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ABSTRACT

While deep learning models often lack interpretability, concept bottleneck models
(CBMs) provide inherent explanations via their concept representations. More-
over, they allow users to perform interventional interactions on these concepts by
updating the concept values and thus correcting the predictive output of the model.
Up to this point, these interventions were typically applied to the model just once
and then discarded. To rectify this, we present concept bottleneck memory models
(CB2Ms), which keep a memory of past interventions. Specifically, CB2Ms lever-
age a two-fold, differentiable memory to generalize interventions to appropriate
novel situations, enabling the model to identify errors and reapply previous inter-
ventions. This way, a CB2M learns to automatically improve model performance
from a few initially obtained interventions. If no prior human interventions are
available, a CB2M can detect potential mistakes of the CBM bottleneck and re-
quest targeted interventions. Our experimental evaluations on challenging scenar-
ios like handling distribution shifts and confounded data demonstrate that CB2Ms
are able to successfully generalize interventions to unseen data and can indeed
identify wrongly inferred concepts. Hence, CB2Ms are a valuable tool for users
to provide interactive feedback on CBMs, e.g., by guiding a user’s interaction and
requiring fewer interventions.

1 INTRODUCTION

Deep learning models are often deemed black-box models that make it difficult for human users
to understand their decision processes (Adadi & Berrada, 2018; Cambria et al., 2023; Saeed &
Omlin, 2023) and interact with them (Schramowski et al., 2020; Teso et al., 2023). To address
these issues, one recent branch within explainable artificial intelligence focuses on the potential of
concept bottleneck models (CBMs) (Koh et al., 2020; Stammer et al., 2021). These are designed to
be partially interpretable and perform inference (such as bird image classification cf. Fig. 1 top) by
transforming the initial raw input into a set of human-understandable concepts (e.g., wing shape or
color) with a bottleneck network. Subsequently, a predictor network provides a final task prediction
based on the activation of these concepts. These concept activations serve as an inherent explanation
of the model’s decision (Teso et al., 2023). Arguably even more valuable, these activations can
be used as a means for humans to perform interventional interactions, e.g., for querying further
explanations (Abid et al., 2022) or correcting concept predictions (Koh et al., 2020).

In fact, a recent surge of research has focused on the benefits of leveraging interactions in AI mod-
els in general (Ouyang et al., 2022; Miller, 2019), and also CBMs in particular (Teso et al., 2023).
Multiple such approaches focus on leveraging interactions for mitigating errors of the predictor
network (Bontempelli et al., 2021; Stammer et al., 2021). So far, little work has focused on miti-
gating errors of the initial bottleneck network. Moreover, although interventional interactions on a
CBM’s concept activations are a natural tool for this purpose, they have received little attention since
their introduction by Koh et al. (2020). One likely reason for this is that interventions according to
(Koh et al., 2020) represent a singular-use tool for updating model performance by adding human-
provided concept labels to an increasing number of randomly selected concepts. For sustainably
improving a model’s performance, however, this approach is inefficient and potentially demands a
large number of repetitive user interactions. Providing such repeated feedback has been identified
to lead to a loss in focus of human users (Amershi et al., 2014) if not infeasible at all.
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Figure 1: Reusing a CBM intervention can correct model mistakes for multiple examples. Top:
CBMs generate a human interpretable concept representation via bottleneck (g) to solve the final task
with a predictor (f ). Human users can correct these concept predictions via targeted interventions
(blue) influencing the final prediction. Bottom: Human interventions hold valuable information
reusable in right situations to automatically correct model errors without further human interactions.

In this work, we therefore argue to harvest the rich information present in previously collected in-
terventions in a multi-use approach. Specifically, let us suppose a user corrects a model’s inferred
concepts through a targeted intervention. In that case, the intervention carries information on where
the model did not perform well. As shown in Fig. 1 bottom, this information can be used to improve
predictions in similar future situations. In this context, we introduce Concept Bottleneck Memory
Models (CB2Ms) as a novel and flexible extension to CBMs. CB2Ms are based on adding a differ-
entiable, two-fold memory of interventions to the CBM architecture, which allows to keep track of
previous model mistakes as well as previously applied interventions. This memory enables two im-
portant properties for improved interactive concept learning. Specifically, a CB2M can (1) reapply
interventions when the base CBM repeats previous mistakes. It thereby automatically corrects these
mistakes without the need for additional human feedback. Overall, human feedback may, however,
not always be readily available, and obtaining it can be costly. CB2M thus mitigates this issue by
(2) its ability to detect potential model mistakes prior to initial human feedback. Its memory module
can be used to select data points for human inspection, and thus guide human feedback to where it
is really needed. Thus ultimately, CB2Ms allow to overcome the issue of one-time interventions of
standard CBMs and enables the model to learn more effectively from targeted human feedback.

We illustrate the full potential of CB2M in our experimental evaluations on several challenging
tasks, such as handling distribution shifts and confounding factors across several datasets. In sum-
mary, we make the following contributions: (i) We identify the potential of extracting generalizable
knowledge from human interventions as a means of correcting concept bottleneck models. (ii) We
introduce CB2M, a flexible extension to CBM-like architectures for handling such interactive inter-
ventions. (iii) Our experimental evaluations show that CB2Ms can truly learn from interventions by
generalizing them to previously unseen examples. (iv) We further show that CB2Ms are also able to
detect model mistakes without the need for initial human knowledge and thus allow to query a user
for targeted interventions.1

2 CONCEPT BOTTLENECK MEMORY MODELS (CB2MS)

Let us first introduce the background notations on CBMs and interventions before presenting CB2Ms
to improve interactive concept learning via detecting of model mistakes and generalizing of inter-
ventions to novel, unseen examples.

2.1 BACKGROUND

A CBM which solves the task of transforming inputs X to outputs Y consists of two parts. The
bottleneck model g : x→ c transforms an input x ∈ X into its concept representation c. Afterwards,
the predictor network f : c → y uses this representation to generate the final target output y ∈ Y .

1code is available publicly at: https://anonymous.4open.science/r/ConceptBottleneckMemoryModels-68F5
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Figure 2: Overview of CB2M to detect mistakes or generalize interventions. A vanilla CBM
(grey), consisting of bottleneck (g) and predictor (f ), is extended with a two-fold memory (orange
and green). The memory compares encodings of new samples to known mistakes to (i) detect model
errors or (ii) automatically correct the model via reuse of interventions.

