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Abstract

Generative priors of large-scale text-to-image dif-
fusion models enable a wide range of new gener-
ation and editing applications on diverse visual
modalities. However, when adapting these priors
to complex visual modalities, often represented
as multiple images (e.g., video), achieving con-
sistency across a set of images is challenging.
In this paper, we address this challenge with a
novel method, Collaborative Score Distillation
(CSD). CSD is based on the Stein Variational Gra-
dient Descent (SVGD). Specifically, we propose
to consider multiple samples as “particles” in the
SVGD update and combine their score functions
to distill generative priors over a set of images
synchronously. Thus, CSD facilitates seamless
integration of information across 2D images, lead-
ing to a consistent visual synthesis across multiple
samples. We show the effectiveness of CSD in
a variety of tasks, encompassing the visual edit-
ing of panorama images, videos, and 3D scenes.
Our results underline the competency of CSD as a
versatile method for enhancing inter-sample con-
sistency, thereby broadening the applicability of
text-to-image diffusion models.1

1. Introduction
Text-to-image diffusion models (Saharia et al., 2022;
Ramesh et al., 2022; Nichol et al., 2021; Rombach et al.,
2022) have been scaled up by using billions of image-text
pairs (Schuhmann et al., 2021; 2022) and efficient architec-
tures (Ho et al., 2020; Song et al., 2020b;a; Rombach et al.,
2022), showing impressive capability in synthesizing high-
quality, realistic, and diverse images with the text given as
an input. Furthermore, they have branched into various ap-
plications, such as image-to-image translation (Meng et al.,
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2021; Bar-Tal et al., 2022; Hertz et al., 2022; Kawar et al.,
2022; Brooks et al., 2022; Mokady et al., 2022; Voynov
et al., 2022), controllable generation (Zhang & Agrawala,
2023), or personalization (Gal et al., 2022; Ruiz et al., 2022).
One of the latest applications in this regard is to translate
the capability into other complex modalities, viz., beyond
2D images (Ho et al., 2022; Esser et al., 2023) without
modifying diffusion models and using modality-specific
training data. This paper focuses on adapting the knowledge
of pre-trained text-to-image diffusion models to complex
visual generative tasks beyond 2D images without neces-
sitating additional training of diffusion models or utilizing
modality-specific training data.

We start from an intuition that many complex visual data,
e.g., videos and 3D scenes, are represented as a set of images
constrained by modality-specific consistency. For example,
a video is a set of frames requiring temporal consistency, and
a 3D scene is built from a set of multi-view frames satisfying
view consistency. Unfortunately, image diffusion models
do not have a built-in capability to ensure consistency be-
tween a set of images for synthesis or editing because their
generative sampling process does not take into account the
consistency when using the image diffusion model as is. As
such, when applying image diffusion models on these com-
plex data without consistency in consideration, it results in a
highly incoherent output, as in Figure 2 (Patch-wise Crop),
where one can easily identify where images are stitched.
Such behaviors are also reported in video editing, thus, re-
cent works (Qi et al., 2023; Khachatryan et al., 2023; Liu
et al., 2023; Ceylan et al., 2023) propose to inject video-
specific temporal consistency in image diffusion models.

Here, we take attention to an alternative approach, Score
Distillation Sampling (SDS) (Poole et al., 2022), which en-
ables the optimization of arbitrary differentiable operators
by leveraging the rich generative prior of text-to-image dif-
fusion models. While Poole et al. (2022) has shown the
effectiveness of SDS in generating 3D objects from the text
by resorting on Neural Radience Fields (Mildenhall et al.,
2020) priors which inherently suppose coherent geometry
in 3D space by density modeling, it has not been studied for
consistent visual synthesis of other modalities.

https://subin-kim-cv.github.io/CSD
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Figure 1: Method overview. CSD-Edit enables various visual-to-visual translations with two novel components. First, a new
score distillation scheme using Stein variational gradient descent, which considers inter-sample relationships (Section 3.1)
to synthesize a set of images while preserving modality-specific consistency constraints. Second, our method edits images
with minimal information given from text instruction by subtracting image-conditional noise estimate instead of random
noise during score distillation (Section 3.2). By doing so, CSD-Edit is used for text-guided manipulation of various visual
domains, e.g., panorama images, videos, and 3D scenes (Section 4).

In this paper, we propose Collaborative Score Distilla-
tion (CSD), a simple yet effective method that extends the
singular of the text-to-image diffusion model for consistent
visual synthesis. The crux of our method is two-fold: first,
we establish a generalization of SDS by using Stein vari-
ational gradient descent (SVGD), where multiple samples
share their knowledge distilled from diffusion models to
accomplish inter-sample consistency. Second, we present
CSD-Edit, an effective method for consistent visual edit-
ing by leveraging CSD with Instruct-Pix2Pix (Brooks et al.,
2022), a recently proposed instruction-guided image diffu-
sion model (See Figure 1).

We demonstrate the versatility of our method in various
applications such as panorama image editing, video editing,
and reconstructed 3D scene editing. In editing a panorama
image, we show that CSD-Edit obtains spatially consistent
image editing by optimizing multiple patches of an image.
Also, compared to other methods, our approach achieves
a better trade-off between source-target image consistency
and instruction fidelity. In video editing experiments, CSD-
Edit obtains temporal consistency by taking multiple frames
into optimization, resulting in temporal frame-consistent
video editing. Furthermore, we apply CSD-Edit to 3D scene
editing and generation, by encouraging consistency among
multiple views.

