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Abstract

The generalization ability of a deep learning classifier hinges significantly on the geometry
of its loss landscape. Solutions residing near flatter areas are more robust, generalizing
better than the ones present near sharp minima. In this paper, we study the effects of
the loss landscape on the generalization of deep learning models and effectively leverage
its geometric information to propose a novel regularization method, Fisher regularization.
By dynamically penalizing weights based on their curvature across the loss landscape, we
propose an adaptive regularization scheme that guides the optimization process towards
flatter and more generalizable solutions. We establish a rigorous theoretical foundation
for our regularization approach using the PAC-Bayesian theory and empirically validate
the superior performance of deep learning models trained with our proposed method over
other powerful regularization techniques across a range of challenging image classification
benchmarks.

1 Introduction

Building machine learning models that perform well on unseen data is crucial to ensure that the model
generalizes well to different variations of the data distribution while avoiding overfitting the data it
is trained on. Although SGD (Stochastic Gradient Descent), a well-known method for training deep
neural networks, can effectively navigate the loss landscape to reach global minima, it is well known
that not all minima are created equal (Liu et al., 2021). Their generalization properties also depend
on other properties such as their flatness (Hochreiter & Schmidhuber, 1997) and volume. Despite their
remarkable success in various applications, a deeper theoretical understanding of the generalizability of deep
neural networks based on the properties of the loss landscape and the minima reached by SGD is still lacking.

Although the theoretical study of generalization provides valuable insight, it is equally important to
explore practical methods that effectively improve the generalizability of deep networks. Regularization is
a popular framework for improving the generalization of deep networks. Regularization strategies based on
the weight norm, such as the l2 norm and the l1 norm or lasso (Tibshirani, 1996), are commonly employed
in deep networks. However, these techniques typically operate on the weights themselves and do not take
into account the flatness or curvature of the loss landscape. They penalize all weights equally, without
taking into account their contributions to the sharpness of the loss landscape (Hochreiter & Schmidhuber,
1997), which are key factors in determining generalization.

In this work, we analyze generalizability from the viewpoint of the loss landscape, exploring how its
geometric properties can be exploited to improve regularization techniques. To this end, we propose Fisher
regularization, a novel regularization method that considers the geometry of the loss landscape to determine
the relative importance of different weights in the regularization term.

To provide a theoretical grounding for Fisher regularization, we leverage the PAC-Bayesian framework (Dz-
iugaite & Roy, 2017) to derive a novel generalization bound. The bound is based on the Fisher-norm, a
well-established measure of model sharpness. This analysis not only motivates our regularization method,
but also connects it to the perspective that considers sharpness as an effective measure of generalization.
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We confirm the effectiveness of our Fisher regularization through extensive experiments on several challenging
image classification datasets. Our results demonstrate improved accuracy and generalization of models
trained with Fisher regularization compared to state-of-the-art regularization methods.

To explain our approach and to demonstrate its effectiveness in improving generalization, we have organized
the paper as follows. In Section 2, we present related works that have explored different methods in deep
learning to improve the generalization of neural networks. Section 3 provides theoretical motivation for our
approach by connecting it to a generalization bound based on the PAC-Bayesian framework and demonstrates
how the Fisher norm minimizes the bound to improve its performance. Establishing this connection provides
a theoretical grounding for the effectiveness of our approach. Section 4 then describes our regularization
method in detail, and Section 5 provides details about the experiments. Section 6 then compares Fisher
regularization with other regularization techniques, and finally, section 7 concludes with potential future
directions.

Overall, our work makes the following contributions.

• We propose a novel regularization method, called Fisher regularization, which incorporates the
sharpness of the loss landscape into the regularization term to improve the generalization of neural
networks. This is significant because, unlike L2 regularization, which applies uniform penalties to
all weights, our method penalizes the weights in proportion to their curvature on the loss landscape.
This adaptive weighting scheme allows our method to focus more on penalizing parameters that
contribute to the curvature of the loss landscape, and hence are more prone to overfitting.

