
A Label is Worth a Thousand Images
in Dataset Distillation

Tian Qin
Harvard University

Cambridge, MA
tqin@g.harvard.edu

Zhiwei Deng
Google DeepMind

Mountain View, CA
zhiweideng@google.com

David Alvarez-Melis
Harvard University & MSR

Cambridge, MA
dam@seas.harvard.edu

Abstract

Data quality is a crucial factor in the performance of machine learning models, a
principle that dataset distillation methods exploit by compressing training datasets
into much smaller counterparts that maintain similar downstream performance.
Understanding how and why data distillation methods work is vital not only for
improving these methods but also for revealing fundamental characteristics of
“good” training data. However, a major challenge in achieving this goal is the
observation that distillation approaches, which rely on sophisticated but mostly
disparate methods to generate synthetic data, have little in common with each
other. In this work, we highlight a largely overlooked aspect common to most of
these methods: the use of soft (probabilistic) labels. Through a series of ablation
experiments, we study the role of soft labels in depth. Our results reveal that the
main factor explaining the performance of state-of-the-art distillation methods
is not the specific techniques used to generate synthetic data but rather the use
of soft labels. Furthermore, we demonstrate that not all soft labels are created
equal; they must contain structured information to be beneficial. We also provide
empirical scaling laws that characterize the effectiveness of soft labels as a function
of images-per-class in the distilled dataset and establish an empirical Pareto frontier
for data-efficient learning. Combined, our findings challenge conventional wisdom
in dataset distillation, underscore the importance of soft labels in learning, and
suggest new directions for improving distillation methods. Code for all experiments
is available at https://github.com/sunnytqin/no-distillation.

1 Introduction
Data is central to the success of modern machine learning models, and there is increasing evidence
that data quality trumps quantity in many settings. For example, in the context of large language
models (LLM), Abdin et al. [1], Gunasekar et al. [11], and Hughes [14] show that training LLMs in a
“data-optimal" regime allows for significant reductions in model size without sacrificing performance
and capabilities. In other words, when trained on high-quality data, small models can rival the
performance of their much larger counterparts. Despite its obvious importance, there is no clear
answer to what characteristics define “good data." Data distillation offers one approach to answering
this question. First introduced by Wang et al. [29], the goal of dataset distillation is to condense
a dataset into a smaller (synthetic) counterpart, such that training on this distilled dataset achieves
performance comparable to training on the original dataset. By studying the distillation process, we
can thus investigate what information is preserved in the data (features, symmetries, and information),
which in turn may shed light on fundamental characteristics that make for “good” training data.

The success of dataset distillation raises two key questions. First, what aspects of the training data
best facilitate “data-efficient" learning? Second, what distillation procedure better captures the aspects
of the dataset relevant for prediction? So far, dataset distillation work has focused almost exclusively
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Figure 1: Soft labels are crucial for dataset distillation Left: Synthetic images by different
distillation methods. Right: Student test Accuracy comparison between different distillation methods
and random baseline from training data (both with hard labels or with soft labels). For soft/hard label
generation details, see Appendix A.2.

on the second question, with a strong emphasis on improving ways to generate synthetic data for each
class [23]. Figure 1 (left) shows examples of the synthetic images generated by various state-of-the-art
(SOTA) data distillation methods. Our first key observation is that, despite very different generation
strategies resulting in perceptually distinct synthetic images, virtually all leading methods, especially
those able to scale to large datasets such as ImageNet-1K (or its downsized version) ([6, 9, 33, 39]),
use soft (i.e., probabilistic) labels for the datasets they distill. Furthermore, Cui et al. [6] and Yin et al.
[33] directly use soft labels generated by pretrained experts.

Based on this observation, we take a step back and revisit the first key motivating question above.
Specifically, we ask: what is the relative importance of features (e.g., images) and labels for distilla-
tion—and therefore, data-efficient training? To answer this question, we design a series of ablation
experiments aimed at studying the role of labels in dataset distillation, including a simple but effective
baseline that pairs randomly sampled training images (i.e., not synthetic, learned ones) and with soft
labels. Surprisingly, we observe that (i) the main factor explaining the success of these methods is
the use of soft labels, and (ii) the simple soft label baseline achieves performance comparable to
SOTA dataset distillation methods (Figure 1, right).1 This result alone has important implications
for practitioners and researchers alike. For practitioners, it calls into question spending compute or
research efforts on generating synthetic images, given their relatively limited contribution to overall
distillation performance. For researchers, it suggests revisiting common assumptions about existing
data distillation approaches and considering alternatives.

After demonstrating the importance of soft labels, and given the limited analysis of their role in data
distillation, we design further experiments to study in detail what makes them so effective for learning.
We focus on the setting where soft labels are generated by an “expert” model, e.g., by labeling an
image with the class probabilities predicted by the model, as most SOTA distillation methods do. We
find that when learning in a data-limited setting, a student model trained on soft-labeled data achieves
its best performance by learning from an early-stopped expert, and its success relies on leveraging
semantic structure contained in these soft labels. We also present an empirical knowledge-data scaling
law along with a Pareto frontier that showcase how (optimal) knowledge can be used to reduce dataset
size. Next, we argue that the soft label baseline is a special case of Knowledge Distillation (KD) [13],
where the role of soft labels has been better appreciated. Our final set of experiments seek to turn
these findings into better methods for generating soft labels. To this end, we first show that expert
ensembles can improve learning value of soft labels. We also show that directly optimizing labels
with data distillation methods (without training any experts) recovers the same information in labels,
indicating that expert knowledge might be the necessary way for dataset distillation.

Taken together, the results of our in-depth analysis highlight the importance of labels in dataset
distillation, challenging conventional wisdom. Our contributions can be summarized as follows:

1Ra-BPTT [9] and FRePo[39] only scale to IPC=1, 2 on downsized ImageNet-1K. TESLA[6] is an MTT[4]
variant with memory-efficient implementation and uses soft labels.
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• We conduct a series of ablations, including a simple-but-powerful baseline, to show that the success
of existing data distillation methods is driven not by synthetic data generation strategies but by the
use of informative labels.

• We show that structured semantic information (e.g., distributional similarity across related classes)
is key to good soft labels and that different distillation budgets imply different optimal soft label
structure profiles. Furthermore, we show how to effectively modulate these profiles by using expert
labelers trained with early stopping, a strategy that turns out to recover soft labels obtained with
existing data distillation methods as a particular case.