The ground-truth values for c and y are written as c∗ and y∗, respectively. We refer to overall model
(task) accuracy as Accf and to concept accuracy as Accg . Human interactions with the concept
representations are called interventions. An intervention i ∈ I is a set of tuples i = {(c′j , j)|j ∈ Ji},
with updated concept values c′j and concept indices j. Ji is the set of all indices for intervention
i. Applying an intervention to a sample x overwrites the predicted concept values with those of the
intervention, which we denote as x|i.
As CBMs consist of two processing modules, the bottleneck and predictor networks, errors can oc-
cur in either, with different consequences on how to handle these (Bontempelli et al., 2021). If the
bottleneck makes an error, this error will most likely also negatively influence the predictor. On
the other hand, it is also possible that the predictor makes a wrong final prediction despite having
received a correct concept representation. In the latter case, the concept space is either insuffi-
cient to solve the task, or the predictor network is susceptible to, e.g., some spurious correlations.
Where other works have investigated handling an insufficient concept space through additional (un-
supervised) concepts (Sawada & Nakamura, 2022), or correcting a predictor with spurious corre-
lations (Stammer et al., 2021) CB2M on the other hand focuses on mitigating errors that originate
from the bottleneck model. This is achieved by utilizing interventions on the concept space. Let us
now discuss this in more detail.

2.2 CONCEPT BOTTLENECK MEMORY MODELS

Let us now introduce Concept Bottleneck Memory Models (CB2Ms) as a flexible extension to CBM
architectures. The bottleneck and predictor networks of the CBM remain unchanged but are ex-
tended by a two-fold memory moduleM which consists of a mistake memoryMm coupled with
an intervention memoryMi. The mistake memory operates on encodings xe, i.e., the input of the
last layer of the bottleneck network. It measures the similarity between two data points x and x′,
i.e., via the euclidean distance of their encodings, d(xe, x

′
e) = ∥xe− x′

e∥. The intervention memory
directly keeps track of known interventions and associates them to elements of the mistake memory,
meaning that the memorized intervention i can be used to correct the memorized mistake of xe. We
denote an associated encoding and intervention as α(xe, i).

Overall, this joint memory can be used to detect model mistakes (orange in Fig. 2) or enable auto-
matic reuse of memorized interventions (green in Fig. 2), which we explain in detail in the following
paragraphs. Importantly, the character of this memory is independent of the overall CB2M frame-
work. It can be constructed in a differentiable manner, e.g., with neural nearest neighbors (Plötz &
Roth, 2018) or, simpler, based on traditional nearest neighbor algorithms.

By extending the vanilla CBM with a memory, CB2M can be used for two distinct tasks (cf. Fig. 2):
(i) detecting potential model mistakes and (ii) generalizing interventions to new examples. Besides
the general advantage of knowing when an AI model has made an incorrect prediction, this knowl-
edge is even more relevant for CBMs as human users can be queried for beneficial interventions in
a targeted fashion. Thus, the ability to handle task (i) via CB2M is especially relevant when humans
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want to provide interventional feedback to a CBM. Furthermore, after humans have intervened on a
CBM, they have, in fact, provided valuable knowledge also for future situations. We claim that this
information should not be discarded as in the original work of Koh et al. (2020), but be reused when
similar mistakes occur again. This is where task (ii) of CB2M comes into play.

Detecting Wrongly Classified Instances. Intuitively, if a data point is similar to other examples
where the model made mistakes, the model will more likely repeat these mistakes on the novel data
point. Therefore, in CB2Ms the mistake memory Mm is utilized to keep track of previous mistakes
(cf. Alg. 1 in the appendix for pseudo-code). First, the memory is filled with encodings of datapoints,
for which the model did not initially generate the correct output and for which the concept accuracy
is smaller than a threshold ta ∈ [0, 1]. This leads to:Mm = {xe : f(g(x)) ̸= y∗ ∧Accg(x) < ta}.
For a new unseen instance x̂, we then compare its encoding x̂e with the mistakes in the memory
Mm. If we find k mistakes with a distance to x̂e smaller than td, we consider a model to be making
a known mistake. Formally, we predict a model mistake for a new unseen instance x̂ if:

∀j ∈ {1, ... , k} : ∃xe,j ∈Mm : d(x̂e, xe,j) ≤ td (1)

This mistake memory can initially be filled with known model mistakes. Yet, once the CB2M is
in use, the memory of mistakes will continuously be updated via interactive feedback, and new
encodings will be added. This can constantly improve detection during deployment as corrective
interventions can immediately be requested after detecting a potentially misclassified sample.

Generalization of Interventions. Next to detecting model errors with the mistake memory, we can
use both the mistake memory and the intervention memory jointly to generalize interventions. As
initially introduced in (Koh et al., 2020), interventions for correcting predicted concept activations
only apply to a single sample. However, we claim that these interventions also contain valuable
information for further samples and should thus be reused, thereby reducing the need for additional
future human interactions. Intuitively, if an intervention is applicable for one example, it is likely
also relevant for similar inputs, at least to a certain degree.

To achieve such intervention generalization from one sample to several, we utilize both parts of the
CB2M memory. Specifically, whenever an intervention i is applied to a model, we store it in the
intervention memoryMi and keep the encoding of the original input point in the mistake memory
Mm. We also keep track of corresponding entries α(xe, i). When the model gets a new sample x̂,
we next check for similar encodings in the mistake memoryMm according to Eq. 1. Here, we use
k = 1, considering only the most similar mistake and its intervention. If there is indeed an encoding
of a mistake xe within distance td of x̂e, we apply its associated intervention i (with α(xe, i)) to the
new data point x̂. If there is no similar mistake, we let the model perform its prediction as usual.

