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ABSTRACT

DNA sequence alignment involves assigning short DNA reads to the most proba-
ble locations on an extensive reference genome. This process is crucial for various
genomic analyses, including variant calling, transcriptomics, and epigenomics.
Conventional methods, refined over decades, tackle this challenge in two steps:
genome indexing followed by efficient search to locate likely positions for given
reads. Building on the success of Large Language Models (LLM) in encoding
text into embeddings, where the distance metric captures semantic similarity, re-
cent efforts have explored whether the same Transformer architecture can pro-
duce numerical representations for DNA sequences. Such models have shown
early promise in tasks involving classification of short DNA sequences, such as
the detection of coding- vs non-coding regions, as well as the identification of en-
hancer and promoter sequences. Performance at sequence classification tasks does
not, however, translate to sequence alignment, where it is necessary to conduct a
genome-wide search to successfully align every read. We address this open prob-
lem by framing it as an “Embed-Search-Align” task. In this framework, a novel
encoder model DNA-ESA generates representations of reads and fragments of the
reference, which are projected into a shared vector space where the read-fragment
distance is used as a surrogate for alignment. In particular, DNA-ESA introduces:
(1) Contrastive loss for self-supervised training of DNA sequence representations,
facilitating rich sequence-level embeddings, and (2) a DNA vector store to enable
search across fragments on a global scale. DNA-ESA is > 97% accurate when
aligning 250-length reads onto a human reference genome of 3 gigabases (single-
haploid), far exceeds the performance of 6 recent DNA-Transformer model base-
lines and shows task transfer across chromosomes and species.

1 BACKGROUND

The aim of this paper is to establish a foundation model tailored for DNA sequences, where the vo-
cabulary consists of only a few symbols ({A, T,G,C} in this case). Numerous DNA Transformer
models (Ji et al., 2021; Zvyagin et al., 2022; Fishman et al., 2023; Dalla-Torre et al., 2023) have
emerged recently, mainly designed for classification tasks in downstream applications. However,
these models do not explicitly consider a fundamental distinction between Limited Vocabulary Lan-
guages (LVL) (such as, genomes) and natural languages with large vocabulary. In LVLs, there is a
one-to-one correspondence between the precise symbol ordering and the underlying “meaning”. If
a protein is encoded by one amino acid sequence, a slightly different sequence (with a few edits)
would encode for a different protein with a distinct functionality in the cells. Existing foundation
Transformer models generate sequence embeddings such that their pairwise distances correspond to
class separation, thus sequences with very large edit distances end up with representations that are
close by. There are however tasks such as Sequence Alignment where the pairwise representation
distance has to closely match the sequence edit distance. Indeed as portrayed in Figure 2, current
DNA Transformer models fail to perform Sequence Alignment task. This requires a new kind of
foundation model which is able to transfer a precise and computationally expensive distance metric
over LVLs to a representation space.
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(a) A 20, 000-long nucleotide sequence from Chr.
1, 2, and 3 each is randomly sampled and bro-
ken up into 100 consecutive reference fragments (|)
each of length 1000 and stride 200. For each frag-
ment, we sample a read (–) of 100-250 consecutive
base pairs. Each sequence is encoded using DNA-
ESA and the embeddings are visualized using 2D
UMAP (McInnes et al., 2018). The colors iden-
tify chromosomes and the position of the fragment
is coded by its intensity.

(b) Fragment (|) and read (–) sequences from five
gene regions (listed above in the inset) are simi-
larly projected into a shared latent space. Note that
for UMAP projections (both subplots (a) and (b)),
the consecutive fragments belonging to the same nu-
cleotide sequence constitute an order-preserving 1D
manifold. A successfully aligned read is observed
to be co-located with its corresponding fragment in
the embedding space while a read further away is ob-
served to be misclassified.

Figure 1: Illustrating DNA-ESA’s Preservation of Sequence Locality in Embedding Space: In
DNA-ESA, the reference genome R is divided into fragments Fi, each represented by an embedding
h(Fi). For effective sequence alignment, specific structures are expected in the embedding space:
(1) Overlapping fragments Fi and Fj should have proximate embeddings; (2) Consecutive frag-
ments forming a long sequence should correspond to a distinct manifold in the embedding space.
Subfigures (a) and (b) display this emergent geometry, as visualized using DNA-ESA.

The simplest sequence alignment task applies to single-end1 reads. Given a reference sequence
R := {b1, b2, . . . , bN} – for the single-haploid human genome (Nurk et al., 2022), N ≈ 3 gigabases
(gb) – the primary objective is to identify the most probable start- and end-positions within this
reference for a short DNA read,

r := {b̃q, b̃q+1, . . . , b̃q+Q}, Q ≪ N, 1 ≤ q ≤ N −Q (1)

which may contain mutations due to base insertions, deletions, and substitutions. Computational
simulators have been developed to generate synthetic reads that have properties of real reads. These
simulators mimic the read quality and characteristics produced by actual sequencing machines, thus
providing a scalable means for validating new alignment approaches (Huang et al., 2012).

Conventional sequence alignment methods, such as those used in BWA-MEM, have evolved signif-
icantly from the basic Smith-Waterman (SW) approach, which computes similarity between a read
r and reference R, but is computationally intensive for large genomes. Key advancements include:
(a) Sharding the reference into smaller fragments for individual searching; (b) Progressive search
using phylogenetic trees and distance heuristics for logarithmic complexity scaling; (c) Compres-
sion techniques like the Burrows-Wheeler transform (Li & Durbin, 2009), reducing search length;
and (d) Multi-core/thread implementations and database instantiations for faster computations and
improved data recall (Li, 2018; Vasimuddin et al., 2019; Langmead et al., 2018).

