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Abstract

Historically the vast amount of knowledge that
experts publish has been increasing in such a
pace that keeping up to date and having a full
perspective, even in particular topics, has be-
come quite challenging. Such is the case of
the current COVID-19 pandemic were there
are so many clinical notes, experiments, expert
observations around the world that doctors, re-
searchers, and public authorities struggle to ex-
plore pieces of related but not explicitly con-
nected knowledge concerning to their respec-
tive duties.

To simplify the process of exploration of the
literature related to COVID-19, we propose a
smart literature analysis environment, which
includes several NLP-powered components to
enable a more efficient reading process. In
particular, we propose a semantically-guided
transversal reading. We believe that this type
of reading can significantly benefit the process
of grasping the prominent opinion and state-of-
the-art of a particular aspect. Our strategy to
provide this feature was to interlink all seman-
tically related sentences by semantic-textual-
similarity (STS).

Besides, we enrich the literature with
named-entity recognition and disambigua-
tion (NERD), using the major life science
databases as entity sources, enable named-
entity searches, provide network-graphs of
the most interconnected publications and,
an interactive tool to highlight the most
central statements within an article. All these
capabilities are embedded in an easy to use
web environment1.

1 Introduction

The current pandemic took the world by surprise
in all aspects. Among several difficulties, it also

1http://covid19.ccg.unam.mx:82/

brought to the fore a problem that has become in-
creasingly urgent over the years: That the knowl-
edge we are producing is stored and shared in a
manner that is not in-line with the pace and acces-
sibility that is needed.

We have witnessed an enormous effort and soli-
darity that all kinds of involved actors around the
world had put in reporting and sharing their expe-
riences and findings. However, these efforts have
been often undermined by the lack of easy ways to
find a particular piece of knowledge or, if found, to
weigh the degree of support and consensus it has.

One way to help tackle the emergency is to pro-
vide users with assisted means to explore the litera-
ture.

The goal of the system described in this paper
is to facilitate the identification of central items of
knowledge within a collection of publications. We
addressed it by taking some insights of the reading
comprehension analysis from the psycholinguistic
point of view which led us to propose a combina-
tion of Natural Language Processing (NLP) tools
that respond to 4 main objectives: provide a shal-
low but fast view of how publications are related
through a network of semantic connections, facili-
tate skim reading by highlighting the more central
sentences in an article, make more sense of a publi-
cation set by enabling browsing across semantically
related statements and, enrich the reader context by
Named-Entity Recognition and Disambiguation.

We developed these NLP strategies and inte-
grated them in a web environment to make them
easily available to any user. The application is al-
ready online and we are currently processing the
firsts collections.

2 Background

To grasp the nitty-gritty of a document or a collec-
tion of them is clearly much more than summariz-
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ing or finding interconnections but, comprehend
what is expressed in the texts is part of the pro-
cess. There is a long and solid research about the
reading-comprehension phenomena which includes
a myriad of sub-tasks. Among these sub-tasks it
is to identify the topic, to make sense of the way
information is organized and, to extract the main
idea (Baumann, 1984).

We think that there are some interesting similari-
ties between trying to get the main-idea of a single
text and of a collection of them. Two key factors are
the identification of words relevant in the context
and the recognition of the relationships between
the text propositions (Graesser et al., 1994; Grabe,
2004). The first one give important clues to what
the main information is (Wilawan, 2012; Hoey,
1991). The second help to understand the way
in which information is organized (Grabe, 2004;
Crosson and Lesaux, 2013).

Automatic signaling these factors can play a po-
tential support for the reader to enhance his compre-
hension (Degand and Sanders, 2002). Even though
going beyond the mere identification is appealing,
we think that doing that could misguide, in a re-
strictive way, the reader comprehension. This has
been argued by some constructionist theories that
postulate that during reading the meaning represen-
tations are generated online and that the readers
generate representation that address their personal
goals (Graesser et al., 1994). Therefore highlight
relevant terms and signalize the relationships is
a good trade-off between automatic-support and
freedom.

3 Methodology

In this section, we first briefly describe the general
pipeline and system architecture, and then the NLP
methods and how they are leveraged.

