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Abstract

Mechanistic Interpretability (MI) aims to understand neural networks through1

causal explanations. Though MI has many explanation-generating methods and2

associated evaluation metrics, progress has been limited by the lack of a universal3

approach to evaluating explanatory methods. Here we analyse the fundamental4

question “What makes a good explanation?” We introduce a pluralist Explana-5

tory Virtues Framework drawing on four perspectives from the Philosophy of6

Science—the Bayesian, Kuhnian, Deutschian, and Nomological—to systemat-7

ically evaluate and improve explanations in MI. We find that Compact Proofs8

consider many explanatory virtues and are hence a promising approach. Fruitful9

research directions implied by our framework include (1) clearly defining explana-10

tory simplicity, (2) focusing on unifying explanations and (3) deriving universal11

principles for neural networks. Improved MI methods enhance our ability to12

monitor, predict, and steer AI systems.13

1 Introduction14

Mechanistic Interpretability is the study of producing causal, scientific explanations of artificial15

neural networks [17, 80, 67]. Good explanations allow us to monitor and understand AI systems as16

well as providing affordances for steering and debugging. But what is a good explanation? And how17

do we know that our methods for producing and evaluating explanations are effective at producing18

good explanations?19

Wu et al. [92] observe the following problem: When analysing the same algorithmic task, Chughtai20

et al. [26] and Stander et al. [81] produced what appeared to be two valid Mechanistic Interpretability21

(MI) explanations of the same model. Yet the mechanisms that they propose are mutually inconsistent.22

Without systematic criteria for choosing between explanations, it is difficult to give good epistemic23

reasons for declaring one explanation to be the better one. Without good reasons to choose, researchers24

may either suspend judgement or resort to disparate and subjective preferences.25

126

Explanatory Methods typically come with two core components: Firstly, they have a generative27

component which produce explanations of model internals. Secondly, they have an discriminative28

component which evaluates the quality of the explanation and can be used to compare different29

explanations of the same type against each other. For example, the Sparse Autoencoder (SAE)30

method [23, 9, 46, 35] have a generative component the SAE model and accompanying (auto or31

human) semantic interpretability scheme [20, 69]. SAEs also come with a discriminative component32

1 Note that faithfulness here refers to explanatory faithfulness [8], explanations which match the step-by-step
process of the model’s computation, and not behavioural faithfulness, explanations that provide the same outputs
as the original model when given the same input but plausibly using different algorithms.
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that states that explanations are higher quality if they Pareto dominate another explanation on the33

(accuracy, simplicity)-frontier.34

Recent work has developed evaluation metrics for interpretability with respect to either specific35

methods [50], or specific synthetic tasks [40, 84]. However, there is not a unifying framework that36

allows us to compare different explanatory methods across a wide variety of tasks.37

To address this problem, we introduce the Explanatory Virtues Framework, which answers the38

question: Given two competing explanatory theories, which should we prefer? In particular, our39

framework provides a systematic way to an analyse explanatory methods and evaluations, where40

evaluations that do not (even at least implicitly) prefer explanations which embody the Explanatory41

Virtues are unlikely to produce ideal explanations. Our framework draws from the Philosophy42

of Science, specifically the Bayesian, Kuhnian, Deutschian, Nomological accounts of explanation43

and we apply their criteria for theory choice to MI methods. We examine the qualities that we44

should, and do, seek in good explanations, via theoretical analysis and case studies respectively.45

Using our Explanatory Virtues Framework, we analyse four Mechanistic Interpretability methods:46

Clustering, Sparse Autoencoders (SAEs), Causal Circuit Analysis, and Compact Proofs. We find47

that the following Explanatory Virtues are often neglected among current MI methods: Simplicity,48

Unification, Co-Explanation, and Nomological Principles. We hence suggest pursuing these virtues49

as promising research directions.50

The task of choosing between explanations on the algorithmic task in Wu et al. [92] drove them51

to use the Compact Proofs evaluation (Section 4.2). We evaluate the Compact Proofs evaluation52

approach and find that this approach embodies many of the Explanatory Virtues and is an effective53

means of determining which explanations should be preferred. Wu et al. [92] demonstrated our54

framework’s utility by applying the Compact Proofs methodology to three competing explanations:55

two prior explanations and their own. They found that the two previous interpretations failed to56

produce non-vacuous bounds (indicating poor Accuracy and Simplicity), while their interpretation57

succeeded. This exemplifies how our framework can resolve explanatory conflict.58

The Explanatory Virtues Framework provides a systematic approach for evaluating MI methods59

and increasing our understanding of AI systems. Such understanding is useful for AI Safety, AI60

Ethics, and AI Cognitive Science [16, 5, 25], as well as debugging and improving neural networks61

[59, 80, 4].62

Contributions. Our contributions are as follows:63

• Firstly, we provide a unified account of the Explanatory Virtues in MI. This can be understood64

as an answer to the question “What makes a good explanation?”.65

• Secondly, we analyse and compare MI methods with respect to these virtues.66

• Finally, we suggest new directions for developing MI explanations, beyond the current state67

of the art.68

2 Valid Explanations in Mechanistic Interpretability69

Neural network interpretability (henceforth just interpretability) is the process of understanding70

artificial neural networks using the scientific method. In this paper we focus on Mechanistic Inter-71

pretability (MI). Following Ayonrinde & Jaburi [8], we distinguish Mechanistic Interpretability from72

other forms of interpretability noting that Mechanistic Interpretability produces Model-level, Ontic,73

Causal-Mechanistic, and Falsifiable explanations.74

2.1 Explanations in Mechanistic Interpretability75

Good scientific explanations provide answers to why questions. Typically a scientific explanation76

will provide an answer to the question “Why did the phenomenon occur?” and a good explanation77

will enable the listener to better comprehend the phenomenon. Explanations aim at knowledge. As78

compression and comprehension are closely linked [88], good explanations compress observations79

by exploiting regularities in data.80

Neural networks are classically viewed as black-box prediction machines [60]. However, Ayonrinde81

& Jaburi [8] describe an alternative Explanatory View of Neural Networks, emphasising that deep82
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neural networks contain representations and mechanisms that can be understood as providing implicit83

explanations for their behaviour. As models learn to generalize, they develop internal structures that84

compress information about the world [58]. Good explanations uncover these internal structures.85

2.2 Defining Mechanistic Interpretability86

Following Olah et al. [67], Ayonrinde & Jaburi [8] define Mechanistic Interpretability as follows2:87

Technical Definition of Mechanistic Interpretability [8]

Interpretability explanations are valid Mechanistic Interpretability explanations if they are
Model-level, Ontic, Causal-Mechanistic, and Falsifiable.

• Model-level: Explanations should focus on understanding the neural network and
not the sampling method or other system-level properties [6, 97].

• Ontic: Explanations should refer to real entities within the model [75].
• Falsifiable: Explanations should yield testable predictions [71].
• Causal-Mechanistic: Explanations should identify a step by step continuous causal

chain from cause to phenomena, rather than statistical correlations or general laws
[91, 74, 14].