Related works. We present a detailed discussion of the
related works in Appendix A.

2. Preliminaries
Score distillation sampling. Poole et al. (2022) proposed
Score Distillation Sampling (SDS), an alternative sample
generation method by distilling the rich knowledge of text-
to-image diffusion models. SDS allows optimization of
any differentiable image generator, e.g., Neural Radiance
Fields (Mildenhall et al., 2020) or the image space itself.
Formally, let x = g(θ) be an image rendered by a differen-
tiable generator g with parameter θ, then SDS minimizes
density distillation loss (Oord et al., 2018) which is KL
divergence between the posterior of x = g(θ) and the text-
conditional density pωϕ :

Et,ϵ

[
αt/σt DKL

(
q
(
xt|x = g(θ)

)
∥ pωϕ(xt; y, t)

)]
. (1)

For an efficient implementation, SDS updates the parameter
θ by randomly choosing timesteps t ∼ U(tmin, tmax) and
forward x = g(θ) with noise ϵ ∼ N (0, I) to compute the
gradient as follows:

Et,ϵ

[
w(t)

(
ϵωϕ(xt; y, t)− ϵ

)∂x
∂θ

]
. (2)

Remark that the U-Net Jacobian ∂ϵωϕ(zt; y, t)/∂zt is omit-
ted as it is computationally expensive to compute, and de-
grades performance when conditioned on small noise levels.
The range of timesteps tmin and tmax are chosen to sample
from not too small or large noise levels, and the guidance
scales are chosen to be larger than those used for image
generation.

We present a more detailed explanation of the preliminaries
for our work in Appendix B.1.
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Figure 2: Panorama image editing. (Top right) Instruct-Pix2Pix (Brooks et al., 2022) on cropped patches results in
inconsistent image editing. (Second row) Instruct-Pix2Pix with MultiDiffusion (Bar-Tal et al., 2023) edits to consistent
image, but less fidelity to the instruction, even with high guidance scale ωy. (Third row) CSD-Edit provides consistent
image editing with better instruction-fidelity by setting proper guidance scale.

3. Method
In this section, we introduce Collaborative Score Distilla-
tion (CSD) for consistent synthesis and editing of multiple
samples. We first derive a collaborative score distillation
method using Stein variational gradient descent (Section 3.1)
and propose an effective image editing method using CSD,
i.e., CSD-Edit, that leads to coherent editing of multiple
images with instruction (Section 3.2). Lastly, we present
various applications of CSD-Edit in editing panorama im-
ages, videos, and 3D scenes (Section 4 and Section B.4).

3.1. Collaborative score distillation

Suppose a set of parameters {θi}Ni=1 that generates images
x(i) = g(θi). Our goal is to update each θi by distilling the
smoothed densities from the diffusion model by minimizing
KL divergence using SVGD demonstrated in Section B.1 so
that each θi can be updated in sync with updates of other
parameters. At each update, CSD samples t ∼ U(tmin, tmax)
and ϵ ∼ N (0, I), and update each θi, i ∈ [N ] as follows:

∇θiLCSD
(
θi
)
=

w(t)

N

N∑
j=1

[k(x
(j)
t ,x

(i)
t )(ϵωϕ(x

(j)
t ; y, t)

−ϵ) +∇
x
(j)
t
k(x

(j)
t ,x

(i)
t )]

∂x(i)

∂θi
.

(3)

We note that CSD is a generalization to Score Distillation
Sampling (SDS) introduced by Poole et al. (2022) to multi-
ple samples, where SDS is a special case when N = 1. For
a full derivation and further details, we refer to Appendix B.

As the pairwise kernel values are multiplied by the noise
prediction term, each parameter update on θi is affected by
other parameters, i.e., the scores are mixed with importance
weights according to the affinity among samples. The more
similar samples tend to exchange more score updates, while
different samples tend to interchange the score information
less. The gradient of the kernels acts as a repulsive force
that prevents the mode collapse of samples. Moreover, we
note that Eq. (3) does not make any assumption on the
relation between θi’s or their order besides them being a set
of images to be synthesized coherently with each other. As
such, CSD is also applicable to arbitrary image generators,
as well as text-to-3D synthesis in DreamFusion (Poole et al.,
2022), which we compare in Appendix D.2.

3.2. Text-guided editing by collaborative score
distillation

In this section, we introduce a text-guided visual editing
method using Collaborative Score Distillation (CSD-Edit).
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Figure 3: Video editing. Qualitative results on the lucia video in DAVIS 2017 (Pont-Tuset et al., 2017). CSD-Edit shows
frame-wise consistent editing providing coherent content across video frames e.g., consistent color and background without
changes in person. Compared to Gen-1 (Esser et al., 2023), a video editing method trained on a large video dataset, CSD-Edit
shows high-quality video editing results reflecting given prompts.

Given source images x̃(i) = g(θ̃i) with parameters θ̃i, we op-
timize new target parameters {θi}Ni=1 with x(i) = g(θi) such
that 1) each x(i) follows the instruction prompt, 2) preserves
the semantics of source images as much as possible, and
3) the obtained images are consistent with each other. To
accomplish these, we update each parameter θi, initialized
with θ̃i, using CSD with noise estimate ϵ

ωy,ωs

ϕ of Instruct-
Pix2Pix. However, this approach often results in blurred
outputs, leading to the loss of details of the source image
(see Figure 7). This is because the score distillation term
subtracts random noise ϵ, which perturbs the undesirable
details of source images.