• We establish an empirical data-knowledge scaling law to quantify how knowledge can be used to
reduce dataset size, and we also establish a Pareto frontier for data-efficient learning.

2 Related Work
Dataset distillation. Data distillation methods have been primarily developed for image classification
tasks. Existing methods can be organized into three main categories: (1) meta-model matching, (2)
distribution matching, and (3) trajectory matching [23]. Meta-model matching methods approach
the problem by solving the original bi-level optimization formulation of Wang et al. [29]. To tackle
the computation challenge, various methods have been proposed to either approximate the objective
[20] or improve the optimization process [9, 15, 39]. Distribution Matching (DM) seeks to minimize
the statistical distance in the output (logit) space between original and distilled dataset samples
[36]. Further refinements to the method include [16, 28, 35, 37, 39]. Yin et al. [33] propose to
match network statistics (batchnorm) along with logits and then assigning soft labels to synthetic
images. Follow-up works [12, 32] brings further improvements to the soft label assignment strategy.
Matching training trajectories (MTT) was proposed by Cazenavette et al. [5], suggesting that matching
long-range training dynamics can serve as a proxy objective to the expensive bi-level formulation.
Further improvements and variations include [6, 8]. In this work, we aim to uncover common factors
responsible for the success of these methods (i.e., the use of soft labels). We also draw connection
between data distillation and knowledge distillation. Concurrent work [30] also discovers that models
learned from distilled data behaves similar to an early stopped expert.

Distillation with soft labels. Almost all existing distillation methods able to scale to ImageNet-1K
(downsized or original) leverage soft labels. Cui et al. [6] and Yin et al. [33] decouple image learning
from label assignment and directly use pre-trained experts to assign soft labels. Feng et al. [9]
and Zhou et al. [39] learn the distilled images and soft labels simultaneously. In the very early
years of data distillation research, the importance of soft labels was highlighted by Bohdal et al. [3]
and Sucholutsky and Schonlau [26], although this was done in a very limited experimental setting
(MNIST), limiting its influence in further work that tackled larger and more complex classification
tasks more representative of modern machine learning. Despite the increasing prevalence of soft
labels in state-of-the-art dataset distillation methods, little work has been done in a controlled setting
to understand how data and labels each contribute to the quality of the distilled data. This work
extensively addresses this question.

Knowledge Distillation. The goal of knowledge distillation (KD) is to transfer knowledge learned
by a large teacher model to a small student model [2, 10, 13]. While the KD objective may seem at
odds with the dataset distillation objective, many dataset distillation methods [32, 33] are directly
inspired by data-free KD methods [25, 31]. In fact, the use of soft labels has been extensively
studied in the context of KD [13, 19, 27]. Generally, soft labels function both as supervisory signals
and regularizers. Yuan et al. [34] and Zhou et al. [38] further argue that under the KD setting the
regularization effect from soft labels is equally —if not more— important than sharing knowledge.
In this work we uncover deeper connections between the two fields. We show that one way to achieve
dataset distillation is to incorporate expert knowledge into soft labels (i.e., KD). We further show
that, unlike the conclusions drawn in KD, the knowledge-sharing aspect of soft labels is the dominant
effect under the data distillation setting.

3 Soft Labels are Crucial for Distillation
3.1 Background on dataset distillation and a simple soft label baseline
The goal of dataset distillation is to create a condensed version of a larger dataset that retains the
essential information needed for training a model. Formally, we denote the original dataset as
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Table 1: Benchmark SOTA methods against CutMix baseline and soft label baseline on
ImageNet-1K. SRe2L is the only method that can scale to ImageNet-1K. Both soft label-based
baselines with random training images can already achieve comparable performances.

Labeling Strategy Hard label Soft label baseline CutMiX augmented soft labels
Labeling Expert None ResNet18 ResNet50 ResNet18

Image Generation Random ∈ Dtrain Random ∈ Dtrain Random ∈ Dtrain Random ∈ Dtrain SRe2L

Eval Model ResNet18 ResNet18 ResNet50 ResNet18 ResNet50 ResNet18 ResNet18

IPC=1 0.6 (0.1) 6.6 (0.4) 6.8 (0.4) 6.7 (0.4) 7.3 (0.2) 1.6 (0.1) 2.9 (0.5)

10 3.9 (0.6) 23.9 (0.4) 24.0 (0.4) 22.9 (0.6) 23.9 (0.5) 25.8 (0.7) 21.3 (0.6)

50 20.4 (0.4) 47.9 (0.6) 53.1 (0.5) 43.0 (0.6) 53.2 (0.3) 54.3 (0.6) 46.8 (0.2)

100 28.2 (0.3) 53.4 (0.5) 57.6 (0.4) 53.5 (0.5) 58.3 (0.5) 54.7 (0.2) 52.8 (0.3)

200 37.8 (0.5) 56.8 (0.4) 62.3 (0.6) 56.5 (0.8) 62.7 (0.4) 57.7 (0.6) 57.0 (0.4)

Full ResNet18 = 69.8% ResNet50 = 76.1%

Dtarget = {(xi, yi)}, where xi’s are input images and yi’s are labels. Similarly, we can denote the
distilled dataset as Dsyn = {(x̃i, ỹi)}, and to achieve dataset size reduction |Dsyn| ≪ |Dtarget|.
Dataset distillation problem can be formulated as a bi-level optimization problem [29]:

argmin
Dsyn

L(θDsyn ;Dtarget) s.t. θDsyn = argmin
θ

L(θ;Dsyn) (1)

By convention, the size of the distilled data set is often quantified in terms of images per class (IPC).
The goal of this work is to study the role of ỹ in a controlled setting while fixing x̃.

Our first set of experiments comparing the performance of popular distillation methods with hard
vs. soft labels (Figure 1) show that soft labels are crucial for the performance of those distillation
methods. On the other hand, the use of pretrained experts during distillation is also common. These
two observations suggest an ablation study to evaluate the importance of soft labels in the context of
dataset distillation. To this end, we introduce a simple baseline that “distills” datasets by selecting real
(i.e., not synthetic) samples and soft-labeling them. Specifically, we randomly sample images from
the training data and use pretrained experts to generate labels for them. The only hyper-parameter is
thus which expert to use. To generate diverse experts, we save checkpoints at each epoch and vary
which checkpoint is used based on the data budget.