88

3 The Virtues of Good Explanations89

“Given two competing explanatory theories, which should we prefer?” This is the question of Theory90

Choice [53, 77, 54]. To answer this question we may look at the properties of explanations.91

There are truth-conducive properties of explanatory theories. We refer to such truth-conducive92

properties of explanations as Explanatory Virtues. Explanatory Virtues are properties that are93

reliable indicators of truth.94

Whether a property is an Explanatory Virtue is a normatively loaded; we should epistemically prefer95

explanations which embody Explanatory Virtues as such explanations are more likely to be true and96

the aim of scientific explanation is to aim at truth.3 Conversely, we descriptively refer to properties of97

explanations that scientists value in practise as Explanatory Values.98

In this section, we discuss Explanatory Virtues — the properties that ML researchers should value.99

We assess four accounts of explanation: the Kuhnian, Bayesian, Deutschian, and Nomological100

accounts. If these accounts correctly identify properties that we ought to value, then the combined101

set of such properties are Explanatory Virtues. These properties will form our pluralist Explanatory102

Virtues Framework. We provide a mathematical definition for each Explanatory Virtue which103

serves to ensure that there is a consistent and canonical way to compute each virtue thus allowing for104

a more objective comparison of explanations. Then in Section 4, we will discuss what MI researchers105

do value in practise, that is the Explanatory Values in Mechanistic Interpretability. We provide a106

summary of our Pluralist Explanatory Virtues Framework and how the virtues relate to each other in107

Figure 1.108

Notation. We denote the explanation under consideration asE ∈ E , where E is the set of all possible109

explanations and B, the background theory. xT denotes observational data that the explanation is110

fitted to (training data). We assume xT is sampled from the set of possible observational data X . xI111

denotes future observational data that was not accessible at explanation-making time (inference-time112

data). xT,i is the i-th data point in xT, where bolded x denotes a sequence of data points. We denote113

k a complexity measure (for example, Kolmogorov complexity) and |E|B the description length of114

an explanation E under background theory B measured in bits.115

2 See Ayonrinde & Jaburi [8] for a more complete exposition. Also see Appendix E.1 for intuitive examples
of Explanation Types.

3 Schindler [77] provides a discussion of the truth-conduciveness of the virtues we discuss.

3



3.1 Bayesian Theoretical Virtues116

Wojtowicz & DeDeo [90] describe a Bayesian approach to Inference to the Best Explanation [44].117

Here, the Explanatory Virtues are the credence-raising properties of the theory. These virtues can be118

split into two categories: theoretical virtues (in blue), which are properties of the explanation that119

do not depend on any observed or yet to be observed data, and empirical virtues (in orange), which120

are properties of the explanation that are defined in relation to the observed data.121

Accuracy, Precision, and Priors. The Bayesian virtues are the empirical Explanatory Virtue122

of Accuracy, the theoretical Explanatory Virtue of Precision and the Prior probability of some123

explanation given the background theory.124

Accuracy represents the probability of the true data given the explanation. Log-likelihood is the125

logarithm of Accuracy. Similarly, Precision is the expected log-likelihood of data conditional on126

the explanation being true. Precision represents the degree to which an explanation’s predictions127

concentrate in a particular region of the space of possible observed data. Higher precision means that128

the explanation is more constraining in its predictions, making risky and useful predictions that rule129

out other possibilities, if the explanation is correct. 4130

We decompose Accuracy and Precision into further Explanatory Virtues as follows.131

Descriptiveness and Co-Explanation. Given many data points x = {x1, x2, . . . , xn}, we would132

like to understand how well an explanation explains each data point in isolation and how well it133

explains multiple data points together. We hence define Descriptiveness as the component of Log-134

Likelihood where data observation is considered in isolation and Co-Explanation as the component135

of Log-Likelihood which focuses on how an explanation can explain multiple data points, above its136

ability to predict any single observation in isolation.137

Power and Unification. Analogously, we can break down Precision into our theoretical virtues of138

Power and Unification, defined analogously where Power measures the ability to explain individual139

data points and Unification measures the ability to connect multiple disparate observations together.140

Glossary of Bayesian Virtues

Acc(E) = P(xT |E) (Accuracy)
Prec(E) = ExT∼X [log(P(xT |E))] (Precision)
Prior(E) = P(E|B) (Prior)

Desc(E) =
∑
i

log(P(xT,i|E)) (Descriptiveness)

CoEx(E) = log(Acc(E))−Desc(E) = log(
P(xT |E)∏
i P(xT,i|E)

) (Co-Explanation)

Power(E) = ExT∼X [
∑
i

log(P(xT,i|E))] (Power)

Unif(E) = Prec(E)− Power(E) = ExT∼X log(
P(xT |E)∏
i P(xT,i|E)

) (Unification)

141

3.2 Kuhnian Theoretical Virtues142

Kuhn [53] lists five theoretical virtues as a basis for theory choice: Accuracy, (Internal) Con-143

sistency, Scope (Unification), Simplicity and Fruitfulness. We previously explored Unification144

(Scope) and Accuracy in Section 3.1.145

4Note that the definition of Precision here is a slightly different notion to the Precision metric in Machine
Learning as in ‘Precision-Recall’ analysis [41]. There, Precision is the fraction of true positives among the
predicted positives. Here, by Precision we mean to say that more precise explanations are more constraining in
their predictions.
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Accuracy and Fruitfulness. Accuracy is the extent to which the explanation fits the available146

data at the time of the creation of such an explanation. We can think of this as the “mundane147

empirical success” of an explanation, which we can contrast with the “novel empirical success” of an148

explanation or its Fruitfulness [56]. Machine Learning researchers may draw a close analogy here149

with Accuracy being a performance measure on the training/validation set and Fruitfulness being a150

performance measure on a (naturally held-out) test set. Fruitful explanations have reach: they usefully151

generalise beyond the context of the original problem that the explanation was designed to solve.152

Consistency. A necessary criterion for a theory to be a good explanation is that it is internally153

consistent. That is to say, the explanation must not contain any logical contradictions.154

Simplicity. Simplicity is considered a key virtue for scientific explanations [87, 72, 62]. However,155

there are many forms of simplicity that may be chosen, which may rank explanations differently [55].156

We consider the main three forms of measures of simplicity: Parsimony, Conciseness and Complexity.157

Parsimony counts the number of entities that are posited by the explanation [90].5 Conciseness is a158

Shannon-complexity measure of the information in an explanation given by the description length159

[79, 62], (K-)Complexity is a Kolmogorov-complexity measure of an explanation in terms of the160

shortest program that can generate it [52, 47]. For all simplicity measures, lower values are preferred.161

Glossary of Kuhnian Virtues

Fruit(E) = P(xI |E) (Fruitfulness)
E is inconsistent ⇐⇒ E � ⊥ (Consistency)

Pars(E) = #_of_entities(E) (Parsimony)
DL(E) = |E|B (Conciseness)

k-Compl(E) = k(E) (Complexity)

162

3.3 Deutschian Theoretical Virtues163

Falsifiability and Hard-to-Varyness. Popper [71] writes that the key criteria of science is that its164

theories should be Falsifiable - that is, our explanations should come with a clear set of testable165

predictions attached. Deutsch [31] further argues that alongside falsifiability, we should also seek166

explanations which themselves are Hard-To-Vary. Intuitively we might think of an explanation167

E as hard-to-vary if it cannot be easily modified to account for incoming data that contradicts the168

explanation. More precisely consider a modification ∆ to an explanation E, where ∆ is some edit169

operation formed of a list of insertions, deletions, substitutions and transpositions of symbols in E.170

|∆| is the number of such operations in ∆.171

The hard-to-varyness criteria then captures the intuition that if you add some modification or “epicycle”172

∆ to an explanation E, then the new explanation E’ should have lower novel empirical success than E173

(complexity-weighted). Conversely, if we can add some modification to an explanation and the new174

explanation has higher mundane and novel empirical success without being more complex, then we175

should prefer the new explanation.6176

For some complexity measure k, we can then say that an explanation E is hard-to-vary if it is at a177

local maximum of the function hv(E) = log(Acc(E))− k(E).7178

5 Parsimony is slippery to define well in practise as it is not always clear what counts as an entity. Worse still,
parsimony might treat intuitively highly complex objects and very simple objects both equivalently as “entities”
and simply count them up without nuance. Baker [11] provides a discussion of the downsides of Parsimony as a
measure of simplicity.

6 We provide a complementary adhocness metric in Appendix F.
7 We informally consider two explanations close if they are a small number of edit operations apart.
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Hard-to-Varyness

An explanation E is hard-to-vary if it is at a local maximum of the function

hv(E) = log(Acc(E))− k(E) (Hard-to-Varyness)
179

3.4 Nomological Theoretical Virtues180

In Hempel & Oppenheim [42]’s Deductive-Nomological (DN) model of explanation, a scientific181

explanation is a sound deductive argument where at least one of the premises is a “general law”. For182

our purposes, we can think of general laws as “for all” statements which are true and not accidentally183

true. General laws describe necessary rather than contingent facts of the world. For example, “all184

gases expand when heated under constant pressure” is a general law whereas “all members of the185

Greensbury School Board for 1964 are bald” might be true but only by coincidence, as it were.186

Nomologicity. Though we do not require our explanations to precisely follow the DN model of187

explanation, the Nomologicity (or Lawfulness) of an explanation, i.e. whether the explanation appeals188

to general laws or derives universal principles, is an explanatory virtue.189

Nomologicity

An explanation E is nomological if it appeals to general laws or universal principles about
neural networks.

