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Abstract

Efficient and automated design of optimizers plays a crucial role in full-stack
AutoML systems. However, prior methods in optimizer search are often limited by
their scalability, generalization, or sample efficiency. With the goal of democra-
tizing research and application of optimizer search, we present the first efficient,
scalable and generalizable framework that can directly search on the tasks of in-
terest. We first observe that optimizer updates are fundamentally mathematical
expressions applied to the gradient. Inspired by the innate tree structure of the un-
derlying math expressions, we re-arrange the space of optimizers into a super-tree,
where each path encodes an optimizer. This way, optimizer search can be naturally
formulated as a path-finding problem, allowing a variety of well-established tree
traversal methods to be used as the search algorithm. We adopt an adaptation
of the Monte Carlo method to tree search, equipped with rejection sampling and
equivalent-form detection that leverage the characteristics of optimizer update
rules to further boost the sample efficiency. We provide a diverse set of tasks to
benchmark our algorithm and demonstrate that, with only 128 evaluations, the
proposed framework can discover optimizers that surpass both human-designed
counterparts and prior optimizer search methods. Our code is publicly available at
https://github.com/ruocwang/enos.

1 Introductions

Motivated by a vision of democratizing machine learning, the central objective for automated machine
learning (AutoML), such as automated architecture [22} 26} [29] 40l 155! 160} 62} 165]] / optimizer
(L0, 1124115117, 159L 168] / loss [36] / augmentation search [37,139], lies in reducing the need for expert
design on a diverse set of tasks. To achieve this goal, it is critical for AutoML systems to exhibit a
high level of efficiency, so that they can be directly applied to a variety of tasks without consuming
a humongous amount of computing resources. A widely successful example of such an effort is
DARTS [40] in Neural Architecture Search (NAS), which reduces the search cost from thousands of
GPU days of early RL-based algorithms to a single digit, enabling direct application of NAS systems
to a wide range of tasks 32|33} |38 144} 150].

Inspired by the success of efficient NAS methods, we turn our attention to another important but
much less studied area of AutoML - Automated optimizer search, where an efficient, scalable
and generalizable framework is still absent. Optimizer search aims to automatically design
a suitable update function that takes gradients as inputs and produces update directions for the
optimizee’s parameters. Pioneering work in this area, coined Learning to Optimize (L20), adopts
a data-driven approach by replacing human-designed update rules with a learnable parametric
function [10} 12} [17, 159]. However, parametric optimizers are fundamentally not scalable to large
models or datasets, as inferring its parameters typically requires expensive meta-learning steps such
as backpropagating through gradient descent [10, [15, [68]. Moreover, the learned optimizer often
generalizes poorly to even minor variants of its training task (Figure[3)) [10. [68]. Poor scalability and
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generalization prevent L20 from being served as a general-purpose optimizer search framework that
can be directly applied to tasks of interest.

The aforementioned limitations of parametric optimizers bring our attention to another line of method
that searches over the discrete space of non-parametric update functions|'| which generally exhibit
the same level of scalability and generality as human-designed optimizers [[15,51]. NOS-RL [[15]]
extends early RL-based NAS framework [22]] to optimizer search, proposing to learn a sequential
controller to produce optimizer update rules according to a predefined pattern. However, NOS-RL is
sample inefficient, requiring over 10k evaluations to find good candidates. More recently, AutoML-
Zero [51}169] proposes to search over the vast space of computer codes for the entire ML pipeline
(including the optimizer). The excessive generality of its search space makes it even more costly to
run than RL-based method. The search cost of existing non-parametric optimizer search frameworks
makes them computationally prohibitive not only for practitioners to apply but also for researchers to
analyze.

With the goal of democratizing research and practical applications of automated optimizer design,
we introduce the first efficient, scalable, and generalizable optimizer search framework that can
be directly applied to a wide range of tasks. We observe that non-parametric update rules are
essentially mathematical expressions, with an innate tree structure where nodes are elementary math
operators and edges represent their I/Os. Consequently, generating an update rule can be viewed as
progressively appending nodes to the expression tree until it is complete. Inspired by this observation,
we re-imagine the optimizer search space as a super-tree of mathematical expressions. Each leaf node
on the super-tree contains an optimizer, and the path towards it represents the generation process
of that optimizer’s underlying expression. With the tree-structured search space, optimizer search
can be naturally formulated as a path-finding problem, allowing a wide range of well-established
tree-traversal methods to be used as the search algorithm. We show that a simple adaptation of
Monte Carlo Sampling [30, 53], equipped with our proposed rejection sampling and equivalent-form
detection, can already produce remarkable results on our search space within a fraction of budgets
compared with NOS-RL (~ 1%).