3.1 System architecture and pipeline

First the publication collection is processed by our
PDF-content-extractor which produces a set of files
with text and stylographic data. These files are pro-
vided as input to the Semantic Textual Similarity
(STS) and Named-Entity Recognition and Disam-
biguation (NERD) tasks which are performed in-
dividually and off-line. The publications’ text and
the annotated entities, resulting from the NERD
step, are indexed in an ElasticSearch instance. The
STS scores and its involved sentences indexes are

stored in a key-value database (SSDB2). Finally,
the collection name and metadata is registered in a
MongoDB instance.

The front-end is composed by an Angular ap-
plication and a Java API which access the above
mentioned databases; all deployed as docker con-
tainers.

3.2 Semantic Textual Similarity

To evaluate all semantic similarities within a set of
documents the STS has to be computed for all com-
binations of each sentence versus all the others, i.e.,(N
2

)
−N where N is the number of all the sentences

in the set; which means an upper bound complexity
ofO(N2). So we opted for computing embeddings
individually for all sentences and, after, measure
the cosine between each pair of embeddings.

We used SciBERT (Beltagy et al., 2019), an un-
supervised transformer language model pre-trained
in the scientific literature. It was selected over
BioBERT (Beltagy et al., 2019) because COVID-
19 corpora include literature from other areas be-
sides biological sciences, e.g., social sciences, pub-
lic health, psychology, etc. Using SciBERT we
mapped tokens to embeddings and then applied
mean pooling to get one fixed-sized sentence vec-
tor. Due to the lack of STS corpora specific to the
COVID-19 literature, we did not apply any fine-
tuning.

Although we did not have an STS corpus
for COVID-19 literature, we performed an indi-
rect validation over one corpus of the topic of
transcriptional-regulation (Lithgow-Serrano et al.,
2019) (i.e., within the genetics field). We com-
pared SciBERT versus DistilBERT (Sanh et al.,
2019) and two versions of InferSent (Conneau
et al., 2017) embeddings generated from different
pre-trained GLOVE word-embeddings (Penning-
ton et al., 2014), the results are shown in table 1.

Pearson Spearman Model
0.686 0.743 SciBERT
0.645 0.620 DistilBERT
0.534 0.584 InferSent GloVe-840B
0.469 0.574 InferSent GloVe SMTR

Table 1: Model correlations

2http://ssdb.io/
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3.2.1 Interlinking
The interlinks of each sentence (anchor) are the
N more semantically similar sentences within the
publication set. Those target sentences can be in
the same publication as the anchor (internal) or
in others publications (external). We also filter-
out those interlinks with a STS below a threshold
θ = 0.85.

It is worth noticing that if sj is within the best
connections of si (si → sj) does not necessarily
hold the other way around (sj → si).

3.2.2 Network of publications
The network of publications is a directed graph
with nodes representing publications and edges the
semantic connections among them. There are two
links between two publications (A,B): the edge
that summarize (eq. 1) all sentences from A that
target sentences in B and, the edge that represent
sentences from B targeting sentences in A.

edge(A→ B) =

|si∈A∧sj∈B∧si→sj |∑
STS(si, sj)

(1)

3.2.3 Highlight of more central sentences
The identification of the more central sentences in a
publication is also based in the STS scores. For this
task we only use the internal interlinks i.e., links
connecting sentences in the same document. The
centrality of a sentence i within a document A is
given by the weighted sum of the connections of si
to other sentences plus the connections from other
sentences to si (eq. 2). The current weights were
empirically set at ψ = 0.35 and ω = 0.65, i.e., to
evaluate the centrality of a sentence we give more
importance to the connections it receives.

Ξ(si) =

|sentencesA|∑
ψSTS(si → sj)+ωSTS(sj → si)

(2)

3.3 Named-entity recognition and
disambiguation

The NERD capabilities are provided by the On-
toGene’s Biomedical Entity Recogniser (OGER)
(Furrer et al., 2019), a state-of-the-art biomedical
annotator which in turn depends on the Bio Term
Hub (BTH) (Ellendorff et al., 2015). BTH is a com-
bined terminological resource created by dynam-
ically sourcing entity names and their identifiers
from reference databases.