3.2 Benchmarking distillation methods against the soft label baseline
From the many dataset distillation methods that have been proposed, we select the top-performing one
from each of the three categories summarized in Section 2 as a representative: Ra-BPTT [9] (bi-level
optimization objective), MTT [4] (trajectory matching objective), and SR22L [33] (distribution
matching objective). Among these, SRe2L[33] is the only one that generalizes to ImageNet-1K
without the need to downsize it (see Appendix A.3 for downsized comparison). SRe2L first generates
images with a distribution matching objective using a pretrained expert. The same expert is then used
to generate soft labels for these synthetic images. Specifically, SRe2L proposes generating 300 soft
labels per prototype, where each soft label corresponds to a unique augmentation to the image. We
establish an additional baseline, which we denote as “CutMix augmented soft labels" since SRe2L
directly derives the labelling method from from Shen and Xing [25]. In this additional baseline, we
remove the synthetic image generation process and replace it with random images sampled from the
training data. We then employ the same CutMix augmented label generation. Table 1 shows that
randomly sampled training images paired with soft labels yield performance comparable to distilled
synthetic ones. Moreover, the storage cost of the 300 soft labels needed for SRe2L is at least 300×
larger than that of the soft label baseline [22]. We also observe that when the labels are generated by
a teacher model with a different architecture, the student still performs well. In other words, the soft
label baseline meets the cross-architecture generalizability requirement for dataset distillation.

In addition to ImageNet, we benchmark the performance of these methods on smaller datasets, where
they generally tend to perform better. We compare the soft label baseline against other methods on
TinyImageNet, CIFAR-100, and CIFAR-10, as shown in Table 2. For these datasets, existing methods
sometimes significantly outperform the baseline at very low data budgets (i.e., high compression
rates). However, at higher data budgets, the soft label baseline again yields better or comparable
performances. These results show that current methods still face issues scaling to larger data budgets.
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Table 2: Benchmark SOTA methods against soft label baseline (“Sl baseline") on TinyImageNet,
CIFAR-100 and CIFAR-10. For smaller datasets at small data-budget, SOTA distillation methods
can outperform the baseline. Scaling those methods to large data-budget remains a challenge.

Dataset TinyImageNet CIFAR-100 CIFAR-10
Distill Method Ra-BPTT MTT DM Sl Baseline Ra-BPTT MTT DM Sl Baseline Ra-BPTT MTT DM Sl Baseline

IPC=1 20.1 (0.3) 8.8 (0.3) 3.9 (0.2) 7.6 (0.3) 35.3 (0.4) 24.3 (0.3) 11.4 (0.3) 16.0 (0.3) 53.2 (0.7) 46.3 (0.8) 26.0 (0.8) 21.1 (0.5)

10 24.4 (0.2) 23.2 (0.2) 12.9 (0.4) 27.2 (0.4) 47.5 (0.2) 40.1 (0.4) 29.7 (0.3) 34.3 (0.2) 69.4 (0.4) 65.3 (0.7) 48.9 (0.6) 46.3 (0.8)

50 - 28.0 (0.3) 24.1 (0.3) 35.6 (0.4) 50.6 (0.2) 47.7 (0.3) 43.6 (0.4) 47.1 (0.4) 75.3 (0.3) 71.6 (0.2) 63.0 (0.4) 62.1 (0.5)

100 - - - 38.2 (0.2) - - - 51.3 (0.5)

Full ConvNet(F) = 38.5% ConvNet(F) = 56.4% ConvNet(F) = 81.5%
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Figure 2: Expert test accuracy v.s. student test accuracy v.s. soft label entropy. The quality of soft
labels (measured by student accuracy) depends on expert accuracy (left) and label entropy (right).

Importantly, the soft label baseline is robust to random image selection and expert training seeds (Ap-
pendix A.4). Using a simple image selection strategy (cross-entropy) could improve the performance
of the soft label baseline (Appendix B). However, the goal of establishing this baseline is not to
achieve the best performance but to showcase the importance of soft labels for dataset distillation. In
the next section, we aim to understand why soft labels are so important for learning from limited data.

4 Good Soft Labels Require Structured Information
Despite its embarrassing simplicity, the soft label baseline yields strong performances, suggesting that
labels are an important —perhaps the most important— aspect of data-efficient learning. Therefore,
we next seek to understand why soft labels are so effective for learning. In Section 4.1, we start
with a generation observation that expert epoch determines the optimal soft label. In Section 4.2,
we develop an understanding that the structured information encoded in soft labels is what allows
models to learn from so little data. Finally, in Section 4.3, we establish an empirical knowledge-data
scaling law and an extreme version of distillation — learning with no (feature) data.

4.1 General observations from the soft label baseline
In establishing the baseline, we observe that the optimal expert to generate soft labels depends on the
(distilled) data budget. Specifically, for smaller data budgets, it is often better to use labels generated
by an early-stopped expert, which we will refer to “expert at epoch x." As an example, Figure 2
visualizes how using expert at different epochs impact the student test accuracy for ImageNet-1K.

As we train the expert for more epochs, two things in soft labels can change: the information being
conveyed in softmax values (i.e., the softmax distribution itself), and the amount of information
being conveyed (i.e., the entropy). In Figure 5, we visualize the expert soft labels for a randomly
selected image from TinyImageNet (a German Shepherd, with the corresponding label shown in red)
at 4 different epochs. At epoch 0, the soft labels are randomly initialized. The expert at epoch11
(optimal for IPC=1) considers “Bison" as top guess but only assigns 2% probability. At epoch
20, the top two guesses become “Brown bear" and “Bison." Finally, at epoch 50 (roughly optimal
for IPC=10), the expert correctly assigns “German Shepherd" with the maximum likelihood. This
anecdotal example shows that the information being conveyed can change over the course of expert
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training. Besides changes in the per-class information, the entropy of labels also drop over the course
of training. Eventually, the labels sharpen and converge to hard labels, meaning less information
is being conveyed. As a first attempt to isolate these two factors (information, entropy), we look
at experts that have been trained until convergence. Figure 2 (right) shows that the expert starts to
converge and even slightly overfits. The test accuracy stabilizes around 38%, but the entropy of the
labels continues to drop drastically. Despite similar performance by the expert, the later epoch experts
generate labels that are significantly worse for the student model than the earlier epoch experts. In the
next section, we further disentangle the contributions of these two sources of variation (information
and entropy) to the quality of soft labels.

