f and not as learning targets, i.e. ;" appears only
on the left hand side of p, c.f. equation 1. We do not use
small views as learning targets as potentially informative
parts of the image might be occluded and as such the corre-
sponding features removed from the representation. Unless

Method Top-1 Top-5
Supervised (Chen et al., 2020a) 76.5 93.7
SimCLR (Chen et al., 2020a) 69.3 89.0
MoCo v2 (Chen et al., 2020b) 71.1 -
InfoMin Aug. (Tian et al., 2020)  73.0 91.1
BYOL (Grill et al., 2020) 74.3 91.6
RELIC (Mitrovic et al., 2021) 74.8 92.2
SwAV (Caron et al., 2020) 75.3 -
NNCLR (Dwibedi et al., 2021) 75.6 92.4
C-BYOL (Lee et al., 2021) 75.6 92.7
RELICv2 (ours) 77.1 93.3

Table 1. Top-1 and top-5 accuracy (in %) under linear evaluation
on the ImageNet test for a ResNet50 encoder.

otherwise noted, we use 4 large view of size 224 x 224 and
2 small views of size 96 x 96. For the precise architectural
and implementation details, and related work, as well as a
pseudo-code for RELICv2 see the appendix.

3. Experimental results

We pretrain representations without using labels on the train-
ing set of the ImageNet ILSVRC-2012 dataset (Russakovsky
et al., 2015), and then extensively evaluate the learned rep-
resentations in a wide variety of downstream datasets and
tasks. The excellent performance of RELICv2 across the
linear evaluation, semi-supervised and transfer settings as
well as the state-of-the-art scaling results on the much larger
and more complex Joint Foto Tree (JFT-300M) dataset (Sun
et al., 2017) showcase the generality of the approach. For
a complete set of results, in particular on JFT-300M, and a
detailed experimental protocol refer to the appendix. For a
like-for-like comparisons with prior art (Grill et al., 2020;
Caron et al., 2020; Dwibedi et al., 2021), we use as base-
line the ResNet50 architecture trained with cross-entropy,
a cosine learning rate schedule, full access to labels, and
augmentations from (Chen et al., 2020a). More elaborate
training setups have recently been proposed (Wightman
et al., 2021), though they are yet to be incorporated in self-
supervised models. Further analysis of the performance of
RELICvV2 in terms of the class confusion, class concentra-
tion, ablation studies, importance of the invariance loss, and
efficiency of representation learning is in the appendix.

Linear evaluation on ImageNet. We first evaluate
RELICvV2’s representations by training a linear classifier on
top of the frozen encoder output according to the procedure
described in (Chen et al., 2020a; Grill et al., 2020; Caron
et al., 2020; Dwibedi et al., 2021) and the appendix. We
report top-1 and top-5 accuracies on the ImageNet test set in
Table 1. RELICv2 outperforms all previous self-supervised
approaches by a significant margin. Remarkably, RELICv2
even outperforms a standard supervised baseline in terms
of top-1 accuracy despite using no label information in pre-
training. Figure 1 compares the performance of RELICv2
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Method Top-1 Top-5
1% 10% 1% 10%

Supervised @naieta, 2090 254 564 484 80.4

SimCLR (Chen et al., 20202) 483 656 755 878

BYOL il etal., 2020) 532 68.8 784 89.00
SWAV (Caron etal., 2020) 539 702 785 899

NNCLR @wibedieta, 2021y 56.4  69.8 80.7 89.3

C-BYOL @eeetal, 2021 60.6 70.5 834 90.0

RELICv?2 (ours) 58.1 724 813 91.2

Table 2. Top-1 and top-5 accuracy (in %) after semi-supervised
training with a fraction of ImageNet labels on a ResNet50 encoder.

against the supervised baseline and other competing meth-
ods for both the standard ResNet50 architecture as well
as configurations with 2x and 4x wider layers and a 2x
wider ResNet200. RELICv2 not only outperforms compet-
ing methods but is also the first unsupervised representation
learning method which consistently outperforms the stan-
dard supervised baseline across a wide range of encoder
architectures. Also, RELICv2 outperforms the standard su-
pervised baseline for 101, 152 and 200-layer ResNets (Grill
et al., 2020) and performs competitively to the latest vision
transformers (Dosovitskiy et al., 2020) at similar parameter
counts. See Figure 3 and appendix for detailed results.

Semi-supervised training on ImageNet. In the semi-
supervised case, representations are first pretrained, and
then refined by leveraging a small subset of available labels,
as per (Zhai et al., 2019; Chen et al., 2020a) among others.
RELICv2 outperforms both the standard supervised base-
line and all previous self-supervised methods when using
10% of the data for fine-tuning, and performs competitively
at 1% (see the appendix for detailed results).

Transfer to other tasks. We evaluate the generality of
RELICV2 representations by testing if the learned features
are useful across vision tasks. For results on semantic seg-
mentation see appendix. We perform linear evaluation and
fine-tuning on the same set of classification tasks used in
(Chen et al., 2020a; Grill et al., 2020; Dwibedi et al., 2021)
and follow their evaluation protocol detailed in the appendix.
We report standard metrics for each dataset and report perfor-
mance on the held-out test set. Figure 2 compares the trans-
fer performance of representations pre-trained using BYOL
(Grill et al., 2020), NNCLR (Dwibedi et al., 2021) and
RELICv2, showing improvements over competing meth-
ods and an average relative improvement of over 5% when
compared to the supervised baseline (see appendix).

Robustness and OOD generalization. To evaluate
the robustness of RELICv2 we use ImageNetV2 (Recht
et al., 2019) and ImageNet-C (Hendrycks and Dietterich,
2019) datasets. For evaluating OOD generalization, we
use ImageNet-R (Hendrycks et al., 2021), ImageNet-Sketch
(Wang et al., 2019) and ObjectNet (Barbu et al., 2019). On

F20 BYOL
H NNCLR
- ReLCv2
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Figure 2. Transfer performance relative to the supervised baseline
(a value of 0 indicates equal performance to supervised).

all datasets, we evaluate the representations from a standard
ResNet50 encoder under a linear evaluation protocol, i.e. we
train a linear classifier on top of the frozen representation
using the labelled ImageNet training set; the test evalua-
tion is performed zero-shot. RELICv2 outperforms both
the supervised baseline and the competing self-supervised
methods on ImageNetV2 and ImageNet-C (Table 3). Also,
RELICv2 outperforms competing self-supervised methods
in OOD generalization. For results and details see appendix.

Method MF T07 Ti IN-C
Supervised 65.1 739 784 409
SimCLR (Chen et al., 2020a) 532 61.7 68.0 31.1
BYOL (Grill et al., 2020) 622 71.6 77.0 428
RELIC (Mitrovic et al., 2021) 63.1 723 777 445
RELICv2 (ours) 653 745 794 4438

Table 3. Top-1 Accuracy (in %) under linear evaluation on Ima-
geNetV2 (matched frequency (MF), Threshold 0.7 (T-0.7) and
Top Images (TI)) and ImageNet-C. ImageNet-C (IN-C) results are
averaged across the 15 different corruptions.

4. Discussion

We proposed a novel self-supervised representation learning
method, RELICv2, which learns representations by enforc-
ing invariance across background and object style. The
substantial improvement over existing state-of-the-art in
our extensive experimental analysis across a wide range
of downstream settings, tasks and datasets highlights the
usefulness of the learned representation. RELICv?2 is the
first method that demonstrates that representations learned
without access to labels can consistently outperform a stan-
dard supervised baseline on ImageNet which is a first step
in surpassing supervised learning. Moreover, we show
in the appendix that RELICv2 outperforms recent self-
supervised vision-transformer-based methods DINO (Caron
et al., 2021) and MoCov3 (Chen et al., 2021) as well as
exhibiting similar performance to EsViT (Li et al., 2021)
for comparable parameter counts despite these methods
using more powerful architectures and more involved train-
ing procedures. This suggests that combining the insights
developed in RELICv2 alongside recent architectural inno-
vations (e.g. ViTs) could have important implications for
wider adoption of self-supervised pre-training in a variety of
domains as well as the design of objectives for foundational
machine learning systems.
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A. Comparison with vision transformers

Vision transformers (ViTs) (Dosovitskiy et al., 2020) have recently emerged as promising architectures for visual representa-
tion learning. Figure 3 compares recent ViT-based methods against RELICv?2 using a variety of larger ResNet architectures.
Notably, RELICv2 outperforms recent self-supervised ViT-based methods DINO (Caron et al., 2021) and MoCov3 (Chen
et al., 2021) as well as exhibiting similar performance to EsViT (Li et al., 2021) for comparable parameter counts despite
these methods using more powerful architectures and more involved training procedures.