190

3.5 Explanatory Virtues for Mechanistic Interpretability191

We provide a summary of our pluralist Explanatory Virtues Framework and how the virtues relate192

to each other in Figure 1. These explanatory virtues are not necessarily exhaustive nor completely193

independent of one another.8 Some virtues may be in tension with each other. For example, Accuracy194

may be traded off against Simplicity in some cases. Here we may aim to be at the optimal point of195

this trade-off on a Pareto frontier. We hope the reader may agree that our Explanatory Virtues both196

are (1) important considerations for the evaluation of explanations and (2) truth-conducive. Thus,197

these virtues can be a useful guide for theory choice and, more generally, can aid in the developments198

of new explanatory methods.199

4 Explanations in the Wild: Case Studies in Mechanistic Interpretability200

In Section 3, we explored the Explanatory Virtues. These values included the Theoretical Explanatory201

Virtues of Precision, Power, Unification, Consistency, Simplicity, Nomologicity, Falsifiability and202

Hard-To-Varyness as well as the Empirical Explanatory Virtues of (Mundane) Accuracy, Descrip-203

tiveness, Co-Explanation and Fruitfulness. We now consider how these virtues are instantiated in204

the methods that Mechanistic Interpretability researchers use in practice. That is, we consider how205

valued each Explanatory Virtue is within MI methods.206

We note that we are not evaluating particular explanations (that may be produced from MI methods)207

and asking whether this explanation scores highly on some property (e.g. accuracy or simplicity)208

but are instead evaluating whether the explanatory method values a given virtue at all. We provide a209

rubric for evaluating whether an explanatory method embodies a virtue in Table 2. Visual summaries210

of the methods we discuss in this section can be found in Appendix D.211

4.1 Examples212

4.1.1 Clustering (Activations or Inputs)213

One primitive form of neural network explanation is a clustering of model inputs or activations. For a214

complex model, such an explanation will not typically be highly accurate. However, this explanation215

8 We detail an additional possible virtue in Appendix G.
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is a simplification of the overall model performance. Here we might imagine finding some partition216

of the input/activation space, mapping a given input x to its associate cluster, of which x is ideally a217

typical member. Then we may take the cluster (and possibly the output of the model on some cluster218

representative) as a proxy for the model’s behaviour.9219

Though this explanation is clearly not sufficient in many cases, we note that it does perform some220

compression of the input space and we can control the simplicity of the explanation by varying the221

number of clusters. Similarly, the explanation generated here is Falsifiable; we can test how well our222

cluster model predicts the behaviour of the original model. However, this explanation clearly falls223

down by not being Causal-Mechanistic in nature, and the Fruitfulness of the explanation may be low224

if the procedure is vulnerable to outliers.225

4.1.2 Sparse Autoencoder Explanations of Representations/Activations226

Sparse Autoencoders (SAEs) can be used to decompose the representations of neural activations into227

a linear combination of sparsely activating, disentangled and monosemantic latents [23, 46]. Though228

many evaluation schemes have been proposed for SAEs [50, 93], the primary axes on which SAE229

explanations are evaluated is on Empirical accuracy and Simplicity. Here Accuracy represents either230

a local unsupervised accuracy measure like reconstruction error, or the downstream performance231

of the interpreted model when the SAE reconstructions are patched into the model in place of the232

original activations.233

MDL-SAEs. Ayonrinde et al. [9] provide a useful case study of how different types of Simplicity234

measures may be more or less principled in different contexts. Within the MDL-SAE (Minimum235

Description Length SAE) framework, SAE explanations are evaluated on Accuracy, Novel Empirical236

Success and Conciseness, where Conciseness is an information theoretic measure of Simplicity237

(see Section 3.2). This stands in contrast to the classical SAE framework where the simplicity238

measure is instead the SAE latent sparsity, a parsimony measure. In this case, changing the simplicity239

measure from sparsity (Parsimony) to description length (Conciseness) solved three key problems for240

SAEs: avoiding undesired feature splitting, enabling principled choice of SAE width, and ensuring241

uniqueness of feature-based explanation [7].242

EVF for SAEs. SAE explanations, like most ML methods, value Falsifiability and Novel Empirical243

Success (predictions beyond the training set). There is also some Co-Explanatory power in that the244

same feature dictionary should be used to explain any activations (at least from the same layer of245

the model). However, SAE explanations might be Ad-hoc and not Hard-to-Vary. As noted by Braun246

et al. [21], contributions from features activated on SAEs trained for reconstruction may have little247

effect on the downstream performance of the model. Hence the corresponding feature activations are248

effectively free parameters. Similarly, the tendency to enlarge the feature dictionary (i.e. increase249

the SAE width) or add additional active features to explanations (i.e. increase the allowable `0 norm250

of the feature activations vector) without clear justification, suggests an implicit ad-hocness in the251

explanations. MDL-SAEs provide some guidance against the ever increasing size of the feature252

dictionary, however it still remains an open question as to how to ensure that SAE explanations are253

truly hard-to-vary and pick out features which are causally relevant to the downstream behaviour of254

the model [57].255

4.1.3 Causal Abstraction Explanations of Circuits256

As in neuroscience, a natural way to explain the behaviour of a neural network for interpretability257

researchers is to decompose the network into circuits [67, 49]. Circuits can be formally specified258

by a correspondence between the network and some understood high-level causal model using the259

theory of Causal Abstractions [37, 91, 15, 70]. In particular, the notion of abstraction that is typically260

appealed to is constructive abstraction [15]. Paraphrasing from Geiger et al. [36], a high-level model261

(an understandable causal model) is a constructive abstraction of a low-level model if we can partition262

the variables in the low-level model (e.g. the neural network neurons) such that:263

1. Each low-level partition cell can be assigned to a high-level variable.264

9 We may think of the clustering explanation as performing some “quotienting” operation of the input space
by the equivalence relation of being in the same cluster.
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2. There is a systematic correspondence between interventions on the low-level partition cells265

and interventions on the high-level variables.266

The Causal Abstraction framework for circuit analysis clearly focuses on the Falsifiability of explana-267

tions and the Faithfulness of the explanation to the underlying causal model (Empirical Accuracy268

and Novel Success under interventions). To encourage simplicity in explanations, we may also seek269

Completeness and Minimality in circuit explanations [86]. (Behavioural) Faithfulness, Completeness,270

and Minimality are denoted the FCM criteria for circuit explanations (see Appendix K)271

Algorithms such as ACDC [28] find circuits that (approximately) satisfy the FCM criteria. However,272

it is well known [86] that the FCM criteria are in tension and that it is not always possible to satisfy273

all three criteria simultaneously. In practise, finding circuits is a computationally challenging problem274

and circuit discovery algorithms typically only find approximately optimal circuits [1].275

EVF for Circuit Explanations. Despite the virtues of these approaches, they however do suffer276

from poor unification, co-explanation and nomologicity. In both manual and automated circuit277

discovery methods, most attention is paid to individual circuits rather than the relation and composition278

of subcircuits. Circuit explanations for two related tasks which share internal components are not279

typically privileged. Similarly, there are often no general laws or principles that detail which circuits280

are likely to be found in a network, and how these circuits relate to one another across contexts.281

4.2 Compact Proofs282

The above examples of Clustering, SAEs and Circuits are methods for both the creation of expla-283

nations and also provide evaluation methods for the explanations created. The Compact Proofs284

methodology [39, 92, 48] is a method for evaluating any Causal-Mechanistic explanations obtained285

through other methods. In the Compact Proofs framework, an explanation is converted into a formal286

guarantee that allows researchers to assess the Accuracy and Simplicity of the explanation. We refer287

to Appendix J for a glossary of terms used in this section.288

Given a data distribution D, and a model Mθ with weights θ ∈ W , we would like to obtain a lower289

bound for the model’s accuracy over D.10 Formally, we construct a verifier program V (θ,E), where290