The threshold td is crucial for intervention generalization, as it directly controls the necessary sim-
ilarity to reapply memorized interventions. Selecting a suitable value for td differs from the mis-
take prediction as we want to generalize as many interventions as possible under the constraint
that the generalized interventions remain valid. To this end, we call an intervention i for a sam-
ple x valid if the class prediction after intervening is not worse than before. We write this as
valid(x, i) : f(g(x)) = y∗ =⇒ f(g(x|i)) = y∗. With that, we maximize td, while keeping:

∀x, x′ ∈ X : d(xe, x
′
e) ≤ td ⇒ ∀i ∈ I : valid(x, i)⇒ valid(x′, i) (2)

We can also express this in terms of full datasets, where our dataset accuracy after applying interven-
tions should be greater or equal to the accuracy without interventions: Accf (X|M) ≥ Accf (X ).
Here X|M is the dataset X with applied interventions from the memoryM:

X|M ={x|i : x ∈ X : ∃x′
e ∈Mm : ∃i ∈Mi : d(xe, x

′
e) ≤ td ∧ α(x′

e, i)}
∪ {x : x ∈ X : ¬∃x′

e ∈Mm : d(xe, x
′
e) ≤ td}

(3)

Thus, we want to find the largest td satisfying these constraints. To do that, we can set up the memory
M based on the validation set by adding all model mistakes toMm and simulating corresponding
interventions with ground-truth labels for Mi. The selection of td is then done on the training
set. This results in Mm = {xe : x ∈ Xval ∧ f(g(x)) ̸= y∗} and Mi = {i : i ∈ I ∧ xe ∈
Mm ∧ α(xe, i) ∧ ∀j ∈ Ji : c′j = c∗j}.
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3 EXPERIMENTAL EVALUATIONS

To evaluate the potential of CB2Ms in intervention generalization and mistake detection, we perform
various evaluations. These include evaluating the ability of CB2Ms to detect similar data points,
but also evaluations in the context of unbalanced and confounded data as well as data affected by
distribution shifts. Let us first describe the experimental setup.

Data: The Caltech-UCSD Birds (CUB) dataset (Wah et al., 2011) consists of roughly 12 000 images
of 200 bird classes. We use the data splits provided by Koh et al. (2020), resulting in training,
validation, and test sets with 40, 10, and 50% of the total images. Additionally, we add 4 training
and validation folds to perform 5-fold validation. Images in the dataset are annotated with 312
concepts (e.g., beak-color:black, beak-color:brown, etc.), which can be grouped into concept groups
(one group for all beak-color: concepts). We follow the approach of previous work (Koh et al.,
2020; Chauhan et al., 2022) and use only concepts that occur for at least 10 classes and then perform
majority voting on the concept values for each class. This results in 112 concepts from 28 groups.

We further provide evidence based on the MNIST (LeCun & Cortes, 1998), confounded ColorM-
NIST (C-MNIST) (Rieger et al., 2020) and SVHN (Netzer et al., 2011) datasets. For all three, we
train the model for the parity MNIST task as in (Mahinpei et al., 2021). Hereby, the digit in the
image is considered the concept, and the class label describes whether the digit is even or odd. Fur-
thermore, rather than evaluating on the original MNIST dataset, we focus on an unbalanced version
of this task. In this setting, we remove 95% of the training data of one class (for the results in the
main paper, the digit “9”, for other digits cf. App. A.4). We refer to App. A.3 for results on the
original MNIST dataset, indicating that current base models yield very high performances and make
additional interventions unnecessary. We use the standard train and test splits for these datasets and
create validation sets with 20% of the training data. As for CUB, we generate 5 training and valida-
tion folds in total. When considering human interventions, we follow the common assumption that
humans provide correct concept values as long as the requested concepts are present in the input
(e.g., visible in an image).

Models: For CUB, we use the same model setup as Koh et al. (2020). For the MNIST variants
and SVHN, we follow (Mahinpei et al., 2021). All CBMs are trained with the independent scheme.
Further training details can be found in App. A.1. Further training details can be found in App. A.1.
We use CB2M as described in Sec. 2.2 to enable the generalization of interventions and detection
of model mistakes. CB2M parameters are tuned for generalization and detection separately on the
training and validation set (cf. App. A.8). For all detection experiments, the memory of CB2M
is filled with wrongly classified instances of the validation set according to the parameters. For
generalization experiments, we simulate human interventions on the validation set and use CB2M
to generalize them to the test set.

Metrics: We use both concept and class accuracy of the underlying CBM (with and without CB2M)
to observe improvements in the final task and to investigate the intermediate concept representation.
We evaluate the detection of model mistakes using the area under the receiver operating characteris-
tic (AUROC) and the area under precision-recall curve (AUPR), in line with related work (Ramalho
& Miranda, 2019). To observe how interventions improve model performance, we propose nor-
malized relative improvement (NRI), which measures improvement independent of baseline values.
NRI measures the percentage of the maximum possible improvement in class accuracy achieved
as NRI = ∆/∆max = (Accf − Accf,base)/(Accf,max − Accf,base). Where Accf (Accf,base) refers
to the model accuracy after (before) applying interventions and Accf,max is the maximum possible
accuracy to achieve through interventions, estimated, e.g., by the accuracy of the predictor given
ground-truth concept information on the validation set.

3.1 RESULTS

Beyond One-Time Interventions. First, we analyze how well CB2M generalizes interventions to
unseen data points. If a standard CBM receives a new input similar to a previous datapoint with a
corresponding intervention, that intervention is not further used. CB2M, on the other hand, allows
the reuse of information provided in previous interventions. As CB2M has access to more informa-
tion than the base CBM, we also compare it against a CBM, which is finetuned on the data used
to generate interventions for CB2M for different number of finetuning steps (until convergence).
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Table 1: CB2M generalizes interventions to unseen data points. Top: Performance of CBM,
finetuned CBMs and CB2M on the full dataset. Generalizing interventions with CB2M improves
upon the base CBM on all cases. CBM (ft) achieves higher class accuracy in two cases, but does not
provide any improvements on Parity MNIST (unbalanced) Bottom: Particularly, CB2M identifies
incorrect instances and generalizes suitable interventions to them. (Best values bold, average and
standard deviation over augmented test set versions CUB (Aug.) or 5 runs (other)).

Concept Acc. (↑) Class Acc. (↑)
Dataset Set. CBM CBM (ft) CB2M CBM CBM (ft) CB2M

CUB (Aug.) Full 94.7 ± 0.6 96.2 ± 0.3 98.7 ± 3.5 64.8 ± 2.7 74.7 ± 1.8 69.1 ± 5.5
P MNIST (ub) Full 97.5 ± 0.2 97.9 ± 0.1 98.0 ± 0.3 91.2 ± 0.1 91.8 ± 0.4 94.0 ± 1.2
P C-MNIST Full 87.1 ± 0.0 95.0 ± 0.1 88.4 ± 0.4 68.6 ± 0.3 88.1 ± 0.8 74.9 ± 2.1

CUB (Aug.) Id 86.4 ± 2.7 - 99.0 ± 0.7 5.0 ± 1.7 - 88.7 ± 5.4
P MNIST (ub) Id 85.3 ± 2.6 - 98.7 ± 0.4 22.5 ± 5.7 - 93.7 ± 1.9
P C-MNIST Id 82.2 ± 0.6 - 95.5 ± 1.2 20.1 ± 7.1 - 85.9 ± 4.7

Specifically, CBM (ft) was finetuned for 10 epochs on CUB and 5 epochs on the Parity MNIST
variants. To evaluate the generalization of CB2M to datapoints similar to the intervened samples,
we provide results on a modified version of the CUB dataset: CUB (Aug.). We augment the dataset
with color jitter, blurring, blackout, as well as salt&pepper, and speckles noise, to obtain images that
correspond to similarly challenging natural image recording conditions, e.g., a change in lighting.
We then fill CB2M with simulated human interventions on the unmodified test set and generalize
them to the novel augmented test set version. The results of these evaluations in Tab. 1 show that
indeed CB2M substantially improves upon the base CBM on instances identified (Id) for interven-
tion generalization, and consequently also on the full data set (Full)2. (cf. App. A.6 for further
information on false positive/negative rates and App. A.5 regarding the validation set size).