We extensively evaluate the proposed framework on a diverse set of learning tasks: digit clas-
sification with MNISTNET [10], image classification with ConvNet [15], graph learning with
(Cluster-)GAT [21} 28], norm-bounded adversarial attack on robustly trained models [20} 45! 46],
and BERT fine-tuning on NLP datasets [34} 56]. These tasks cover both constraint and unconstrained
optimizations and span over a large variety of models and datasets. Despite the simplicity, the pro-
posed framework is able to discover update rules that surpass human-designed optimizers and prior
optimizer search methods, with a budget of only 128 evaluations. We hope the proposed framework
could lower the barrier of entry to practical non-parametric optimizer search, thereby providing an
entry point for researchers and practitioners from ML community and beyond to study and utilize
automated optimizer search systems.

2 Efficient, scalable and generalizable framework for optimizer search

2.1 Optimizer design space

Notations and problem formulation Deep learning tasks are frequently expressed as optimizing a
loss function L(-) defined over parameter domain 6 € ©. The minimizer of L can thus be obtained
by 6* = argmingcg L(f). For differentiable functions, a standard optimizer typically takes the
form of iterative gradient descent: 6,11 = 6; — v x ¢(VoL(6;)), where ¢ is the current iteration, y
is the learning rate and ¢ denote the update function. Existing optimizers primarily differ in their
design of update function ¢; For example, vanilla gradient descent uses identity mapping ¢(x) = z
as the update function, whereas Adam adopts a momentum-based dynamic learning rate schema:

d(VoL(0:)) = m(VoL(6:))/+/m((VoL(6:))?), where m(-) denotes the momentum function with

an internal state.

The goal of optimizer search is to automatically find a suitable update function ¢ over some hypothesis
space ®. The hypothesis spaces used in prior work can be divided into two categories: non-parametric
and parametric spaces. Most human-designed optimizers belong to the first category, where the update

!'Sometime it is referred to as symbolic optimizers, which is a somewhat inaccurate categorization as
symbolic functions could also contain learnable parameters.



function ¢ is not trainable. Learnable optimizers, such as L2LGD?2 [10] and SymbolicL.20 [68]], fall
into the second category. Our work mainly focuses on non-parametric optimizer search, with the goal
of providing an efficient, scalable and generalizable optimizer search framework that can be directly
apply to various tasks.

Optimizer update rules as expression trees The first step toward such a framework is to under-
stand the structure of non-parametric optimizers. We realize that, fundamentally, optimizers are
mathematical expressions consisting of elementary operators (4, —, sign(), inputs, e.t.c.). Math
expressions have an inherent tree structure that preserves its order of execution, where nodes are
operators and edges represent their I/Os. For instance, Diagram [I shows the expression tree of
Adam [9]:
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Diagram 1: Adam optimizer Dia}gram 2: Our discovered Optimizer for adver-
sarial attack
where m and mo denote the first and second order momentum (which can also be broken down into
their own expression trees).

Therefore, the generation of an update rule, as a mathematical expression, can also be conducted via
top-down node selection: Take Adam as an example, we first select division (/) as the root node. For
its left child, we pick m1, which is a leaf node and thus ends the branch. For the right child, we select
v/, and subsequently pick my to follow it. At this point, there is no empty branches left, and we
obtain the complete update rule for Adam.

A tree-structured search space Inspired by
the completion process of update rules, we rear-
range all expressions into a super-tree, where
each leaf node contains an update rule and each
path represents its completion process. The
super-tree can be generated in a top-down man-
ner: Starting from the root node with an empty
update rule, we generate each of its child nodes
by inserting a different operator into the update
rule, and repeat this process for the generated
nodes. Consequently, an optimizer can be sam- Figure 1: An illustration of traversing the super-
pled by traversing the super-tree until a leaf node tree to discover Adam and SGD.

is reached. Since the super-tree can grow in-

finitely deep, it is often desirable to restrict the tree to a predefined depth N, where only the paths that
can be completed within depth N are included. Figure[I] provides an instantiation of our super-tree,
where the paths leading to Adam and SGD optimizers are displayed as an example.

my /<>

<>—mg

my/\/mz (Adam)

The benefit of arranging the optimizer space into a tree is two folds. Firstly, the tree-based search
space is tight:

Proposition 1 Define the length of an update rule as the number of operators it includes, then the
above tree-based search space is tight: a super-tree with a maximum depth of N covers all update
rules of length no greater than N.