4.2 Structured information in soft labels and its importance for distillation
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Figure 5: Soft labels generated by expert at dif-
ferent epochs. The structured information in soft
labels changes over the course of training.

We first distinguish two components in soft la-
bels - structured information and unstructured
noise. We define structured information as soft-
max values that the student models learn from -
they contain information such as semantic simi-
larities between classes (see Appendix C.1 for a
visualization of information in soft labels). Un-
structured noise, on the other hand, contains no
information but may provide regularization dur-
ing student training. The contribution of these
two effects has only been studied in KD settings
[34, 38]. In data distillation, we aim to quantify
the percentage of softmax values that provide
learnable information and the percentage that
contains only noise. We also want to determine
whether the optimal structured information is
unique to each data budget.

Label swapping test. To quantify the percent-
age of softmax values that contain structured
information, we design a “i-th label swapping
test." This experiment relies on the assumption
that if we sort labels by their softmax values in descending order, the last label likely contains
no useful information. In the experiment, we swap i-th label with the last label, and measure the
relative performance compared to unswapped labels. Refer to Appendix C.2 for a detailed experiment
procedure. Figure 3 shows i-th label swapping test results on TinyImageNet. For all IPC budgets,
swapping top labels significantly hurts the performance, indicating when learning with few data,
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Figure 6: Data-Knowledge Scaling Law for TinyImageNet. Left: Trading knowledge (amount of
information in soft labels) with data using one expert. Right: Establishing the Pareto-optimal front
for data-efficient learning.

students rely more on structured information (knowledge) during learning. For 1 IPC, the top label
does not contain as much information compared to higher IPC. It is likely because the top-1 label
generated by an early-epoch expert, which itself has poor performance, does not contain much useful
information.

Effect of temperature and epoch in soft labels. So far we have only observed that for a given
data budget, there is an optimal expert epoch for label generation (Figure 6). This observation does
not imply that the structured information generated by this expert is indeed optimal. Specifically, we
could not eliminate the possibility that labels generated by the expert at a later epoch may contain
better information but too sharp for the student to learn from (i.e., suboptimal entropy). To further
disentangle the two factors (information and entropy) and understand the impact of label entropy on
label quality, we use a solution from KD: varying the temperature of the softmax value [13] to control
label entropy. Specifically, we perform an extensive grid search on (Expert epoch, Temperature)
under TinyImageNet IPC=10 setting, results shown in Figure 4. Increasing the temperature does
further improve the soft label baseline performance, but the optimal epoch in the temperature=1
setting remains optimal even when temperature smoothing is used. From these two experiments, we
conclude that students leverage structured information in soft labels during learning, and the optimal
information (expert) is unique to each data budget.

4.3 Trading data with knowledge
We have established that the smaller the data budget, the more heavily the student model relies
on structured information present in the soft labels. In this section, we further explore the trade-
off between data and knowledge in two settings. First, we explore a scaling law to quantify how
knowledge can reduce dataset size. Second, we further the idea of “learning from limited data" to
“learning from no data" for a given class.

Scaling law. The data-knowledge scaling law experiment quantitatively measures how knowledge
can reduce dataset size and the optimal knowledge for each dataset size. For the first experiment,
we use an expert trained on TinyImageNet for 7 epochs (with a test accuracy of 11%) as the teacher
model. As in the baseline setting, the data (images) are randomly selected from the original training
set. To establish the empirical scaling law, we vary dataset sizes (measured by IPC) and the amount
of knowledge in the soft labels.To control the amount of knowledge in the soft labels, we retain
different top-k values (sorted by softmax probabilities in descending order) and zero out the rest
without re-normalization.We compare the data-knowledge scaling law against the standard training
scaling law (i.e., using hard labels from data).

The results of the knowledge-data trade-off experiment are shown in Figure 6 left. To fully recover
the teacher model, the student needs around 10 IPC if full knowledge is present (k=200). But the IPC
value quadruples to 40 if we reduce k to 32. Moreover, learning from this expert becomes suboptimal
as the dataset size increases, and students trained on hard labels start to outperform. This finding
supports the observation from Section 4.2: with an increased data budget, the student benefits more
from learning from a model at a later epoch. In Appendix C.3, we repeat the knowledge-data trade-off
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Figure 7: Zero-shot learning in the absence of knowledge v.s. data. The student model can achieve
good performances when data is absent but much worse performances when knowledge is absent.

experiment using an expert trained for later epochs. By combining experts at different epochs with
different data budgets, we can establish a Pareto-optimal front for data-efficient learning, as shown in
Figure 6 right, and curve fit below. The use of expert knowledge provides a constant 6× data size
reduction since |D| = num class× IPC:

Hard Label: Student Test Acc =

(
IPC

29.9

)0.077

− 0.8

Soft Label: Student Test Acc =

(
6.04× IPC

29.9

)0.077

− 0.8

Learning from (almost) no data. We have used the empirical knowledge-data scaling law experi-
ment to establish that one can directly trade knowledge with data. This observation inspires us to
push this idea to the extreme. For a selected class, in which of the following two scenarios would the
student perform better? 1) The student learns in the complete absence of data from this class. 2) The
student learns with data from this class but in the absence of knowledge.

For a selected class i, we design a zero-shot experiment with a control and two treatment groups:

• Control: The student model is trained with data from all classes and full soft label knowledge.
• Treatment 1 - Remove image: We remove all training images from class i while keeping the

softmax values corresponding to class i in the rest of the training data.
• Treatment 2 - Remove label: We keep images from class i and the full soft label for those images.

For all other images in the training data that don’t belong to class i, we zero-out softmax values
corresponding to class i without re-normalization.

Figure 7 shows the experimental results on TinyImageNet under three IPC settings (classes sorted by
control group performance). Compared to the control group, the performance of the remove-data
treatment suffers only a little.This good performance implies that the student can perform zero-shot
classification on the removed class without having seen any images from the class. In contrast,
the student’s performance suffers drastically when labels are removed. For IPC=1, the student
model fails to learn anything at the remove-label setting (0% test accuracy for removed classes), and
the performance of the remove-label treatment only starts to catch up at IPC=50.This substantial
performance difference between the two treatment groups suggests that the information conveyed in
labels is more important than the data.