E is the explanation. The aim for V is to return a bound on the model’s performance that is as tight as291

possible whilst requiring that the proof of that bound that is as computationally efficient as possible.292

We may think of the computational efficiency as a measure of the simplicity of the proof [94]. Note293

that these two goals, the tightness (Accuracy) of the bound and the compactness (Simplicity) of294

the proof (explanation), are in tension with one another. A good explanation should push out the295

(tightness, compactness)-Pareto frontier.11296

Gross et al. [39] show that faithful mechanistic explanations lead to tighter performance bounds297

and more efficient (i.e. simpler) proofs. Informally, we may say that Compact Proofs allow us298

to leverage good MI explanations into tighter and more compact proof bounds. We note that this299

method allows for finding and evaluating explanations which satisfy many of the Explanatory Virtues:300

Precise explanations allow for tighter bounds, Accuracy and Simplicity are directly optimised for,301

and Causal-Mechanistic explanations are generally required for non-vacuous bounds.302

4.3 Discussion of Explanatory Values303

Table 1 shows that some Explanatory Virtues are consistently valued highly across different methods.304

However, all current interpretability methods could be improved on some dimension to be more likely305

to produce human-understandable and useful explanations. In particular, we suggest that methods306

which produce or appeal to nomological principles and which unify accounts of neural network307

behaviour are likely to be increasingly successful.308

10 In general, we might be interested in bounding metrics which are to be minimised (e.g. loss) rather than
maximised (e.g. accuracy and reward). In that case we may seek upper bounds rather than lower bounds but the
argument is otherwise analogous.

11 Appendix C provides an example of one basic proof strategy which is computationally expensive but pro-
vides a tight bound. This strategy is known as the brute force proof [39] and corresponds to the straightforward,
Implementation-level explanation [8].
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5 The Road Ahead309

The term Mechanistic Interpretability was coined by Olah et al. [67] to distinguish itself from previ-310

ous approaches of neural network interpretability. These previous approaches were not sufficiently311

grounded in causal abstraction, nor treated the model internals appropriately as representing ex-312

planations as intrinsic structure that we would like to uncover [8, 76]. The ‘Mechanistic turn’ in313

interpretability was a step towards unifying a community around faithful and falsifiable explanations314

of models. The Explanatory Virtues Framework is a further step in this direction, providing unifying315

criteria to evaluate explanatory methods. In particular, focusing on the following three virtues would316

constitute methodological progress for the field:317

1. Simplicity and Compression. Swinburne [82] argues that simplicity is a key virtue of good318

explanations and can provide evidence to the truth of a theory. However, appropriately characterising319

an explanatory Simplicity measure is currently an open question for interpretability. Early explorations320

into understanding compression as a key function of explanation can be found in the Compact Proofs321

literature [39] and Attribution-Based Parameter Decomposition [22, 24]. Coalescing around a concept322

of Simplicity for interpretability would allow different explanations to be rigorously compared on the323

(accuracy, simplicity) Pareto curve, which is directly useful in many applications. Such a definition324

might also naturally encourage further research into the impact of modularity in both neural networks325

and their explanations [27, 34, 12].326

2. Unification and Co-Explanation. Hempel [43] argues that unification is a core driver of scien-327

tific progress. Indeed we may see unification as a drive towards compression of explanations where the328

set of phenomena to be explained is large [13, 18]. Currently, most methods in interpretability don’t329

seek to co-explain many phenomena using the same building blocks. The Mechanistic Interpretability330

(MI) community has sought to understand the universality (or otherwise) of representations and331

algorithms across many models with mixed results [67, 68, 26]. However, we may also be interested332

in modular compositional explanations where the explanatory units are shared not only across models333

but also across different tasks and domains within a single model, such as [64, 65, 85, 96]. For334

example, there is evidence that induction heads are reused for many tasks within models and so335

induction heads perform a co-explanatory function [68].336

3. Nomological Principles. Bacon [10] writes that any science first starts by observations. After337

that point, most fields have a choice to make between two (non-exclusive) paths that Windelband [89]338

refers to as the nomothetic and idiographic approaches. The nomothetic approach seeks to rapidly339

synthesise these early observations into general explanatory theories with nomological principles that340

are useful for making predictions. Conversely, the idiographic approach focuses on categorising and341

describing ever more exhaustive sets of observations, without necessarily seeking general laws to342

explain them. Physics is a prototypical nomothetic science; biology is often considered an idiographic343

science. Idiographic approaches can tend towards description rather than explanation. For example,344

we might wonder if interpretability researchers counting up and categorising all the features in a345

given model’s latent space is much different to a biologist naming and describing all the species of346

beetle in an ecosystem without learning anything about the evolution of these species or how they347

interact within the environment.348

The use of nomological principles can simplify explanations and help to provide a unifying paradigm349

for Mechanistic Interpretability. Efforts in Developmental Interpretability [45], the Physics of350

Intelligence [3], Computational Mechanics [78], and the Science of Deep Learning [61, 2] may also351

produce useful nomological principles for the MI community to adopt in their explanations.352

Mechanistic Interpretability has found Causal Abstractions theory to be a useful foundation. We353

suggest that a further paradigm for Mechanistic Interpretability should take seriously the virtues354

of good explanations. The Explanatory Virtues allow us to iteratively build better interpretability355

methods and generate increasingly good explanations of neural networks. Progress in Mechanistic356

Interpretability may provide insights into AI systems which are useful for increasing the transparency357

and safety of systems which are deployed widely and/or in critical applications [16, 73, 80]. We358

believe that our Explanatory Virtues Framework can help researchers in designing methods which359

lead to more reliable and useful explanations of neural systems.360
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Reproducibility Statement361

The comparative evaluation of explanation methods presented in Table 1 can be reproduced by362

applying the Explanatory Virtues Rubric detailed in Table 2. This rubric provides clear criteria for363

assessing the extent to which different Mechanistic Interpretability methods embody each explanatory364

virtue. By following the three-level assessment framework (Highly Virtuous, Weakly Virtuous, Not365

Virtuous) with their corresponding indicators (3, l, 7), researchers can systematically evaluate366

explanation methods against the Explanatory Virtues Framework. The rubric’s structured approach367

ensures that assessments are based on consistent criteria rather than subjective preferences, allowing368

for reproducible comparisons between different explanation methods in Mechanistic Interpretability.369

Ethics Statement370

This work focuses on developing a philosophical framework for evaluating explanations in the context371

of Mechanistic Interpretability of neural networks. As a theoretical contribution, our framework372

itself does not directly raise ethical concerns typically associated with empirical AI research, such as373

data privacy, bias, or direct societal impacts. However, we recognize that advances in Mechanistic374

Interpretability have significant ethical implications.375

Better explanations of AI systems, which our framework aims to encourage, can promote transparency,376

accountability, and trust in AI systems. We note that improved understanding of neural networks377

through Mechanistic Interpretability may contribute to AI Safety, AI Ethics, and the responsible378

deployment of AI systems in critical applications. By providing systematic criteria for evaluating379

explanations, our work supports the responsible development of AI that is interpretable and human-380

understandable.381

We hope this work contributes to the broader goal of developing AI systems that can be meaningfully382

understood, monitored, and steered by humans.383
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A The Explanatory Virtues656

Explanatory Virtue Importance Clustering (MDL) SAEs Circuits Compact Proofs

Validity
Causal-
Mechanistic ! 7 l 3 3

Bayesian
Precision l l 3 3
Priors l l 7 7
Descriptiveness l l 3 3
Co-explanation 7 7 7 l
Power l l 3 3

Bayesian& Kuhnian
Accuracy 3 3 3 3
Unification 7 7 7 7

Kuhnian
Consistency l 3 3 3
Simplicity H l 3 l 3
Fruitfulness H l l 7 l

Deutschian
Falsifiable ! 3 3 3 3
Hard-to-vary H l l 3 3

Nomological
Nomological 7 7 7 l

Table 1: An evaluation of MI explanation methods with respect to our Explanatory Virtues Framework
as given in Section 3. The virtues which are indispensable for valid Mechanistic Interpretability
explanations are highlighted with a !. The virtues that we consider to be the most important for
good explanations are highlighted with a H. Metrics are grouped by their philosophical foundations:
Deutschian, Kuhnian, Bayesian, or Nomological. Blue metrics indicate empirical criteria, while
orange metrics represent theoretical criteria. Green checks, orange circles and red crosses indicate
that the method well-considers, moderately considers, or poorly considers the virtue, respectively.
The explanatory case studies that we have considered generally optimise for accuracy, however
they vary in their commitment to the virtues of Simplicity, Unification and Nomologicity. In our
descriptions of these methods across Section 4, we provide a more detailed analysis of how we assess
the virtues of each method and we provide our full evaluation rubric in Table 2.