In a tight search space, all optimizers can be represented at the right level of complexity, allowing
them to be visited by the search algorithm without exploring unnecessarily deep into the super-tree.
Although tightness is a fairly obvious result for our space, it is not the case for the previous search
space defined in NOS-RL, as we will explain later. Secondly, with our super-tree, optimizer search
can be naturally formulated as a path-finding problem, allowing a variety of well-established tree
traversal methods to be deployed as search algorithms.



Contents To concretize the content of the search space, we allow three types of operators in the
optimizer update rule:

* aset of p; unary operators (e.g. log(| - |), exp(:), \/| - |, sign(-), drop(-))
* aset of p binary operators (e.g. +, —, X, /, pow(-,-))

* aset of L leaf values (input operators) containing gradient-based terms (e.g. g, m1), decays
(e.g. cosine_decay), and constants (e.g. 1, 2)

This categorization of mathematical operators is not new, as it is also adopted in symbolic math
solver [35]] and NOS-RL [[15].

Comparison with NOS-RL’s search space Although both NOS-RL [15]] and our framework use
elementary math operators as building blocks for optimizers, they have little in common in terms of
the arrangement of the search spaces. Optimizers in NOS-RL’s search space are formed by a chain of
predefined motifs: b(u(I),u(I)), where b, u, I denote binary, unary and input operators. Due to the
fixed structure of such motifs, NOS-RL’s search space is not tight: there exist many optimizers that
take extra longer sequences to express, potentially lowering their chance of being discovered by the
search algorithm. For instance, Diagram shows an optimizer of length 5, but it takes (10 — 1) nodes
(two chained motifs) to represent it under NOS-RL’s arrangement; Moreover, NOS-RL’s search space
also requires extra bypass operators (e.g. u(z) = x and b(z,y) = x) to cover even human-design
optimizers such as Adam and PGD, further increasing the complexity. In contrast, our representation
of optimizers is directly inspired by the innate structure of its underlying mathematical expressions,
resulting in a tight tree-based search space. In our search space, optimizer search can be naturally
formulated as a form of top-down path-finding problem. In the next sections, we will detail our
choice of algorithms for traversing the super-tree, as well as several techniques that leverage the
characteristics of optimizer update rules to boost the sample efficiency.

2.2 Monte Carlo Sampling for tree traversal

We adopt a simple adaptation of Monte Carlo Sampling to tree traversal [30}153}[70] (MCT) as the
search algorithm. The idea is to assign scores to the nodes in the super-tree (Figure[I), and use these
scores to guide the tree traversal. We define the score of a node v as a Monte Carlo estimation over
unrolling steps from v: If v is an internal node, we randomly generate a set of unrolled paths from v
to the corresponding leaf nodes, and take the average score of the resulting optimizers as the score for
v; If v is a leaf node, we set its score to O as it cannot be expanded. The search can thus be conducted
as follows: 1). Starting from the root node v(%) at level 0, we generate all child nodes {v(")} of v(®)
by inserting each operator from the candidate pool to the update rule in v(°); 2). From there, we select
the child node v*(*) with the highest MC score to expand, and move on to the next level; 3). The
process is repeated until a predefined maximum search level is reached. Algorithm|[T]in the Appendix
provides a detailed summary of the complete search process.