In this work we explore an alternative paradigm for aligning a read to a genome, drawing parallels
with advancements in Natural Language Processing (NLP). Traditional NLP relied on rule-based
techniques to diagram sentences into grammatical components, using dependency parse trees to
discern semantic relationships. However, the introduction the introduction of models like the Trans-

1A DNA fragment is ligated to an adapter and then sequenced from one end only.
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Figure 2: Alignment Recall of Transformer-DNA Baselines by Read Length: Existing
Transformer-DNA models were adapted for sequence alignment using mean-/max-pooling. Their
performance, measured by recall (top-K) over 40K reads of varying lengths across the human
genome (3gb - single-haploid), is shown. Trendlines represent each baseline, with error bars
(Clopper-Pearson Interval (Clopper & Pearson, 1934) @ 95%) in grey. The vertical line at x = 250
marks a typical read length. Overall, these baselines show suboptimal performance. For more de-
tails, see Sec. 4.

formers (Vaswani et al., 2017) revolutionized this approach. Unlike rule-based frameworks, Trans-
formers implicitly identify syntactic and semantic structures, as evidenced in various NLP tasks like
Sentiment Analysis, Entity Recognition, and Question-Answering (Devlin et al., 2019; Reimers &
Gurevych, 2019; Qiu et al., 2020). The flexibility of this architecture has facilitated its applica-
tion beyond language processing, including in vision (Dosovitskiy et al., 2020), auditory (Verma &
Berger, 2021), and neurological domains (Wang et al., 2023). In bioinformatics, researchers are now
harnessing Transformers to bypass genome-specific hard-coded rules, a development we contribute
to with our novel method for Sequence Alignment.

1.1 TRANSFORMER MODELS: WRITTEN LANGUAGE TO DNA SEQUENCE ALIGNMENT

DNA sequences share remarkable similarities with written language, offering a compelling avenue
for the application of Transformer models. Like written language, these are sequences generated
by a small alphabet of nucleotides {A, T,G,C}. Classical DNA modeling efforts have already
accommodated mature encoding and hashing techniques initially developed for written language
– such as Suffix trees/arrays and Huffman coding (Huffman, 1952; Manber & Myers, 1993) – to
successfully parse and compress DNA sequences. Furthermore, just as written language contains
repeated subsequences (words, phrases) to represent real-world objects, DNA sequences similarly
possess repeating “words” and groupings of such words into a “sentence” representing, for example,
genes.

Within the last few years, several Transformer-based models have been developed for DNA sequence
analysis. Notably, DNABERT-2 (Ji et al., 2021; Zhou et al., 2023), Nucleotide Transformer (Dalla-
Torre et al., 2023), GenSLM (Zvyagin et al., 2022), and GENA-LM (Fishman et al., 2023) have been
designed to discern relationships between short genetic fragments and their functions. Specifically,
Nucleotide Transformer representations have shown utility in classifying key genomic features such
as enhancer regions and promoter sequences. Similarly, GENA-LM has proven effective in identi-
fying enhancers and Poly-adenylation sites in Drosophila. In parallel, DNABERT-2 representations
have also been found to cluster in the representation space according to genetic function. Given
these advances, a natural question arises: Can these Transformer architectures be readily applied to
the task of Sequence Alignment? We delineate the associated challenges as follows:

[L1] Two-Stage Training: DNA-based Transformer models typically undergo pretraining via a
Next Token/Masked Token Prediction framework, a method originally developed for natural
language tasks. To form sequence-level representations, these models often employ pooling
techniques that aggregate token-level features into a single feature vector. This approach, how-
ever, is sometimes critiqued for yielding suboptimal aggregate features (Reimers & Gurevych,
2019).

[L2] Computation Cost: The computational requirements for Transformer models grow quadrat-
ically with the length of the input sequence. This is particularly challenging for sequence
alignment tasks that necessitate scanning entire genomic reference sequences.
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Figure 2 shows the sequence alignment performance (recall) of several Transformer-DNA models.
The testing protocols are elaborated in Sec. 4. Notably, these models exhibit subpar recall perfor-
mance when aligning typical read lengths of 250.

2 OUR CONTRIBUTIONS

In this paper, we argue that both limitations L1, L2 of Transformer-DNA models can be mitigated by
formulating sequence alignment as a vector search-and-retrieval task. Our approach is twofold: (A)
We introduce a sequence encoder DNA-ESA, trained through self-supervision, to map DNA reads
to relevant fragments in a reference sequence within a shared embedding space. (B) We leverage a
specialized data structure, termed a DNA vector store, as a memory bank. This provides efficient
access to the entire reference sequence for each read alignment. These strategies have been explored
in NLP: (A) Sequence-to-embedding training using contrastive loss has shown improved perfor-
mance – over explicit pooling methods – at abstractive semantic tasks such as prose summarization
and paragraph classification (Gao et al., 2021; Chen et al., 2020a). (B) Specialized data structures,
such as “vector stores” or “vector databases” like FAISS (Johnson et al., 2019) and Pinecone, use
advanced indexing and retrieval algorithms for scalable numerical representation search.

3 METHODS

We formulate the problem of Sequence Alignment as minimizing a sequence alignment function,
SA, applied to a read r and a reference sequence R as

v∗ = min
q
SA(r,R) (2)

where q ∈ N0 is a candidate reference starting position and v∗ is the optimal alignment score. Lower
scores indicate better alignments. This optimization exhibits the following property:

[P1] Sharding for sequence alignment: for a read segment r of length Q and reference R of length
N , the complexity of SA(r,R) scales as O(Q) when N → Q.