B The Explanatory Virtues Rubric657

Table 2: The rubric for evaluating the Explanatory Virtues of a given
explanation (see Figure 1 and section 3). We use this rubric to provide a
structured evaluation of explanations as in Table 1.

Explanatory
Virtue

Highly Virtuous Weakly Virtuous Not Virtuous

Icon 3 l 7

Causal-
Mechanistic

Generates end-to-end
causal explanations

Explains a part of the
network and can be
used as part of a Causal-
Mechanistic Explanation

Generates explanations
which are not used for
producing end-to-end
causal explanations
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Table 2: The rubric for evaluating the Explanatory Virtues (continued)

Explanatory
Virtue

Highly Virtuous Weakly Virtuous Not Virtuous

Precision Rewards explanations that
provide precise and risky
predictions in a quantifiable
way

Partially accounts for preci-
sion in explanations, possi-
bly qualitatively

Fails to penalise (or even
endorses) overly broad or
vague predictions

Priors Explicitly incorporates
comparisons with back-
ground theoretical priors in
the method

Implicitly incorporates
background theoreti-
cal priors in evaluating
explanations

Fails to appropriately incor-
porate background theoreti-
cal priors

Descriptiveness Prefers explanations which
clearly analyse detailed,
component-wise prediction
quality in high fidelity, cap-
turing the essential charac-
teristics of each data point

Only partially tangentially
analyses individual data
point fit, mostly focusing
on overall aggregated fit

No analysis of how the data
points fit the explanation in
isolation at all

Co-
Explanation

Assesses the ability of
explanations to account
for multiple observations
together, rewarding mea-
sures that emphasise inte-
grated, joint predictive per-
formance.

Has the potential to incor-
porate some aspects of joint
explanation but does not
fully reward coherent inte-
gration across diverse data
points in its currently prac-
tised form

Evaluates each data point
in isolation, ignoring the
value of linking multiple
observations.

Power Strongly values approaches
that produce highly con-
straining predictions (espe-
cially about observations
considered in isolation), pe-
nalising methods that allow
too many plausible alterna-
tives

Provides moderate empha-
sis on constraining predic-
tions, allowing for some un-
certainty.

Assigns no weight to the
predictive force of the ex-
planation

Accuracy Quantitatively rewards ex-
planations that fit the data
with minimal error, espe-
cially does so with refer-
ence to both the precision
and recall where relevant

Qualitatively rewards expla-
nations that seem to fit the
data well subjectively

Does not distinguish be-
tween explanations that fit
the data well or poorly lead-
ing to evaluations that toler-
ate significant errors

Unification Measures how well a single
evaluation framework can
account for diverse obser-
vations, emphasizing inte-
grated, unified explanations

Has the potential to recog-
nise some unification even
if in a limited or fragmented
way or if this is not a typical
application of the method

Places no weight on a uni-
fied account rather than a
disjunction of accounts

Consistency Requires internal coher-
ence within the explanation
and multiple instances of
running the same explana-
tion method

Mostly internally consis-
tent but probabilistically
can provide inconsistent ex-
planations

Places no weight on the in-
ternal consistency of gener-
ated explanations
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Table 2: The rubric for evaluating the Explanatory Virtues (continued)

Explanatory
Virtue

Highly Virtuous Weakly Virtuous Not Virtuous

Simplicity Evaluates explanations
based on a conciseness or
K-complexity simplicity
metric rewarding simpler
explanations

Partially considers a weak
form of simplicity such as
parsimony

Neglects simplicity as a
factor, encouraging highly
complex and complicated
explanations

Fruitfulness Rewards explanations that
predicted new, testable phe-
nomena even with adversar-
ially chosen test data from
a close data distribution

Rewards explanations that
predict novel phenomena
even from the same data
distribution

Assesses only current data
fit with no train-val-test
split at all

Falsifiable Requires that explanations
yield clear, testable predic-
tions and penalises those
that could not be refuted un-
der counterfactual data.

- Fails to consider whether
explanations can be empiri-
cally refuted, rewarding un-
falsifiable evaluations.

Hard-to-vary Rigorously assesses the ro-
bustness of explanations, re-
warding those evaluations
where small modifications
would lead to significant
performance degradation.
Checks for interdependen-
cies among components to
ensure that each part is es-
sential and load-bearing

Makes limited effort to
avoid ad-hoc explanations
but doesn’t fully address
how hard-to-vary the expla-
nations are

Does not account for the
ease of altering explana-
tions and consistently pro-
duces explanations that are
easily tweaked without loss
of predictive power

Nomological Explicitly integrates estab-
lished general laws and
principles, favouring eval-
uations that connect to a
broader nomological frame-
work or reusing laws in
multiple places across the
explanatory theory

Implicitly appeals to some
non-generic laws but such a
connection may be indirect
and not well utilised

Ignores links to universal
principles and attempts to
focus on explaining the
data without any reference
to more general theoretical
principles

Explanatory virtues are criteria for theory choice: they help researchers decide which methodological658

approaches to pursue. We provide a rubric for non-subjectively evaluating whether an explanatory659

method embodies a virtue in Table 2.660

Note that this framework is agnostic to interpretability methods and could be applied to methods from661

other non-Mechanistic strands of interpretability. However, we focus on Mechanistic Interpretability662

in particular because non-Mechanistic explanations are, by definition, not concerned with producing663

Causal-Mechanistic explanations (complete end-to-end accounts of model behavior) which we take664

to be an important aspect of explanations useful for understanding neural networks [8, 91, 29].665

C Straightforward explanations666

Following [8], we define the straightforward explanation of a neural network as follows. Given a667

neural network f : X → Y and x ∈ X such that f(x) = y, the straightforward explanation is given668
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Figure 1: A Directed Acyclic Graph representation of the Explanatory Virtues Framework showing
the relationships between virtues. Empirical virtues are coloured orange and theoretical virtues are
coloured blue. We show the virtues which directly depend on each other with bold arrows (→) and
those which are highly related with dashed arrows (99K). The Explanatory Virtues which are essential
for any scientific explanation (Falsifiability and Causal-Mechanisticity) to be valid are denoted
with an exclamation mark; the most important virtues to decide between explanations (Simplicity,
Hard-to-Varyness, and Fruitfulness) are marked with a star. Appendix B details a rubric for assessing
explanatory methods. Appendix C provides an example illustrating the importance of Simplicity as
an explanatory virtue.

by the computational trace of the network on the input x.12 We note that for any neural network f669

and sub-distribution D ⊆ D, there exists a straightforward explanation of f on D. However, this670

straightforward explanation is typically not good a explanation in the sense of Section 3 as such671

explanations are not very concise or illuminating. We would instead like explanations of neural672

networks that are in terms of the features (or concepts) that the network learned during training and673

explanations which are compact and useful.674

Given Section 3 and Appendix B we may evaluate the straightforward explanation of a neural network675

using the Explanatory Virtues Framework.676

• Causal-Mechanistic: The straightforward explanation is Causal-Mechanistic. It decom-677

poses the model into a computational graph, given by the neural network architecture.678

• Precision, Descriptiveness, Accuracy, Power & Falsifiable: The straightforward expla-679

nation fulfills all these criteria, since it is a complete representation of the model.680