Directly applying the MCT algorithm to optimizer search would not perform well under limited
search budgets, due to two unique characteristics of optimizer update rules that challenge the sample
efficiency of the Monte Carlo estimates. Firstly, the majority of mathematical expressions, when
deployed as optimizer update rules, perform poorly or even would not converge. This is usually not
the case for other AutoML tasks such as neural architecture search, as most networks in the search
space perform reasonably well. The large body of poor-performing optimizers not only consumes
precious search budget, but also causes the MC estimation to be unstable. Secondly, there exists
many mathematical redundancies in the expression space, for example: sign(sign(sign(z))) can

be reduced to sign(zx), and % is equivalent to % + 1. Identifying and eliminating these

redundancies would not only save budget, but also prevent the sampling distribution from biasing
toward mathematically simple and shallow update rules. To address these issues and further boost
the sample efficiency, we propose two sets of techniques - rejection sampling and equivalent-form
detection. When combined with these techniques, the simple MCT algorithm becomes particularly
effective for the optimizer search task. We will discuss them in detail in the following sections.

2.3 Rejection sampling



Eliminating poor optimizers with a train-free task- w0 Original Ditribution

agnostic test Inspired by the characteristics of op- After applying descent test
timizer update rules, we develop a train-free task-
agnostic test to eliminate poor optimizers without
evaluating them. We propose a necessary condition
for a valid optimizer: it must produce an acute angle
with steepest descent direction (i.e. gradients). We
check the validity of optimizers against this condition
and only evaluate those that pass the test. For the
test to be task-agnostic, we feed the optimizer with a
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batch of random Gaussian vectors in place of actual Test Accuracy (%)
gradients. Formally, the descent test can be written
as:

Figure 2: Performance distribution of op-
timizers after applying descent test, under
Eyuon(0,1)[c08(6(VoL), VoL)] > Ag Aq = 0.15 and a batch size of 25.

where )\, is a predefined threshold. Although our descent test is by-no-mean comprehensive, it
can effectively rule out a large chunk of poor optimizers with negligible false-negative rates, as
demonstrated in Figure 2]

Reducing the variance of MC estimates via score thresholding After applying the descent test,
there still remains a non-negligible portion of poor optimizers. When sampled during the unrolling
step, these optimizers would drastically lower the Monte Carlo score of the stem node, causing the
MC estimation to exhibit high variance and thus become unreliable. This adverse effect is especially
severe under the efficient setting when the sample size is small. Therefore, we propose to simply
reject candidates with scores lower than a predefined threshold, thereby removing them from the MC
scores of the corresponding stem nodes.

2.4 Detecting and handling redundancies in mathematically equivalent forms

On-the-fly constraint tree-traversal for redundant path pruning One benefit of formulating
the search problem as top-down path-finding is that we can easily apply constraints on-the-fly to
eliminate undesirable branches - those that lead to mathematically redundant expressions in our case.
We identify three main categories of such constraints:

* child operator that nullifies its parent’s operator. e.g. —(—z) = x, In(e*) = x
* child operator that is redundant under its parent. e.g. clip(clip(z)) = clip(x)

* sequence of operators that reduces to a constant in the search space. e.g. \/|sign(z)| =1

The complete sets of constraints we used can be found in the Appendix. Enforcing these constraints
during the traversal can effectively trim down the search tree, allowing the algorithm to explore
branches that lead to more diverse and complex expressions.

Hashing mathematically equivalent expressions Besides enforcing constraints during the traver-
sal, it is also important to detect mathematically equivalent optimizers to avoid duplicated evaluations.
One can always apply off-the-shelf symbolic solvers to identify the equivalence of two expressions, ¢
and ¢’, by checking if (¢ — ¢') can be reduced to 0. However, it could become extremely slow as the
pool of evaluated optimizers {¢; }V gets larger and larger, since we need to solve N pair of equations
every time a new update rule is sampled. Instead, we apply hashing to efficiently query the evaluated
candidate pool for mathematically equivalent optimizers. Concretely, we assign each optimizer a hash
code, obtained by feeding a fixed probing vector as input to the optimizer and recording its output.
The probing vector is pre-sampled from Gaussian distribution. When a newly sampled optimizer
arrives, we only need to compare its code with the hash table to check the existence of its equivalent
form. Empirically, it is much faster to run the proposed hashing-based checker than symbolic solvers.