Using P1, we can simplify the optimization problem by breaking it into sub-tasks with significantly
shorter reference sequences. Specifically:

v∗ ≈ min
Fi∈{F1,F2,...,FK}

SA (r,Fj) . (3)

Here, each Fj is a fragment of R (i.e., Fj ∈ R), and K is the number of these sub-tasks2. This
approximation is effective under the conditions:

(1) Fragment Fj lengths are on the order of the read length (r), not the longer reference (R);
(2) There are enough fragments Fi to cover R, i.e. ∪Fj = R;
(3) K is significantly smaller than N

Q . If N
Q then this amounts to scanning the whole reference.

Conditions (1) and (2) imply that fragments should be short and numerous enough to cover the
reference genome. Condition (3) restricts the number of retrieved reference fragments per read —
that we deem to be most likely to contain r — to a small value K. Analogous methods have shown
efficacy in text-based Search-and-Retrieval tasks (Peng et al., 2023; Dai et al., 2022) on Open-
Domain Question-Answering, Ranking among other tasks. Subsequent sections describe a parallel
framework for retrieving reference fragments given a read. The pipeline is shown in Figs. 3 and 4.

3.1 DESIGNING EFFECTIVE SEQUENCE REPRESENTATIONS

An optimal sequence encoder model h is such that the corresponding embeddings of any read r
and reference fragment F – h(r), h(F) respectively – obey the following constraints over a pre-
determined distance metric d:

d{h(rj), h(Fi)} ≥ d{h(rj), h(Fj)}, i ̸= j (4)

2We denote the relative distance between an alignment and the optimal score at read length Q as dSW =
|mQ−v∗|

|mQ| where m(= −2) is the match score while computing the SW distance.
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Figure 3: System Overview [A] - Training Encoder and Populating Vector Store: Reference
genome fragments Fi and within them, randomly sampled pure reads ri (positive pairs) are nu-
merically represented via shared encoder h. Encoder training follows a contrastive approach as per
equation 5. After training, the genome is segmented into overlapping fragments, encoded, and up-
loaded into the vector store.

Here i and j serve to distinguish whether a read is aligned to a particular reference fragment, a
positive sample {rj ,Fj}, or there is a mismatch (negative sample): {rj ,Fi}. Observe that these
inequalities constitute the only requirements for the encoder. As long as the neighborhood of rj
in the representation space contains the representation for Fj , it will be recovered in the nearest
neighbors (top-K set) and alignment will succeed. Equality is observed when rj is a repeat sequence
matched equally well to more than one fragment. This motivates using self-supervision (Hadsell
et al., 2006; Chen et al., 2020a; Gao et al., 2021) where we are only concerned about the relative
distances between positive and negative (read, reference fragment) pairs.

3.2 SELF-SUPERVISION AND CONTRASTIVE LOSS

A popular choice for sequence learning using self-supervision involves a contrastive loss setup de-
scribed by Chen et al. (2020a) and Gao et al. (2021): i.e. for a read r aligned to reference fragment
Fj , the loss lr simultaneously minimizes the distance of h(r) to h(Fj) and maximizes the distance
to a batch of random fragments of size B − 1:

lr = − log
e−d(h(r),h(Fj))/τ

e−d(h(r),h(Fj))/τ +
∑B−1

i=1 e−d(h(r),h(Fi))/τ
. (5)

Here τ is a tuneable temperature parameter. To stabilize the training procedure and reach a non-
trivial solution, the encoder applies different dropout masks to the reads and fragments similar to the
method described in Chen et al. (2020b). Similar setups have been shown to work in written lan-
guage applications, most notably in Sentence Transformers (Reimers & Gurevych, 2019; Gao et al.,
2021; Muennighoff et al., 2023), which continue to be a strong benchmark for several downstream
tasks requiring pre-trained sequence embeddings.

3.3 ENCODER IMPLEMENTATION

DNA-ESA uses a Transformer-encoder (Devlin et al., 2019; Vaswani et al., 2017), comprising 12
heads and 6-layers of encoder blocks. The size of vocabulary is 10, 000. Batch size B is set to 16
with gradient accumulation across 16 steps. The learning rate is annealed using one-cycle cosine
annealing (Smith & Topin, 2019), dropout is set to 0.1, and τ = 0.05. Reference fragment |Fi| ∼
U [800, 2000] and read |ri| ∼ U [150, 500]. Shorter sequences were padded to equal the length of the
longest sequence in a batch. The distance metric used is Cosine Similarity.

3.4 SEARCH AND RETRIEVAL

An outline of the search and retrieval process is presented in Fig. 4. Every read is encoded using
the trained model and matched to reference fragments in the vector database. The top-K retrieved
fragments per read are then aligned using a SW alignment library to find the optimal alignment. The
following sections describe the indexing and retrieval part in more detail.