ReLICv2 R295

W ReliCv2 R200
W ReLICv2 R152
MoCo v3-B

ImageNet top-1 accuracy (%)

]
ReLICv2 R101

78

ReLICv2 R50
MoCo v3-S

25M 50M 100M
Number of parameters

Figure 3. Comparison of ImageNet top-1 accuracy between RELICv2 and recent vision transformer-based architectures (Swin (Liu et al.,
2021) is a fully supervised transformer baseline).

B. Image Preprocessing
B.1. Augmentations

Following the data augmentations protocols of (Chen et al., 2020a; Grill et al., 2020; Caron et al., 2020), RELICv2 uses a
set of augmentations to generate different views of the original image which has three channels, red r, green g and blue b
with r, g,b € [0,1].

The augmentations used, in particular (corresponding to aug in Listing 1) are the same as in (Grill et al., 2020) and are
generated as follows; for exact augmentations parameters see Table 4). The following sequence of operations is performed
in the given order.

1. Crop the image: Randomly select a patch of the image, between a minimum and maximum crop area of the image,
with aspect ratio sampled log-uniformly in [3/4,4/3]. Upscale the patch, via bicubic interpolation, to a square image
of size s X s.

2. Flip the image horizontally.

3. Colour jitter: randomly adjust brightness, contrast, saturation and hue of the image, in a random order, uniformly by a
value in [—a, a] where a is the maximum adjustment (specified below).

4. Grayscale the image, such that the channels are combined into one channel with value 0.2989r + 0.5870¢g + 0.1140b.
5. Randomly blur. Apply a 23 x 23 Gaussian kernel with standard deviation sampled uniformly in [0.1, 2.0].

6. Randomly solarize: threshold each channel value such that all values less than 0.5 are replaced by 0 and all values
above or equal to 0.5 are replaced with 1.

Apart from the initial step of image cropping, each step is executed with some probability to generate the final augmented
image. These probabilities and other parameters are given in Table 4, separately for augmenting the original image x; and
the positives P(z;). Note that we use 4 large views of size 224 x 224 pixels and 2 small views of 96 x 96 pixels; to get the
first and third large views and the first small view we use the parameters listed below for odd views, while for the second
and fourth large view and the second small view we use the parameters for even views.
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Parameter Even views Odd views
Probability of randomly cropping 50% 50%
Probability of horizontal flip 50% 50%
Probability of colour jittering 80% 80%
Probability of grayscaling 20% 20%
Probability of blurring 100% 10%
Probability of solarization 0% 20%
Maximum adjustment a of brightness 0.4 0.4
Maximum adjustment a of contrast 0.4 0.4
Maximum adjustment a of saturation 0.2 0.2
Maximum adjustment a of hue 0.1 0.1

Crop size s 224 96 (small), 224 (large)
Crop minimum area 8% 5% (small), 14% (large)
Crop maximum area 100% 14% (small), 100% (large)

Table 4. Parameters of data augmentation scheme. Small/large indicates small or large crop.

B.2. Saliency Masking

Using unsupervised saliency masking enables us to create positives for the anchor image with the background largely
removed and thus the learning process will rely less on the background to form representations. This encourages the
representation to localize the objects in the image (Zhao et al., 2021).

We develop a fully unsupervised saliency estimation method that uses the self-supervised refinement mechanism from
DeepUSPS (Nguyen et al., 2019) to compute saliency masks for each image in the ImageNet training set. By applying the
saliency masks on top of the large views, we obtain masked images with the background removed. To further increase
the background variability, instead of using a black background for the images, we apply a homogeneous grayscale to the
background with the grayscale level randomly sampled for each image during training. We also use a foreground threshold
such that we apply the saliency mask only if it covers at least 5% of the image. The masked images with the grayscaled
background are used only during training. Specifically, with a small probability p,,, we selected the masked image of the
large view in place of the large view. Figure 4 shows how the saliency masks are added on top of the images to obtain the
images with grayscale background.

Figure 4. Illustration of how for each image in the ImageNet training set (left) we use our unsupervised version of DeepUSPS to obtain
the saliency mask (middle) which we then apply on top of the image to obtain the image with the background removed (right).

B.2.1. TRAINING THE SALIENCY DETECTION NETWORK TO OBTAIN SALIENCY MASKS

DeepUSPS (Nguyen et al., 2019) is a saliency prediction method that uses self-supervision to refine pseudo-labels from a
number of handcrafted saliency methods. To obtain saliency masks for the images in ImageNet, we build a new saliency
detection method that leverages the self-supervised refinement mechanism from DeepUSPS (Nguyen et al., 2019). To this
end, we firstly sample a random subset of 2500 ImageNet images; note that the original implementation of DeepUSPS uses
2500 images from the MSRA-B dataset. We instead use a randomly selected subset of the ImageNet training set of the same
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size to ensure a fair comparison to previous work. We compute initial saliency masks for the 2500 ImageNet images using
the following handcrafted methods: Robust Background Detection (RBD) (Zhu et al., 2014), Manifold Ranking (MR) (Yang
et al., 2013), Dense and Sparse Reconstruction (DSR) (Li et al., 2013) and Markov Chain (MC) (Jiang et al., 2013). Note
that these methods do not make use of any supervised label information.

We then follow the two-stage mechanism proposed by DeepUSPS (Nguyen et al., 2019) to obtain a saliency prediction
network. In the first stage, the noisy pseudo-labels from each handcrafted method are iteratively refined. In the second
stage, these refined labels from each handcrafted saliency method are used to train the final saliency detection network. The
saliency detection network is then used to compute the saliency masks for all images in the ImageNet training set. For
the refinement procedure and for training the saliency detection network, we adapt the publicly available code for training
DeepUSPS: https://tinyurl.com/wtlhgo3.

Note that the official implementation for DeepUSPS uses as backbone a DRN-network (Yu et al., 2017) which was
pretrained on CityScapes (Cordts et al., 2016) with supervised labels. To be consistent with our fully-unsupervised
setting, we replace this network with a ResNet50 2x model which was pretrained on ImageNet using the self-supervised
objective from SWaV (Caron et al., 2020). We used the publicly available pretrained SWaV model from: https:
//github.com/facebookresearch/swav.

To account for this change in the architecture, we adjust some of the hyperparameters needed for the the two-stage mechanism
of DeepUSPS. In the first stage, the pseudo-generation networks used for refining the noisy pseudo-labels from each of the
handcrafted methods are trained for 25 epochs in three self-supervised iterations. We start with a learning rate of 1le — 5
which is doubled during each iteration. In the second stage, the saliency detection network is trained for 200 epochs using
a learning rate of 1le — 5. We use the Adam optimizer with momentum set to 0.9 and a batch size of 10. The remaining
hyperparameters are set in the same way as they are in the original DeepUSPS code.


https://tinyurl.com/wtlhgo3
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
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C. RELICv2 pseudo-code in Jax

Listing 1 provides PyTorch-like pseudo-code for RELICv2 detailing how we apply the saliency masking and how the
different views of data are combined in the target network setting. Note that loss_relic is maximizing the probability
from Equation 1 and minimizing the associated KL divergence from Equation 2 between a single pair of views as proposed
in (Mitrovic et al., 2021).

i
f _o: online network: encoder + comparison_net
g_t: target network: encoder + comparison_net
gamma: target EMA coefficient
n
p.
'

B W o~

v

e: number of negatives
m: mask apply probability
'

=N

5 '
8 for x in batch: # load a batch of B samples

9 # Apply saliency mask and remove background
x_m = remove_background (x)

for i in range (num_large_views) :

1

11

12 # Select either original or background-removed
13 # Image with probability p_m

14 x = x_m if Bernoulli(p_m) = 1 else x

15 # Do large random view and augment

16 x1_1 = aug(crop_1(x))

17

18 ol i = f o(xl_1)

19 tl i = g_t(xl_1i)

20

21 for i in range (num_small_views) :