We handle this issue by adjusting the noise prediction term
that enhances the consistency between source and target im-
ages. When computing the gradient, subtracting a random
noise ϵ in Eq. (2) is a crucial factor, which helps optimiza-
tion by reducing the variance of a gradient. Therefore, we
amend the optimization by changing the random noise into
a better baseline function. Since our goal is to edit an image
with only minimal information given text instructions, we
set the baseline by the image-conditional noise estimate of

the Instruct-Pix2Pix model without giving text instructions
on the source image. To be specific, our CSD-Edit is given
as follows where we let kij = k(x

(j)
t ,x

(i)
t ) for brevity.

∇θiLCSD−Edit(θi) =
w(t)

N

N∑
j=1

[
kij∆E(i)

t +∇
x
(j)
t
kij

] ∂x(i)

∂θi
,

∆E(i)
t = ϵ

ωy,ωs

ϕ (x
(i)
t ; x̃, y, t)− ϵωs

ϕ (x̃
(i)
t ; x̃, t).

In Appendix E, we validate our findings on the effect of
baseline noise on image editing performance. We notice
that CSD-Edit presents an alternative way to utilize Instruct-
Pix2Pix in image-editing without any finetuning of diffusion
models, by posing as an optimization problem.

4. Experiments
4.1. Text-guided panorama image editing

For the panorama image-to-image translation task, we com-
pare CSD-Edit with variants of Instruct-Pix2Pix. The ex-
perimental details are in Appendix C.1. In Figure 4, we
plot the CLIP scores of different image editing methods
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Figure 4: Panorama image editing. Comparison of
CSD-Edit with baselines at different guidance scales
ωy ∈ {3.0, 5.0, 7.5, 10.0}.

Table 1: Video editing. Quantitative comparison of CSD-Edit
with baselines on video editing. Bold indicates the best results.

CLIP Directional CLIP Image LPIPS
Similarity ↑ Consistency ↑ ↓

FateZero (Qi et al., 2023) 0.314 0.948 0.267
Pix2Vid (Ceylan et al., 2023) 0.230 0.949 0.283

CSD-Edit (Ours) 0.320 0.957 0.236

Table 2: 3D scene editing. Quantitative comparison of CSD-
Edit with baselines on 3D scene editing. Bold indicates the
best results.

CLIP Directional CLIP Image LPIPS
Similarity ↑ Consistency ↑ ↓

IN2N (Brooks et al., 2022) 0.230 0.994 0.048
CSD-Edit (Ours) 0.239 0.995 0.043

with different guidance scales. We notice that CSD-Edit
provides the best trade-off between the consistency between
source and target images and fidelity to the instruction. Fig-
ure 2 provides a qualitative comparison between panorama
image editing methods. Remark that Instruct-Pix2Pix +
MultiDiffusion is able to generate spatially consistent im-
ages, however, the edited images show inferior fidelity to
the text instruction even when using a large guidance scale.
Additional qualitative results are in Appendix F.

4.2. Text-guided video editing

For the video editing experiments, we primarily compare
CSD-Edit with existing zero-shot video editing schemes that
employ text-to-image diffusion models. Please refer to Ap-
pendix C.2 for a detailed description of the baseline methods
and experimental setup. Table 1 summarize a quantitative
comparison between CSD-Edit and the baselines. We no-
tice that CSD-Edit consistently outperforms the existing
zero-shot video editing schemes in terms of both temporal
consistency and fidelity to given text prompts. Moreover,
Figure 3 qualitatively demonstrates the superiority of CSD
over the baselines on video-stylization and object-aware
editing tasks. Impressively, CSD shows comparable edit-
ing performance to Gen-1 (Esser et al., 2023) even without
training on a large-scale video dataset and any architectural
modification to the diffusion model. See Appendix F for
additional qualitative results.

4.3. Text-guided 3D scene editing

For the text-guided 3D scene editing experiments,
we mainly compare our approach with Instuct-
NeRF2NeRF (IN2N) (Haque et al., 2023). Detailed
explanations for experiments can be found in Appendix C.3.
Table 2 and Figure 12 in Appendix F summarize the
comparison between CSD-Edit and IN2N. We notice
that CSD-Edit enables a wide-range control of 3D NeRF
scenes, such as delicate attribute manipulation (e.g.,

facial expression alterations) and scene-stylization (e.g.,
conversion to the animation style). Especially, we notice
two advantages of CSD-Edit compared to IN2N. First,
CSD-Edit presents high-quality details to the edited 3D
scene by providing multi-view consistent training views
during NeRF optimization. In Figure 12, one can observe
that CSD-Edit captures sharp details of anime character,
while IN2N results in blurry face. Second, CSD-Edit is
better at preserving the semantics of source 3D scenes,
e.g., backgrounds or colors. For instance, we notice that
CSD-Edit allows subtle changes in facial expressions
without changing the color of the background or adding a
beard to the face as shown in Figure 12.

4.4. Text-to-3D generation

We explore the effectiveness of CSD in text-to-3D gener-
ation tasks by comparing with DreamFusion (Poole et al.,
2022). We refer to Appendix D.2 for experimental setup. In
Figure 5, CSD generates higher quality 3D NeRF scene than
SDS, due to the coherent 2D diffusion prior distilled during
the optimization. We provide more quantitative (Table 3)
and qualitative (Figure 13) results in Appendix D.2.