Next, we evaluate CB2M under more challenging settings, training with highly unbalanced or con-
founded data. As seen in Tab. 1 the base CBM struggles to learn the underrepresented digit in
the unbalanced Parity MNIST dataset. On the confounded Parity C-MNIST dataset3 the CBM is
strongly influenced by the confounding factor which negatively impacts the bottleneck performance
during test time. By generalizing from few human interventions, CB2Ms can substantially improve
performance compared to the vanilla CBM on both datasets. Specifically, the reapplied interven-
tions reach a concept accuracy close to 100%, showing that the interventions successfully correct
the bottleneck errors. Furthermore, correcting the concept representation on those instances that
were identified for reapplied interventions substantially boosts the class accuracy on these instances.
Overall, these results show that CB2Ms are very successful in generalizing interventions. This holds
not only for naturally similar inputs, but also for scenarios like unbalanced and confounded data.

We note that, while CB2M shows superior performances than CBM, extended finetuning (CBM (ft))
does provide notable improvements particularly for Parity C-MNIST both in terms of concept and
class accuracy and slight improvements in class accuracy for CUB (Aug.). This effect is however
not observed for Parity MNIST. Moreover, next to the raw performance, there are other aspects to
consider when comparing CB2M with finetuning the base CBM. Particularly, finetuning a model
can be costly, even more so if the model is very large. This can render repeated finetuning on
interventional data during deployment infeasible. The memory of CB2M on the other hand can
be directly adapted without additional optimization costs, but can result in slightly higher inference
costs (cf. App. A.1). Moreover, CB2M can provide potential benefits in an online setting over vanilla
fine-tuning, when the model should be continuously updated with new interventional data., e.g., via
explicitly memorizing previous mistakes. In general, finetuning removes all other benefits of having
an accessible memory in the context of interpretablity and interactability. Specifically, it is difficult
to remove already applied interventions from the finetuned model, if it turns out the interventions
were incorrect. Inspecting the representation of the finetuned model is also difficult, where in CB2M
a user can simply inspect the model’s memory. Overall, our results and considerations suggest that
parameter finetuning and CB2M can be viewed as complementary approaches for model revisions
via interventions.

2This distinction is not relevant for CBM (ft) as it does not explicitly identify model mistakes.
3For this dataset, we assume that we have access to some human interventions on unconfounded data.
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Table 2: CB2M detects wrongly classified instances. AUROC and AUPR values on the test set.
For the confounded Parity C-MNIST, CB2M can even achieve substantially better detection than the
baselines. (Best values bold, average and standard deviations over 5 runs.)

Dataset Confounded Metric Random Softmax CB2M

CUB No AUROC (↑) 51.1± 0.7 83.7± 1.1 84.8± 0.7
AUPR (↑) 77.3± 0.4 94.0± 0.6 94.6± 0.3

CUB (conf) Yes AUROC (↑) 49.4± 0.8 77.4± 1.1 85.1± 0.5
AUPR (↑) 76.7± 0.4 91.5± 0.7 94.6± 0.3

Parity MNIST No AUROC (↑) 50.5± 0.1 90.7± 1.7 88.7± 0.4
(unbalanced) AUPR (↑) 91.2± 0.1 98.8± 0.3 98.5± 0.1

Parity C-MNIST Yes AUROC (↑) 50.3± 0.7 65.7± 0.3 83.4± 0.8
AUPR (↑) 69.0± 0.6 79.8± 0.3 91.5± 0.4

Table 3: Interventions based on CB2M detection suc-
cessfully improve model performance. NRI of interven-
tions on identified instances and full test set. As expected,
interventions improve performance on identified instances
for all methods. More importantly, using CB2M leads
to considerably larger improvements on the full dataset.
(Best values bold, standard deviations over 5 runs.)

Setting Random Softmax CB2M

CUB
Identified 95.4± 0.6 96.3± 0.6 95.9± 0.5
Full Set 34.3± 5.7 70.1± 3.1 75.5± 4.5

Parity MNIST (unbalanced)
Identified 100.0± 0.0 100.0± 0.0 100.0± 0.0
Full Set 13.2± 4.2 62.1± 4.9 69.6± 4.1

Parity C-MNIST
Identified 100.0± 0.0 100.0± 0.0 100.0± 0.0
Full Set 60.0± 9.8 87.3± 0.8 89.7± 6.1
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Figure 3: Less is enough: Interven-
ing on a subset of all concepts already
yields large improvements. CB2Ms
can be combined with methods which
select subsets of concepts for interven-
tions (here ECTP) (Shin et al., 2023).
(Mean and std over 5 runs)

Asking for Interventions. Next, we go from the generalization of provided interventions to the sec-
ond use-case of CB2Ms, namely for detecting model mistakes prior to human feedback. For this, we
compare CB2M to two baselines. The random baseline for mistake detection simply marks random
samples as mistakes. In contrast, softmax based detection of mistakes uses the softmax probability
of the strongest activated class as a proxy to predict whether the model made a mistake (Hendrycks
& Gimpel, 2017). Where the softmax baseline uses information from the end of the model, i.e.,
after the predictor network, CB2Ms estimate model errors only based on the bottleneck network.
While detecting mistakes of the whole model covers all potential model errors (i.e., bottleneck and
predictor), we hypothesize that detecting mistakes of the bottleneck network directly via CB2M is
more suitable for interventions, as they are tied to the bottleneck network. We compare CB2M to the
baselines on CUB and the Parity MNIST (unbalanced) datasets. Additionally, we evaluate the detec-
tion on Parity C-MNIST and the confounded version of CUB: CUB (conf), where the methods have
access to a small number of unconfounded data points. Our results in Tab. 2 indicate that the mistake
detection of CB2Ms performs on par with softmax on CUB and Parity MNIST (unbalanced). But
particularly mistake detection via CB2Ms is superior to softmax on the two confounded datasets, as
it is able to make better use of the small number of unconfounded samples.