22 # Do small random view and augment

23 xs_i = aug(crop_s(x))

24 # Small views only go through the online network
25 os_i = f_o(xs_i)

26

27 loss = 0

28 # Compute loss between all pairs of large views

29 for 1 in range (num_large_views) :

30 for j in range (num_large_views) :

31 loss += loss_relic(ol_i, tl_j, n_e)

32

33 # Compute loss between small views and large views
34 for 1 in range (num_small_views) :

35 for j in range (num_large_views) :

36 loss += loss_relic(os_i, tl_3j, n_e)

37 scale = (num_large_views + num_small_views) x*

38 num_large_views

39 loss /= scale

40

41 # Compute grads, update online and target networks
42 loss.backward ()

3 update (f_o)

44 g_t = gamma * g_t + (1 - gamma) x f_o

Listing 1. Pseudo-code for RELICV2.
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D. Pretraining on ImageNet — implementation details and additional results

Similar to previous work (Chen et al., 2020a; Grill et al., 2020) we minimize our objective using the LARS optimizer (You
et al., 2017) with a cosine decay learning rate schedule without restarts. Unless otherwise indicated, we train our models for
1000 epochs with a warm-up period of 10 epochs and a batch size of |5] = 4096. In our experiments, we use 4 views of
the standard size 224 x 224 and 2 views of the smaller size 96 x 96 each coming from an image augmented by a different
randomly chosen data augmentation; the smaller size views are centered crops of the randomly augmented image. For a
detailed ablation analysis on the number of large and small crops see Appendix G.

D.1. Linear evaluation

Following the approach of (Chen et al., 2020a; Grill et al., 2020; Caron et al., 2020; Dwibedi et al., 2021), we use the
standard linear evaluation protocol on ImageNet. We train a linear classifier on top of the frozen representation which
has been pretrained, i.e. the encoder parameters as well as the batch statistics are not being updated. For training the
linear layer, we preprocess the data by applying standard spatial augmentations, i.e. randomly cropping the image with
subsequent resizing to 224 x 224 and then randomly applying a horizontal flip. At test time, we resize images to 256 pixels
along the shorter side with bicubic resampling and apply a 224 x 224 center crop to it. Both for training and testing, after
performing the above processing, we normalize the color channels by substracting the average channel value and dividing
by the standard deviation of the channel value (as computed on ImageNet). To train the linear classifier, we optimize the
cross-entropy loss with stochastic gradient descent with Nestorov momentum for 100 epochs using a batch size of 1024
and a momentum of 0.9; we do not use any weight decay or other regularization techniques. In the following tables we
report the top-1 and top-5 accuracies of different methods under a varied set of ResNet encoders of different sizes, spanning
ResNet50, ResNet101, ResNet152 and ResNet200 and layer widths of 1x, 2x and 4 x. ResNet50 with 2x and 4x wider
layers has 94 and 375 million parameters, respectively. ResNet101, ResNet152, ResNet200 and ResNet200 2x have 43, 58,
63 and 250 million parameters, respectively.

In the following Table 5, we present results under linear evaluation on the ImageNet test set a varied set of ResNet
architectures; we compare against different unsupervised representation learning methods and use as the supervised baselines
the results reported in (Chen et al., 2020a; Grill et al., 2020). Note that the supervised baselines reported in (Chen et al.,
2020a) are extensively used throughout the self-supervised literature in order to compare performance against supervised
learning. For architectures for which supervised baselines are not available in (Chen et al., 2020a), we use supervised
baselines reported in (Grill et al., 2020) which use stronger augmentations for training supervised models than (Chen et al.,
2020a) and as such do not represent a direct like-for-like comparison with self-supervised methods.

Across this varied set of ResNet architectures, RELICv2 outperforms supervised baselines in all cases with margins up to
1.2% in absolute terms.

D.2. Semi-supervised learning

We further test RELICV2 representations learned on bigger ResNet models in the semi-supervised setting. For this, we
follow the semi-supervised protocol as in (Zhai et al., 2019; Chen et al., 2020a; Grill et al., 2020; Caron et al., 2020). First,
we initialize the encoder with the parameters of the pretrained representation and we add on top of this encoder a linear
classifier which is randomly initialized. Then we train both the encoder and the linear layer using either 1% or 10% of the
ImageNet training data; for this we use the splits introduced in (Chen et al., 2020a) which have been used in all the methods
we compare to (Grill et al., 2020; Caron et al., 2020; Dwibedi et al., 2021; Lee et al., 2021). For training, we randomly
crop the image and resize it to 224 x 224 and then randomly apply a horizontal flip. At test time, we resize images to
256 pixels along the shorter side with bicubic resampling and apply a 224 x 224 center crop to it. Both for training and
testing, after performing the above processing, we normalize the color channels by substracting the average channel value
and dividing by the standard deviation of the channel value (as computed on ImageNet). Note that this is the same data
preprocessing protocol as in the linear evaluation protocol. To train the model, we use a cross entropy loss with stochastic
gradient descent with Nesterov momentum of 0.9. For both 1% and 10% settings, we train for 20 epochs and decay the
initial learning rate by a factor 0.2 at 12 and 16 epochs. Following the approach of (Caron et al., 2020), we use the optimizer
with different learning rates for the encoder and linear classifier parameters. For the 1% setting, we use a batch size of 2048
and base learning rates of 10 and 0.04 for the linear layer and encoder, respectively; we do not use any weight decay or
other regularization technique. For the 10% setting, we use a batch size of 512 and base learning rates of 0.3 and 0.004
for the linear layer and encoder, respectively; we use a weight decay of 1le — 5, but do not use any other regularization
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Method Top-1  Top-5

Method Top-1  Top-5
Supervised (Chen et al,, 20202)  77.8 Supervised (Chen et al., 2020a)  78.9 -
MoCo (He et al., 2019) 65.4 -
i MoCo (He et al., 2019) 68.6 -
SimCLR (Chen et al., 2020a) 74.2 92.0 .
. SimCLR (Chen et al., 2020a) 76.5 93.2
BYOL (Grill et al., 2020) 77.4 93.6
SwAV (Caron et al., 2020) 77.9 -
SwAV (Caron et al., 2020) 77.3 - .
BYOL (Grill et al., 2020) 78.6 94.2
C-BYOL (Lee et al., 2021) 78.8 94.5 RELICY2 (ours) 79.4 94.3
RELICvV2 (ours) 79.0 945 ’ :

(a) ResNet50 2x encoder (b) ResNet50 4 x encoder.

Method Top-1 Top-5 Method Top-1 Top-5
Supervised (Grill et al., 2020)  78.0 94.0 Supervised (Grill et al., 2020)  79.1 94.5
BYOL (Grill et al., 2020) 76.4 9.0 BYOL (Grill et al., 2020) 71.3 93.7
RELICv2 (ours) 78.7 94.4 RELICvV2 (ours) 79.3 94.6

(c) ResNet101 encoder. (d) ResNet152 encoder.

Method Top-1 Top-5 Method Top-1 Top-5
Supervised (Grill et al., 2020)  79.3 94.6 Supervised (Grill et al., 2020)  80.1 95.2
BYOL (Grill et al., 2020) 77.8 93.9 BYOL (Grill et al., 2020) 79.6 94.8
RELICv2 (ours) 79.8 95.0 RELICV2 (ours) 80.6 95.2

(e) ResNet200 encoder. (f) ResNet200 2x encoder.

Table 5. Top-1 and top-5 accuracy (in %) under linear evaluation on the ImageNet test set for a varied set of ResNet architectures.

technique. From Table 6, we see that RELICv2 outperforms competing self-supervised methods on ResNet50 2x in both
the 1% and 10% setting. For larger ResNets, ResNet50 4x and ResNet200 2x, RELICV2 is state-of-the-art with respect to
top-1 accuracy for the low-data regime of 1%. On these networks for the higher data regime of 10% BYOL outperforms
RELICvV2. Note that BYOL trains their semi-supervised models for 30 or 50 epochs whereas RELICV?2 is trained only for
20 epochs. We hypothesize that longer training (e.g. 30 or 50 epochs as BYOL) is needed for RELICv2 representations on
larger ResNets as there are more model parameters.