Indexing: For a given reference genome R, we construct a minimal set of reference fragments F :=
F1,F2, . . . to span R. Note that the fragments overlap at least a read length; i.e. |Fi

⋂
Fi+1| ≥ Q

to guarantee that every read is fully contained within some fragment in the set. In our experiments
with external read generators (Huang et al., 2012), Qmax = 250, |Fi| = 1250. Each reference
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Figure 4: System Overview [B] - Inference on a New Read: A read, as per equation 1 and gen-
erated by ART (Huang et al., 2012), is encoded by h. This is then compared to reference fragment
representations in the vector database. The nearest-K fragments in the embedding space are retrieved
for each read, and the optimal alignment is determined using equation 6.

fragment is encoded using the trained DNA-ESA model, and the resulting sequence embeddings
(∈ R384) – 3M vectors for a reference of 3B nucleotides – are inserted into a Pinecone database.
Once populated with all the fragments, we are ready to perform the alignment.

Retrieval: Given a read r, we project its corresponding DNA-ESA representation into the vector
store and retrieve the approximate nearest-K set of reference fragment vectors and the corresponding
fragment metadata {F1,F2, . . . ,FK}.

Diversity priors: While the top-K retrieved fragments can be drawn from across the entire vector
store (genome), contemporary recommendation systems that use the top-K retrieval setup rank and
re-rank top search results (Slate Optimization – see Zhu et al. (2007)) to ensure rich and diverse
recommendations. Similarly, we apply a uniform prior wherein every retrieval step selects the top-
K per Chromosome.

Fine-Alignment: A standard SW distance library (Cock et al., 2009) is used to solve equation 3,
which can be executed concurrently across the K-reference fragments. Let the optimal fragment
be F∗. The metadata for each vector includes (a) the raw F∗ sequence; (b) the start position of
F∗ within the reference R, qF∗|R. Upon retrieval of a fragment and fine-alignment to find the
fragment-level start index, q|F∗ , the global reference start position is obtained as:

q∗ = q|F∗ + qF∗|R. (6)

4 TRANSFORMER-DNA BASELINES

This section outlines the setup for evaluating Transformer-DNA baselines, with their recall perfor-
mance depicted in Fig. 2. We selected three architectures modeling nucleotide sequences: [NT]
NucleotideTransformer (∈ R1280) (Dalla-Torre et al., 2023), [DB2] DNABERT-2 (∈ R768) (Ji et al.,
2021), and [HD] HyenaDNA (∈ R256) (Nguyen et al., 2023). Each model employs mean- and max-
pooling of token representations for sequence encoding (2 × 3 = 6 baselines total). Independent
vector stores for each baseline encode fragments from the entire 3gb genome. We sampled 40K pure
reads of varying lengths (Q ∼ U [25, 1000]) and assessed the average recall for top-5, top-25, and
top-50 fragments, as shown in Fig. 2. Overall, while baseline performance is modest, mean-pooling
generally outperforms max-pooling, with DB2 (mean-pooled) and HD (max-pooled) as the most
effective. These two baselines will be contrasted with DNA-ESA in Table 1.

5 RESULTS AND DISCUSSION

DNA-ESA convergence plots are presented in Figs. 5a and 5b. Model checkpoints are available
at OSF. In Fig. 1, representations of short 1, 000−length sequences sampled from sequential (in-
order) and gene-specific locations in the reference are visualized in a reduced 2D-UMAP (McInnes
et al., 2018). The representation space demonstrates desired properties suitable for successfully
performing alignment: (a) Sequences sampled in order form a trajectory in the representation space:
The loss function described in equation 5 encourages a pair of sequences close to one another to
have a short distance between them in the representation space, and pairs further apart to have a
larger distance. (b) Representations of sequences drawn from specific gene locations – despite not
being close to one another – show gene-centric clustering: The DNA-ESA representation space
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DNA-ESA (ours) DB2, mean HD, max

I D Top-K @ 50 / Chr. dSW = 1% Best Top-K @ 50 / Chr. + dSW = 1%

QPH ∈ [60, 90]

0 0 95.2 ± 0.63 + 1.6 96.8 ± 0.52 37.4 ± 1.35 14.6 ± 1.01
0 0.01 95.8 ± 0.59 + 1.3 97.1 ± 0.50 37.4 ± 1.35 14.8 ± 1.01
0.01 0 95.1 ± 0.63 + 2.1 97.2 ± 0.49 35.9 ± 1.35 14.6 ± 1.01
0.01 0.01 95.8 ± 0.59 + 1.2 97.0 ± 0.51 34.9 ± 1.34 14.5 ± 1.01

QPH ∈ [30, 60]

0 0 95.2 ± 0.63 + 1.4 96.6 ± 0.54 35.4 ± 1.34 13.7 ± 0.98
0 0.01 95.1 ± 0.64 + 2.0 97.1 ± 0.49 37.3 ± 1.35 14.2 ± 0.99
0.01 0 94.2 ± 0.68 + 2.1 96.3 ± 0.56 36.0 ± 1.35 13.8 ± 0.98
0.01 0.01 94.9 ± 0.64 + 1.5 96.4 ± 0.55 36.8 ± 1.35 13.5 ± 0.98

Table 1: Performance of DNA-ESA with respect to baselines: (with diversity priors – see
Def. 3.4) The performance of DNA-ESA approeaches that of conventional algorithmic and far ex-
ceeds the performance of Transformer-DNA baselines, DB2, mean and HD, max (top performing
baselines from Fig. 2). Both DNA-ESA and baselines utilize a dedicated vector store for the entire
genome, maintaining a consistent search strategy. For details on I,D,QPH ,K, dSW , refer to Re-
call/Simulator Configurations.

partially acquires function-level separation as a byproduct of imposing local alignment constraints.
Codebase is linked.