3 Discussions and relationship to prior work

Automated optimizer design Optimization plays a crucial role in training deep learning models.
Generally, there does not exist one optimizer that aces all scenarios, as different tasks (dataset,



architecture, loss, parameterization, e.t.c.) might favor different optimization methods [2}[10]. The
demand for task-specific optimizers stimulates research interest in developing automated systems
for optimizer design [10, 12} [15, 117,141,151} 1591166} 68]. Early work adopts a data-driven method by
modeling the optimizer update with a parametric function [10} [12,[59]. L2LGD2 [10] deploys an
LSTM model as the update function that takes historical gradients as input and produces the update
direction. However, parametric optimizer search methods are fundamentally limited by its scalability,
as inferring its parameters requires expensive meta-learning steps such as back-propagation through
optimization [10, 159, [68]. Although SymbolicL20 [68] improves the scalability of the learned
LSTM optimizer by distilling it into a lightly-parameterized symbolic optimizer, it still requires a
pretrained LSTM model to begin with. Instead of learning a parametric optimizer, NOS-RL [[15]
directly searches over a discrete space of non-parametric update functions comprised of mathematical
operators. It extends early RL-based NAS method [22]] to optimizer search, by training a sequential
controller to produce the optimizer update rule according to a predefined pattern. However, similar to
its NAS counterpart, NOS-RL is also computationally expensive, requiring over 10k evaluations to
find good candidates.

Symbolic optimization and differential program synthesis Symbolic optimization (SO) [} 13}
5311614163 164]] aims at optimizing an objective over a symbolic hypothesis space of functions (or more
broadly, programs). One line of work attempts to recover the unknown equation from its generated
data, with great potential in automating scientific discoveries [54, 64]. Another line of methods
aims at finding a more interpretable and generalizable symbolic model to replace the black-box
neural networks [53, 161} 163]]; Applications that witnessed some success include learning symbolic
policy networks for RL [63] and sequential classification models [S3,[61]. The latter is often studied
under the concept of Program Synthesis [24]], where a model is extended to include programmatic
rules such as if-else clause, indexing, e.t.c. SO is closely connected to AutoML at a high level, as
both fields frame their problems as discrete optimization. Indeed, many existing optimizer search
methods can find their counterparts in symbolic optimization. Our method is also inspired by the
rich body of literature in deep symbolic mathematics and program synthesis, which also explores
tree-based expression spaces for differential equations and programs [30, 135,153} 161} 164]. However,
due to significant differences in taskonomy, SO and AutoML methods are often developed separately,
converging into different branches of techniques. Symbolic optimization often studies tasks where
candidates are cheap to evaluate but finding the global optimal is desired [[1} 154, 64]]; As a result,
sample efficiency is often not the primary concern. Much to the opposite, in AutoML tasks, candidate
evaluations are extremely expensive; Therefore, it is more beneficial to identify a good-enough
candidate within a limited amount of budget.

4 Empirical evaluations on a diverse set of tasks

We extensively evaluate the proposed framework on a suite of tasks, covering a variety of models
and datasets. On standard benchmark tasks for optimizer search, our method is able to discover
optimizers that outperform its human-designed and automatically searched counterparts. In addition,
we also show that the proposed framework enables automated optimizer design for many other
popular learning tasks, such as adversarial attack, GNN training, and BERT finetuning. Due to the
space limits, we will include detailed descriptions, search settings, and discovered optimizers for
each task in the Appendix.

4.1 General setting

MCT algorithm Across all experiments, we limit the maximum level of MCT traversal to 4, and
set the number of Monte Carlo samples to 32 (a multiple of 8 for parallelism on 8-GPU servers)
for each level. This amounts to a fixed total budget of 128 evaluations. The maximum depth for
the super-tree is set to 10, which already covers many top-performing optimizers for various tasks.
We use a similar set of elementary operations as NOS-RL to build the optimizers, with only minor
adjustments for some tasks (see Appendix for more details).

Optimizer evaluation We follow the default settings and hyperparameters for each task, and only
swap out the optimizer; This potentially puts our algorithm at a disadvantage, as the hyperparameters
are usually tuned around the default optimizers. Before optimizer evaluation, we perform grid search



on a small proxy task (fewer steps) to find a proper learning rate. During the grid search, we also
aggressively terminate optimizers if their performance falls under a certain threshold. Since early
stopped optimizers consume fewer resources than a full evaluation, we do not count them into the
budget (number of evaluations).

4.2 Hand-written digit classification

Training loss trajectory of MNISTNET Training loss trajectory of MNISTNET-2Layer Training loss trajectory of MNISTNET-Big Training loss trajectory of MNISTNET-ReLU
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Figure 3: Training loss trajectory on hand-written digit classification task (log scaled). Each optimizer
is evaluated for 4 random seeds. Our method is marked in red.