• We successfully leverage the PAC-bayesian framework, which provides non-vacuous and tight gen-
eralization bounds, to derive our Fisher regularization term. We thus provide a robust theoretical
foundation for our approach based on the learning-theoretic framework of the generalization gap.

2 Related Works

Generalization bounds in deep learning
An important quantity that estimates the generalization ability of a classifier is its generalization bound.
These bounds depend on the difference between the empirical risk of a classifier on a dataset and its true
risk and measure how well the classifier, when trained on a training set, will generalize to an unseen test set.
In the literature, many different generalization bounds have been suggested for neural networks using the
uniform convergence principle, which are based on the fat-shattering dimension (Bartlett, 1998), covering
numbers, or the VC dimension (Bartlett & Maass, 2003). As a consequence of these, many methods have
been introduced that minimize these bounds to improve generalization of deep networks, such as L2 norm
regularization that minimizes the fat-shattering dimension (Bartlett, 1996), and L0 norm regularization
which minimizes the VC dimension (Bartlett & Maass, 2003) by minimizing the number of hidden units.
However, recent works (Nagarajan & Kolter, 2019) have shown that, due to their dependence on the uniform
convergence principle, these bounds are essentially vacuous and thus do not explain generalization in neural
networks.

On the other hand, a line of recent works have explored PAC-Bayesian bounds to provide generalization
bounds that are non-vacuous (Dziugaite & Roy, 2017; Neyshabur et al., 2018). These bounds usually
contain terms based on the properties of the loss landscape, such as sharpness. In this work, we thus
use the concepts from the PAC-Bayesian theorem with a more sound theoretical basis to suggest a novel
regularization method that considers the geometry of the loss landscape into account.

Regularization in deep learning
Regularization is a common technique that is widely used to enhance the generalization capabilities of deep
neural networks. These methods usually employ some form of penalty on the complexity of neural networks
to mitigate their risk of overfitting. A significant portion of these methods apply a penalty on the norm of the
network weights to prevent them from growing too large. Weight decay (Zhang et al., 2018), early stopping
(Bai et al., 2021), and lp-norm penalties are some popular strategies that fall into this category. The lp
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norm regularization is the most popular method that is widely used in different deep learning architectures
to improve their generalization performance.

Several variants of these methods exist that apply different forms of penalties on the weights, serving different
purposes. For example, L2 regularization is widely used to minimize the L2 norm of the weights, whereas
L1 regularization (popularly known as the Lasso (Tibshirani, 1996)) is employed to encourage sparsity of
the weights, driving less influential weights to zero and thus performing feature selection. Beyond individual
weight penalties, L2,1 regularization extends this concept to group-level sparsity (Scardapane et al., 2017). It
uses a regularization term that takes the L2 norm of the columns of the weight matrices and then sums these
norms, essentially computing an L1 norm of the column norms. Since the weights in each column include the
outgoing weights from the same hidden unit, this regularization method effectively prunes entire hidden units
by zeroing out all the terms in the corresponding column, thus providing a form of structure regularization.
On the other hand, spectral norm regularization (Yoshida & Miyato, 2017) reduces the sensitivity of the
network output to small perturbations by penalizing the spectral norm, which corresponds to the largest
eigenvalue of the weights. This constraint limits the Lipschitz constraint of the network, thus improving its
adversarial robustness and generalization capability.