5.1 SEQUENCE ALIGNMENT OF ART-SIMULATED READS

The results from Sec. 4 demonstrate that even for pure reads, baseline models do not generate ad-
equate representations to perform sequence alignment. In this section, DNA-ESA and the two best
baselines – DB2, mean and HD, max – are evaluated using reads generated from an external read
simulator (ART) – see Huang et al. (2012). ART has served as a reliable benchmark for evaluat-
ing other contemporary alignment tools and provides controls to model mutations and variations
common in reads generated by Illumina machines.

Simulator configurations: The different simulation configuration options and settings are listed:
(A) Phred quality score QPH ∈ {[30, 60], [60, 90]}: the likelihood of errors in base-calls of a
generated read; (B) Insertion rate I ∈ {0, 10−2}: the likelihood of adding a base to a random
location in a read; (C) Deletion rate D ∈ {0, 10−2}: the likelihood of deleting a base in the read;
(Others): Simulator system: MSv3 [MiSeq]; Read length: 250.

Recall configurations: Once the top-K fragments have been retrieved, the first step is to solve
equation 3, and for this, we need to compute the SW distance. For all presented results, the
settings are: match score = -2, mismatch penalty = +1, open gap penalty = +0.5,
continue gap penalty = +0.1. After alignment, we get q∗ – see equation 6 – as the estimated
location of a read in the genome. Let q̂∗ be its true location. If q∗ = q̂∗, it is a perfect match and
the recall is successful. In cases where there is a mutation in the first or last position in a read, the
fine-alignment will return q∗F∗ offset by at most 2 locations, resulting in q̂∗ = q∗ ± 2. Hence, the
condition for an exact location match: |q∗ − q̂∗| ≤ 2.

Distance bound, dSW ∈ {None, 1%}: It is well known that short fragments frequently repeat in the
genome (Li & Freudenberg, 2014) and q∗ can correspond to the position of the read in a different
location than from where it was sampled. In this case, q∗ ̸= q̂∗, but the SW distance is the minimum
possible (dSW = 0 – see Footnote 2). Moreover, when reads have mutations, the reference sequence
corresponding to the read is no longer a perfect match; i.e. dSW > 0. The best an alignment
algorithm could do is to find an exact match for the read leading to an optimal alignment score for
that read length (−2Q). We consider an alignment (with Q = 250) to be successful if dSW < 0.01;
i.e. a mismatch of at most 2 bases.

Performance: Table 1 contains the result of sweeps along these several parameters in addition to
a direct comparison to DB2, mean and HD, max baselines, the best-performing baselines on pure
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Acc. ↑ F1 ↑ P ↑ R ↑
Train Reads 2 (seen in training) 3 (populated) Y (populated)

Chr. 2 Pure 98.0±0.43 98.5±0.39 99.0±0.28 97.5±0.46 98.2±0.41 99.3±0.27

ART 97.9±0.43 97.8±0.43 97.8±0.43 97.9±0.43 97.6±0.44 98.0±0.43

Table 2: DNA-ESA Performance on Chr. 2 and Task Transfer to Chr. 3, Y: DNA-ESA, trained
on Chr. 2, is evaluated for aligning positive samples from Chr. 2 and negative samples from Chr.
3. Anticipated failure to align Chr. 3 reads (false positives) is due to significant SW distance.
Metrics reported include weighted accuracy (Acc.), precision (P), F1-score (F1), and recall (R),
for comparison with Table 1. [Grey] For Chr. 3 and Y, separate vector stores are populated using
DNA-ESA representations learned using Chr. 2 {read,fragment} pairs. These results support the
generalizing tendency of DNA-ESA to align sequences beyond the training reference.

reads in Sec. 4. We observe the following: (A) DNA-ESA demonstrates strong recall of ∼ 97%
across a variety of read generation and recall configurations described in Sec. 5.1; (B) Reads with
less noise – high QPH , low I,D – are more often correctly aligned; (C) The dSW bound adds
∼ 1.5 − 2% in recall (to cover 5% of misalignments) – a ∼ 20% boost. This suggests that in
the cases of misses, while finding the exact index match, the retrieved reference fragments are still
high-quality retrievals that differ by at most 2 bases; (D) While the precise method of (a) generating
reads (ART settings, gapped, long vs. short, paired-end vs. single-end, etc.), (b) accounting for
the variation in the reference (with or without mitochondrial DNA, single- or double haploid, etc.),
(c) detecting a successful alignment (duplicates, distance criteria) vary considerably, DNA-ESA
approaches the performance reported by mature algorithmic methods of StrobeAlign, BWA-Mem2,
and Minimap (Sahlin, 2022; Vasimuddin et al., 2019; Li, 2018).

5.2 TASK TRANSFER FROM CHROMOSOME 2

Are these results indicative of DNA-ESA’s adaptability to new genomic sequences, rather than a
strict adherence to its training data? This would suggest the model’s learning to solve the sequence
alignment task rather than memorizing the genome.

Experiment setup: DNA-ESA is trained on Chrosomome 2 – the longest chromosome – and recall
is computed on unseen chromosomes from the human genome (3, Y) (inter-chromosome) and select
chromosomes from chimpanzee (2A,2B) and rat (1,2) DNA (inter-species). Reads are either pure or
ART-generated – as in Sec. 5.1, with the following simulator configurations: I = 10−4, D = 10−4,
QPH = [60, 90], dSW = 1%, Q = 250. Top-K is set to 50, reads per setting = 5, 000. Independent
vector stores are constructed for each chromosome; representations for reference fragments (staging)
and reads (testing) are generated by the Chr. 2-trained model. The results are reported in Tables 2,
3.