5 Soft Labels are Not Created Equal
So far we have established that one way to achieve dataset distillation is by trading knowledge for data,
specifically using knowledge from pretrained experts. In this section, we continue to work under the
setting where images are randomly sampled from the training data, but we expand on different ways
to obtain “knowledge.” In Section 5.1, we show that an expert ensemble can consistently improve
soft label quality. In Section 5.2, we discuss the possibility of obtaining soft labels through data
distillation methods.
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Table 3: Comparison of label generation strategies on TinyImageNet. Ensemble provides
consistent performance improvement. Distillation method (BPTT) can be adopted to learn labels.

Label Source Data Expert Distilled

Labeling Method Hard Single Ensemble BPTT MTT

IPC=1 1.6 (0.1) 7.6 (0.3) 8.7 (0.1) 13.5 (0.3) 2.2 (0.0)

10 7.3 (0.2) 27.2 (0.4) 30.1 (0.2) 25.0 (0.4) 10.3 (0.2)

50 20.7 (0.3) 35.6 (0.4) 39.3 (0.4) - 22.2 (0.5)

5.1 Expert ensemble
A common strategy to boost predictive performance in machine learning is to use ensemble predictors.
By combining predictions from various models, ensemble methods effectively capture a more
comprehensive representation of the underlying data distribution. Therefore, we hypothesize that
averaging soft label predictions from multiple experts might improve the quality of the labels. We
train 10 ConvNet experts with different random seeds on TinyImageNet. To generate ensemble soft
labels, we average the logits from all the experts for each of the randomly selected training images
before passing them through the softmax calculation. For a fair comparison, we use the expert epoch
previously determined in the soft label baseline. Table 3 shows that soft labels derived from expert
ensembles consistently improve student model accuracy compared to single-expert labels.

5.2 Learning soft labels through data distillation methods
Instead of using pretrained experts to generate soft labels, a natural alternative is to learn labels through
dataset distillation methods. The motivation is twofold: First, we aim to explore different approaches
in hopes of finding better ways to obtain labels. More importantly, we have demonstrated that using
the knowledge-distillation framework (i.e., using pretrained experts) is a sufficient mechanism to
obtain informative labels. We now want to understand whether the information generated by experts
is the only (or necessary) solution.

Distribution matching-based distillation methods, one of the three predominant categories of success-
ful distillation methods identified above, cannot be easily adapted to learn labels because they aim
to generate synthetic images that minimize cross entropy on a teacher model. This leaves two other
possible families of methods: training trajectory matching and bi-level optimization. For both meth-
ods, we can adopt the same training objective but freeze the images and learn the labels only.For the
training trajectory matching objective, we adopt MTT [4], and for the bi-level optimization objective,
we adopt truncated-BPTT [9] (also known as BPTT). We experiment with these two adaptations on
TinyImageNet, with results shown in Table 3. The MTT adaptation fails to meaningfully improve
on the hard label baseline—see Appendix D.1 for a detailed description of the MTT objective and a
discussion on why it fails. On the other hand, the BPTT adaptation yields meaningful results, even
slightly improving on ensemble labels in the IPC=1 setting.
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Figure 8: Normalized JSD between BPTT-
learned labels and ensemble-expert labels on
TinyImageNet. Despite not training any experts,
distillation method (BPTT) recovers the same la-
bels as those generated by early stopped experts.

To understand whether expert knowledge is nec-
essary to obtain useful soft labels, we compare
BPTT-learned labels with ensemble-generated
labels. The motivation behind comparing BPTT
labels is not due to their performance, but
because BPTT addresses dataset distillation di-
rectly from its problem formulation (Eqn. 1). By
directly solving the bi-level optimization prob-
lem, no experts are trained during the distillation
process. Moreover, it eliminates concerns about
whether a proxy distillation objective, such as
training trajectory matching, may introduce bias
into the distillation outcome. See Appendix D.2
for a detailed description of truncated-BPTT
algorithm and our adaptation to learn labels.

We fix the randomly sampled training images
and generate soft labels using an expert ensem-
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ble and using BPTT. We use ensemble labels instead of a single expert labels to reduce bias. We use
the Jensen-Shannon Distance (JSD) to quantify the distance between the softmax distributions. For
each image, we also perform a min-max normalization across all expert epochs to identify the epoch
at which the BPTT-generated label for that image is most similar to the ensemble-generated labels.
See Appendix D.2 for a detailed description of the comparison methodology. Figure 8 shows the
normalized JSD for all images under the TinyImageNet IPC=1 and IPC=10 settings. For both data
budgets, the minimizing epoch for the normalized JSD across all images is roughly the same (Epoch
13 for IPC=1, 25 for IPC=10). Conveniently, epoch 13 is fairly close to the optimal early-stop epoch
for IPC=1 (optimal stop epoch = 11). In Appendix D.2, we also compare raw JSD values to further
ensure that the distributions are sufficiently close to each other on an absolute scale.

The two observations above provide strong evidence that BPTT recovers the same labels generated
by the optimal early-stopped expert, without explicitly training any. Note that by restricting to only
learning labels, we limit the scope of the dataset distillation problem. However, in this restricted
setting, the dataset distillation solution converges to the knowledge distillation solution (i.e., labels
from an optimal early-stopped expert), indicating that expert knowledge is necessary to obtain
informative labels. A future direction is to explore how this conclusion might change when images
are learned simultaneously with labels.

6 Discussion and Conclusions
This paper highlights the crucial role of soft labels in dataset distillation. Through a series of ablation
experiments and a simple soft label baseline, we have shown that the use of soft labels is the main
factor behind the success of state-of-the-art dataset distillation methods. We also demonstrated that
structured information in soft labels is crucial for data-efficient learning. We established an empirical
knowledge-data scaling law to characterize the effectiveness of using knowledge to reduce dataset
size and an empirical Pareto frontier for data-efficient learning. Additionally, we showed that when
only learning labels, data distillation converges to the knowledge distillation solution.