5. Conclusion
In this paper, we propose Collaborative Score Distillation
(CSD) for consistent visual synthesis. CSD is built upon
Stein variational gradient descent, where multiple samples
share their knowledge distilled from text-to-image diffusion
models during the update. Furthermore, we propose CSD-
Edit that gives us consistent editing of images by distilling
essential, yet concise information from instruction-guided
diffusion models. We demonstrate the effectiveness of our
method in text-guided translation of diverse and complex
visual modalities, including high-resolution images, videos,
and real 3D scenes, outperforming previous methods both
quantitatively and qualitatively.
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Appendix
Website: https://icmlw2023csd.github.io/

A. Related works
Following remarkable success of text-to-image diffusion models (Rombach et al., 2022; Ho et al., 2022; Saharia et al.,
2022; Ramesh et al., 2022; Balaji et al., 2022), numerous works have attempted to exploit rich knowledge of text-to-image
diffusion models for various visual editing tasks including images (Meng et al., 2021; Couairon et al., 2022; Kawar et al.,
2022; Valevski et al., 2022; Brooks et al., 2022; Hertz et al., 2022; Mokady et al., 2022), videos (Wu et al., 2022; Ceylan
et al., 2023), 3D scenes (Haque et al., 2023), etc. However, extending existing image editing approaches to more complex
visual modalities often faces a new challenge; consistency between edits, e.g., spatial consistency in high-resolution images,
temporal consistency in videos, and multi-view consistency in 3D scenes. While prior works primarily focus on designing
task-specific methods (Liu et al., 2023; Qi et al., 2023; Ceylan et al., 2023) or model fine-tuning for complex modalities (Wu
et al., 2022), we present a modality-agnostic novel method for editing, effectively capturing consistency between samples.

The most related to our work is DreamFusion (Poole et al., 2022), which introduced Score Distillation Sampling (SDS) for
the creation of 3D assets, leveraging the power of text-to-image diffusion models. Despite the flexible merit of SDS to enable
the optimization of arbitrary differentiable operators, most works mainly focus on applying SDS to enhance the synthesis
quality of 3D scenes by introducing 3D specific frameworks (Lin et al., 2022; Tsalicoglou et al., 2023; Melas-Kyriazi et al.,
2023; Chen et al., 2023; Tang et al., 2023). Although there exists some work to apply SDS for visual domains other than 3D
scenes, they have limited their scope to image editing (Hertz et al., 2023), or image generation (Song et al., 2022). Here,
we clarify that our main focus is not to improve the performance of SDS for a specific task, but rather to shift the focus to
generalizing it from a new perspective in a principled way. To the best of our knowledge, we are the first to center our work
on the generalization of SDS and introduce a novel method that simply but effectively adapts text-to-image diffusion models
to diverse high-dimensional visual syntheses beyond a single 2D image with a fixed resolution. Importantly, our approach
does not require modifications to the diffusion model or the use of modality-specific training data.

B. Technical details
In this section, we introduce preliminaries and provide detailed explanations on the proposed methods, CSD and CSD-Edit.

B.1. Preliminaries

Diffusion models. Generative modeling with diffusion models consists of a forward process q that gradually adds Gaussian
noise to the input x0 ∼ pdata(x), and a reverse process p which gradually denoises from the Gaussian noise xT ∼ N (0, I).
Formally, the forward process q(xt|x0) at timestep t is given by q(xt|x0) = N (xt;αtx0, σ

2
t I), where σt and α2

t = 1− σ2
t

are pre-defined constants designed for effective modeling (Song et al., 2020b; Kingma et al., 2021; Karras et al., 2022).
Given enough timesteps, reverse process p also becomes a Gaussian and the transitions are given by posterior q with optimal
MSE denoiser (Sohl-Dickstein et al., 2015), i.e., pϕ(xt−1|xt) = N (xt−1;xt− x̂ϕ(xt; t), σ

2
t I), where x̂ϕ(xt; t) is a learned

optimal MSE denoiser. Ho et al. (2020) proposed to train an U-Net (Ronneberger et al., 2015) autoencoder ϵϕ(xt; t) by
minimizing following objective:

LDiff(ϕ;x) = Et,ϵ

[
w(t)∥ϵϕ(xt; t)− ϵ∥22

]
, xt = αtx0 + αtϵ (4)

where w(t) is a weighting function for each timestep t. Text-to-image diffusion models (Saharia et al., 2022; Ramesh et al.,
2022; Rombach et al., 2022; Nichol et al., 2021) are trained by Eq. (4) with ϵϕ(xt; y, t) that estimates the noise conditioned
on the text prompt y. At inference, those methods rely on Classifier-free Guidance (CFG) (Ho & Salimans, 2022), which
allows higher quality sample generation by introducing additional parameter ωy ≥ 1 as follows:

ϵωϕ(xt; y, t) = ϵϕ(xt; t) + ωy

(
ϵϕ(xt; y, t)− ϵϕ(xt; t)

)
(5)

By setting the appropriate guidance scale ωy > 0, one can improve fidelity to the text prompt at the cost of diversity.
Throughout the paper, we refer pωy

ϕ (xt; y, t) a conditional distribution of a text y.