OGER was integrated using its RESTful web
service that allows remotely batch annotate a col-
lection of documents. We opted for the TSV output
which was later converted to the ElasticSearch an-
notation format.

4 Results

Figure 1 shows the reading environment. From
right to left: first the toolbar allows easy access
to the features that can be used when reading a
publication; next the tool-details panel contains in-
formation and controls specific to the active tool;
following, the PDF reader display the source PDF
when available; at the middle there is the eagle-
view panel that shows a global perspective of the
document and where the highlighted sentences are
located; finally, the processed content panel display
the publication sentences (one per line), the anno-
tated entities (if the annotation tool is active) and
the hyperlinks to access interlinked sentences.

Figure 1: Reading component with highlighted named-
entities.

The index of each sentence in the content-panel
is a hyperlink that trigger the interlink-tool (fig. 2).
If activated, the tool-detail panel display a list of
internal and external sentences semantically related
to the selected one. The list of internal relations
works as a fast overview of the progression of the
idea through the document and, the list of exter-
nal relations is a summary of potential supporting
statements over the publications collection. If the
user want to inspect any of the target sentences in
their respective contexts, he/she can click on the
interlink and the content-panel would be updated
to show the new content and focus the target sen-
tence. In this way, the user can continue his reading
across different publications (of the same collec-
tion) chasing the statements that he is interested
in.

When the highlighter-tool is active (fig. 4) the
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Figure 2: Interlink feature.

tool-detail panel shows a slider that controls the per-
centage of highlighted sentences. If, for example,
the slider is set at 25%, the publication sentences
would be ranked by their centrality and only the
top 25% would be highlighted.

Figure 3: Highlighter based on sentences’ centrality.

The system has been designed to handle multiple
collections of publications. It is worth noticing that
a document can belong to more than one collec-
tion and even though the its content remains the
same, the generated interlinks depend on the other
documents in the collection.

This application has also the capability to gen-
erate a network showing how the publications are
interlinked within a collection (fig. 1). In this
graph the width and the color of the edges are
proportional to the interlinks strength so, it can
be used as a first approach to graphically inspect
which publications are more connected with others
or which ones are isolated (e.g., could be due to
divergent or contradictory statements). The graph
is interactive and when the nodes are selected the
immediate edges and connections are emphasized
and the publication meta-data is shown in a box
above the network.

A search module that leverages the
ElasticSearch-features was included. To fa-
cilitate user interaction, we developed a very basic
meta-language that enables them to search text

Figure 4: Interlinked-network of a publications.

and annotated entities in the same query. For
example, the query “type:clinical drug | recovery”
would search in publications’ titles and content
for sentences that mention a drug (supposing that
OGER identified it) and the word recovery.

One important aspect of the application is its us-
ability. This could be affected by the computation
time of the NLP tasks, so we took the decision to
compute them off-line. Each collection of articles
is processed once by each NLP tool and the results
are distributed in the system’s databases. Thus,
when users interact with the web interface this only
access previously stored content through an API.

5 Conclusions and future work

Drawing on some solid insights from existing re-
search on reading-comprehension, we have devel-
oped a system that uses NLP methodologies imple-
mented with state-of-the-art approaches to explore
the COVID-19 literature in novelty ways.

We relied on two NLP methods: Semantic Tex-
tual Similarity (STS) and Named-Entity Recogni-
tion and Disambiguation (NERD).

STS was implemented using SciBERT, applying
mean pooling to get one fixed-sized sentence vec-
tors and then using the cosine measure. We did not
apply any fine-tuning.

The NERD depends on OGER, a state-of-the-art
biomedical entity recogniser that interoperates with
the terminological aggregator Bio-Term Hub.

The outputs of these methods were leveraged
in the following implemented tools: networks of
semantically connected publications, highlighting
of central sentences, NER tagging on publications’
content, full-text and named-entities search and,
transversal reading by following STS-based links.

Future work would focus on integrating tech-
niques of discourse structure analysis.
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