Method Top-1 Top-5 Method Top-1 Top-5
1% 10% 1% 10% 1% 10% 1% 10%
SimCLR (chenetal, 20200 58.5 71.7 83.0 91.2 SimCLR (chenetal, 20200 63.0 744 85.8 92.6
BYOL rill et al., 2020 622 735 84.1 91.7 BYOL Grilt et al., 2020 69.1 757 879 925
RELICvV2 (ours) 64.7 7377 854 920 RELICV2 (ours) 695 746 873 916
(a) ResNet50 2x encoder. (b) ResNet50 4 x encoder.
Method Top-1 Top-5

1% 10% 1% 10%

BYOL (Grill et al., 2020) 71.2 77.7 89.5 93.7
RELICV2 (ours) 721 764 89.5 93.0

(c) ResNet200 2 x encoder.

Table 6. Top-1 and top-5 accuracy (in %) after semi-supervised training with a fraction of ImageNet labels for different ResNet encoders
and unsupervised representation learning methods. Results are reported on the ImageNet test set.
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D.3. Transfer

We follow the transfer performance evaluation protocol as outlined in (Grill et al., 2020; Chen et al., 2020a). We evaluate
RELICvV2 both in both transfer settings — linear evaluation and fine-tuning. For the linear evaluation protocol we freeze the
encoder and train only a randomly initialized linear classifier which is put on top of the encoder. On the other hand, for fine-
tuning in addition to training the randomly initialized linear classifier, we also allow for gradients to propagate to the encoder
which has been initialized with the parameters of the pretrained representation. In line with prior work (Chen et al., 2020a;
Grill et al., 2020; Dwibedi et al., 2021), we test RELICv2 representations on the following datasets: Food101 (Bossard et al.,
2014), CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), Birdsnap (Berg et al., 2014), SUN397 (split
1) (Xiao et al., 2010), DTD (split 1) (Cimpoi et al., 2014), Cars (Krause et al., 2013) Aircraft (Maji et al., 2013), Pets (Parkhi
etal., 2012), Caltech101 (Fei-Fei et al., 2004), and Flowers (Nilsback and Zisserman, 2008).

Again in line with previous methods (Chen et al., 2020a; Grill et al., 2020; Dwibedi et al., 2021), for Food101 (Bossard et al.,
2014), CIFARI10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), Birdsnap (Berg et al., 2014), SUN397
(split 1) (Xiao et al., 2010), DTD (split 1) (Cimpoi et al., 2014), and Cars (Krause et al., 2013) we report the Top-1
accuracy on the test set, and for Aircraft (Maji et al., 2013), Pets (Parkhi et al., 2012), Caltech101 (Fei-Fei et al., 2004), and
Flowers (Nilsback and Zisserman, 2008) we report the mean per-class accuracy as the relevant metric in the comparisons.
For DTD and SUN397, we only use the first split, of the 10 provided splits in the dataset as per (Chen et al., 2020a; Grill
et al., 2020; Dwibedi et al., 2021).

We train on the training sets of the individual datasets and sweep over different values of the models hyperparameters. To
select the best hyperparameters, we use the validation sets of the individual datasets. Using the chosen hyperparameters,
we train the appropriate using the merged training and validation data and test on the held out test data in order to obtain
the numbers reported in Table 7. We swept over learning rates {.01, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 1., 2.}, batch sizes {128,
256, 512, 1024}, weight decay between {1e—6, le—5, le—4, 1le—3, 0.01, 0.1}, warmup epochs {0, 10}, momentum {0.9,
0.99}, Nesterov {True, False}, and the number of training epochs. For linear transfer we considered setting epochs among
{20, 30, 60, 80, 100}, and for fine-tuning, we also considered {150, 200, 250}, for datasets where lower learning rates were
preferable. Models were trained with the SGD optimizer with momentum.

As can be seen from Table 7, RELICV2 representations yield better performance than both state-of-the-art self-supervised
methods as well as the supervised baseline across a wide range of datasets. Specifically, RELICv2 is best on 7 out of 11
datasets and on 8 out of 11 datasets in the linear and fine-tuning settings, respectively.

Method Food101 CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft DTD Pets Caltech101 Flowers
Linear evaluation:

Supervised-IN (chenetal, 20200  72.3 93.6 78.3 53.7 61.9 66.7 61.0 74.9 915 94.5 94.7
SimCLR (Chen et al., 2020a) 68.4 90.6 71.6 374 588 50.3 50.3 74.5 83.6 90.3 91.2
BYOL (Grill et al., 2020) 75.3 91.3 78.4 57.2 62.2 67.8 60.6 75.5 90.4 94.2 96.1
NNCLR (Dwibedi et al., 2021) 76.7 93.7 79.0 61.4 62.5 67.1 64.1 755 91.8 91.3 95.1
ReLICv2 (ours) 80.6 92.8 78.2 65.4 662 751 648 774 924 92.8 95.6
Fine-tuned:

Random Init (Chen et al., 2020a) 86.9 95.9 80.2 76.1 53.6 914 859 64.8 81.5 72.6 92.0
Supervised-IN (chen etal, 202000  88.3 97.5 86.4 75.8 64.3 92.1 86.0 74.6 92.1 93.3 97.6
SimCLR (Chen et al., 2020a) 88.2 97.7 85.9 75.9 63.5 91.3 88.1 73.2 89.2 92.1 97.0
BYOL Grill et al., 2020) 88.5 97.8 86.1 76.3 63.7 91.6 881 76.2 91.7 93.8 97.0
ReLICv2 (ours) 88.7 97.7 85.3 76.7 64.7 923 88.7 769 922 93.2 97.9

Table 7. Accuracy (in %) of transfer performance of a ResNet50 pretrained on ImageNet.

D.4. Semantic segmentation

We evaluate the ability of RELICv2 to facilitate successful transfer of the learned representations to PASCAL (Everingham
et al., 2010) and Cityscapes (Cordts et al., 2016) semantic segmentation tasks.

In accordance with (He et al., 2019), we use the RELICv2 ImageNet representation to initialise a fully convolutional
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backbone, which we fine-tune on the PASCAL train_aug2012 set for 45 epochs and report the mean intersection over
union (mloU) on the va12012 set. The fine-tuning on Cityscapes is done on the train_fine set for 160 epochs and
evaluated on the val_fine set.

Method PASCAL Cityscapes
BYOL (Grill et al., 2020) 75.7 74.6
DetCon (Hénaff et al., 2021)  77.3 77.0
ReLICv2 (ours) 77.9 75.2

The results in the above table demonstrate that RELICv2 outperforms both BYOL and DetCon on PASCAL, reaching 77.9
IoU. RELICV2 also outperforms BYOL on Cityscapes, 75.2 vs 74.6 IoU. Note that DetCon (Hénaff et al., 2021) is a method
specifically trained for detection.

D.5. Robustness and OOD Generalization

The robustness and out-of-distribution (OOD) generalization abilities of RELICv2 representations are tested on several
detasets. We use ImageNetV2 (Recht et al., 2019) and ImageNet-C (Hendrycks and Dietterich, 2019) datasets to evaluate
robustness. ImageNetV2 (Recht et al., 2019) has three sets of 10000 images that were collected to have a similar distribution
to the original ImageNet test set, while ImageNet-C (Hendrycks and Dietterich, 2019) consists of 15 synthetically generated
corruptions (e.g. blur, noise) that are added to the ImageNet test set.

For OOD generalization we examine the performance on ImageNet-R (Hendrycks et al., 2021), ImageNetSketch (Wang
et al., 2019) and ObjectNet (Barbu et al., 2019). ImageNet-R (Hendrycks et al., 2021) consists of 30000 different renditions
(e.g. paintings, cartoons) of 200 ImageNet classes, while ImageNet-Sketch (Wang et al., 2019) consists of 50000 images,
50 for each ImageNet class, of object sketches in the black-and-white color scheme. These datasets aim to test robustness
to different textures and other naturally occurring style changes and are out-of-distribution to the ImageNet training data.
ObjectNet (Barbu et al., 2019) has 18574 images from differing viewpoints and backgrounds compared to ImageNet.