3 An improved data-dependent PAC-Bound

The generalization gap of a predictor f can be described as the difference in its empirical risk Rn(f) =
1
n

∑n
i=1 L(x, y) over the training set and its expected risk (or true risk) R(f) = E[L(x, y)]. This gap, which

can be written as R(f) − Rn(f), is a predictor of how well a network that is trained on the training set, will
generalize to unseen test data sampled from the same distribution P (X, Y ). If the input dataset contains
samples X1, X2, ..., Xn with labels y1, y2, ..., yn and if our risk function is the margin loss (Bartlett et al.,
2017) which is described as

L(x, y) =


0 y ∗ f(x) ≥ γ

1 − y∗f(x)
γ y ∗ f(x) ∈ [0, γ]

1 y ∗ f(x) < 0
(1)

where γ is the margin between the classes. Using the PAC-Bayesian generalization error bound (Dziugaite &
Roy, 2017), given a prior P over the weights W and letting the posterior distribution of the weights output
by a learning algorithm A be Q(S), then with probability 1 − δ this gap can then be bounded as

R(f) − Rn(f) < 4
√

(KL(Q∥P ) + ln(m/δ)
m − 1 (2)

In the regular PAC-Bayesian bounds, the prior P is usually a Gaussian distribution with mean fixed at 0
and covariance I.

If the weight distribution is a Gaussian with mean w and variance Σq, and the prior is a normal distribution
centered at u with covariance Σp, the above bound can be rewritten as

R(f) − Rn(f) < 4
√

(KL(N (w, Σq)∥N (u, Σp)) + ln(m/δ)
m − 1 (3)

where m is the number of samples in the test set.

Using the following Equation from (Martens, 2020)

KL(P (w)∥P (u)) = (w − u)F (w − u)T (4)

where F = E[(∂L/∂w)(∂L/∂w)T] is the fisher information matrix, we can derive a tighter generalization
bound that is based on the geometric information of loss landscape, captured via this matrix. Since the
weights in most neural networks are initialized from a zero mean normal distribution, we put u = 0 in the
above equation, and the bound in (3) simplifies to

R(f) − Rn(f) < 4
√

∥wFwT∥ + ln(m/δ)
m − 1 (5)
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Thus, the value contributed by the KL term to the bound can be broken down into two parts: a) the
magnitude of the weights w, which is multiplied by b) their expected Fisher information F. The Fisher
information can be understood as the sharpness of the loss landscape corresponding to each weight, and
determines how much the individual weights contribute to the complexity of the network.

This motivates a novel method to regularize deep networks by minimizing the norm of the product of
weights and their Fisher information. We thus design deep convolutional support vector machine (SVM)
models (Tang, 2013) that use this data-dependent regularization method to penalize the weights and achieve
improved generalization. We now describe our method in further detail.

4 Deep Fisher regularized large margin networks

Inspired by the generalization bound stated above, we formulate a variant of the deep support vector ma-
chine with a novel regularizer term that minimizes the norm of the product of the weights with the Fisher
information to learn a smooth decision hyperplane that separates points in different classes by a margin γ.
More formally, denoting the margin loss defined in (1) as Lγ , our SVM model minimizes the following loss
function:

n∑
i=1

Lγ(xi, yi) + β

n∑
i=1

∥wFwT∥ (6)

where F is the Fisher information matrix, Lγ(xi, yi) denote the margin loss over the data, β is the weightage
given to the Fisher regularization. Replacing the Fisher information with its average over the mini-batch,
this loss can be finally written as:

n∑
i=1

Lγ(xi, yi) + β

n∑
i,j=1

∥wi · (
M∑

m=1

∂L(xm, ym)
∂wi

· ∂L(xm, ym)
∂wj

) · wj∥2 (7)

where wi, wj denote the ith and jth elements of the weight vector w, ∂L
∂wi

, ∂L
∂wj

their gradients, and the
sum of their products over a batch of size M gives us the Fisher information matrix. In this equation, the
second term forces the loss landscape to be flat by minimizing the magnitude of each weight by a factor
proportional to curvature of the loss landscape under its variation. This will thus tend to encourage the
model to converge to a minima where the loss will be robust to small perturbations of the weights. Moreover,
our proposed regularization method encourages the generalization gap to be small by directly minimizing
the PAC-Bayesian bound described in Equation (5).