Implications for dataset distillation Our findings have several implications. First, they suggest
rethinking existing data distillation methods that emphasize on synthetic image generation techniques,
while under emphasize the importance of informative labels. Shifting the focus of distillation research
to account for both of these factors is likely to lead to novel, potentially better, approaches. For
example, in this work we only considered the setting where images are randomly selected from the
training data, but future work may explore simultaneous image/label synthesis methods to improve
distillation performance. Future research may also investigate whether data distillation can be
achieved without using expert knowledge, either implicitly or explicitly, in a model-agnostic or even
task-agnostic way. For example, future research may investigate how to synthesize images or labels
by summarizing characteristics of the dataset, such as symmetries and other invariance priors.

Limitations and future work We have emphasized the importance of soft labels by implementing
a simple soft label baseline. While this approach performs well on ImageNet-1K, advanced methods
such as [12, 24] continue to push the state of the art. This suggests that, while labels are crucial, suc-
cessful dataset distillation requires leveraging both images and labels to achieve optimal compression.
Future work should explore how best to optimize both components during distillation and examine
how each uniquely influences student model learning. Additionally, investigating what other types of
information, beyond expert knowledge, can be distilled for effective compression remains an open
research question.

On the label generation front, we have explored strategies based on existing methodologies, including
pretrained experts and Ra-BPTT. Future research could further investigate more effective ways to
generate informative labels that enhance model performance.

Lastly, like much of the dataset distillation research, our focus has primarily been on image classifica-
tion tasks. Although dataset distillation has demonstrated strong results in this area, extending these
methods to other tasks and data modalities remains under-explored. While we believe our conclusions
are generalizable, a limitation of this work is the narrow range of tasks evaluated. Future studies
should explore how distillation techniques perform across a broader set of domains and modalities.
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A Soft label baseline
A.1 Experimental Details
Models For datasets including downsized ImageNet-1K, TinyImageNet, CIFAR-100, and CIFAR-
10 we employ the standard ConvNet architecture that is used by data distillation methods we
benchmark against [4, 7, 9, 36]. We use 3 convolutional blocks for low resolution datasets (res:32×32,
CIFAR-10, CIFAR-100) and 4 convolutional blocks for medium resolution datasets (res: 64× 64,
TinyImageNet, downsized ImageNet-1K). For the original size ImageNet-1K, we use the PyTorch
[21] official implementation of ResNet18 and ResNet50 to standardize comparison against the SOTA
methods [33] we benchmark against.

Expert training We follow a standard training recipe to train experts on downsized ImageNet-1K,
TinyImageNet, CIFAR-10, and CIFAR-100. This standard training recipe involves an SGD optimizer
and a simple step learning rate schedule, and is used by distillation methods that require experts
training in the distillation pipeline [4, 6]. Note that due to the simplicity of the training recipe
and model architecture, the expert performance on the full dataset does not reach SOTA image
classification performances. The expert training procedure is chosen to facilitate fair comparisons
in the context of dataset distillation. For ImageNet-1K, SOTA methods [33] we benchmark against
leverage PyTorch pretrained ResNet18 as their teacher model, therefore we adopt the PyTorch official
training recipe [17] for expert training.

Evaluation To train student models on distilled dataset, we only allow learning rate tuning and we
train student models until convergence. We train five student models with different random seeds and
report mean and variance. For other methods we reported in Table 1, 4, and 2, we report values from
the original paper. For methods that we report performance without using soft labels (Figure 1 right),
we use results reported in the original paper for MTT (TESLA)[6], and FRePo [39]. For Ra-BPTT [9]
and SRe2L [33], since they do not report results without soft labels, we acquire the distilled datasets
and replace soft labels with hard labels. We perform the same evaluating procedure as above.

Compute All experiments are conducted on NVIDIA A100 SXM4 40GB or NVIDIA H100 80GB
HBM3. To train small datasets, experiments typically require less than 5 GPU hours and for large
datasets, experiments require at most 100 GPU hours.

A.2 Label generation and epoch tuning for existing methods
We provide further details regarding how labels are generated in Figure 1(right). We compare our soft
label baselines to four existing methods, each with their own soft label generation strategies proposed
by the original authors. We apply the original soft label generation strategy used by each method.
Overall, some of these methods already include epoch tuning (MTT/TESLA), while others do not
(SRe2L), and for some, the concept of epoch tuning is not well-defined (Ra-BPTT and FRePo). In
addition, we also compare the performance of the four proposed methods with or without soft labels.
We clarify how hard labels and soft labels are obtained for each of the methods:

SRe2L The original method uses labels generated from a fully trained expert without epoch tuning.
In our reported results for SRe2L, we include a version of the soft label generation method that
directly replicates the original method (detailed in Section 3.2). We also include a version of the
soft label generation method that is identical to the soft label baseline, which includes epoch tuning
(detailed in Section 3.1). To obtain the hard label counterpart, since SRe2L initializes its distilled
images directly from training images, we use the original label of those images as the hard label.

MTT (TESLA) In the original method, the expert used to generate labels is already epoch-tuned,
and the epoch also impacts the image generation pipeline. Therefore, we replicate the soft label
generation strategy in the original method. To obtain the hard label counterpart, since MTT/TESLA
initialize their distilled images directly from training images, we use the original label of those images
as the hard label.

Ra-BPTT The original method generates labels along with images using a bi-level optimization
objective, so no experts are trained during the process. Because labels are not generated by experts,
epoch tuning is not applicable. We use the soft labels generated by the original method. In addition,
we have experimented with using pre-trained experts to generate labels for Ra-BPTT generated
images but observed that experts trained on real images perform poorly on images synthesized by
Ra-BPTT. This is likely because the generated images are too out-of-distribution for experts trained
on real training data. Thus, the original labels generated by Ra-BPTT should be considered optimal
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for this method. Since Ra-BPTT images are initialized with random Gaussian noise, we use the
argmax as hard labels.

FRePo Similar to Ra-BPTT, FRePo is based on Back-Propagation in Time (BPTT), and no experts
are trained during the distillation process. Like Ra-BPTT, labels are learned during the distillation
process along with images. We use the hard label results reported in the original paper.