Instruction-based image editing by Instruct-Pix2Pix. Recently, many works have demonstrated the capability of diffusion
models in editing or stylizing images (Meng et al., 2021; Kawar et al., 2022; Bar-Tal et al., 2022; Hertz et al., 2022; Brooks

https://icmlw2023csd.github.io/
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et al., 2022). Among them, Brooks et al. (2022) proposed Instruct-Pix2Pix, where they finetuned Stable Diffusion (Rombach
et al., 2022) models with the source image, text instruction, edited image (edited by Prompt-to-Prompt (Hertz et al., 2022))
triplet to enable instruction-based editing of an image. Given source image x̃ and instruction y, the noise estimate at time t
is given as

ϵ
ωs,ωy

ϕ (xt; x̃, y, t) = ϵϕ(xt; t) + ωs

(
ϵϕ(xt; x̃, t)− ϵϕ(xt; t)

)
+ ωy

(
ϵϕ(xt; x̃, y, t)− ϵϕ(xt; x̃, t)

)
,

(6)

where ωy is CFG parameter for text as in Eq. (5) and ωs is an additional CFG parameter that controls the fidelity to the
source image x̃.

Stein variational gradient descent. The original motivation of Stein variational gradient descent (SVGD) (Liu & Wang,
2016) is to solve a variational inference problem, where the goal is to approximate a target distribution from a simpler
distribution by minimizing KL divergence. Formally, suppose p is a target distribution with a known score function
∇x log p(x) that we aim to approximate, and q(x) is a known source distribution. Liu & Wang (2016) showed that the
steepest descent of KL divergence between q and p is given as follows:

Eq(x)

[
f(x)⊤∇x log p(x) + Tr(∇xf(x))

]
, (7)

where f : RD → RD is any smooth vector function that satisfies lim∥x∥→∞ p(x)f(x) = 0. Remark that Eq. (7) becomes
zero if we replace q(x) with p(x) in the expectation term, which is known as Stein’s identity (Gorham & Mackey, 2017).
Here, the choice of the critic f is crucial in its convergence and computational tractability. To that end, Liu & Wang (2016)
proposed to constrain f in the Reproducing Kernel Hilbert Space (RKHS) which yields a closed-form solution. Specifically,
given a positive definite kernel k : RD × RD → R+, Stein variational gradient descent provides the greedy directions as
follows:

x← x− η∆x, ∆x = Eq(x′)

[
k(x,x′)∇x′ log p(x′) +∇x′k(x,x′)

]
, (8)

with small step size η > 0. The SVGD update in Eq. (8) consists of two terms that play different roles: the first term
moves the particles towards the high-density region of target density p(x), where the direction is smoothed by kernels of
other particles. The second term acts as a repulsive force that prevents the mode collapse of particles. One can choose
different kernel functions, while we resort to a standard Radial Basis Kernel (RBF) kernel k(x,x′) = exp(− 1

h∥x− x′∥22)
with bandwidth h > 0.

B.2. CSD derivation.

Consider a set of parameters {θi}Ni=1 which generates images x(i) = g(θi). For each timestep t ∼ U(tmin, tmax), we aim at
minimizing the following KL divergence

DKL

(
q(x

(i)
t |x(i) = g(θi))∥pϕ(xt; y, t)

)
for each i = 1, 2, . . . , N via SVGD using Eq. (8). To this end, we approximate the score function, (i.e., the gradient of
log-density) by the noise predictor from the diffusion model as follows:

∇
x
(i)
t

log pϕ(x
(i)
t ; y, t) ≈ −ϵϕ(x

(i)
t ; y, t)

σt
.

Then, the gradient of the score function with respect to parameter θi is given by

∇θi log pϕ(x
(i)
t ; y, t) = ∇

x
(i)
t

log pϕ(x
(i)
t ; y, t)

∂x
(i)
t

∂θi
≈ −αt

σt
ϵϕ(x

(i)
t ; y, t)

∂x(i)

∂θ
, (9)

for each i = 1, . . . N . Finally, to derive CSD, we plug Eq. (9) to Eq. (8) to attain Eq. (3). Also, we subtract the noise ϵ,
which helps to reduce the variance of the gradient for better optimization. Following DreamFusion (Poole et al., 2022), we
do not compute the Jacobian of U-Net. At a high level, CSD takes the gradient update on each x(i) using SVGD and updates
θi by simple chain rule without computing the Jacobian. This formulation makes CSD as a straightforward generalization to
SDS for multiple samples and leads to an effective gradient for optimizing consistency among the batch of samples.
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B.3. CSD-Edit derivation.

As mentioned above, we subtract the random noise to reduce the variance of CSD gradient estimation. This is in a similar
manner to the variance reduction in policy gradient (Schulman et al., 2015), where having a proper baseline function results
in faster and more stable optimization. Using this analogy, our intuition is built upon that setting a better baseline function
can ameliorate the optimization of CSD. Thus, in image-editing via CSD-Edit, we propose to use image-conditional noise
estimate as a baseline function. This allows CSD-Edit to optimize the latent driven by only the influence of instruction
prompts. We notice that similar observations were proposed in Delta Denoising Score (DDS) (Hertz et al., 2023), where
they introduced an image-to-image translation method that is based on SDS, and the difference of the noise estimate from
target prompt and that from source prompt are used. Our CSD can be combined with DDS by changing the noise difference
term as follows:

∆Et = ϵϕ(xt; ytgt, t)− ϵϕ(x̃t; ysrc, t),

where x and x̃ are target and source images, ytgt and ysrc are target and source prompts. However, we found that CSD-Edit
with InstructPix2Pix is more amenable in editing real images as it does not require a source prompt. Finally, we remark that
CSD-Edit can be applied to various text-to-image diffusion models such as ControlNet (Zhang & Agrawala, 2023), which
we leave for future work.