Thus, our method gives a higher importance to the weights in the regularization penalty that correspond
to directions of higher curvature on the loss landscape. This makes the regularization scheme adaptive and
more grounded in theoretical foundations, while also guiding the optimization towards minima that are flatter
with better generalization properties. We use this novel regularization term to train deep convolutional SVM
(support vector machines) models and demonstrate an improved generalization achieved by this method over
other regularization schemes.

5 Experiments

5.1 Datasets

We tested our models on the MNIST digit (LeCun et al., 2004) and the CIFAR-10/100 datasets (Krizhevsky,
2009). The MNIST dataset consists of grayscale images of 10 handwritten digits and consists of 60000 images
of size 28 × 28 for training and 10000 images as test examples. It is divided into 6 training batches and 1
test batch, each containing 10000 images (Simonyan & Zisserman, 2014). We performed all our experiments
on the training set and used the test set to test the performance and generalization of the trained models.

The CIFAR-10 dataset (Simonyan & Zisserman, 2014) consists of 60000 32 × 32 color images belonging to
10 categories with 6000 images per category. It is divided into 5 training batches and 1 test batch, each
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Figure 1: Figure demonstrating the properties of the solution learnt via our Fisher regularization. X and
Y axes correspond to two weights of a neural network, whereas Z corresponds to the loss for corresponding
values of X and Y . G1 and G2 corresponds to two different global minima where G1 is a sharp minima,
while G2 is a flatter minima. Our regularization method will favor the minima near the flatter region of the
landscape, due to its lower value of the Fisher term ∂2z/∂x2 corresponding to it.

with 10000 images . The CIFAR-100 dataset also contains 60000 images, but belongs to 100 categories, with
50000 images in the training set and 10000 in the test set. There are only 500 images per category in the
training set, making it a more challenging dataset.

5.2 Data Preprocessing

For all the datasets, as a pre-processing step, we first normalized the images by subtracting the mean from
each image pixel in each channel and dividing them by their variance. The mean and variance were calculated
across all pixels in the training set across channels, and the images in the test set were normalized using
the same statistics. The images in the CIFAR-10 dataset were augmented by vertical and horizontal shifts
of 10% of the image size, and random rotations by a maximum angle of 15◦, while no augmentation was
applied to the MNIST dataset. The images in the CIFAR-100 dataset were pre-processed by first padding
them with 4 pixels on either side and taking a 32 × 32 random crop on which a random horizontal flip was
applied.

5.3 Network and experimental configurations

To evaluate the proposed method, we performed experiments on these datasets with deep convolutional SVM
models with different architectures (Simonyan & Zisserman, 2014). On the MNIST dataset, we experimented
with a network consisting of 3 convolution layers, each with a kernel size of 3, with successive layers containing
68, 128, and 384 hidden units, respectively. The outputs of the convolutional layers were batch normalized,
and an L2 regularization of 0.0003 was applied to their weights. Each convolutional layer was followed by
a max-pooling layer of size 2 × 2. The output of the final convolutional layer was flattened and passed to a
fully connected layer with 800 hidden units and ReLU activations. The output from this layer was passed to
a linear layer with c = 10 units (c = number of classes) that served as the output of the SVM classifier. Since
our model was aimed at solving the multiclass classification, we used the multiclass variant of the hinge loss
(Moore & DeNero, 2011) (or the margin loss) with margin γ = 1, which is defined as follows:
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n∑
i=1

max(0, 1 + wyi
xi − max

t ̸=yi

wtxi) (8)

where yi denotes the actual class labels and max
t ̸=yi

wtx denotes the maximum output among the classes other
than the ground-truth class.

For the CIFAR-10 dataset, we followed the AlexNet model described in (Krizhevsky et al., 2012a) after
reducing the kernel size of its first convolution layer from 11 to 5, as well as the VGG-19 model (Simonyan
& Zisserman, 2014). We used the Leaky ReLU (Maas et al., 2013) with a negative slope of 0.5 as our
activation function instead of the ReLU activations, as the ReLU caused the problem of vanishing gradient.
We batch-normalized the output at every layer. No dropout or regularization was applied at any layer. For
the CIFAR-100 dataset, we used a DenseNet-40 model (Huang et al., 2018) with a growth rate of 12. A
dropout of 0.4 was applied to all layers along with a weight decay of 1e − 4 both of which were crucial to
obtain decent results.