We first compare our method with the LSTM-based optimizer (L2LGD2) on hand-written digit
classification. Following L2L.GD?2 [10], the goal is to minimize the cumulative training loss of a
single-hidden-layer MLP with Sigmoid activation (MNISTNET) on the MNIST dataset; The search
is conducted on MNISTNET for 100 steps with a batch size of 128, and the discovered optimizers
are subsequently transferred to three variants of MNISTNET with different activations (MNISTNET-
ReLU), number of hidden layers (MNISTNET-2Layer), and dimensions (MNISTNET-Big). Under
this setting, our method finishes in 0.92h on RTX 2080ti, much faster than L2LGD2 (2.62h).

As shown in Figure 3, our discovered optimizer achieves the lowest training loss under both direct
search and transfer settings. Notable, the LSTM-based parametric update function indeed converges
faster when the number of steps is close to the search phase (black-dotted vertical line on Figure
[3). However, it extrapolates poorly to longer trajectories. As the training proceeds, all other non-
parametric optimizers eventually catch-up, achieving much lower training loss. Moreover, LSTM-
based optimizer also generalizes poorly to other model variants (most noticeably MNISTNET-ReL.U),
revealing its tendency to overfit the search task.

4.3 Image classification with ConvNet

We proceed to evaluate our method on the CIFAR-10 [8] classification task proposed in NOS-RL
[15]. The model of choice is a 2-layer ConvNet. Each layer of this network contains a 32-filter 3x3
convolution with ReLU activation and batch normalization. Following NOS-RL’s setting, for every
optimizer, the best learning rate is searched over a grid of {1e=° 1e=%,1e73,1e72 1e~!, 1} with
1 epoch of training, and the discovered learning rate is subsequently used to train the model for a
longer period of time (5 epochs). Since NOS-RL’s implementation is not open-sourced, we reproduce
and compare with the two families of discovered optimizers described in NOS-RL paper: AddSign
and PowSign.

The results are summarized in Table [[. For NOS-RL, we display the performance of the top 4
variants of PowSign and AddSign, which are obtained after training the controller for over 10k
evaluations (Figure 4 in the NOS-RL paper [15]). With only a fraction (~1%) of the search budget,
our framework is able to discover optimizers that reach a test accuracy of 77.02%, topping both
PowSign and AddSign optimizers and also human-designed ones by a sizable margin. The sheer
reduction in search cost and the improvement in search performance evince the efficiency and
effectiveness of the proposed framework for discovering better optimizers.

4.4 Adversarial attack

Next, we apply our framework to discover optimizers for constraint optimization. We select adver-
sarial attack, which aims at finding norm-bounded perturbations in the input space that alter the
model’s predictions. The de facto optimizer used in adversarial attack is Projected Gradient Descent



Table 1: Performance of automated search algorithms on CIFAR-10.

Optimizer Test Accuracy Search Search Budget
(%) Method (#evaluations)
SGD 70.99% + 2.12 manual -
SGD + Momentum  74.12% =+ 0.44 manual -
Nesterov 74.15% + 0.52 manual -
Adam 73.42% + 0.56 manual -
RMSprop 71.42% + 1.42 manual -
PowSign-1d 75.48% + 0.45 RL on hand-crafted patterns >10,000
PowSign-cd 76.21% + 0.16 RL on hand-crafted patterns >10,000
AddSign-1d 75.54% 4+ 0.39  RL on hand-crafted pattern space >10,000
AddSign-cd 76.07% + 0.59 RL on hand-crafted pattern space >10,000
Ours 77.02% =+ 0.19 MCT on super-tree space 128

(PGD) [20]. We consider the most popular /,,-norm setting. For [,,-norm bounded attack, PGD
takes the form of: © = Projpe(.,)(z + vsign(V.L(z)))), where B (z,) represents a ¢ ball
around the original image x, w.r.t. [,-norm. The models of choice come from the AutoAttack
library [46]], which holds a leaderboard of top defense methods. Following their settings, we set
e = 8/255, and run each optimizer once for 100 steps on every image from the test split [46].