• Co-Explanation & Unification: The straightforward explanation does not fulfill these681

criteria, since it treats all inputs independently.682

• Priors: The straightforward explanation does not refer to priors in its interpretation.683

• Consistency: The straightforward explanation is consistent.684

• Simplicity: The straightforward explanation is highly complex. There is no compression685

from the original weights in the explanation given.686

• Fruitfulness: The straightforward explanation is not fruitful, in that it doesn’t provide novel687

predictions.688

• Hard-to-vary: The straightforward explanation is not hard-to-vary; modifying single parts689

of the model (e.g. individual weights) by some small amount will typically not vary the690

model performance.691

• Nomological: The straightforward explanation is not nomological as it doesn’t provide692

general laws or principles.693

We note that the straightforward explanation is a valid explanation of a neural network: It is Model-694

level, Ontic, Causal-Mechanistic, and Falsifiable. Further, the straightforward explanation embodies695

many of the explanatory values. However, we hope the reader will agree that the straightforward696

explanation is not a good explanation. Since, as noted in Section 5, not all of the explanatory values697

12 In fact, this explanation is a formal proof of the equality f(x) = y.
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are equally as important, an explanation may embody some of the virtues and yet not be a good698

explanation.699

Researchers who are interpreting a neural network may have different use cases for which they would700

like an explanation of the model behaviour. To account for these different goals, researchers can701

make trade-offs between which Explanatory Virtues they value most highly.13 Overall, however, for702

an explanation to be a good explanation, we suggest that Simplicity and Fruitfulness and Hard-to-703

Varyness are the most important values, without which it is difficult to have a good explanation. In704

this case, the straightforward explanation fails on the virtue of Simplicity.705

D Explanations in The Wild, Visually706

This section is a visual companion to Section 4. We present a series of figures to elucidate what we707

mean by each form of explanation and how we choose between two explanations given this method708

(i.e. Theory Choice [77]).709

D.1 Clustering (Activations or Inputs)710

Figure 2: Given some (possibly intermediate) embeddings (x), a clustering explanation can be
produced by assigning x to a cluster Ci, where the n clusters partition the input space into disjoint
regions. Here C1 ∪ C2 ∪ . . . ∪ Cn = RN and Ci ∩ Cj = ∅ ∀i 6= j. The explanation is then given
by taking the behaviour of the model on some cluster representative, or centroid, µi ∈ Ci. We can
intuitively see this as performing a quotient operation on the input space, where the model behaviour
is approximated by a piecewise constant function. [Image from Google Developers [38]].

13 Choosing the right explanation is a value-laden task [8].
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D.2 Sparse Autoencoder Explanations of Representations/Activations711

Figure 3: (a) The SAE architecture. An encoder provides some set of latents (or feature activations)
in the feature basis. We have some decoder map, Dec, which is a linear combination of the columns of
the feature dictionary weighted by the sparse latents. We say informally that these latents correspond
to the input activations if, under the decoder map, Dec. (b) If x and z correspond in the above sense
then the natural language explanation of the input activations x is given as e(x) = e′(z); that is the
explanation of the latents using the automated interpretability process e′(z) [69, 50, 20, 7]. We can
measure the mathematical description length (Conciseness) of the explanation e(x) as the number of
bits required to describe the latents z [9]. [Images from Ayonrinde et al. [9], Ayonrinde [7]]

D.3 Causal Abstraction Explanations of Circuits712

Figure 4: A circuit explanation is a Causal-Mechanistic explanation such that the circuit C is a
constructive abstraction of a neural network’s computational graph M if there exists a partition the
variables in M such that each high-level variables in C correspond to a low-level partition cell in M
and interventions on M correspond to interventions on C. For example in Figure 4 Left [28], the IOI
circuit [86] (highlighted in red) is recovered from the computational graph of GPT-2 Small. [Image
from [28]].
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D.4 Compact Proofs713

Figure 5: (a) Compact Proofs evaluate explanations on two metrics, their compactness (FLOPs to
Verify Proof) and their accuracy (Model Performance Lower Bound). These two metrics can be
assessed on a Pareto frontier. (b) A good explanation should push the frontier towards the upper left
corner (i.e. more accurate and compact proofs). [Image from Gross et al. [39].]

E Examples of Explanations714

In this section, we provide some intuitive examples and non-examples of Explanations which satisfy715

the criteria that we outline above. The case studies in Section 4 are examples within Mechanistic716

Interpretability and Machine Learning; our examples here are non-technical illustrations.717

E.1 Examples of Explanation Types718

E.1.1 Ontic Explanations719

Question: Why did the pen fall off the desk?720

Causal-Mechanistic But Not Ontic Explanation.721

The pen fell off the desk because the aether pushed the bottle and then the bottle722

pushed the pen off the desk.723

This explanation is Causal-Mechanistic in the sense that one thing happens after another and causes724

the next. However, if we do not believe that the aether is a real entity then this explanation cannot be725

considered an Ontic Explanation.726

—727

Question: Why is the cube heavy?728

Ontic But Not Causal-Mechanistic Explanation.729

The cube is heavy because it is made up of tungsten atoms.730

This explanation is Ontic as the entities involved in the explanation are real entities. However, it is731

not Causal-Mechanistic as there is no step-by-step explanation without gaps.732

E.1.2 Statistically-Relevant Explanations733

Consider the explanation:734

Ice cream sales are higher on days when there are more shark attacks. If there’s a735

shark attack reported, we can predict with 85% confidence that ice cream sales will736

be above average that day.737
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This explanation is purely in terms of statistical correlation rather than causation. There is no738

explication of any underlying causal mechanism, which might involve both phenomena being causally739

downstream of hot weather and/or more beach visitors. We could perform interventions to test this740

hypothesis.741

E.1.3 Nomological Explanations742

Question: Why does a metal rod expand when heated?743

Nomological but not Causal-Mechanistic explanation.744

The rod expands because it follows the natural law that all metals expand when745

heated, as described by the coefficient of thermal expansion.746

This explanation references a general law of nature without getting into the underlying mechanism.747

Causal-Mechanistic Explanation.748

The rod expands because its metal atoms vibrate more vigorously when heated,749

which increases their average spacing. This increased spacing leads to an overall750

increase in the rod’s length.751

This details the physical mechanism causing the expansion.752

E.2 Examples of Explanatory Values753

E.2.1 Precision, Power and Unification754

Consider one explanation of what happens to objects when they are dropped:755

When an object is dropped, it falls to the ground due to the force of gravity.756

compared to the more precise explanation:757

Objects fall toward Earth at a rate of 9.8 meters per second squared, with slight758

variations depending on altitude and latitude.759

The latter explanation rules out more possibilities than the former. When we see that an object is760

dropped, armed with the second explanation, we are able to rule out the possibility that the object761

will fall at a different rate as well as the possibility that it will rise into the air.762

Precise explanations make narrow and risky predictions.763

Unification. An explanation is unifying if it purports to explain multiple disparate observations.764

The Central Dogma in molecular biology states that genetic information flows only in one direction,765

from DNA, to RNA, to protein, or RNA directly to protein [30]. This theory operates as a unifying766

explanation which narrows the space of possibilities for a wide range of biological phenomena.767

E.2.2 Consistency768

Consistent explanations contain no internal contradictions.769

Question: Why did Alice miss the important meeting this morning?770

Inconsistent Explanation. Alice, being a forgetful person, forgot that the meeting was happening771

and simultaneously Alice deliberately skipped the meeting to avoid a confrontation.772

Consistent Explanation. Alice was out of the office for a vacation and missed the meeting.773

As we increase the unification/scope of explanations, we sometimes introduce inconsistencies. For774

example, as we look to unify Quantum Mechanics and General Relativity, two explanations which775

are internally consistent on their own, we find that they are inconsistent with each other.776
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E.2.3 Simplicity777