Performance: Details on convergence are in Appendix A. Table 2 shows that the performance on
unseen human chromosomes (3, Y) is similar to the performance reported in Table 1, despite only
training DNA-ESA on Chr. 2. This suggests DNA-ESA’s ability to generalize sequence alignment
across chromosomes with different compositions. High Accuracy, Precision, and F1-scores further
confirm the method’s specificity at this high recall. In Table 3, a trend of decreasing recall across
species is observed: Human (2, 3, Y) > Chimpanzee (2A, 2B) (Blue) > Rat (1, 2), with chimpanzees
likely performing better due to genetic similarities with humans (Ijdo et al., 1991). Even distantly
related species like Thermus Aquaticus and Acidobacteriota show significant recall, highlighting
DNA-ESA’s task transferability beyond simple data memorization.

5.3 ABLATION STUDIES

We’ve conducted additional experiments on DNA-ESA, detailed in the Appendix: (A) Sec. C.1
covers DNA-ESA’s performance on noisy reads from ART simulators and the PacBio CCS dataset.
(B) In Sec. C.2, we explore its performance under various dSW bounds ({5%,10%}) and top-K
settings ({10,20}) per chromosome. High performance at lower K values suggests a more effec-
tive representation space, while the dSW range assesses fragment retrieval accuracy without exact
index matches. (C) Sec. C.3 describes outcomes when omitting diversity priors in searches across
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Species Pure ART
Recall Top-K @50 ↑

Thermus Aquaticus [All] 100.0 (93.0±0.75 @K=1) 100.0 (95.2±0.63, @K=1)

Acidobacteriota [All] 100.0 (93.2±0.74, @K=1) 100.0 (94.9±0.64, @K=1)

Rattus Norwegicus [Chr. 1] 93.3±0.73 95.4±0.62

Rattus Norwegicus [Chr. 2] 93.2±0.74 96.4±0.55

Pan Troglodytes [Chr. 2A] 94.5±0.67 97.1±0.51

Pan Troglodytes [Chr. 2B] 94.3±0.68 97.2±0.50

Table 3: Cross-Species Task Transfer with DNA-ESA: Training on Human Chr. 2, Testing on
Diverse Species: DNA-ESA, trained on human Chr. 2, aligns fragments and reads from different
species, including Rattus Norwegicus, Pan Troglodytes, Acidabacteriota, and Thermus Aquaticus.
These species, are evaluated for read alignment recall using pure and ART-generated reads. The find-
ings, consistent with Table 1, indicate DNA-ESA’s proficiency in modeling DNA sequence structure,
beyond simply memorizing training data. Top-K = 1 tests are conducted on species achieving 100%
recall with K = 50.

the whole genome (top-K), resulting in predictably lower performance. (D) Sec. C.4 evaluates
DNA-ESA’s effectiveness with different read lengths, including those beyond Q = 250. Notably,
performance improves with longer reads, demonstrating a Zero-shot effect for lengths not included
in training.

6 FUTURE WORK

While DNA-ESA shows promising recall performance when compared to traditional algorithmic
methods, its current computational speed, at 200 reads per minute, is a limiting factor for extensive
genomic studies involving millions of reads. Despite this, the alignment task’s inherent paralleliz-
ability (outlined in [P1]) offers avenues for efficiency improvements. Our ongoing and future efforts
are directed towards overcoming this time efficiency bottleneck, as detailed in Appendix Sec. B. We
are considering various optimization strategies, including model compilation to speed up inference
and enhanced parallelization in vector store searches and fragment-read alignment. Additionally,
we aim to enhance DNA-ESA’s performance with shorter read lengths, exploring alternative train-
ing methods, integrating more diverse read/reference features, and employing data augmentation
techniques.

7 CONCLUDING REMARKS

Current DNA sequence alignment methods rely on algorithmic approaches that have been refined
over decades, incorporating DNA-specific enhancements in both indexing and retrieval. We have
introduced an alternate data-driven paradigm. Employing a Transformer-based DNA-ESA encoder,
our approach performs sequence alignment through self-supervised learning using contrastive loss.
While such methods have previously been used for identifying (approximate) semantic similarity
between sequences in written language applications, we demonstrate the surprising ability to find
exact overlaps among DNA sequences. Our empirical results also show that the model, once trained,
embodies the inherent structure of any DNA sequence (up to context length) irrespective of the lo-
cation or species origin: a foundation model. DNA-ESA’s innovation lies in its ability to represent
various sequence lengths within a shared vector space, facilitating a ‘flat’ search approach. Unlike
traditional methods that rely on hierarchical search, DNA-ESA treats shorter reads and longer refer-
ence fragments equally, using cosine similarity as a symmetric distance metric. This novel approach
not only challenges existing paradigms but also enhances the potential for discovering novel DNA
sequence representations. Mirroring the impact of Sentence Transformers in addressing sequence-
level tasks in NLP, DNA-ESA, combined with traditional techniques, could lead to breakthroughs
like aligning reads to the Pan Genome, where variations in the reference sequences model the genetic
variations across individuals.
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APPENDIX

A CONVERGENCE

Fig. 5 plot the convergence of the DNA-ESA encoder model discussed in the main text. We see
convergence after ∼20k steps.

(a) Trained on the Human Genome (b) Trained on the Human Chromosome 2

Figure 5: DNA-ESA convergence plots. Both plots show the loss pr. step (grey). For clarity, we
smooth the loss using a moving average (black).