On all datasets we evaluate the representations of a standard ResNet50 encoder under a linear evaluation protocol akin to
Section 3, i.e. we freeze the pretrained representations and train a linear classifier using the labelled ImageNet training
set; the test evaluation is performed zero-shot, i.e no training is done on the above datasets. As we’ve seen from Table 3,
RELICV2 learns more robust representations and outperforms both the supervised baseline and the competing self-supervised
methods on ImageNetV?2 and ImageNet-C. We provide a detailed breakdown across the different ImageNet-C corruptions in
Table 9. Furthermore, RELICv2 learns representations that outperform competing self-supervised methods while being on
par with supervised performance in terms of OOD generalization; see Table 8.

Method IN-R IN-S ObjectNet
Supervised 240 6.1 26.6
SimCLR (chenetal, 20200  18.3 3.9 14.6
BYOL il etal., 2020) 23.0 8.0 23.0
RELIC (Mitrovic et al., 2021) 238 91 238
RELICv?2 (ours) 239 99 25.9

Table 8. Top-1 Accuracy (in %) under linear evaluation on the ImageNet-R (IN-R), ImageNet-Sketch (IN-S), ObjectNet (out-of-distribution
datasets) for different unsupervised representation learning methods.

Blur Weather Digital
Method Gauss Shot Impulse | Defocus Glass Motion Zoom | Snow Frost Fog Bright | Contrast Elastic Pixel JPEG
Supervised wimeta, 2009  37.1  35.1 30.8 36.8 259 349 38.1 345 407 569  68.1 40.6 45.6 326 56.0
SimCLR (Chen et al.. 2020) 29.1 263 17.3 22.1 14.7 20.0 18.6 272 333 462 59.7 539 31.0 242 439
BYOL rinetal, 2020) 415 387 31.9 37.8 225 31.6 29.6 351 429 60.1 69.0 58.4 41.5 463 559
RELIC mitrovie et al., 2021) 434 407 36.6 40.5 24.5 343 30.5 36.6 438 614 69.5 59.5 42.8 468 573
RELICV2 (ours) 41.6  39.0 31.1 39.7 22.6 35.2 345 40.1 461 o645 710 60.0 44.6 46.6 584

Table 9. Top-1 accuracies for for Gauss, Shot, Impulse, Blur, Weather, and Digital corruption types on ImageNet-C.



Outperforming supervised learning without labels on ImageNet

E. Pretraining on Joint Foto Tree (JFT-300M) — implementation details and additional results
E.1. Linear evaluation

We test how well RELICV2 scales to much larger datasets by pretraining representations using the Joint Foto Tree (JFT-
300M) dataset which consists of 300 million images from more than 18k classes (Hinton et al., 2015; Chollet, 2017; Sun
et al., 2017). We then evaluate the learned representations on the ImageNet test set under the same linear evaluation protocol
as described in section 3. We compare RELICv2 against BYOL and Divide and Contrast (DnC) (Tian et al., 2021), a method
that was specifically designed to handle large and uncurated datasets and represents the current state-of-art in self-supervised
JFT-300M pretraining. Table 10 reports the top-1 accuracy when training the various methods using the standard ResNet50
architecture as the backbone for different number of ImageNet equivalent epochs on JFT-300M; implementation details can
be found in the supplementary material. RELICv2 improves over DnC by more than 2% when training on JFT for 1000
epochs and achieves better overall performance than competing methods while needing a smaller number of training epochs.

Method Epochs  Top-1
BYOL (Grill et al., 2020) 1000 67.0
Divide and Contrast (Tian et al., 2021) 1000 67.9
RELICvV2 (ours) 1000 70.3
BYOL (Grill et al., 2020) 3000 67.6
Divide and Contrast (Tian et al., 2021) 3000 69.8
RELICV2 (ours) 3000 71.1
BYOL (Grill et al., 2020) 5000 67.9
Divide and Contrast (Tian et al., 2021) 4500 70.7
RELICvV2 (ours) 5000 71.4

Table 10. Top-1 accuracy (in %) on ImageNet when learning representations using the JFT-300M dataset. Each method is pre-trained on
JFT-300M for an ImageNet-equivalent number of epochs and evaluted on the ImageNet test set under a linear evaluation protocol.

For results reported in Table 10, we use the following training and evaluation protocol. To pretrain RELICv2 on the Joint
Foto Tree (JFT-300M) dataset, we used a base learning rate of 0.3 for pretraining the representations for 1000 ImageNet-
equivalent epochs. For longer pretraining of 3000 and 5000 ImageNet-equivalent epochs, we use a lower base learning
rate of 0.2. We set the target exponential moving average to 0.996, the contrast scale to 0.3, temperature to 0.2 and the
saliency mask apply probability to 0.15 for all lenghts of pretraining. For 1000 and 5000 ImageNet-equivalent epochs we
use 2.0 as the invariance scale, while for 3000 ImageNet-equivalent epochs, we use invariance scale 1.0. We then follow
the linear evaluation protocol on ImageNet described in Appendix D.1. We train a linear classifier on top of the pretrained
representations from JFT-300M with stochastic gradient descent with Nesterov momentum for 100 epochs using batch size
of 256, learning rate of 0.5 and momentum of 0.9.

E.2. Transfer

We evaluate the transfer performance of JFT-300M pretrained representations under the linear evaluation protocol. For this,
we freeze the encoder and train only linear classifier on top of the frozen encoder output, i.e. representation. As before in
D.3, we follow the transfer performance evaluation protocol as outlined in (Grill et al., 2020; Chen et al., 2020a). In line with
prior work, for Food101 (Bossard et al., 2014), CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009),
Birdsnap (Berg et al., 2014), SUN397 (split 1) (Xiao et al., 2010), DTD (split 1) (Cimpoi et al., 2014), and Cars (Krause
et al., 2013) we report the top-1 accuracy on the test set, and for Aircraft (Maji et al., 2013), Pets (Parkhi et al., 2012),
Caltech101 (Fei-Fei et al., 2004), and Flowers (Nilsback and Zisserman, 2008) we report the mean per-class accuracy as the
relevant metric in the comparisons. For DTD and SUN397, we only use the first split, of the 10 provided splits in the dataset.

We train on the training sets of the individual datasets and sweep over different values of the models hyperparameters. To
select the best hyperparameters, we use the validation sets of the individual datasets. Using the chosen hyperparameters, we
train the linear layer from scratch using the merged training and validation data and test on the held out test data in order to
obtain the numbers reported in Table 11. We swept over learning rates {.01, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 1., 2.}, batch sizes
{128, 256, 512, 1024}, weight decay between {1le—6, le—5, le—4, 1le—3, 0.01, 0.1}, warmup epochs {0, 10}, momentum
{0.9, 0.99}, Nesterov {True, False}, and the number of training epochs {60, 80, 100}. Models were trained with the SGD
optimizer with momentum.
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As can be seen from Table 11, longer pretraining benefits transfer performance of RELICv2. Although DnC (Tian
et al., 2021) was specifically developed to handle uncurated datasets such as JFT-300M, we see that RELICv2 has
comparable performance to DnC in terms of the number of datasets with state-of-the-art performance among self-supervised
representation learning methods; this showcases the generality of RELICv2.

Method Food101 CIFAR10 CIFARI100 Birdsnap SUN397 Cars Aircraft DTD Pets Caltech101 Flowers
BYOL-5Kk @riltetal, 20200 73.3 89.8 72.4 38.2 61.8 644 544 755 77 90.1 94.3
DnC-4.5k (tianetar, 2021y~ 78.7 91.7 74.9 421 65.0 753 541 76.6 86.1 90.2 98.2
ReLICv2-1k (ours) 7.5 90.2 72.6 474 645 744 629 77.0 849 922 94.5
ReLICv2-5k (ours) 78.3 89.9 73.0 494 65.6 769 655 768 85.1 91.4 95.7

Table 11. Accuracy (in %) of transfer performance of a ResNet50 pretrained on JFT under the linear transfer evaluation protocol. xk
refers to the length of pretraining in ImageNet-equivalent epochs, e.g. 1k corresponds to 1000 ImageNet-equivalent epochs of pretraining.