A.3 Downsized ImageNet-1K results
There are three other methods that can scale to ImageNet-1K but a downsized version (reducing
image resolution from 256 × 256 to 64 × 64) and only at small IPC values. We compare their
performances against the soft label baseline in Table 4. Among those methods, only Ra-BPTT can
slightly outperform the soft label baseline, albeit by a small margin. Scaling these methods to larger
data-budget remains a challenge, and as a result, we truncate Table 4 to IPC=2.

Table 4: Benchmark SOTA methods against the soft label baseline (“Sl Baseline") on (downsized)
ImageNet-1K. Other distillation methods can only scale to downsized (64× 64) ImageNet-1K and
they do not significantly outperform the baseline.

ImageNet-1K (Downsized)
Distillation Method Ra-BPTT FRePo DM Sl Baseline

IPC=1 10.77 (0.4) 7.5 (0.5) 1.5 (0.1) 8.0 (0.4)

2 12.05 (0.5) 9.7 (0.2) 1.7 (0.1) 9.6 (0.3)

A.4 Variance from expert training seed and random image seed
The soft label baseline involves randomly selecting images from training data and use pretrained
single expert to generate soft labels for the selected images. We use 6 different random seeds for
image selection to confirm that the soft label baseline is not sensitive to random image selection,
shown in Table 5. Additionally, we confirm that the soft label baseline is no sensitive to experts
training seeds. Specifically, we train six different experts using the same hyperparameters and only
varying random seeds. In expert seed experiment, we fix the randomly selected images for the
distilled dataset. Results shown in Table 6. As above, student test accuracy is reported as the average
of five runs with different random seeds.

Table 5: Image selection with different random seeds on TinyImageNet. Our soft label baseline is
not sensitive to random image selections.

IPC Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6

1 7.7 (0.2) 7.5 (0.2) 7.3 (0.3) 7.0 (0.2) 7.2 (0.2) 7.5 (0.1)

10 26.8 (0.1) 26.8 (0.2) 27.3 (0.1) 26.6 (0.1) 26.9 (0.2) 27.0 (0.1)

50 36.1 (0.3) 35.6 (0.5) 35.6 (0.4) 36.0 (0.1) 35.8 (0.3) 35.6 (0.1)

Table 6: Image selection with different expert training seeds on TinyImageNet. Our soft label
baseline is not sensitive to experts with different training seeds

IPC Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6

1 7.6 (0.1) 7.5 (0.1) 8.0 (0.2) 7.5 (0.2) 7.9 (0.1) 7.6 (0.1)

10 26.4 (0.4) 26.8 (0.3) 26.4 (0.3) 26.6 (0.2) 26.4 (0.1) 26.8 (0.2)

50 35.7 (0.1) 35.9 (0.2) 36.0 (0.1) 35.7 (0.4) 35.7 (0.3) 36.2 (0.4)

A.5 Hyperparameters for expert training and soft label generation
We include the optimal expert epochs to reproduce results reported in Table 1 and Table 2. For smaller
IPC values, we train experts with a reduced learning rate so that when we save expert checkpoints,
we get expert accuracy at a more granular scale. Note that using a smaller learning rate for expert
training is for implementation simplicity. Alternatively, one could use partial epoch checkpoints to
achieve the same outcome.
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Table 7: Hyperparameter list to reproduce soft label baseline results in Table 1 and Table 2.

Dataset Expert Architecture IPC Expert LR Student LR Expert Epoch Expert Test Accuracy (%)

ImageNet ResNet18 1 5× 10−4 1× 10−3 11 17.3
10 5× 10−4 5× 10−3 43 35.8
50 1× 10−1 5× 10−3 30 60.9

100 1× 10−1 5× 10−3 34 62.8
200 1× 10−1 2× 10−3 34 62.8

ImageNet ResNet50 1 5× 10−4 1× 10−3 9 15.4
10 5× 10−4 5× 10−3 24 31.0
50 1× 10−1 5× 10−3 30 66.6

100 1× 10−1 5× 10−3 32 68.6
200 1× 10−1 2× 10−3 61 73.3

TinyImageNet ConvNetD4 1 1× 10−2 1× 10−2 11 19.2
10 1× 10−2 1× 10−1 50 35.0
50 1× 10−2 1× 10−1 90 38.1

100 1× 10−2 1× 10−1 102 38.8
CIFAR-100 ConvNetD3 1 1× 10−2 1× 10−2 13 33.1

10 1× 10−2 1× 10−2 36 47.6
50 1× 10−2 1× 10−2 125 52.7

100 1× 10−2 1× 10−2 125 52.7
CIFAR-10 ConvNetD3 1 5× 10−4 1× 10−2 20 56.0

10 5× 10−4 1× 10−2 44 65.1
50 5× 10−4 1× 10−2 128 74.9

100 5× 10−4 1× 10−2 164 76.5

B Image selection using cross entropy
The soft label baseline involves the most naive way of selecting images from training data: random
selection. We additionally show that using cross-entropy (CE) as a selection criteria further improves
the data quality. For each class, we first use the optimal expert to compute cross-entropy values
for each images in the original training set. We then divide the training images into 10 quantiles
according to the CE values, where 1 corresponds to “easiest" sample with lowest CE. We perform the
CE-selection on TinyImageNet with IPC=1, 10, 50 settings, and report results in Figure 9. Using
the “easiest" samples provide a small but consistent improvement (≈ 1%) to random selection, while
using the “hardest" samples hurts the performance much more.
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Figure 9: Selecting images with cross-entropy criteria further improves the soft label baseline
performances. We select training images based on cross-entropy scores using epoch-tuned experts,
and report the relative student accuracy change when compared to random selection.

C Additional Analysis Results
C.1 Soft label visualization
We visualize the soft labels for TinyImageNet training set generated by a ConvNet expert at epoch 50
in Figure 10. For every image in the original training set, we use the expert to generate soft labels
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and aggregate soft labels by the predicted class (i.e., argmax) with simple averaging. The diagonal
(probability for the predicted class) is zeroed out so we can see the structures in non-top softmax
values. Qualitatively, the clusters present correspond to WordNet ontology [18], some of which we
hand annotate with their common ancestors in WordNet.
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Figure 10: Visualizing softmax probabilities for each class in Tiny ImageNet Soft labels are
generated by pre-trained experts, and they exhibit structures related to semantic similarity.