The networks were trained using backpropagation through stochastic gradient descent. A sum of the mul-
ticlass hinge loss (Tang, 2013) with the regularization term r(w) was used to train the SVM classifier. The
overall loss function for the classifier can be written as∑

xi,yi

max(0, 1 + wyi
xi − max

t ̸=yi

wtxi) + r(w) (9)

where xi and yi iterate over all pairs of data points and their corresponding labels, r(w) denotes the regu-
larization function, and w denotes the weights.

We trained the models using four regularization schemes:

• The vanilla L2 regularization, where the regularization term r(w) in equation (9) reduces to

r(w) = β∥w∥2 (10)

• the spectral norm regularization, which penalizes the largest singular value of the weight matrices
to make the network output less sensitive to small perturbations. Here, the regularization term is
r(w) = γ · σ(W ) + β∥W∥2, where σ(W ) denotes the spectral norm, or the largest singular value of
the weights W .

• The group− l1 (or the group lasso)(Scardapane et al., 2017), with the regularization penalty r(w) =
γ · σ(W ) + β∥W∥2,1, where ∥.∥2,1 denotes the L2,1 norm and finally,

• our Fisher regularization, which had the regularization penalty:

r(w) = γwFwT + β∥w∥2 (11)

In all the regularization schemes with which we experimented, we always added a small amount of l2 penalty
β∥W∥2 to allow the maximization of margin ( 1

||w||2 ) in the SVM objective. The group − L1 regularization

method penalizes the L2,1 norm ∥W∥2,1 =
∑n

i=1

√∑
j W 2

i,j , which applies a L2 norm to the columns, followed
by a L1 norm to the resulting output. Since the weights in a column correspond to those emanating from
the same hidden unit, taking an L1 norm over the column norm allows the network to learn weights that
are sparse across columns, i.e., only a few columns have non-zero weights. This allows the network to prune
less valuable hidden units, reducing network complexity while improving generalization.

The generalization gap was evaluated by tracking the difference between the training and test losses of the
trained models. Furthermore, we normalized the terms in the Fisher matrix to scale their magnitude between
0 and 1 as follows

∥∂L(X)
∂wi

· ∂L(X)
∂wj

∥ =
∥ ∂L(X)

∂wi
· ∂L(X)

∂wj
∥ − min

j,k
∥ ∂L(X)

∂wk
· ∂L(X)

∂wj
∥

max
j,k

∥ ∂L(X)
∂wk

· ∂L(X)
∂wj

∥ − min
j,k

∥ ∂L(X)
∂wk

· ∂L(X)
∂wj

∥
(12)
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This normalization rescales the terms of the Fisher matrix between 0 and 1 when they are either extremely
large or small, and also allows us to consider the relative scale by which to penalize each term in the
regularization described in (10). For all experiments, we recorded the generalization gap (or the difference
between the training and test losses) of the model.

From the experiments, we observed that training with our Fisher regularization method improved the test
accuracy of our network compared to the regular L2 penalty. The values of β and γ for the different
regularization methods are given in the following table.

Model Regularization hyperparameters (β/γ)
l2 group spectral fisher

3 layer
CNN SVM
(MNIST)

0.007/0 0.007/0.010.007/0.010.007/0.01

AlexNet
SVM
(CIFAR-
10)

0.05/0 0.04/0.0050.04/0.01 0.03/0.12

VGG-
19 SVM
(CIFAR-
10)

0.05/0 0.04/0.0050.05/0.01 0.05/1.0

DenseNet-
40 SVM
(CIFAR-
100)

0.0001/0 - - 0.0001/0.002

Table 1: The regularization parameters β and γ for each of the model and the corresponding regularization
method selected after cross-validation. The parameters are mentioned as β/γ corresponding to each regu-
larization technique and the model.