Improving detected mistakes. Next, we show that once model mistakes have been detected, human
interventions provide a straightforward way to improve a model via the detected mistakes. Specifi-
cally, for this we evaluate the effect of interventions on model performance when these are applied
on the previously detected mistakes of CB2Ms. In Tab. 3, we report the normalized relative im-
provement (NRI) on the test set to evaluate the improvement due to interventions that were applied
to previously detected mistakes. We observe that both for CUB and Parity MNIST (unbalanced),
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Table 4: CB2M generalization under distribution shift. The CBM is trained on Parity MNIST and
evaluated on SVHN. Despite the low base model performance, CB2M can still generalize human
interventions on SVHN. (Best values bold, standard deviations over 5 runs.)

Concept Acc. (↑) Class Acc. (↑)
Setting CBM CB2M CBM CB2M

Identified 63.1± 1.2 87.3± 0.1 39.9± 0.3 60.8± 0.4
Full set 68.0± 0.9 75.3± 0.4 51.0± 0.1 57.3± 0.2

interventions can improve model performance on detected mistakes, resulting in (close to) 100% test
accuracy. This results in similar NRIs for all methods on the identified instances. More important,
however, is the effect observed on the full dataset. Here, we can see that interventions after random
selection only have a small effect. Interventions applied after the softmax baseline and CB2M yield
substantially larger improvements, though, overall the results hint that CB2Ms can detect mistakes
more suitable for interventions.

Interventions on subsets of concepts. Often, intervening on a few concepts is already sufficient
because they carry most of the relevant information. As human interactions are expensive, we want
to only ask for interventions on the relevant concepts. As shown in Shin et al. (2023) and Chauhan
et al. (2022), selecting specific concepts for interventions can greatly reduce the required human
interactions. To show that this holds also in the context of CBMs, in Fig. 3, we exemplarily combine
CB2M with the concept subset selection method ECTP (Shin et al., 2023). This figure shows the
increase in performance when applying interventions after CB2M detection for a progressive number
of concepts. One can observe that interventions on a few concept groups (10) already yield a large
portion of the maximum improvement (60%). Applying interventions beyond 19 concept groups
barely shows further improvements. This highlights that we do not necessarily need interventions
on all concepts to achieve benefits of CB2Ms, but they can be combined with existing methods
which perform concept selection for individual samples.

Generalization under Distribution Shift. Lastly, we want to evaluate the benefits of CB2M when
the base CBM is affected by a distribution shift. To that end, we first train a CBM on Parity MNIST
and then evaluate it on Parity SVHN. As seen in Tab. 4, the base model does not perform well under
the shift, with a class accuracy barely over 50% (which is equal to random guessing). Nevertheless,
we observe that if we add human-generated interventions to CB2M, we can greatly improve the
model performance despite the distribution shift, indicating the great potential of CB2Ms also in
other learning settings such as online learning.

Limitations. With CB2Ms, we leverage human feedback to improve upon CBMs. To this end, it is
assumed that the feedback provided by humans is correct. This is a common assumption in work on
CBMs (Koh et al., 2020; Chauhan et al., 2022) and (inter)active learning in general (Settles, 2009;
Berg et al., 2019). However, despite a human’s ability (e.g., sufficient expertise) to provide correct
feedback, a user with malicious intentions could actively provide wrong feedback. This has to be
considered when incorporating human feedback, i.e., also in the context of CB2M. Recent work
has begun tackling this issue e.g., in the context of explanatory interactive learning (Friedrich et al.,
2023), toxic language (Ju et al., 2022) and specifically concept-based AI systems (Collins et al.,
2023). Moreover, inefficient search and memory storage can affect the usability of CB2Ms in large-
scale practical settings. Lastly, a more fundamental issue of CBMs is that a high sample-variance in
terms of concept encodings can potentially lead to a higher amount of required interventions.

4 RELATED WORK

Concept Bottleneck Models. Concept bottleneck models as a general network architecture were
popularized recently by Koh et al. (2020). The two staged model first computes intermediate concept
representations before generating the final task output. Since their introduction, various extensions
and variations of the standard CBM architecture were introduced. To depend less on supervised
concept information, CBM-AUC (Sawada & Nakamura, 2022) combine explicit concept supervi-
sion with unsupervised concept learning. Similarly, PostHoc CBMs (Yüksekgönül et al., 2022)
and label-free CBMs (Oikarinen et al., 2023) encompass concepts from concept libraries (e.g., with
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CAV (Kim et al., 2018)) to require less concept supervision and Stammer et al. (2022) learn concepts
directly with weak supervision based on discretizing prototype representations. Other extensions to
CBMs aim to mitigate concept leakage (Margeloiu et al., 2021), ensuring the inherent interpretabil-
ity of CBMs. Examples are GlanceNets (Marconato et al., 2022) and CEM (Zarlenga et al., 2022).
In another line of work, Lockhart et al. (2022) enable CBMs to drop the concept predictions if not
enough knowledge is available. This large variety of CBM-like architectures makes the flexibil-
ity of our presented CB2M desirable. The only requirements to combine CB2M with other CBM
architectures are access to the model encodings and the ability to apply interventions.

As a two-stage model, CBMs have many advantages compared to standard deep models, but their
structure can make error analysis also more difficult (Marconato et al., 2023). Due to separate
processing of inputs via the bottleneck and predictor networks, error sources also have to be tackled
individually (Bontempelli et al., 2021). Where several previous works have tackled mitigating errors
in the predictor network (Sawada & Nakamura, 2022; Stammer et al., 2021; Teso et al., 2023),
interventions are a tool to tackle bottleneck errors. However, the initial introduction of interventions
applies them to random concepts for all samples (Koh et al., 2020), which is no efficient use of
human interactions. Since then, Shin et al. (2023) proposed several heuristics to order concepts for
intervention and SIUL (Sheth et al., 2022) uses Monte Carlo Dropout to estimate concept uncertainty
for the same purpose. Interactive CBMs (Chauhan et al., 2022) extend the idea even further by
providing a policy to optimize concept selection under consideration of intervention costs. Still,
all these works only consider ordering of concepts for interventions. With CB2M, we provide a
mechanism to handle bottleneck errors via interventions specifically when they occur. And even
more importantly, CB2M allows interventions to have more than a one-time effect.