B.4. CSD-Edit for various complex visual domains

Panorama image editing. Diffusion models are usually trained on a fixed resolution (e.g., 512×512 for Stable Diffu-
sion (Rombach et al., 2022)), thus when editing a panorama image (i.e., an image with a large aspect ratio), the editing
quality significantly degrades.= Otherwise, one can crop an image into smaller patches and apply image editing on each
patch. However this results in spatially inconsistent images (see Figure 2, Patch-wise Crop, and Figure 8 in Appendix E). To
that end, we propose to apply CSD-Edit on patches to obtain spatially consistent editing of an image, while preserving the
semantics of the source image. Following (Bar-Tal et al., 2023), we sample patches of size 512×512 that overlap using
small stride and apply CSD-Edit on the latent space of Stable Diffusion (Rombach et al., 2022). Since we allow overlapping,
some pixels might be updated more frequently. Thus, we normalize the gradient of each pixel by counting the appearance.

Video editing. Editing a video with an instruction should satisfy the following: 1) temporal consistency between frames
such that the degree of changes compared to the source video should be consistent across frames, 2) ensuring that desired
edits in each edited frame are in line with the given prompts while preserving the original structure of source video, and 3)
maintaining the sample quality in each frame after editing. To meet these requirements, we randomly sample a batch of
frames and update them with CSD-Edit to achieve temporal consistency between frames.

3D scene editing. We consider editing a 3D scene reconstructed by a Neural Radiance Field (NeRF) (Mildenhall et al.,
2020), which represents volumetric 3D scenes using 2D images. To edit reconstructed 3D NeRF scenes, it is straightforward
to update the training views with edited views and finetune the NeRF with edited views. Here, the multi-view consistency
between edited views should be considered since inconsistencies between edits across multiple viewpoints lead to blurry
and undesirable artifacts, hindering the optimization of NeRF. To mitigate this, Haque et al. (2023) proposed Instruct-
NeRF2NeRF, which performs editing on a subset of training views and updates them sequentially at training iteration with
intervals. However, image-wise editing results in inconsistencies between views, thus they rely on the ability of NeRF in
achieving multi-view consistency. Contrary to Instruct-NeRF2NeRF, we update the dataset with multiple consistent views
through CSD-Edit, which serves as better training resources for NeRF, leading to less artifacts and better preservation of
source 3D scene.

C. Implementation details
Setup. For the experiments with CSD-Edit, we use the publicly available pre-trained model of Instruct-Pix2Pix (Brooks
et al., 2022)2 by default. We perform CSD-Edit optimization on the latent space of Stable Diffusion (Rombach et al., 2022)
autoencoder. We use SGD optimizer with step learning rate decay, without adding weight decay. We set tmin = 0.2 and
tmax = 0.5, where original SDS optimization for DreamFusion used tmin = 0.2 and tmax = 0.98 because we do not generally
require a large scale of noise in editing. We use the guidance scale ωy ∈ [3.0, 15.0] and image guidance scale ωs ∈ [1.5, 5.0].

2https://github.com/timothybrooks/instruct-pix2pix

https://github.com/timothybrooks/instruct-pix2pix
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“a DSLR photo of a corgi wearing a top hat”
SDS CSD (Ours)

Text-to-2D GenerationText-to-3D Generation

SDS CSD (Ours)

Figure 5: Text-to-3D generation. (Left) CSD helps capturing coherent geometry in synthesizing 3D object. (Right) CSD
generates coherent images conditioned on view-dependent prompts.

We find that our approach is less sensitive to the choice of image guidance scale, yet a smaller image guidance scale exhibits
more sensitivity to editing. All experiments are conducted on AMD EPYC 7V13 64-Core Processor and a single NVIDIA
A100 80GB. Throughout the experiments, we use OpenCLIP (Ilharco et al., 2021) ViT-bigG-14 model for evaluation.

C.1. Panorama image editing

To edit a panorama image, we first encode into the Stable Diffusion latent space (i.e., downscale by 8), then use a stride size
of 16 to obtain multiple patches. Then we select a B batch of patches to perform CSD-Edit. Note that we perform CSD-Edit
and then normalize by the number of appearances as mentioned in Section B.4. Note that our approach performs well even
without using small batch size, e.g., for an image of resolution 1920×512, there are 12 patches and we use B = 4.

For experiments, we collect 32 panorama images and conduct 5 artistic stylizations: “turn into Van Gogh style painting”,
“turn into Pablo Picasso style painting”, “turn into Andy Warhol style painting”, “turn into oriental style painting”, and “turn
into Salvador Dali style painting”. We use learning rate of 2.0 and image guidance scale of 1.5, and vary the guidance scale
from 3.0 to 10.0.

C.2. Video editing

We edit video sequences in DAVIS 2017 (Pont-Tuset et al., 2017) by sampling 24 frames at the resolution of 1920×1080
from each sequence. Then, we resize all frames into 512×512 resolution and encode all frames each using Stable
Diffusion (Rombach et al., 2022) autoencoder. We use learning rate [0.25, 2] and optimize them for [200, 500] iterations.