E.3. Robustness and OOD Generalization

We also tested the robustness and out-of-distribution (OOD) generalization of RELICv2 representations pretrained on JFT.
We use the same set-up described in D.5 where we freeze the pretrained representations on JFT-300M, train a linear classifier
using the labelled ImageNet training set and perform zeroshot test evaluation on datasets testing robustness and OOD
generalization. As in D.5, we evaluated robustness using the ImageNetV2 (Recht et al., 2019) and ImageNet-C (Hendrycks
and Dietterich, 2019) datasets and OOD generalization using ImageNet-R (Hendrycks et al., 2021), ImageNetSketch
(Wang et al., 2019) and ObjectNet (Barbu et al., 2019) datasets. We report the robustness results in Table 12a and the
OOD generalization results in Table 12b. We notice that RELICv2 representations pretrained on JFT-300M for different
number of ImageNet-equivalent epochs have worse robustness and OOD generalization performance compared to RELICv2
representations pretrained directly on ImageNet (see Table 3 and Table 8 for reference). Given that the above datasets
have been specifically constructed to measure the robustness and OOD generalization abilities of models pretrained on
ImageNet (as they have been constructed in relation to ImageNet), this result is not entirely surprising. We hypothesize that
this is due to there being a larger discrepancy between datasets and JFT-300M than these datasets and ImageNet and as
such JFT-300M-pretrained representations perform worse than ImageNet-pretrained representations. Additionally, note that
pretraining on JFT-300M for longer does not necessarily result in better downstream performance on the robustness and
out-of-distribution datasets.

Epochs MF T-07 Ti IN-C Epochs IN-R IN-Sketch ObjectNet
1000 576 6677 730 329 1000 20.4 6.7 20.3
3000 586 675 734 328 3000 20.3 8.7 21.3
5000 59.1 673 733 335 5000 20.3 5.4 20.9
(a) ImageNetv2 dataset. (b) ImageNet-R, ImageNet-Sketch and ObjectNet datasets.

Table 12. Top-1 Accuracy (in %) under linear evaluation on the the ImageNet-R (IN-R), ImageNet-Sketch (IN-S) and ObjectNet out-of-
distribution datasets and on ImageNetV2 dataset for RELICv2 pre-trained on JFT-300M for different numbers of ImageNet-equivalent
epochs. We evaluate on all three variants on ImageNetV2 — matched frequency (MF), Threshold 0.7 (T-0.7) and Top Images (TI). The
results for ImageNet-C (IN-C) are averaged across the 15 different corruptions.
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F. Comparison between self-supervised methods

Contrastive multi-view approaches for unsupervised representation learning have recently shown excellent performance
in visual recognition tasks (Oord et al., 2018; Bachman et al., 2019; Chen et al., 2020a; He et al., 2019; Dwibedi et al.,
2021; Grill et al., 2020), as did boostrapping-based multi-view learning (Grill et al., 2020). Explicitly enforcing invariance
via clustering (Caron et al., 2020) or based on causal perspectives (Mitrovic et al., 2021) has been promising, the latter
leading to more compact representations. The use of background augmentations has recently been gaining attention (Zhao
et al., 2021; Ryali et al., 2021), though RELICv?2 utilises these across multiple views of varying sizes, and includes an
invariance loss. Competitive results with the supervised baseline have recently been reported in (Lee et al., 2021), based on
a conditional entropy bottleneck approach.

In this review we focus on how important algorithmic choices: namely explicitly enforcing invariance and more considered
treatment of positive and negative examples are key factors in improving downstream classification performance of
unsupervised representations.

Negatives. A key observation of (Chen et al., 2020a) was that large batches (up to 4096) improve results. This was partly
attributed to the effect of more negatives. This motivated the incorporation of queues that function as large reservoirs of
negative examples into contrastive learning (He et al., 2019). However subsequent work has shown that naively using a
large number of negatives can have a detrimental effect on learning (Mitrovic et al., 2020; Saunshi et al., 2019; Chuang
et al., 2020; Robinson et al., 2020). One reason for this is due to false negatives, that is points in the set of negatives
which actually belong to the same latent class as the anchor point. These points are likely to have a high relative similarity
to the anchor under ¢ and therefore contribute disproportionately to the loss. This will have the effect of pushing apart
points belonging to the same class in representation space. The selection of true negatives is a difficult problem as in the
absence of labels it necessitates having access to reasonably good representations to begin with. As we do not have access to
these representations, but are instead trying to learn them, there has been limited success in avoiding false and selecting
informative negatives. This phenomenon explains the limited success of attempts to perform hard negative sampling.

Subsampling-based approaches have been proposed to avoid false negatives via importance sampling to attempt to find true
negatives which are close to the latent class boundary of the anchor point (Robinson et al., 2020), or uniformly-at-random
sampling a small number of points to avoid false negatives (Mitrovic et al., 2020).

Positives and invariance. Learning representations which are invariant to data augmentation is known to be important for
self-supervised learning. Invariance is achieved heuristically through comparing two different augmentations of the same
anchor point. Incorporating an explicit clustering step is another way of enforcing some notion of invariance (Caron et al.,
2020). However, neither of these strategies can be directly linked theoretically to learning more compact representations.
More rigorously (Mitrovic et al., 2021) approach invariance from a causal perspective. They show that invariance must be
explicitly enforced—yvia an invariance loss in addition to the contrastive loss—in order to obtain guaranteed generalization
performance. Most recently (Dwibedi et al., 2021) and (Assran et al., 2021) use nearest neighbours to identify other elements
from the batch which potentially belong to the same class as the anchor point.

Table 13 provides a detailed comparison in terms of how prominent representation learning methods utilize positive and
negative examples and how they incorporate both explicit contrastive and invariance losses. Here aug(x;) refers to the
standard set of SIimCLR augmentations (Chen et al., 2020a), nn(z; ) refers to a scheme which selects nearest neighbours of
x;, mc(x;) are multicrop augmentations (c.f. (Caron et al., 2020)). proto™ (z;) and proto~ (x;) refer to using prototypes
computed via an explicit clustering step c.f. (Caron et al., 2020). Finally, sal(z;) refers to a scheme which computes saliency
masks of ; and removes backgrounds as described in section 2. Note that SWAV first computes a clustering of the batch
then contrasts the embedding of the point and its nearest cluster centroid (proto™) against the remaining K — 1 cluster
centroids (proto™ ); invariance is implicitly enforced in the clustering step.
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Method Contrastive Invariance Positives Negatives
SimCLR (Chen et al., 2020a) v X aug(z;) full batch

BYOL (Grill et al., 2020) X 0y aug(z;) n/a

NNCLR (Dwibedi et al., 2021) v X aug(x;), nn(xz;) full batch

MoCo (He et al., 2019) v X aug(z;) queue

SwAV (Caron et al., 2020) v X aug(z;), me(x;), protot (z;)  proto~ (x;)
Debiased (Chuang et al., 2020) v X aug(z;) importance sample
Hard Negatives (Robinson et al., 2020) v X aug(z;) importance sample
ReLICv1 (Mitrovic et al., 2021) v Dxi aug(z;) subsample
RELICV2 (ours) v Dgy aug(z;), me(x;), sal(x;) subsample

Table 13. The role of positives and negatives in recent unsupervised representation learning algorithms.

G. Analysis
G.1. Scaling analysis

Figure 5 shows the ImageNet linear evaluation accuracy obtained by representations learned using RELICv2 as a function
of the number of images seen during pre-training using the ImageNet training set. It can be seen that in order to reach
70% accuracy the ResNet50 model requires approximately twice the number of iterations as the ResNet295 model. The
ResNet295 has approximately 3.6 x the number of parameters as the ResNet50 (87M vs 24M, respectively). This finding is
in accordance with other works which show that larger models are more sample efficient (i.e. they require fewer samples to
reach a given accuracy) (Zhai et al., 2021).

80 | —— R295 (87M)
------ R200 (63M)
—=—- R152 (58M)
— — R101 (43M)
R50 (24M)

ImageNet top-1 accuracy (%)

30M 60M 90M 120M
Images seen during pre-training

Figure 5. ImageNet accuracy obtained by RELICv?2 as a function of number of images seen during pre-training for a variety of ResNet
architectures. The number of parameters of each model is in parenthesis.

G.2. Class confusion analysis

To understand the effect of the invariance term in RELICv2, we look at the distances between learned representations
of closely related classes. Figure 6 illustrates the Euclidean distances between nearest-neighbour (NN) representations
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learned by RELICv2 and BYOL on ImageNet using the protocol described in section 3. Here we pick two breeds of dog
and two breeds of cat. Each of these four classes has 50 points associated with it from the ImageNet test set, ordered
contiguously. Each row represents an image and each coloured point in a row represents one of the five nearest neighbours
of the representation of that image where the colour indicates the distance between the image and the NN. Representations
which align perfectly with the underlying class structure would exhibit a perfect block-diagonal structure, i.e. their NN all
belong to the same underlying class. We see that RELICv2 learns representations whose NN are closer and exhibit less
confusion between classes and super-classes than BYOL.