Occam’s Razor states that when faced with competing explanations, one should select the explanation778

that is the simplest. This heuristic was first formulated in terms of parsimony, but we might also extend779

the sense of simplicity here to conciseness (Shannon complexity) or K-complexity (Kolmogorov780

complexity) as more appropriate measures of simplicity.781

The Ptolemaic explanation:782

The Earth is at the center of the universe, with the planets, the sun, and stars783

orbiting around Earth. There are many epicycles which explain the retrograde784

motion of the planets (planets moving backwards in the sky).785

is more complex than the Copernican explanation:786

The sun is at the center of the solar system and the planets orbit the sun in ellipses.787

Even though both explanations could fit the data, we ought to prefer the Copernican model according788

to Occam’s Razor and our Explanatory Virtue of Simplicity.789

Wojtowicz & DeDeo [90] give a sobering example of the dangers of not sufficiently valuing simplicity790

in explanation in their analysis of conspiracy theories. Such theories are often “abnormally co-791

explanatory and descriptive . . . , account for anomalous facts which are unlikely under the ‘official’792

explanation . . . , show how seemingly arbitrary facts of ordinary life are correlated by hidden events793

. . . , and describe a unified universe where everything is correlated by a network of hidden common794

causes.” A primary reason that such conspiracy theories are not typically good explanations is that795

they are not simple: there’s often a large amount of complexity and ad-hoc reasoning to explain796

contradictory evidence and the reason for why the cover-up has yet to come to light.797

E.3 Falsifiability and Hard-To-Varyness798

Popper [71] argues against the pseudoscientific theories of Marx, Freud, and Adler on the grounds799

that they are not falsifiable. That is to say, there exists no observation that could be made that would800

contradict the theory and cause its proponents to abandon it. For a theory to be falsifiable it must801

make some concrete predictions about the world that could in principle be tested.802

Consider the following three explanations for why there are seasons (adapted from Deutsch [31]):803

Not Falsifiable.804

The seasons change when Zeus feels like it.805

This explanation is not falsifiable because it does not make any predictions. If there were no seasons806

one year, then it would not be a mark against the theory.807

Falsifiable but Not Hard-To-Vary.808

Demeter (the Greek Goddess) negotiates a deal with Hades such that her daughter809

Persephone visits Hades once a year. When Persephone is with Hades and not with810

her mother, Demeter is sad and the world becomes cold.811

This explanation does make a concrete prediction: the seasons will change exactly once a year.812

Another prediction that follows is that winter (the period of cold where Persephone is with Hades)813

should happen everywhere on Earth at the same time. This explanation is falsified by the fact that the814

seasons are at different times in Australia to in Athens. The explanation is not very Hard-to-Vary815

however. We could easily change any of the characters or mechanisms involved in the theory and816

keep the same predictions.817

Falsifiable and Hard-To-Vary.818

The Earth’s axis of rotation is tilted relative to the plane of its orbit around the819

sun. Hence for half of each year the northern hemisphere is tilted towards the sun820
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while the southern hemisphere is tilted away, and for the other half it is the other821

way around. Whenever the sun’s rays are falling vertically in one hemisphere (thus822

providing more heat per unit area of the surface) they are falling obliquely in the823

other (thus providing less heat).824

This explanation is both falsifiable and hard-to-vary. All of the details of the theory play a functional825

role and cannot be easily changed. The axis-tilt theory also (correctly) predicts the fact that the826

seasons are reversed in the northern and southern hemispheres.827

E.4 (Mundane) Accuracy and Fruitfulness (Novel Success)828

Explanations have Mundane Accuracy insofar as they correctly account for the phenomena they aim829

to explain. Conversely explanations are Fruitful if they predict new phenomena that were not available830

to the explainer at the time of coming up with the explanation. Being able to predict and explain new,831

previously unobserved phenomena that are later confirmed (as in Fruitfulness) is typically considered832

more valuable than merely explaining known phenomena (as in Mundane Accuracy).833

Einstein’s General Relativity predicted that light would bend around massive objects like the sun [33].834

In 1919, during a solar eclipse, Arthur Eddington observed that starlight passing near the sun was835

indeed deflected by precisely the amount Einstein had predicted [32, 51]. Given that the phenomenon836

of light bending around massive objects was previously unknown, this was a novel empirical success837

for Einstein’s theory. This can increase our credence in Einstein’s theory because the prediction was838

made before the observation, was precise and quantitative in an unknown domain and the observations839

matched the prediction with high accuracy.840

E.5 Co-Explanation and Descriptiveness841

Explanations can be purely descriptive, in which case they account well for the phenomena they aim to842

explain but do not connect with other explanations. Alternatively, explanations can be co-explanatory,843

unifying phenomena that were previously thought to be distinct.844

Descriptive but Not Co-Explanatory.845

Electricity involves the movement of charges and produces effects such as static846

attraction, lightning, and electrical current. Magnetism, on the other hand, involves847

the attraction or repulsion between certain materials like lodestone and iron, and848

manifests in the behavior of compasses pointing north.849

Co-Explanatory.850

Electricity and magnetism are manifestations of a single underlying electromagnetic851

force. A changing electric field produces a magnetic field, and a changing magnetic852

field produces an electric field. Moving electric charges create magnetic fields,853

while moving magnets induce electric currents.854

F A Coherence Formulation of Adhocness855

[77] also gives an adhocness test for explanations which can identify those which are the result of a856

post-hoc epicycle added to an easy-to-vary explanation. For Schindler, an explanation is adhoc if the857

modification ∆ which it corresponds to is some additional hypothesis H (which we can think of as858

being added in order to accommodate some awkward-to-explain data xI ) and two conditions are met:859

1. H explains xI . That is P(xI |E,H) > P(xI |E).860

2. Neither the original explanation E nor background theories B give evidence for H. That is861

P(H|E,B) < P(H).862

We define an adhocness metric as Adhoc = P(H)− P(H|E,B) where larger ad-hocness values are863

more adhoc and dispreferred.864
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G Local Decodability as an Explanatory Virtue865

Another virtue that we may consider for highly unifying explanations is local-decodability. Locally866

decodable explanations allow for retrieval and use of some small segment of the explanation without867

querying the whole explanation, analogously to locally-decodable error-correcting codes [95]. This868

is important as we would like not only for our explanations to have information compression (concise869

representation) but also information accessibility (the ability to retrieve specific subparts quickly). In870

practice, an explanation of network which is compressed but not locally-decodable requires significant871

computational resources to query and is not useful for human understanding.14 The Independent872

Additivity condition from Ayonrinde et al. [9] is an example of a local-decodability condition in873

Mechanistic Interpretability. V-Information [94] provides a useful analogy for local-decodability in874

Machine Learning.875

H Comparison to Mechanistic Interpretability Benchmark876

Mueller et al. [66] recently proposed Mechanistic Interpretability Benchmark (MIB), which is877

intended to test whether interpretability methods achieve improvements over simple baselines. Their878

benchmark focuses on two tracks:879

1. Circuit Localisation: comparing methods that find subnetworks within a model which are880

most important for performing a task (e.g., attribution patching or information flow routes)881

and882

2. Causal Variable Localisation: comparing methods that produce vectors which correspond883

to a model feature and are causally relevant for a given task.884

To align with the framework in Chalmers [25], we may think of Circuit Localisation as aiming to885

test for Algorithmic (Mechanistic)Interpretability and Causal Variable Localisation as aiming to test886

for Conceptual Interpretability. In our terminology, Causal Variable Localisation does not provide887

explanations which are Causal-Mechanistic in nature (as they do not produce end-to-end explanations888

of model behaviour) but they provide useful building blocks for Causal-Mechanistic explanations.889

We believe that MIB is a valuable step forward for the MI community because for methods that have890

the same inputs and affordances, they can be directly compared using their benchmark with respect891

to the downstream tasks that the authors list. To the extent that these tasks are indeed representative892

of the goals that we have for MI methods then their comparison is highly useful.893

However, there are some downsides to the approach that Mueller et al. [66] take. In particular: Some894

of the methods that the authors compare are not directly comparable as e.g. they compare supervised895

and unsupervised methods. The explanations are not all complete end-to-end explanations of the896

model’s internal algorithms and so many do not focus on algorithmic interpretability, which we897

believe to be the core of Mechanistic Interpretability [8, 67]. MIB assumes a particular form of898