On this task, we mainly search for the update Table 2: Attack success rate of different optimizers
rule inside the projection operator (e.g. sign() on top defense methods on CIFAR-10.

for PGD). The search is conducted on the pre-

trained Carmon2019 model [27], and the pro- 22:&?:2%41(;1:\15121\1-28-10) 27] TR I
posed optimizer is subsequently evaluated on  Gowal2020f (WRN-70-16) [48]  31.10% 32.00% 32.00%
other top defense methods for WideResNet [14] ~ Gowal2020°(WRN-34-20) [48] ~ 40.05%  40.46% 40.50%

- Gowal2020° (WRN-28-10) [48]  33.65% 34.33% 34.34%
(WRN-<depth>-<width>) and ResNet [11] (RN- g0 o000 WRN-28-10) (5] 40.00% 4043%  40.46%

<depth>). As shown in Table 2, our discov-  wu2020f (WRN-28-10) (58] 3641% 36.70% 36.78%
ered optimizer consistently outperforms PGD ~ Wang2020*(WRN-28-10) [42] ~ 37.78% 38.16% 3827%

. . e Engstrom2019 (RN-50) [31] 4776% 4825% 48.32%
by a sizable margin. Surprisingly, we found that Wong2020Fast (RN-18) [57] 53.69% 54.11% 54.19%

the algorithm tends to pick log(] - |) rather than
sign(-) as the first operator, resulting in many
log-based optimizers that surpass sign-based PGD.

+ Methods that explore extra data during robust training.

In addition to PGD, we also compare our log-based optimizer with the best handcrafted and tuned
optimizer for adversarial attack: Adaptive PGD (APGD) [46]]; The design of APGD is packed with
domain expertise: it combines a well-tuned momentum update rule with a conditional learning rate
decay based on a handcrafted schedule and sophisticated decay conditions (see Appendix for details).
However, the performance of our automatically discovered optimizer rivals APGD across various
defense methods, despite of having a much simpler form (see Appendix for details). This result
demonstrates the potential of applying our framework to reduce the need of human expertise in
designing optimizers for diverse tasks.

4.5 Node classification on graphs

We next test our framework for optimizing graph  Table 3: Performance of our discovered optimizers
neural networks to classify nodes on graphs. The  against Adam on GATs on five commonly used
model of interest is Graph Attention Network —Graph datasets of diverse size. Results that use the

(GAT) [21]], one of the most widely used ar- same GAT implementations are grouped together.
chitectures in graph learning tasks. We com-

pare our method against Adam [9] - the standard Dataset Adam Ours

optimizer for optimizing GATSs - on five com- Products  77.49% + 0.56' 80.15% =+ 0.16
monly used graph datasets: OGBN-Product [49]], Cora 84.72% 4 0.32  85.20% + 0.19
Cora [4], Citeseer [3]], PubMed [6]], and PPI [18]]. Citeseer 71.70% + 1.03  73.10% =+ 0.43
Among them, OGBN-Product is the largest in PubMed  78.20% +0.22  79.25% + 0.70

scale, consisting of 2,449,029 nodes. Since stan- PPI 97.53% + 0.45¢ 98.13% =+ 0.10

dard GATs cannot scale to this dataset, we in- T Our reproduced accuracy using ogbn-
stead adopt an adaptation of cluster-GCN [28]] leaderboard’s implementation is lower than
to GAT as the testbed, termed Cluster-GAT. the displayed number (79.23% =+ 0.78).

Cluster-GAT trains standard GAT on smaller £ F1 Score
partitions of the original graph, thereby allow-



ing the model to be applied to large-scale graphs. We refer the reader to the Appendix for detailed
descriptions of all GAT implementations and experimental setups.

The results are summarized in Table E On all datasets, our search algorithm is able to discover
optimizers that outperform Adam. An interesting observation is that the top-performing optimizers
discovered for this task almost always contain sign(-) operators, revealing the potential of adopting
sign-based optimizers to improve the training of graph neural networks.