ReLICv2 - BYOL

-4.5

-4.0

-3.5

Figure 6. Distances between nearest-neighbour representations. Each coloured point in a row represents one of the five nearest neighbours
of the representation of that image where the colour indicates the distance between the points.

G.3. Class concentration

To quantify the overall structure of the learned latent space, we examine the within- and between-class distances of all
classes. Figure 7 compares the distribution of ratios of between-class and within-class ¢5-distances of the representations
of points in the ImageNet test set learned by RELICV2 against those learned by a standard supervised baseline.’ A larger
ratio implies that the representation is better concentrated within the corresponding classes and better separated between
classes and therefore more easily linearly separated (c.f. Fisher’s linear discriminants (Friedman et al., 2009)). We see that
RELICvV2’s distribution is shifted to the right (i.e. having a higher ratio) compared to the standard supervised baseline
suggesting that the representations can be better separated using a linear classifier. The empirical results in this section
further confirm the theoretical insights of (Mitrovic et al., 2021) and explain the superior performance of RELICv2 reported
in section 3.

G.4. Views of varying sizes

Most prior work uses 2 views of size 224 x 224 to learn representations, while RELICv2 proposes the use of a larger number
of views of that size combined with a few smaller views. We ablate the use of different numbers of large and small views in
RELICV2 using only standard SimCLR augmentations (i.e. without saliency masking). Below is the top-1 ImageNet test set
performance under the linear evaluation protocol on a ResNet50 pretrained for 1000 epochs for different numbers of large
and small views; [L, S] denotes using L large views and S small views.

Views ‘ [2,0] [2,2] [2,6] [4,0] [4,2] [6,2] I[8,2]
Top-1 ‘ 748 762 760 755 768 765 765

SBoth RELICv2 and the standard supervised baseline were trained on the ImageNet training set.
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Figure 7. Distribution of the linear discriminant ratio: the ratio of between-class distances and within-class distances of embeddings
computed on the ImageNet test set.

We see that there is a performance plateau going beyond 6 large views and a slight performance penalty going beyond
4 large views. For small views, we also observes performance penalties going beyond 2 small views, while there is a
significant performance boost going from no small views to 2 small views, i.e. +1.4% and +1.3% in the case of 2 and 4
large views respectively. Note that this is double the performance improvement one gets from adding 2 large views, i.e the
difference between [2, 0] and [4, 0] of +0.7%. Furthermore, having 2 small views significantly reduces the generalization
gap (difference between train and test error) compared to not having small views, i.e. we observe a relative decrease of
30 + %. This supports our hypothesis that small views significantly contribute to learning more robust representations. Note
that this is exactly the opposite as compared to (Caron et al., 2018) which argue for using smaller views as computationally
less expensive alternatives to large views; in particular, they argue for using 2 large views and 6 small views.

G.5. Saliency masking

We measure the top-1 accuracy under linear evaluation on ImageNet. First, to isolate the contribution of saliency masking
we measure the performance gain when applying saliency masking to just 2 large views; this improves performance from
74.8% to 75.3%, i.e. a gain of +0.5% which is a boost comparable to having two additional large views (see above). Next,
we for different probabilities p,, of removing the background of the large augmented views during training.

pm | 00 01 015 02 025
Top-1 | 768 771 768 768 767

Applying the saliency masks 10% of the time results in the best performance and significantly improves over not using
masking (p,,, = 0). Moreover, we also explored using different datasets for pretraining our unsupervised saliency masking
pipeline. We found that our pipeline is robust to the choice of pretraining dataset as varying this data had little effect on the
results; see the appendix for details.

G.6. Invariance

To ascertain the importance of enforcing invariance over background removal and object styles, we compare RELICv2 to
SimCLR (Chen et al., 2020a) with different size views and saliency masking. We train both methods for 100 epochs and
report top-1 test accuracy on ImageNet and use 4 large views and 2 small views. The SimCLR baseline (i.e. the standard
setting without different views and saliency masking) is 64.5% while it achieves 66.2% when using different views and
saliency masking, i.e. there is a gain of +1.7%. On the other hand, without different size views and saliency masking, we
achieve 61.1% while with saliency masking and different size views we get 67.5%, i.e. a gain of +6.4%. Thus, invariance
plays a crucial role in learning better representations.
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H. Further ablations

In order to determine the sensitivity of RELICv2 to different model hyperparameters, we perform an extensive ablation
study. Unless otherwise noted, in this section we report results after 300 epochs of pretraining. As saliency masking is one
of the main additions of RELICv2 on top of RELIC and was not covered extensively in the main text, we start our ablation
analysis with looking into the effect of different modelling choices for it.

H.1. Using different datasets for obtaining the saliency masks

In the main text in Sections 3, 3, 3, 3 we used a saliency detection network trained only on a randomly selected subset of 2500
ImageNet images using the refinement mechanism proposed by DeepUSPS (Nguyen et al., 2019). Here we explore whether
using additional data could help improve the performance of the saliency estimation and of the overall representations learnt
by RELICv2. For this purpose, we use the MSRA-B dataset (Liu et al., 2010), which was originally used by DeepUSPS to
train their saliency detection network. MSRA-B consists of 2500 training images for which handcrafted masks computed
with the methods Robust Background Detection (RBD) (Zhu et al., 2014), Hierarchy-associated Rich Features (HS) (Zou
and Komodakis, 2015), Dense and Sparse Reconstruction (DSR) (Li et al., 2013) and Markov Chain (MC) (Jiang et al.,
2013) are already available. We use the same hyperparameters as described in Section B.2.1 to train our saliency detection
network on MSRA-B.

We explored whether using saliency masks obtained from training the saliency detection network on the MSRA-B affects
performance of RELICv2 pre-training on ImageNet. We noticed that for RELICv?2 representations pretrained on ImageNet
for 1000 epochs, we get 77.2% top-1 and 93.3% top-5 accuracy under linear evaluation on the ImageNet test set for a
ResNet50 (1x) encoder. The slight performance gains may due to the larger variety of images in MSRA-B used for training
the saliency detection network, as opposed to the random sample of 2500 ImageNet images that we used for training the
saliency detection network directly on the ImageNet dataset.

We also explored training the saliency detection network on 5000 randomly selected images from the ImageNet dataset
and this resulted in the model overfitting, which degraded the quality of the saliency masks and resulted in a RELICv2
performance of 76.7% top-1 and 93.3% top-5 accuracy on the ImageNet test set after 1000 epochs of pretraining on
ImageNet training set.

The results for RELICv2 in Section E are obtained by applying the saliency detection network trained on MSRA-B to all
images in JFT-300M and then applying the saliency masks to the large augmented views during training as described in
Section B.2.

H.2. Analysis and ablations for saliency masks

Using saliency masking during RELICv?2 training enables us to learn representations that focus on the semantically-relevant
parts of the image, i.e. the foreground objects, and as such the learned representations should be more robust to background
changes. We investigate the impact of using saliency masks with competing self-supervised benchmarks, the effect of the
probability p,, of applying the saliency mask to each large augmented view during training as well as the robustness of
RELICv2 to random masks and mask corruptions. For the ablation experiments described in this section, we train the
models for 300 epochs.

Using saliency masks with competing self-supervied methods. We evaluate the impact of using saliency masks with
competing self-supervised methods such as BYOL (Grill et al., 2020). This method only uses two large augmentented
views during training and we randomly apply the saliency masks, in a similar way as described in Section B.2, to each
large augmented view with probability p,,. We report in Table 14 the top-1 and top-5 accuracy under linear evaluation
on ImageNet for different settings of p,, for removing the background of the augmented images. We notice that saliency
masking also helps to improve performance of BYOL.