Simplicity, Parsimony, which is known to have problems as detailed in Section 3.2. This severely899

hampers their ability to correctly evaluate how simple an explanation is. Similarly, Mueller et al. [66]900

do not take into account the benefits of having explanations which unify observed phenomena or901

utilise nomological principles. We believe that this may implicitly encourage researchers to produce902

explanations which do not reuse components and hence are ultimately less human-understandable903

and less able to stand on the shoulders of previous useful explanations.904

Our approach differs because we ask the core question: “if I’m creating a new method for creating905

explanations for interpretability, which properties should my method value?“ This framing has the906

advantage of picking out the properties for which if a method selects for explanations that perform907

well with respect to those properties, the explanation is likely to be a faithful and useful explanation908

for researchers. Note that our criteria are not intended to say that Method A is uniformly (e.g.)909

accurate as Method A may be more or less accurate on different models/tasks. We are instead asking910

the question of whether Method A is set up to value Accuracy and would, on the margin, prefer more911

explanations which are more accurate. In this way we are evaluating explanatory methods rather than912

the output of an explanatory method on a specific task.913

14 Local decodability is measured in query complexity: the number of queries required to recover 1 bit of the
message (explanation). Conciseness and query complexity are known to be inversely proportional but the exact
fundamental limit on their relationship is currently unknown.
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We believe that our framework is a useful complement to the MIB paper which goes beyond evaluating914

on a relatively narrow set of tasks and gives researchers practically useful criteria to check that their915

methods for choosing between evaluations captures. In the MI stack, we might see the Explanatory916

Virtues Framework (EVF) as sitting in a complementary position to MIB in that we may use the EVF917

to diagnose the MIB and understand where it may not effectively distinguish between explanations.918

Where the EVF evaluates whether explanation-generating methods have the right design principles919

to produce good explanations, MIB evaluates the outputs of those methods on specific tasks. Our920

framework operates at the meta-level — we ask “does this method tend to produce explanations with921

desirable properties?” rather than “how well does this specific explanation perform on task X?”922

Our framework has three core points of complementarity with MIB: Firstly, it can help diagnose why923

certain methods succeed or fail in MIB’s benchmarks. Secondly, our framework can help researchers924

design better methods that would then perform well on benchmarks like MIB. Thirdly, our framework925

allows researchers to see the drawbacks of MIB and where good performance on MIB and good926

explanations of neural networks may come apart. This helps avoid the Goodharting of MIB at the927

expense of good explanations. Here we can also use our framework to design better versions of MIB928

in the future which are better aligned with our true goals as interpretability researchers.929

I The Identifiability of Mechanistic Interpretability930

Recently, Méloux et al. [63] showed that different networks exhibiting the same behaviour can have931

different underlying implementations on the computational substrate. This is analogous to multiple932

realisability in the Philosophy literature [19]. We find their work to be a particularly striking and933

clear example of this multiple realisability phenomena applied to MI.934

We note the complementarity with our framework. We are stating that for any two possible explana-935

tions of implementations in a single model both analysing the same phenomena, we would like to be936

able to pick out better rather than worse explanations (which can be empirically achieved by seeking937

explanations which are virtuous in the sense given in Section 3).938

Méloux et al. [63] highlight the fundamental importance of Mechanistic Interpretability focusing on939

explanatory faithfulness rather than merely behavioural faithfulness. Without explanatory faithfulness,940

we would not be able to express or understand the distinction between different circuit algorithms941

which compute the same result. As a classical computing example, we can think of this as being942

able to distinguish between different sorting algorithms, such as quicksort and mergesort, which both943

produce the same sorted output but do so via different computational processes.944

J Compact Proofs Glossary945

This section provides a glossary for terms in Section 4.2. We refer readers to [39] for a more detailed946

discussion of the Compact Proofs Evaluation Methodology.947

• Proofs: are a sequence of statements in a formal language which are taken as a logically948

valid argument for why the statement to be proved must be true. For example, ∀x ∈ N :949

x+ 1 = 1 + x is a formal statement which can be formally verified using a formal proof950

system such as Coq [83] or Lean.951

• Compactness: The length of the proof that captures the cost of running the computations it952

postulates. We can quantify the length of a proof using two metrics:953

1. The precise number of FLOPs required to verify the proof.954

2. Its asymptotic complexity in terms of specific input parameters.955

For example, verifying that x1 + x2 + ... + xn = xsum for fixed x1, x2, ..., xn, xsum956

numbers in (some finite precision format) requires n − 1 FLOPs to verify the proof and957

scales asymptotically with O(n). A proof with shorter length is said to be more compact.958

• Bounds of model performance: Performance on a model is a quantifiable metric f :959

W → R from the weight space W of the model to the real numbers. This can refer to e.g.960

the model’s accuracy on a data distribution D (such as the test or training set). A bound961

b : W → R is a function which lower bounds the model performance, such that for all962
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w ∈ W , b(w) ≤ f(w). 15 For example, we may want to prove that models subject to a963

specific mechanistic property (e.g. an induction head) will achieve at least a certain accuracy964

on a test set (e.g. all sequences of the form ...AB...A[B]).965

In practice, proofs for bounds of model performance with weights w ∈W consist of two parts:966

1. (General theorem) A proof Q1 of a theorem of the form “w ∈W , b(w) ≤ f(w)”.967

2. (Specific computation) A computational trace Q2 which computes b(w) for a specific968

w ∈W .969

This gives us the guarantee we need: For our concrete weights w0 ∈ W , Q1 guarantees that the970

number we will compute b(w0) (through some algorithm) is indeed a lower bound of f(w0). Then971

Q2 guarantees that the we ran the algorithm correctly to compute b(w0).972

The length of the proof is the sum of the lengths of Q1 and Q2. We expect the length of Q2 to973

dominate as we need to perform many computations with high-dimensional tensors.974

K The FCM criteria for Circuits975

For C a proposed circuit and M the model, the Completeness criterion states that for every subset976

K ⊂ C, the incompleteness score |F (C \K)− F (M \K)| should be small. Intuitively, a circuit is977

complete if the function of the circuit and the model remain similar under ablations. Conversely, the978

Minimality criterion states that for every node v ∈ C there exists a subset K ⊆ C \ {v} that has979

high minimality score |F (C \ (K ∪ {v}))− F (C \K)|. Intuitively, a circuit is minimal if it doesn’t980

contain components which are unnecessary for the function of the circuit.981

Note that, corresponding to our Explanatory Virtues, the (behavioural) Faithfulness of an explanation982

is an Accuracy property. Completeness looks to provide additional evidence towards Accuracy983

towards explanatory faithfulness [8]. Minimality is a Simplicity property.984

L Applying the Explanatory Virtues Framework985

In practise we hope that our Explanatory Virtues Framework can be used by MI researchers when986

designing new interpretability methods and evaluation metrics. Existing examples of the value of the987

framework include the MDL-SAE method from Ayonrinde et al. [9] and Wu et al. [92]’s unification988

of explanations for Group Operations.989

The insight of the MDL-SAE paradigm was that in changing from Parsimony to Shannon complexity990

as the measure of Simplicity for SAEs, many of the existing problems with SAEs were alleviated991

(see Section 4.1.2). We encourage researchers to focus on the Simplicity metric that is best aligned992

for their task and note that Parsimony (while implicitly the most popular measure of Simplicity in the993

MI literature) is a poor guide to Simplicity. Parsimony treats intuitively highly complex objects and994

very simple objects both equivalently as “entities” and simply counts them up without nuance. [11]995

provides a discussion of the downsides of Parsimony as a measure of simplicity.996

Wu et al. [92] demonstrated our framework’s utility by applying the Compact Proofs methodology997

to three competing interpretations. They found that two interpretations failed to produce non-998

vacuous bounds (indicating poor Accuracy and Simplicity), while their interpretation succeeded. This999

exemplifies how our framework can resolve explanatory conflict.1000

15Depending on the metric, we may also consider upper bounds, where b(w) ≥ f(w) for all w ∈W .
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