Uncertainty Estimation for Error Detection. One use case of CB2Ms is to detect potential model
mistakes (which can then be improved via interventions). Detecting data points where models per-
form poorly is often touched upon in research on uncertainty estimation. While the construction
of uncertainty-aware networks provides benefits in terms of mistake detection (Gawlikowski et al.,
2021), our work is more related to methods without particular assumptions on the model architec-
ture. This ensures that CB2M can be combined with different CBM architectures. A popular ap-
proach to detect model mistakes is using softmax probabilities of the most likely class (Hendrycks
& Gimpel, 2017). However, these methods are not specifically tailored to CBMs. They are able to
detect model mistakes in general, while CB2M can specifically detect mistakes related to the bot-
tleneck, which can be corrected via interventions. In contrast, NUC (Ramalho & Miranda, 2019)
learn a neural network on top of a KNN of latent model representations to predict uncertainty. We
do not learn a neural network on top of similarity information, thus keeping our technique simpler
and more flexible e.g., when novel details about model mistakes arrive at model deployment.

5 CONCLUSION

In this work, we have introduced CB2M, a flexible extension to CBM models. We have shown
that the two-fold memory of CB2Ms can be used to generalize interventions to previously unseen
datapoints, thereby overcoming the issue of current one-time intervention approaches without the
necessity of further human interactions. Furthermore, we have demonstrated that CB2Ms can be
utilized to detect model mistakes prior to any human interactions, allowing humans to efficiently
provide interventional feedback in a targeted manner, based on model-identified mistakes. Overall,
our experimental evidence on several tasks and datasets shows that CB2Ms can be used to greatly
improve intervention effectiveness for efficient interactive concept learning.

A promising avenue for future enhancements of CB2M is instantiating the memory in a differen-
tiable way which would allow to learn parameters directly instead of relying on heuristics. Aggregat-
ing interventions from multiple similar mistakes, i.e., using k > 1 for generalization could increase
robustness of reapplied interventions, while aggregation them in the memory via prototypes could
keep the memory small and better understandable. It is further important to investigate the potential
use-case of CB2Ms in the context of continual learning (e.g., concerning robustness to catastrophic
forgetting) and the potential of combining CB2M with important previous works e.g., (Aljundi et al.,
2019). Finally, an interesting future direction is the combination of CB2M with other concept-based
models, for example CEM (Zarlenga et al., 2022), post-hoc CBMs (Yüksekgönül et al., 2022) or
even tabular CBMs (Zarlenga et al., 2023).
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Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 11816–11825, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/e562cd9c0768d5464b64cf61da7fc6bb-Abstract.html.

Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. Power to the people:
The role of humans in interactive machine learning. Ai Magazine, 35(4):105–120, 2014.

Stuart Berg, Dominik Kutra, Thorben Kroeger, Christoph N Straehle, Bernhard X Kausler, Carsten
Haubold, Martin Schiegg, Janez Ales, Thorsten Beier, Markus Rudy, et al. Ilastik: interactive
machine learning for (bio) image analysis. Nature methods, 16(12):1226–1232, 2019.

Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini, and Stefano Teso. Toward a unified
framework for debugging concept-based models. The AAAI-22 Workshop on Interactive Machine
Learning, 2021.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren
Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol
Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. Im-
proving language models by retrieving from trillions of tokens. In Kamalika Chaudhuri, Stefanie
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Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Trans. Big Data, 7(3):535–547, 2021.

10

https://proceedings.neurips.cc/paper/2019/hash/e562cd9c0768d5464b64cf61da7fc6bb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e562cd9c0768d5464b64cf61da7fc6bb-Abstract.html


Under review as a conference paper at ICLR 2024

Da Ju, Jing Xu, Y-Lan Boureau, and Jason Weston. Learning from data in the mixed adversarial
non-adversarial case: Finding the helpers and ignoring the trolls. CoRR, abs/2208.03295, 2022.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J. Cai, James Wexler, Fernanda B. Viégas,
and Rory Sayres. Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (TCAV). In International Conference on Machine Learning, (ICML), pp. 2673–
2682, 2018.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim,
and Percy Liang. Concept bottleneck models. In International Conference on Machine Learning,
(ICML), pp. 5338–5348, 2020.

Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. 1998.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL DETAILS

Model Training: For CUB, we use the same model setup as (Koh et al., 2020), instantiating the
bottleneck model with the Inception-v3 architecture (Szegedy et al., 2016) and the predictor network
with a simple multi-layer perceptron (MLP). On the Parity MNIST, SVHN, and C-MNIST datasets,
we used an MLP both for the bottleneck and predictor networks. The bottleneck is a two-layer MLP
with a hidden dimension of 120 and ReLU activation functions, while the predictor is a single-layer
MLP. The bottlenecks are trained using the specific dataset’s respective training and validation sets.
Notably, for the Parity MNIST (unbalanced), the training unbalance is not present in the validation
data. For the generalization and mistake detection experiments on C-MNIST, the human-provided
interventions are from the unconfounded data, which is 10% of the original C-MNIST test dataset,
which was neither used for training nor evaluation. Evaluation is done on the remainder of the test
set. For the the distribution shift experiment of SVHN, we used a validation set of 20% of the
training set as base for the interventions.

Assumptions About Human Feedback. With CB2Ms, we leverage human feedback to improve
upon CBMs. To this end, it is assumed that the feedback provided by humans is correct. This is
a common assumption in work on CBMs (Koh et al., 2020; Chauhan et al., 2022) and (inter)active
learning in general (Settles, 2009; Berg et al., 2019). For humans, it is often easier to provide concept
information than to provide information on the complete task. For example, when considering
bird species classification cf. Fig. 1, it is easier to identify the bird’s color than its species. This
phenomenon occurs when concepts are ”low-level” and human-understandable. In other domains,
such as the medical one, providing correct concept labels may require expert domain knowledge,
but it is still possible and easier to infer concept labels than class labels.