Mask apply probability. We also investigate the effect of using probabilities ranging from 0 to 1 for applying the saliency
mask during training for RELICv2. In addition, we explore further the effect of using different datasets for training the
saliency detection network that is subsequently used for computing the saliency masks. Table 15 reports the top-1 and top-5
accuracy for varying the mask apply probability p,, between 0 and 1 and for using the ImageNet vs. the MSRA-B dataset
(Liu et al., 2010) for training our saliency detection network. Note that using the additional images from the MSRA-B
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Mask probability p,, 0 01 015 02 025 03

BYOL Top-1 73.1 734 732 733 728 718
Top-5 912 913 912 913 90.8 90.1

Table 14. Top-1 and top-5 accuracy (in %) under linear evaluation on the ImageNet test set for BYOL trained using different probabilities
of using the saliency mask to remove the background of the augmented images. Models are trained for 300 epochs.

dataset to train the saliency detection network results in better saliency masks which translates to better performance when
using the saliency masks during RELICv2 training.

Saliency network trained on ImageNet | Saliency network trained on MSRA-B
Mask probability p,, | Top-1 Top-5 Top-1 Top-5
0 75.2 92.4 75.2 92.4
0.05 75.3 92.6 75.2 92.6
0.1 75.4 92.5 75.3 92.4
0.15 75.2 92.5 75.5 92.5
0.2 75.2 92.5 75.6 92.6
0.25 75.0 92.3 75.3 92.5
0.3 75.1 92.3 74.8 92.4
0.4 75.0 92.3 75.3 92.5
0.5 74.7 92.2 75.0 92.4
0.6 75.0 92.3 75.0 92.3
0.7 74.4 923 74.6 92.0
0.8 73.9 91.7 75.0 92.1
0.9 74.0 91.7 74.6 92.0
1.0 73.7 91.7 74.5 92.0

Table 15. Top-1 and top-5 accuracy (in %) under linear evaluation on the ImageNet test set for a ResNet50 (1x) encoder set for different
probabilities p.,, of using the saliency mask to remove the background of the large augmented views during training and for using different
datasets to train the saliency detection network for computing the saliency masks. Models are trained for 300 epochs.

Random masks and mask corruptions. To understand how important having accurate saliency masks for the downstream
performance of representations is we also investigated using random masks, corrupting the saliency masks obtained from
our saliency detection network and using a bounding box around the saliency masks during RELICv2 training.

We explored using completely random masks, setting the saliency mask to be a random rectangle of the image and also a
centered rectangle. As ImageNet images generally consists of images with objects centered in the middle of the image, we
expect that using a random rectangle that is centered around the middle will cover a reasonable portion of the object. Table
16 reports the performance under linear evaluation on the ImageNet test set when varying the size of the random masks to
cover different percentage areas a,, of the full image. We notice that improving the quality of the masks, by using random
rectangle patches instead of completely random points in the image as the mask, results in better performance. However,
the performance with random masks is > 1% lower than using saliency masks from our saliency detection network. As
expected, using centered rectangles instead of randomly positioned rectangles as masks results in better peformance.

Moreover, to test the robustness of RELICv2 to corruptions of the saliency masks, we add/remove from the masks a
rectangle proportional to the area of the saliency mask. The mask rectangle is added/removed from the image center. Table
17 reports the results when varying the area of the rectangle to be added/removed to cover different percentages m,, of the
saliency masks. We notice that while RELICv2 is robust to small corruptions of the saliency mask its performance drops in
line with the quality of the saliency masks degrading.

Finally, we also explore corrupting the masks using a bounding box around the saliency mask which results in 74.5% top-1
and 92.2% top-5 accuracy under linear evaluation on the ImageNet test set for a ResNet50 (1x) encoder trained for 300
epochs with mask apply probability of 0.1 Note that this performance is comparable to using random rectangles to mask the
large augmented views during training (see Table 16) and is lower than directly using the saliency masks from the trained
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Random Rectangle Centered Rectangle
Image percentage area a,, | Top-1 Top-5 | Top-1 Top-5 | Top-1 Top-5
10% 70.8 89.9 70.9 90.3 71.3 90.1
20% 72.2 90.7 73.1 91.3 73.4 91.3
30% 72.9 91.3 73.8 91.8 73.8 91.9
40% 73.1 91.4 742 919 74.1 92.0
50% 73.3 91.5 74.0 920 74.3 92.0
60% 73.6 91.8 742 921 74.3 92.2
70% 73.7 91.9 744 921 74.4 92.2
80% 74.1 92.1 744 922 74.2 92.1
90% 74.1 92.2 744  92.1 74.2 92.2

Table 16. Top-1 and top-5 accuracy (in %) under linear evaluation on the ImageNet test set for a ResNet50 (1x) encoder set for using
different types of random masks that cover various percentage areas (a,) of the full image. These random masks are applied on top of the
large augmented views during training with probability 0.1. Models are trained for 300 epochs.

Add rectangle to mask | Remove rectangle from mask
Mask percentage area m,, | Top-1 Top-5 Top-1 Top-5
10% 75.2 92.5 75.2 92.3
20% 75.3 92.6 75.1 92.4
30% 75.1 92.3 74.7 92.2
40% 74.9 92.2 74.6 92.2
50% 74.9 924 74.5 92.0
60% 74.9 92.2 74.0 91.7
70% 74.8 92.2 73.6 91.7
80% 74.8 92.4 73.4 91.4
90% 74.7 92.2 73.0 91.3
100% 74.6 923 72.6 90.9

Table 17. Top-1 and top-5 accuracy (in %) under linear evaluation on the ImageNet test set for a ResNet50 (1x) encoder set for corrupting
the saliency masks by adding/remove a rectangle from the image center. The rectangle is a percentage (my) of the saliency mask area (the
higher the percentage the higher the corruption). The corrupted saliency masks are applied on top of the large augmented views during
training with probability 0.1.

saliency detection network.

H.3. Other model hyperparameters

Now we turn our attention to ablating the effect of other model hyperparameters on the downstream performance of
RELICvV2 representations. Note that these hyperparameters have been introduced and extensively ablated in prior work
(Grill et al., 2020; Mitrovic et al., 2021; 2020).

Number of negatives. As mentioned in Section 2 RELICv?2 selects negatives by randomly subsampling the minibatch in
order to avoid false negatives. We investigate the effect of changing number of negatives in Table 18. We can see that the
best performance can be achieved with relatively low numbers of negatives, i.e. just 10 negatives. Furthermore, we see that
using the whole batch as negatives has one of the lowest performances.

In further experiments, we observed that for longer pretraining (e.g. 1000 epochs) there is less variation in performance than
for pretraining for 300 epoch which itself is also quite low.

Target EMA. RELICv2 uses a target network whose weights are an exponential moving average (EMA) of the online
encoder network which is trained normally using stochastic gradient descent; this is a setup first introduced in (Grill
et al., 2020) and subsequently used in (Mitrovic et al., 2021) among others. The target network weights at iteration ¢ are
& = v&—1 + (1 — ~)0; where v is the EMA parameter which controls the stability of the target network (y = 0 sets
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Number of negatives Top-1  Top-5

1 75.1 92.4
5 75.2 92.6
10 75.4 92.5
20 75.3 92.7
50 75.5 92.5
100 75.4 92.5
500 75.1 92.4
1000 75.3 92.6
2000 75.4 92.5
4096 75.2 92.6

Table 18. Top-1 and top-5 accuracy (in %) under linear evaluation on the ImageNet test set for a ResNet50 (1x) encoder set for different
numbers of randomly selected negatives. All settings are trained for 300 epochs.

& = 04); 0, are the parameters of the online encoder at time ¢, while &,; are the parameters of the target encoder at time ¢.
As can be seen from Table 19, all decay rates between 0.9 and 0.996 yield similar performance for top-1 accuracy on the
ImageNet test set after pretraining for 300 epochs indicating that RELICv?2 is robust to choice of - in that range. For values
of v of 0.999 and higher, the performance quickly degrades indicating that the updating of the target network is too slow.
Note that contrary to (Grill et al., 2020) where top-1 accuracy drops below 20% for v = 1, RELICv?2 is significantly more
robust to this setting achieving double that accuracy.

¥ Top-1 Top-5
0 73.5 915
0.9 746 922
0.99 75.5 926
0993 754 925
0996 744 920
0.999 705 89.8
1.0 39.6  63.6

Table 19. Top-1 and top-5 accuracy (in %) under linear evaluation on the ImageNet test set for a ResNet50 (1x) encoder set for different
setting of the target exponentially moving average (EMA). All settings are trained for 300 epochs.