These hyperparameters were selected using the cross-validation technique by monitoring the performance of
the model on a holdout set for a fixed number of epochs.

We trained the model for 40 epochs on the MNIST dataset with a batch size of 200. On the CIFAR-10
dataset, we trained the AlexNet and VGG-19 models for 55 and 80 epochs with a batch size of 64, and
on CIFAR-100, we trained a DenseNet-40 model for 114 epochs with a batch size of 64. Adam optimizer
(Kingma & Ba, 2014) with a learning rate of 0.0001 was used to train all networks. The learning rate was
decayed exponentially with the number of epochs according to the following formula.

lr(t) = lr(0) · (0.5⌈t/lr_drop⌉) (13)

where t is the epoch number and lr_drop is the number of epochs for which the factor ⌈t/lr_drop⌉ stays
constant, after which the learning rate drops by a factor of 0.5. We used an lr_drop of 10 for the MNIST
dataset, lr_drop of 20 and 15 on the AlexNet and VGG-19, respectively, for the CIFAR-10 dataset, and 38
on the DenseNet-40 model for the CIFAR-100.

The performance and accuracy of all the models trained with different regularization methods are reported
in Table 2 for the MNIST and in Table 3 for the CIFAR-10 dataset.

6 Results

The test accuracy and generalization performance of the different SVM models, trained with our Fisher
regularization, are compared with that of simple L2 regularization, spectral norm regularization, and the
group l1 regularization in Table 2 for the MNIST dataset and Table 3 for the CIFAR-10 and 100 datasets.
For each model, the test accuracy and the generalization gap (difference between test loss and train loss)
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Figure 2: Figure illustrating the evolution of the maximum value of the Hessian across the training epochs
on the MNIST dataset. Each point in both the line graphs shows a moving average of this value over the
last 8 epochs to filter out the effect of noise. As can be seen from the graph, this value continues to increase
rapidly for the L2 regularized model, whereas it increases and then becomes relatively stable for the Fisher
regularized model.

on the test set are mentioned in the respective tables. On the MNIST dataset, we first observe from Table
2 that models trained with our Fisher regularization achieved a better test accuracy of 99.43% on the test
set than the SVM model trained with standard L2 regularization (99.28%), as well as the spectral norm
and group-l1 norm regularization methods. In Figure 2, we can also observe that our Fisher regularized
model had a lower value of the maxima of the Hessian matrix compared to that of the model trained with
L2 regularization on the MNIST dataset.

Similarly, on the CIFAR-10 dataset, our Fisher regularized AlexNet model achieved 83.29% test accuracy,
surpassing the accuracy of models trained with the l2, spectral, and group − l1 regularization methods by
0.82%, 0.65%, and 0.43%. Moreover, our Fisher regularized model outperformed all the other regularization
methods for the VGG-19 architecture on the same dataset. On the more challenging CIFAR-100 dataset, a
DenseNet trained with our regularization method achieved a 67.74% accuracy, which was 0.45% higher than
that achieved with standard L2-norm weight decay (67.29%).

These results demonstrate that the models trained with the Fisher regularization method achieved better
generalization than the models trained with other regularization methods. Furthermore, the generalization
gap was smaller for our models compared to the models trained with l2 regularization across all models
trained on the CIFAR-10.