C.3. 3D scene editing

Following Instruct-NeRF2NeRF (Haque et al., 2023), we first pre-train NeRF using the nerfacto model from NeRFStu-
dio (Tancik et al., 2023), training it for 30,000 steps. Next, we re-initialize the optimizer and finetune the pre-trained NeRF
model with edited train views. In contrast to Instruct-NeRF2NeRF, which edits one train view with Instruct-Pix2Pix after
every 10 steps of optimization of NeRF, we edit a batch of train views (batch size of 16) with CSD-Edit after every 2000
steps of update. The batch is randomly selected among the train views without replacement.

D. Additional experiments
D.1. Compositional editing

Recent works have shown the ability of text-to-image diffusion models in compositional generation of images handling
multiple prompts (Du et al., 2023; Liu et al., 2022). Here, we show that CSD-Edit can extend this ability to compositional
editing, even at panorama-scale images which require a particular ability to maintain far-range consistency. Specifically, we
demonstrate that one can edit a panorama image to follow different prompts on different regions while keeping the overall
context uncorrupted.
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Figure 6: Ablation study. Ablation study on the
components of CSD-Edit at different guidance
scales ωy ∈ {3.0, 5.0, 7.5, 10.0}.

Table 3: Text-to-3D. Quantitative comparison between CSD and
SDS under on text-to-3D generation via DreamFusion (Poole et al.,
2022)

CLIP Similarity CLIP Similarity FID
Color ↑ Geo ↑ ↓

SDS (Poole et al., 2022) 0.437 0.322 259.4
CSD (Ours) 0.447 0.345 247.1

Given multiple textual prompts {yk}Kk=1, the compositional noise estimate is given by

ϵϕ(xt; {yk}Kk=1, t) =

K∑
k=1

αkϵ
ω
ϕ(xt; yk, t),

where αk are hyperparameters that regularize the effect of each prompt. When applying compositional generation to the
panorama image editing, the challenge lies in obtaining image that is smooth and natural within the region where the
different prompts are applied. To that end, for each patch of an image, we set αk to be the area of the overlapping region
between the patch and region where prompt yk is applied. Also, we normalize to assure

∑
k αk = 1. In Figure 10, we

illustrate some examples on compositional editing of a panorama image. For instance, given an image, one can change into
different weathers, different seasons, or different painting styles without leaving artifacts that hinder the spatial consistency
of an image.

D.2. Text-to-3D generation with CSD

We explore the effectiveness of CSD in text-to-3D generation tasks following DreamFusion (Poole et al., 2022). We follow
the most of experimental setups from those conducted by Poole et al. (2022); train a coordinate MLP-based NeRF architecture
from scratch using text-to-image diffusion models. Our experiments in this section are based on Stable-DreamFusion (Tang,
2022), a public re-implementation of DreamFusion, given that currently the official implementation of DreamFusion is not
available on public. Also, since the pixel-space diffusion model that DreamFusion used (Poole et al., 2022) is not publicly
available, we used an open-source implementation of pixel-space text-to-image diffusion model.3

Setup. We use vanilla MLP based NeRF architecture (Mildenhall et al., 2020) with 5 ResNet (He et al., 2016) blocks.
Other regularizers such as shading, camera and light sampling are set as default in (Tang, 2022). We use view-dependent
prompting given the sampled azimuth angle and interpolate by the text embeddings. We use Adan (Xie et al., 2022) optimizer
with learning rate warmup over 2000 steps from 10−9 to 2× 10−3 followed by cosine decay down to 10−6. We use batch
size of 4 and optimize for 10000 steps in total, where most of the case sufficiently converged at 7000 to 8000 steps. For the
base text-to-image diffusion model, we adopt DeepFloyd-IF-XL-v1.0 since we found it way better than the default
choice of Stable Diffusion in a qualitative manner. While the original DreamFusion (Poole et al., 2022) used guidance scale
of 100 for their experiments, we find that guidance scale of 20 works well for DeepFloyd. We selected 30 prompts used
in DreamFusion gallery4 and compare their generation results via DreamFusion from the standard SDS and those from our
proposed CSD. We use one A100 (80GB) GPU for each experiment, and it takes ∼5 hours to conduct one experiment.

For CSD implementation, we use LPIPS (Zhang et al., 2018) as a distance of RBF kernel, as we empirically found it to work
well over the ℓ2-norm. The LPIPS is computed between two rendered views of size 64×64. For the kernel bandwidth, we
use h = med2

logB , where med is a median of the pairwise LPIPS distance between the views, B is the batch size. For evaluation,

3https://github.com/deep-floyd/IF
4https://dreamfusion3d.github.io/gallery.html

https://github.com/deep-floyd/IF
https://dreamfusion3d.github.io/gallery.html
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we render the scene at the elevation at 30 degrees and capture at every 30 degrees of azimuth angle. Then we compute the
CLIP image-text similarity between the rendered views and input prompts. We measure similarities for both textured views
(RGB) and textureless depth views (Depth). We also report Frechet Inception Distance (FID) between the RGB images and
ImageNet validation dataset to evaluate the quality and diversity of rendered images compared to natural images.

Results. In Table 3, we report the evaluation results of CSD on text-to-3D generation comparison to DreamFusion. Note
that CSD presents better CLIP image-text similarities in both RGB and Depth views. Additionally, CSD achieves a lower
FID score, indicating a better quality of generated samples. Despite using the same random seed for generating both CSD
and DreamFusion, resulting in similar shapes and colors, CSD still manages to capture finer details in its generations. This
can be attributed to the ability of CSD to remove blurry artifacts in the synthesized 3D NeRF scene, which are often a
consequence of inconsistent view distillation. This is demonstrated in the right of Figure 5, where we confirm that CSD
produces more coherent images when conditioned on view-dependent prompts that were used in DreamFusion.