Size of the Memory Module. When more and more interventions get added to the memory, this
increases the evaluation time to reapply interventions. However, as various other work in the context
of knowledge-based question answering has shown (Borgeaud et al., 2022; Lewis et al., 2020), it is
possible to scale neighbor-based retrievers to millions of data points. In particular, approximate
nearest neighbor inference (e.g., FAISS (Johnson et al., 2021)), allows to scale NNs. Furthermore,
it is unlikely that the memory of CB2M would reach such dimensions, as it is filled based on human
interactions. Therefore we argue that even if the size of the memory has an impact on the evaluation
runtime, this is not a major drawback. Nevertheless, a large memory can cause certain drawbacks, as
e.g., reduced interpretability of the memory. Therefore, we think that methods to reduce the number
of elements in the memory (e.g., prototypes), could be a promising avenue for future research.

A.2 ALGORITHMS FOR INTERVENTION GENERALIZATION AND MISTAKE DETECTION

For reference, we present algorithms with pseudo code for mistake detection (Alg. 1) and interven-
tion generalization (Alg. 2).

Algorithm 1 Detection of Model Mistakes. Given: Parameters td, ta and k, data set for memory
setup (e.g. validation set) Xval and a CBM with bottleneck f and predictor g.
1: Memory setup:Mm ← {xe : x ∈ Xval ∧ f(g(x)) ̸= y∗ ∧Accg(x) < ta}
2: x̂← New unseen instance; j ← 0
3: for m ∈Mm do
4: if d(x̂e,m) ≤ td then
5: j ← j + 1
6: end if
7: end for
8: if j ≥ k then
9: return Mistake

10: else
11: return No mistake
12: end if
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Algorithm 2 Generalize Interventions to Unseen Images Given: CBM with bottleneck g and
predictor f , threshold parameter td and a memory M = (Mm,Mi) of reference mistakes with
respective interventions.

1: x̂← New unseen instance
2: Obtain x̂e through g
3: find x′ ∈Mm with minimal d(x̂e, x

′
e)

4: if d(x̂e, x
′
e) < td then

5: if ∃i ∈Mi : α(x′
e, i) then

6: x← x|i
7: end if
8: end if
9: Model Output: y = f(x)

Table 5: Detection of model mistakes on Parity MNIST. For mistake detection on models with a
low error rate (with errors being outliers close to the decision boundaries), CB2M performs worse
than softmax. (Best values bold, standard deviations over 5 runs.)

Random Softmax CB2M

AUROC (↑) 49.0± 0.4 93.3± 0.2 64.6± 1.0
AUPR (↑) 97.4± 0.0 99.8± 0.0 98.8± 0.1

A.3 RESULTS ON PARITY MNIST

For reference, we provide results when applying CB2M to Parity MNIST. The performance of the
base CBM on this task is already pretty good, as it achieves a concept accuracy of 98.9% and a class
accuracy of 97.7%. The few errors that the model makes are due to singular outliers. As discussed
in Sec. 5, the CB2M performs well when the model is subject to some kind of systematic error, e.g.,
when the model is subject to a shift in data distribution or due to data imbalance at training time.
When model mistakes are just a few individual examples, which are getting confused with different
classes, CB2M does not perform as well (Tab. 5, 6). As the base CBM performance is already good,
further intervention generalization is not suitable, as the remaining model mistakes are not similar
to each other (Tab. 7). Further adjustments like including positive examples in the memory or using
an explicit view on mistake density could potentially improve results in these situations.

A.4 FURTHER RESULTS ON PARITY MNIST (UNBALANCED)

The unbalanced version of Parity MNIST is generated by dropping 95% of the training data of one
class. In the main paper, we exemplarily showed the results when removing digit 9. In Tab. 8, we
show the average results for all other digits. The base mode does not capture the training imbalance
properly in three cases, resulting in larger standard deviations for all results.

A.5 EVALUATIONS ON VARYING VALIDATION SET SIZES

In Fig. 4 we provide additional results of the generalizaton experiment based on different subset
sizes of the validation set. Specifically, we present the concept and class accuracies for CB2M
models that were provided with 25%, 50%, 75% or 100% of the validation set. These evaluations

Table 6: Interventions after detection on Parity MNIST. NRI on identified instances and full
set. Interventions successfully improve identified instances. However, worse detection than softmax
results in smaller improvement via CB2M. (Best values bold, standard deviations over 5 runs.)

Setting Random Softmax CB2M

Identified 100.0± 0.0 100.0± 0.0 100.0± 0.0
Full Set 1.6± 0.7 57.6± 1.5 5.9± 2.9
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Table 7: Generalization of CB2M does not impact results on Parity MNIST. As model mistakes
are not similar to each other, no instances have been identified for intervention generalization, there-
fore applying CB2M does not impact model performance. (Best values bold, standard deviations
over 5 runs.)

Setting CBM CB2M

Concept Acc. (↑) Identified ∅ ∅
Full set 98.9± 0.0 98.9± 0.0

Class Acc. (↑) Identified ∅ ∅
Full set 97.7± 0.0 97.7± 0.0

Table 8: Further results on Partiy MNIST (unbalanced). Results of all main experiments for all
versions of the Parity MNIST (unbalanced) dataset (where the digits 0 to 8 where the underrepre-
sented digits respectively). (Average and standard deviation over unbalance with digits 0 to 8.)

Mistake Detection
Random Softmax CB2M

AUROC (↑) 49.5± 1.0 91.2± 7.2 83.8± 10.77
AUPR (↑) 92.8± 3.5 99.3± 0.4 98.9± 0.3

Performance after Interventions (NRI)
Setting Random Softmax CB2M

Identified 100.0± 0.0 100.0± 0.0 100.0± 0.0
Full Set 24.3± 21.3 70.7± 13.8 75.6± 14.6

Generalization of Interventions
Setting CBM CB2M

Concept Acc. (↑) Identified 91.8± 2.1 97.4± 2.3
Full Set 98.4± 0.0 98.6± 0.3

Class Acc. (↑) Identified 37.2± 26.4 87.1± 11.4
Full Set 92.9± 3.5 95.0± 2.9
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Figure 4: Ablation evaluation on the effect of the validation size on the concept and class accuracy
for the identified and full set. The CB2M models were were provided with 25%, 50%, 75% or 100%
of the validation set. We present the baseline CBM results for comparisons.

Table 9: Number of generalized interventions for the different datasets. For SVHN, the number of
model mistakes is considerably larger, therefore there are more possible generalizations. (Average
and standard deviations over 5 runs.)