C.2 i-th label swapping test
The experiment procedure is the following:

i Use the optimal early-stopped expert to assign soft labels for a given set of randomly samples
training images.

ii Sort softmax probabilities in descending order
iii At each iteration i ∈ [1, |C|], we swap the i-th label with the last label.
iv Train student model on the swapped label, and compute

Relative Performance =
Student Model Accuracy on swapped i-th label
Student Model Accuracy on unswapped label

C.3 Data-knowledge Scaling Law
In Figure 11, we repeat the same data-knowledge scaling law in Section 4.3. The comparison Figure
6 and Figure 11 shows that to fully learn the expert model at a later epoch, the student models
need more data. For example, to fully learn the expert model at epoch 11 (e.g., Figure 6), with full
knowledge, the student model needs less than 20 IPC. In contrast, to fully learn the expert model
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at epoch 46 (e.g. Figure 11), the student model needs almost 100 IPC. By combining scaling laws
for different experts and for different data budgets, we establish the Pareto frontier for data-efficient
learning shown in Figure 6 right.
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Figure 11: Empirical Data-Knowledge Scaling Law with expert at epoch 46. We repeat the scaling
law experiment in Section 11 using a later-epoch expert. The comparison between two experiments
shows that more data is needed for the student to fully recover a later-epoch expert.

D Details on label learning with distillation methods
D.1 Learn label with MTT
MTT [4] distills data by a trajectory matching objective. Given a network, the method first trains
many experts on the full dataset, and saves the entire training trajectory (namely, the expert model
parameters at each epoch). To learn the distilled data, a student model is initialized from a random
checkpoint of a random expert, and then the student model is trained for several iterations on the
distilled dataset. The goal is to match the model parameters (after being trained on the distilled
dataset) with the model parameters trained the full dataset at a future epoch. We adopt Algorithm 1
in the original paper [4] but simply freeze images after initializing them with random training data.
Labels are initialized as hard labels according to the image class. During distillation, only labels are
learned. We perform an extensive hyperparameter search on sensitive parameters such as: N : number
of steps the student model trains on the distilled data, M : the future expert epoch we compare student
model parameters to, T : the maximum expert epoch we initialize student model parameters with.
Best results are reported in Table 3.

Table 3 shows that MTT-adaptation only provides marginal improvements to the hard label baseline.
When only images are distilled, the trajectory matching objective is a suitable proxy to the bi-level
dataset distillation objective. Nevertheless, the training dynamics of student learning with soft labels
could be quite different from the training dynamics of experts learning with hard labels. In other
words, when soft labels are used to train student models, it is not guaranteed that matching experts’
trajectory remains a suitable proxy for dataset distillation’s objective.

D.2 Learn label with BPTT
We use truncated-BPTT [7, 9] to solve the bi-level optimization problem detailed in Eqn. 1. See
Algorithm 1 for details. Instead of learning both images and labels, we initialize images from
randomly selected training data and freeze them during distillation and learn label only. The BPTT
algorithm has relative high sensitivity to hyperparameters such as T : total number of unrolling steps,
M : truncated window size. Additionally, one common pitfall to BPTT is exploding gradients. To
combat the optimization challenge, we adopt the algorithm and the training recipe from Feng et al.
[9]. We perform an extensive hyperparameter search and report the best results in Table 3.

The comparison methodology is the following. To compare labels learned by BPTT and those
generated from experts, we use the same data ({xi}IPC

i=1 ) to generate labels with either methods. We
denote expert-ensemble labels as {yli}, where l indicates the early-stopped epoch. We denote the
BPTT-learned labels as {yBPTT

i }. We use Jensen-Shannon Distance (JSD) to quantify the distance
between the soft labels generated by two methods.
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Algorithm 1 Learn soft label with BPTT

Require: Target dataset Dtarget. T : total number of unrolling steps. M : truncated window size. α1:
student network learning rate. α2: distilled data(label) learning rate. L: loss function(cross-entropy
for classification)
Randomly sample images from {xi}IPC

i=1 ∼ D
Initialize soft label with hard label. Distilled dataset: Dsyn = {xi, yi}IPC

i=1
while Not converged do

Sample a batch of data dtarget ∈ Dtarget

Randomly initialize student network parameter θ0
for n : 0→ T − 1 do

if If n == T −M then
Start accumulating gradients

end if
Sample a mini-batch of distilled data dsyn ∼ Dsyn

Perform gradient update on student network parameters θn+1 = θn − α1∇L(dsyn; θn)
end for
Compute loss on target data L(dtarget, θN )
Perform gradient update on soft label {yi} ← {yi} − α2∇L(dtarget, θN )

end while

For each image xi, we compute JSD(yBPTT
i , yli) for all l. We perform min-max normalization across

epochs:

Normalized JSD(yBPTT
i , yli) =

JSD(yBPTT
i , yli)−mink JSD(yBPTT

i , yki )

maxk JSD(yBPTT
i , yki )−mink JSD(yBPTT

i , yki )

In addition to the normalized JSD shown in Figure 8, Figure 12 shows the raw JSD comparisons
between BPTT learned labels and ensemble-expert tagged labels. To build a baseline reference, we
compute JSD values between soft labels generate by four single experts (only differ by training seeds)
on the same set of images. For IPC=1, the JSD between BPTT learned labels and ensemble labels
have slightly higher JSDs than the expert pairwise distance. For IPC=10, the JSD values fall into the
same distribution. The raw JSD comparison further suggests that BPTT generated labels recovers a
softmax distribution that is very similar to ensemble labels.

Similar to standard distillation, BPTT might suffer from the same scaling problem. In other words, it
yields suboptimal performance when distilling on larger IPCs. We suspect that optimization might be
the cause behind BPTT learned label has worse performance than the best ensemble-expert labels at
IPC=10.
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Figure 12: JSD between BPTT-learned labels and expert-ensemble labels JSDs between BPTT
and expert-ensemble labels fall into the same distribution as JSDs between labels generated by two
random experts.

18



NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope summarized in abstract can be found in Section 3,
Section 4 and Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6 discuss limitations. In each of section 3, 4 and 5, we also discuss
specific limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not include any theoretical result in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix A includes experiment details to reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and data for all experiments are available online.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix A includes experiment details to reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported and the source of errobars are detailed in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix A details the compute needed.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No immediate societal impact.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: Code, data and models are cited when applicable.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

25

paperswithcode.com/datasets


Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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