4.6 BERT fine-tuning on NLP datasets

We also evaluate the proposed framework on BERT Table 4: Performance of our discovered opti-
finetuning task on GLUE benchmark [25]. For this mizers for BERT finetuning on GLUE tasks.
task, we follow all configurations of the Hugging-
Face [56] implementations: we finetune a pretrained
BERT (base cased) model for 3 epochs on Cola [43]],
STS-B [16] and RTE [7] dataset, and 5 epochs on " "
MRPC [5] and WNLI [25] dataset. The batch size  pro > ero0 o 1ot o900 & 1o
is set to 32. We compare our discovered optimizers ’ “ot e ot

WNLI  53.17 £ 5.49F 56.34 £ 0.00"
with the default AdamW [19]. As shown in Table E,
our automatically discovered optimizers outperform
AdamW on all datasets.

Dataset AdamW Ours
Cola 59.56 + 2.04* 60.89 £ 1.33*
MRPC  82.84 +0.57t 86.64 + 0.94¢

* Mathews Correlation.
 Spearman Correlation.
¥ Accuracy (%).

5 Ablation study

In this section, we ablate the proposed framework using the MNISTNET task. All experiments are
repeated over 4 random seeds to account for randomness in the search phase.

Random search baseline We study the effectiveness of Table 5: Performance Comparison of
our MCT algorithm alone by comparing it with random Random Search and MCT.

sampling. Concretely, instead of traversing the tree based _

on MC scores, we randomly generate all optimizers from xfn‘;‘:; Tra‘é“(;f‘zgSLi"szfg(;“m) gg%{;ﬁ‘ﬂag
the root. Everything else in our framework remains un-  mcr 59.25 + 2.50 89.43% + 0.85
changed, including our rejection sampling and equivalent-

form detection techniques. This is equivalent to Random Search on our search space. As shown in
Table[5] MCT algorithm outperforms Random Search baseline by a sizable margin, showing that the
Monte Carlo node scoring schema can indeed guide the traversal towards promising branches of the
tree.

Score thresholding As discussed in prior sections, score thresholding is important to the perfor-
mance of the MCT algorithm. To verify this, we ablate this technique by disabling it in our framework
while keeping everything else the same. Without score thresholding, the cumulative training loss of
the proposed optimizers raises from 59.25 + 2.50 to 60.25 + 2.87, similar to that of random search.

6 Conclusion

Despite the recent advancement of practical AutoML systems in automatizing the design of architec-
tures, data augmentation policies, and hyperparameters, progress in automated discovery of optimizers
is still inadequate due to the limitations of prior methods in terms of 1). efficiency, 2). generalization,
and 3). scalability. In this paper, we introduce the first optimizer search framework that meets all
these criteria, allowing it to be directly applied to the tasks of interest. The proposed framework
demonstrates promising results across a variety of tasks, from image classification, adversarial attack,
to graph learning and BERT finetuning. Our method by-no-mean solves the optimizer search problem,
as there is plenty of room for improvement on the algorithm and search space; Rather, our goal is to
open up a new possibility for future development in non-parametric optimizer search methods. We
hope the proposed framework could democratize research and applications of automated optimizer
search, and stimulate interest among researchers and practitioners.



7 Limitations

Our view of this work is as a starting point of an efficient, scalable, and generalizable framework for
optimizer search. And we expect plenty of room for improvement for future works. For instance, we
identify the following concrete limitations of the method:

1. We use pre-computed momentum terms as input to our search space. This is a practice
borrowed from NOS-RL. Adding commonly used terms ease the job of the search algorithm
because it does not have to rediscover them from scratch every time. However, searching for
novel momentum update rules could potentially help to find even stronger optimizers. In
principle, our framework allows it: one can do this by inserting an operator with its own
internal state. This would serve as a direction for future explorations.

2. Identifying proper hyperparameters for an optimizer is essentially for evaluation. In the
current work, we use a simple grid search to discover the best learning rate for an optimizer.
While it works fine for our tasks, this could potentially be suboptimal as it might underes-
timate some optimizers. Leveraging advanced fast HPO during the search phase could be
another direction to explore.

3. Although our framework is 100x faster than the comparable method (NOS-RL), it still
requires 128 evaluations in the search phase. These evaluations can be largely parallelized.
But potentially, the efficiency can be improved further with better search algorithms, more
train-free tests, knowledge transfer, e.t.c.

Reproducibility & ethics statements

Reproducibility We have specified the setup for ours experiments in the main paper and Appendix,
including settings for each task and hyperparameters for our method. The code and the optimizers
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development. Before then, a copy of our code is included in the supplementary material for reference.
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