Model Accuracy
Convolutional Network
SVM (L2 regularized)

99.28

Convolutional Network
SVM (Spectral norm)

99.34

Convolutional Network
SVM (group L1 regular-
ized)

99.40

Convolutional Network
SVM (Fisher regularized)

99.43

Table 2: Test accuracy comparison of the Convolutional network SVM model (Krizhevsky et al., 2012b)
trained with our Fisher regularization, with the other regularization approaches on the MNIST dataset.
(Lecun et al., 1998)
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Model Test Accuracy Generalization Gap
l2 group spectral fisher l2 group spectral fisher

AlexNet
SVM

82.47 82.86 82.64 83.29 0.2595 0.1815 0.1023 0.1409

VGG-19
SVM

88.29 87.86 87.87 88.55 0.2770 0.0513 0.0721 0.1484

Table 3: Test accuracy comparison of the Convolutional network SVM models (Krizhevsky et al., 2012b)
trained with different regularization approaches on the CIFAR-10 dataset. (Krizhevsky, 2009)

Model Accuracy
DenseNet-40 SVM (L2 regu-
larized)

67.29%

DenseNet-40 SVM (Fisher
regularized)

67.74%

Table 4: Test accuracy comparison of the DenseNet SVM models (Huang et al., 2018) trained with our fisher
regularization with that of L2 regularized model on the CIFAR-100 dataset. (Krizhevsky, 2009)

7 Discussion

In this work, we proposed Fisher regularization, a novel method for improving the generalization performance
of a deep neural network based on the Fisher norm instead of the commonly used l2 norm regularization.
The Fisher norm leverages the curvature or sharpness of the loss landscape into the regularization term
and gives greater importance to weights aligned with high-curvature directions. We provided a theoret-
ical justification for our regularization grounded in the PAC-Bayesian principles, which served as a basis
for its observed empirical benefits. Extensive experiments were performed on several popular deep CNN
architectures using different regularization methods, including our Fisher regularization. The result of our
experiment demonstrated the superior performance and efficacy of our Fisher regularization scheme over
standard l2 regularization, spectral norm regularization, and group − l1 norm regularization across standard
image classification datasets. For example, when applied to an AlexNet-SVM model trained on the CIFAR-
10 dataset, our regularization method achieved 0.82% and 0.65% higher test set accuracy compared to that
achieved via l2 and spectral regularization. Similarly, models trained with our approach achieved higher test
accuracy on the CIFAR-100 dataset as well as the MNIST dataset compared to that achieved by other regu-
larization schemes. Furthermore, the generalization gap of the models trained with our methods was smaller
than that of l2 weight decay across all architectures on the CIFAR-10 dataset. These findings support the
fact that our Fisher regularization method improves the generalization performance of a model over other
strong regularization techniques, including l2, spectral norm, and group-l1 regularization, as demonstrated
by the higher test accuracy compared to other state-of-the-art regularization methods.

8 Conclusions and Future works

This paper introduced a novel and theoretically grounded regularization method, Fisher Regularization,
which leverages the Fisher Information matrix to dynamically penalize the weights of a neural network
based on the local geometry of the loss landscape. Unlike traditional regularization methods that give equal
importance to all parameters of the network, our Fisher regularization penalizes the weights associated with
higher curvature directions in the loss landscape more aggressively, thus guiding the optimization toward a
more flatter and robust global minima.

We provide a rigorous theoretical justification for Fisher regularization using the PAC-Bayesian framework,
demonstrating a tighter generalization bound based on our Fisher norm. This theoretical underpinning
provides a strong rationale for the effectiveness of our method. Extensive experiments on diverse benchmark
datasets demonstrated that deep convolutional SVM models trained with our method achieved consistently
better performance than other methods on the test set of all the datasets, thereby empirically validating

9



Under review as submission to TMLR

the superiority of our approach. These observations demonstrate that our Fisher regularization can be a
powerful tool that can be used to train neural networks that are not only highly accurate but also demonstrate
improved generalization.