B COMPLEXITY OF COMPUTING ALIGNMENT

B.1 COST OF CONSTRUCTING A NEW REPRESENTATION

Computing the embedding E of a sequence of length F using DNA-ESA encoding – a typical
Transformer-based attention architecture – has the following computation complexity:

O(LH ∗ (F 2 ∗ d+ d2 ∗ F )) ⇒ O(F 2 ∗ d+ d2 ∗ F ) (7)

Where d is the embedding dimension of the model, L is the number of layers in the Transformer and
H is the number of heads per layer. As d is a controllable parameter for the model, we can further
simplify:

O(F 2 ∗ d+ d2 ∗ F ) ⇒ O(F 2) (8)

The F 2 complexity follows the basic implementation of attention in transformers, but recent ef-
forts (Beltagy et al., 2020; Kitaev et al., 2020) have developed shortcuts to reduce the cost. These
have already been applied to DNA sequence modeling (Nguyen et al., 2023).

B.2 VECTOR STORE UPSTREAM

Vector store D is populated once (in bulk) with encoded fragment-length sequences drawn from the
entire genome; constant time complexity C to upload < 10M vectors.

B.3 RETRIEVAL COST

Given a new embedding, ϵ(G,K) is the cost of retrieving top-K nearest neighbors across the frag-
ment embeddings, where G is the length of the reference genome. In modern vector databases,
where several hashing techniques such as approximate K-nearest neighbors are used, ϵ scales loga-
rithmically with G. This is indeed the key benefit of using such databases instead of a naı̈ve search
technique.

B.3.1 FINE-GRAINED ALIGNMENT

Existing libraries/algorithms (e.g. the Smith–Waterman algorithm) can identify the alignment be-
tween a fragment sequence (of length F ) and read (of length Q) in O(FQ).
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MiSeqv3 - Q = 250
(via ART, PH in [10,20], I,D:1%)

PacBio, CCS - pbmm2, chr2
(Ashkenazim Trio, Son)

Model Very-high
Sensitivity

Alignment
SW (500)

Very-high
Specificity

Alignment
SW (500) Q=250 Q=350 Q=500

Bowtie-2 >99.9 490.2
87.0 ± 0.94
(–mp 1000
–np 1000)

490.4 <+2.0% <+2.8% <+2.5%

DNA-ESA 94.4 ± 0.60
(dSW=30) 488.3 89.0 ± 0.87

(@dSW=15) 490.6 97.5 ± 0.47 96.5 ± 0.55 97.0 ± 0.51

Table 4: DNA-ESA performance on noisy reads: Noisy reads are simulated using ART (QPH =
20, I,D = 1%) and derived from an external PacBio CCS read dump available in GIAB. The reads
from PacBio are filtered to those derived from Chr. 2 as determined using the pbmm package Li
(2018). In this evalaution, DNA-ESA is contextualized with Bowtie-2 Langmead et al. (2018), a
popular conventional alignment tool. On both datasets, DNA-ESA performs slightly worse than
Bowtie-2. Despite this, the quality of the retrieved fragments – as measured using the SW distance
– is very similar. Note that in all cases, the performance of DNA-ESA is comparable (within 1%) to
those reported in Table. 1.

B.3.2 TOTAL COMPLEXITY

Total complexity involves (a) constructing the representation of a read; (b) querying the vector store;
(c) running fine-grained alignment with respect to the K returned reference fragment sequences:

O(F 2 + FQK + ϵ(G,K)) ⇒ O(F (F +QK) + ϵ(G,K)) ⇒ O(FQK + ϵ(G,K))

C ABLATION STUDIES

C.1 PERFORMANCE ON HIGH-NOISE READS

In Table 4, we report the performance of DNA-ESA on two noisy datasets: (i) ART-generated
(MiSeqv3-based) reads of length Q = 250 with Phred quality score QPH ∈ [10, 20], I,D = 1%
and (ii) reads from PacBio CCN as generated on the Ashkenazim Trio (Son) (retrieved from the
Genome in a Bottle resource (GIAB) Zook et al. (2016)). For (ii), the raw reads are 10 kilobases
long and for evaluation we consider random subset of 1000 reads derived to Chr. 2. Reads specific
to a chromosome are filtered using the pbmm2 (Minimap) package Li (2018). Reads input into the
aligner are cropped to length 250, 350 and 500. Note that in these experiments, we take care to
increase the fragment-to-fragment overlap |Fi

⋂
Fi+1| from 250 to 500. DNA-ESA performance is

reported with respect to the Bowtie-2 performance. While Bowtie-2 has a > 99.9% recall, DNA-
ESA isn’t far behind and is comparable (within 1%) to the results on less noisy reads reported in
Table 1. While the recall is lower, the quality of the recovered fragments is comparable: the average
Smith-Waterman distance for all successfully aligned {read, fragment} pairs are similar.

C.2 SWEEPING TOP-K AND SW DISTANCE BOUND

In Table 5, we report the performance of DNA-ESA with larger Smith-Waterman distance bounds
dSW ∈ {10%, 20%} and a smaller number of recalled fragments K ∈ {10, 20}. Distance bound
dSW < 10% is equivalent to an acceptable mismatch of at most ∼ 8 bases between the read (length
Q = 250) and recalled reference fragments. We observe that with small K, the recall is > 91%
(exact index match). As the distance bound increases, performance predictably improves; however,
the performance gain from dSW = 25 to dSW = 50 is small. This implies that many retrieved
fragments are high-quality retrievals; i.e. of high-likelihood to align with the read, and do not benefit
from a more generous distance bound to improve recall performance significantly. Furthermore,
decreasing the top-K per chrosomosome from 20 → 10 does not substantially worsen performance
(∼ 2%) indicating that the optimal retrievals are usually the closest in the embedding space.