Dataset Number of Intervention Generalizations

CUB 289.4± 215.5
Parity MNIST (unbalanced) 416.2± 206.5
Parity C-MNIST 913.4± 342.8
Parity MNIST to SVHN 7809± 512

were performed on the augmented version of CUB (CUB (Aug.)), the parity MNIST and the parity
C-MNIST data sets. We observe that for CUB (Aug.) the effect scales roughly with the validation
set size, which is to be expected, as interventions are mostly reapplied to augmented versions of the
same sample. For the other datasets, the effect on the full set better, the results between 50% and
100% of the validation set size are relatively similar, meaning that in situations where the CB2M is
used to prevent a systematic error of the base CBM, we do not need as many human interventions.

A.6 FURTHER DETAILS ON GENERALIZATION RESULTS

In Sec. 3.1, we show the generalization capabilities of CB2Ms on various datasets. To further detail
these results, the number of generalized interventions is presented in Tab. 9. This describes to how
many unseen examples the human interventions have been generalized. The standard deviation is
generally relatively large, especially for the CUB dataset. This is most likely due to two reasons.
First, the threshold parameter td was selected the same for all augmentations, possibly not optimal
for all augmented versions. Additionally, the two augmentations salt&pepper and speckles noise
have a disruptive effect on the model encodings, causing substantially fewer samples to be selected
for intervention generalization than for the other augmented versions. The number of generalized
interventions for the parity MNIST to SVHN dataset is considerably larger, as this dataset has more
datapoints, and the model makes more mistakes after the distribution shift.

To further investigate the effect of finetuning on the interventional data, we provide more results in
Tab. 10. We compare finetuning for a short amount of time (1 epoch), to extended finetuning (5
epochs for MNIST variants and 10 epochs on CUB (Aug.)). One can observe that longer finetuning
is necessary to obtain its benefits, as short finetuning does not surpass the performance of CB2M.
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Table 10: Finetuning a CBM on the validation set. Short and long refer to the number of finetuning
steps, i.e. 1 epoch for short and 10 epochs for finetuning on CUB and 5 epochs for finetuning on the
MNIST versions. (Average and standard deviations over 5 runs.)

Concept Acc. (↑) Class Acc. (↑)
Dataset CBM (short) CBM (long) CBM (short) CBM (long)

CUB 95.2± 0.1 96.28± 0.3 67.38± 1.9 74.66± 1.8

Parity MNIST (unbalanced) 98.2± 0.1 97.9± 0.1 91.77± 0.5 91.78± 0.4

Parity C-MNIST 89.9± 0.1 95.0± 0.1 70.6± 0.4 88.1± 0.8

Table 11: False positive rates and false negative rates for the identification of samples to reapply an
intervention (Tab. 1).

Dataset FPR FNR

CUB 0.84± 0.43 86.94± 8.76
Parity MNIST (unbalanced) 1.14± 0.80 64.39± 15.4
Parity C-MNIST 3.23± 0.17 73.25± 1.07

Additionally, for Parity MNIST (unbalanced), finetuning independent of the number of steps does
not provide noticable improvements.

In Tab. 11, we provide the false positive rate (FPR) and false negative rate (FNR) for all generaliza-
tion experiments of Tab. 1. The FPR is the fraction of negative samples (no mistake of the CBM),
which gets a reapplied intervention. The FNR on the other hand describes the fraction of positive
samples (mistakes of the CBM), which did not get a reapplied intervention. Naturally, the FNR is
relatively large, as all mistakes of the CBM include systematic mistakes (e.g., caused by data unbal-
ance or confounders), which we want to mitigate with CB2M, as well as normal model mistakes, due
to individual outliers, which CB2M is not designed to handle (see discussion above). Additionally,
during setup CB2Ms where optimized more for precision rather than recall.

A.7 FURTHER DETAILS ON MISTAKE DETECTION

In the experimental evaluation, we compared both CB2M and softmax for detecting model mis-
takes. These methods are however not exclusive, but could also be combined. In Tab. 12, we show
the results of the mistake detection when combining both softmax and CB2M. We combined both
methods either by full agreement, i.e., only detect a mistake if both methods do so, or by partial-
detection, i.e., already detecting a mistake if only one of the methods does so. Selecting the exact
strategy on the validation set enabled the combination of both methods to always perform as good
as the previously better method, successfully combining both CB2M and softmax.

Table 12: Combination of CB2M and softmax for detection

Dataset Metric Softmax CB2M Combined

CUB AUROC (↑) 83.7± 1.1 84.8± 0.7 85.0± 0.5
AUPR (↑) 94.0± 0.6 94.6± 0.3 94.8± 0.3

CUB (conf) AUROC (↑) 77.4± 1.1 85.1± 0.5 85.4± 0.5
AUPR (↑) 91.5± 0.7 94.5± 0.3 94.7± 0.3

Parity MNIST AUROC (↑) 90.7± 1.7 88.7± 0.4 90.7± 1.7
(unbalanced) AUPR (↑) 98.8± 0.3 98.5± 0.1 98.8± 0.3

Parity C-MNIST AUROC (↑) 65.7± 0.3 83.4± 0.8 83.6± 0.5
AUPR (↑) 79.8± 0.3 91.5± 0.4 91.6± 0.3
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Exp Dataset k td ta

Tab 1 CUB (a) 1 3.5 -
Parity MNIST (ub) 1 5, 5, 4, 4, 4 -
Parity CMNIST 1 7.5, 8.0, 7.0, 7.5, 8.5 -

Tab 2;3 CUB 3, 2, 3, 2, 4 10, 11, 10, 10, 11 0.99, 0.97, 0.99, 0.99, 0.99
CUB (conf) 1, 5, 4, 5, 3 12, 12, 12, 11, 12 0.99, 0.98, 0.98, 0.99, 0.97
Parity MNIST (ub) 2, 2, 1, 1, 1 6, 6, 6, 5, 6 0.99, 0.99, 0.98, 0.99, 0.99
Parity CMNIST 1, 3, 4, 3, 2 3, 3, 4, 3, 3 0.98, 0.99, 0.99, 0.97, 0.99

Table 13: Used hyperparameters for all combinations of experiment and dataset. Cells contain
values for all 5 seeds (except for CUB (a) where we have the same hyperparameter setting for all
augmentations.

A.8 HYPERPARAMETERS

To get values for the hyperparameters of CB2M, we performed a straightforward grid-based hyper-
parameter optimization for td, ta and k, using training and validation set. For the selection of the
distance threshold, we first computed the average distance of encodings from the validation set to
have a suitable starting point for td. As the evaluation of a hyperparameter setting for CB2M does
not entail any model training, the evaluation of different hyperparameter sets is computationally in-
expensive. The detailed hyperparameter for each setup can be found in Tab. 13. For further training
setup, e.g., learning rates, we refer to the code.
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