In the future, we would like to extend our approach to deeper models with better performance and apply
it to other layers beyond the SVM classifier weights, such as those of the convolutional layer. Furthermore,
we would explore its application in modifying the optimization algorithm (SGD) by guiding it to flatter and
more robust minima. Finally, we would test it over other tasks such as fine-grained classification (Zhao et al.,
2017) and semantic segmentation, and on other domains such as natural language processing.
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A Appendix

A.1 Code to evaluate Fisher regularization term

The algorithm to compute the Fisher norm term is integrated into the train_step function of our code, shown
below. This function belongs to our main keras.Model class, and is automatically invoked during training
when the .fit() function is called on the model. The code snippet shown below describes the train_step
function in detail, illustrating how it calculates the multiclass hinge loss and sum of our Fisher norm and L2
norm, and then optimizes the model parameters by minimizing these losses.

@tf . f unc t i on
def t ra in_step ( s e l f , data ) :

X, l a b e l = data
with t f . GradientTape ( p e r s i s t e n t=True ) as tape :

pred = s e l f . c l a s s i f i e r (X) ; #Returns output o f c l a s s i f i e r
c l s _ l o s s = s e l f . c l s _ l o s s ( l abe l , pred ) #C a l c u l a t e s the hinge l o s s
grads = tape . g rad i en t ( c l s_ lo s s , s e l f . c l a s s i f i e r . t r a i n a b l e _ v a r i a b l e s [ −2])
#C a l c u l a t e s the g rad i en t o f the c l a s s i f i e r l a y e r wi th r e s p e c t to the l o s s
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grads = t f . reshape ( grads , [ −1 , 1 ] )
#reshapes the g rad i en t to a vec to r
grads_mul = t f . abs ( t f . matmul ( grads , grads , transpose_b=True ) ) ;
#Computes the Fisher in format ion matrix F ( here , F = grads_mul )

ming = t f . reduce_min ( grads_mul ) ; maxg = t f . reduce_max ( grads_mul ) ;
grads_mul = ( grads_mul−ming )/(maxg−ming+1e−8)
#Sca l e s the terms o f the matrix

w = s e l f . c l a s s i f i e r . get_layer (name=’ margin_dense ’ ) . k e rne l
#Extrac t s we i gh t s o f the c l a s s i f i e r

w = t f . reshape (w, [ 8 0 0 0 , 1 ] )
f isher_norm = 0.01∗ t f . reduce_sum ( t f . matmul ( t f . matmul (w, t f . s top_gradient ( grads_mul ) ,
transpose_a=True ) ,w) ) #Computes f i s h e r norm ∥w ⊗ F ⊗ w∥
l2_norm = 0.007∗ t f . math . reduce_sum ( t f . reduce_sum (w∗∗2)) #The r e g u l a r L2 norm
norm = l2_norm + fisher_norm #Adds the norms
c l s _ l o s s = c l s _ l o s s + norm #Adds the norm to the f i n a l l o s s term

grads = tape . g rad i en t ( [ c l s _ l o s s ] , s e l f . c l a s s i f i e r . t r a i n a b l e _ v a r i a b l e s )
# computes the g rad i en t o f each parameter wi th r e s p e c t to the l o s s
s e l f . opt imize r . apply_gradients ( zip ( grads , s e l f . c l a s s i f i e r . t r a i n a b l e _ v a r i a b l e s ) )

# Optimizes the model parameters by app l y ing the g r a d i e n t s
return { ’ c l s _ l o s s ’ : c l s_ lo s s , " acc " : accuracy , ’ margin ’ : margin , ’ f isher_norm ’ : f isher_norm }

A.2 Adjusting hyperparemeters of the model during experiments

The hyperparameters of the model can be easily adjusted in the code demonstrated above. The strength
of the different regularization terms (the β and γ parameters) can be adjusted by changing the constant
multiplied with the term. For example, in the code shown above, a constant of 0.007 is multiplied to the
result of the l2_norm term and can be adjusted to change the β parameter and adjust the regularization
strength. Similarly, the 0.01 constant multiplied with the fisher_norm term can be changed to adjust the
hyperparameters as desired. The number of epochs for both training the model as well as the one used in
the learning rate scheduler can be modified by changing the epochs in the model.fit() function and changing
the number of epochs in the variable lr_drop, respectively.
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