14



Under review as a conference paper at ICLR 2024

QPH ∈ [30, 60] QPH ∈ [60, 90]
I D Exact dSW < 5% dSW < 10% Exact dSW < 5% dSW < 10%

Top-10 / chromosome

0.0 0.0 91.5±0.81 96.6±0.54 96.6±0.54 91.9±0.79 96.4±0.55 97.3±0.49
0.01 92.0±0.79 96.5±0.55 96.8±0.52 92.0±0.79 96.2±0.57 97.6±0.47

0.01 0.0 91.9±0.79 96.4±0.55 96.5±0.55 92.0±0.79 96.6±0.54 97.4±0.48
0.01 91.8±0.80 96.3±0.56 97.2±0.50 91.5±0.81 96.3±0.56 97.3±0.49

Top-20 / chromosome

0.0 0.0 93.4±0.73 97.5±0.47 98.0±0.43 93.7±0.71 97.7±0.45 97.8±0.44
0.01 93.2±0.74 97.2±0.49 98.2±0.41 93.6±0.72 97.5±0.47 97.8±0.45

0.01 0.0 93.0±0.74 97.9±0.44 97.9±0.43 92.6±0.76 97.4±0.48 97.8±0.44
0.01 93.0±0.74 97.4±0.48 97.8±0.45 93.4±0.72 97.8±0.45 98.1±0.42

Table 5: Sequence alignment recall of DNA-ESA sweeping top-K and dSW : The various param-
eters are described in Sec. 5.1. DNA-ESA presents a recall of > 97% across several read configu-
rations rivaling contemporary algorithmic models. Performance predictably degrades as more noise
is introduced into a read. Performance improves with larger search radius (top-K), higher quality
reads (QPH ) and large distance bound dSW .

C.3 WITHOUT DIVERSITY PRIORS IN TOP-K

In Table 6, we report the performance without diversity priors used in the retrieval step: i.e. the
nearest-K neighbors in the embedding space are selected from the entire set of fragments spanning
the genome rather than uniformly sampling from each chromosome. The performance predicably
falls in comparison to those reported in Table 1 since fewer fragments scattered unevenly across the
different chromosomes are being retrieved per read.

QPH ∈ [30, 60] QPH ∈ [60, 90]
I D Exact dSW < 5% dSW < 10% Exact dSW < 5% dSW < 10%

Top-100

0.0 0.0 82.6±1.08 92.0±0.79 93.2±0.74 88.5±0.92 91.9±0.79 93.0±0.74
0.01 82.3±1.09 91.8±0.80 92.7±0.76 89.3±0.89 93.2±0.74 93.9±0.70

0.01 0.0 83.3±1.06 92.3±0.77 93.3±0.73 88.7±0.91 92.4±0.77 93.3±0.73
0.01 82.8±1.08 91.6±0.81 92.5±0.76 88.7±0.91 92.4±0.77 93.2±0.73

Top-50

0.0 0.0 81.1±1.11 90.6±0.84 92.0±0.79 86.7±0.97 90.7±0.84 91.9±0.79
0.01 80.5±1.13 90.4±0.85 91.6±0.80 87.4±0.95 91.7±0.80 92.7±0.76

0.01 0.0 81.3±1.11 90.8±0.83 92.3±0.78 86.8±0.97 91.0±0.83 92.2±0.78
0.01 81.2±1.11 90.4±0.85 91.7±0.80 87.1±0.96 91.2±0.82 92.4±0.77

Table 6: Sequence alignment recall of DNA-ESA - without diversity priors: The various pa-
rameters are described in Sec. 5.1. DNA-ESA presents a recall of ≈ 90%. Similar to the result
presented in the main text, performance improves with larger search radius (top-K), higher quality
reads (QPH ) and large distance bound (dSW ).

C.4 ACROSS READ LENGTHS

In Table 7, the performance of DNA-ESA is reported across read lengths. We observe Zero-shot
performance at longer read lengths: The model performs better at longer read lengths (even ex-
ceeding the read length bound established during training U [150, 500]); while evaluating for longer
reads, we make sure to guarantee that the reads exist as subsequences of fragments. Improving the
performance at shorter read lengths is the subject of future work.
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Top-K @ 50

I D Q = 150 Q = 200 Q = 250 500 < Q < 1000

QPH ∈ [60, 90] Pure Reads

0 0 84.6 ± 1.03 94.9 ± 0.65 96.8 ± 0.52 >97

0 0.01 85.9 ± 0.99 95.2 ± 0.63 97.1 ± 0.50
0.01 0 85.8 ± 0.99 94.5 ± 0.66 97.2 ± 0.49
0.01 0.01 86.2 ± 0.98 95.3 ± 0.63 97.0 ± 0.51

QPH ∈ [30, 60]

0 0 84.6 ± 1.03 94.6 ± 0.66 96.6 ± 0.54 >96

0 0.01 85.2 ± 1.01 95.0 ± 0.64 97.1 ± 0.49
0.01 0 85.7 ± 1.00 94.5 ± 0.66 96.3 ± 0.56
0.01 0.01 85.8 ± 0.99 94.4 ± 0.67 96.4 ± 0.55

Table 7: DNA-ESA recall performance across read lengths: Performance of DNA-ESA is higher
for longer reads including those lengths on which the model was not trained (Q ∈ U [150, 500]).
Shorter reads are more challenging for the model potentially due to replicates found across the
reference.
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