In Figure 13, we additionally provide a qualitative comparison between the baseline DreamFusion (SDS) and our approach.
We empirically observe three benefits of using CSD over SDS. First, CSD provides better quality compared to SDS. SDS
often suffers from the Janus problem, where multiple faces appear in a 3D object. We found that CSD often resolves the
Janus problem by showing consistent information during training. See the first row of Figure 13. Second, CSD can give
us better fine-detailed quality. The inconsistent score distillation often gives us blurry artifacts or undesirable features left
in the 3D object. CSD can handle this problem and results in a higher-quality generation, e.g., Figure 13 second row and
Figure 5. Lastly, CSD can be used for improving diversity. One problem of DreamFusion, as acclaimed by the authors, is
that it lacks sample diversity. Thus, it often relies on changing random seeds, but it largely alters the output. On the other
hand, we show that CSD can obtain an alternative sample with only small details changed, e.g., Figure 13 third row. Even
when SDS is successful, CSD can be used in generating diverse samples. Also in Figure 5, we verify that the CSD generates
more coherent images when conditioned on view-dependent prompts which were used in DreamFusion.
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Source Random noise

Without SVGD CSD-Edit
“Give him a cap”

Figure 7: Ablation study. Given a source video (top left), CSD-Edit without SVGD results in inconsistent frames (bottom
left), and subtracting random noise in CSD-Edit results in loss of details (top right). CSD-Edit obtains consistency between
frames without loss of semantics (bottom right).

E. Ablation study
We present an ablation study on (a) the effect of SVGD and (b) subtracting random noise in CSD-Edit in panorama image
editing experiments. Following the experimental setup in Section 4.1, we apply 5 different artistic stylizations to 16 images
with CSD-Edit, without SVGD, and without subtracting the image-conditional noise estimate. We measure the CLIP image
similarity and CLIP directional similarity for the evaluation. The results of the ablation study are plotted in Figure 6.

Note that CSD-Edit without SVGD radically alters the image due to the lack of consistency regularization. Furthermore, if
the baseline noise is set to be random that is injected into both the source and target images, each frame becomes blurry,
leading to the loss of original structures. This results in a significant drop in both CLIP image similarity and CLIP directional
similarity, as details from the source image are lost. These effects are detailed in Figure 6.

To further verify the role of communication between samples using SVGD, we conduct an additional video editing
experiment. As shown in Figure 7, CSD-Edit consistently edits a source video by adding a red cap on a man’s head when
given the instruction ”give him a cap.” In the absence of SVGD, the edits between frames become inconsistent; for example,
both blue and red caps appear inconsistently in the edited frames. We additionally present the qualitative results of our
ablation study in Figure 8.
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Source

“Turn into Van Gogh style painting”

“Turn into Pablo Picasso style painting”

“Turn into Andy Warhol style painting”

“Turn into oriental style painting”

“Turn into Salvador Dali style painting”

CSD-Edit CSD-Edit without SVGD CSD-Edit with Random Noise

Figure 8: Ablation study: SVGD and random noise. As illustrated, edits across different patches are not consistent
without SVGD. Also, when using random noise as baseline noise, it loses the content and the detail of the source image.
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F. More qualitative results

Source

“Turn sheeps into wolves” “Turn sheeps into kangaroos”

“Turn sheeps into polar bears” “Turn sheeps into reindeers”

Source

“Turn penguins into chickens” “Turn penguins into bears”

“Turn penguins into pandas” “Turn penguins into sea lions”

Figure 9: Object editing. CSD-Edit can edit many objects in a wide panorama image consistently in accordance with the
given instruction while preserving the overall structure of source images.
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“Turn into sunny weather” “Turn into rainy weather” “Turn into snowy weather”

“Turn into spring” “Turn into fall”

“Turn into Van Gogh style painting” “Turn into Paul Gauguin style painting”

Source

Figure 10: Compositional image editing. CSD-Edit demonstrates the ability to edit consistently and coherently across
patches in panorama images. This provides the unique capability to manipulate each patch according to different instructions
while maintaining the overall structure of the source image. Remarkably, CSD-Edit ensures a smooth transition between
patches, even when different instructions are applied.
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“Turn a bear into a tiger”

“Give him a yellow T-shirt”
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Figure 11: Video editing. CSD-Edit demonstrates various editing from an object (e.g., tiger) to attributes (e.g., color) while
providing consistent edits across frames and maintaining the overall structure of a source video.
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(a)“What if he were an anime character?”
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Original NeRF (b)“Make him smile”

Figure 12: 3D NeRF scene editing. Visualizing novel-views of edited Fangzhou NeRF scene (Wang et al., 2022). CSD-Edit
leads to high-quality editing of 3D scenes and better preserves semantics of source scenes, e.g., obtains sharp facial details
(left) and makes him smile without giving beard (right).
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SDS CSD (Ours)

“a fox holding a videogame controller” “a crocodile playing a drum set”

SDS CSD (Ours)

“Chichen Itza, aerial view”“a plush dragon toy”

“a beautiful dress made out of fruit, on a mannequin” “a squirrel in samurai armor wielding a katana”

Figure 13: Text-to-3D generation examples. (First row) CSD helps to capture coherent geometry compared to using SDS.
(Second row) CSD allows learning finer details than SDS. (Third row) CSD can provide diverse and high-quality samples
without changing random seeds.


