

000 001 002 003 004 005 SPECS: DECOUPLING MULTIMODAL LEARNING VIA 006 SELF-DISTILLED PREFERENCE-BASED COLD START 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Reinforcement learning (RL) with verifiable rewards has recently catalyzed a wave of “MLLM-r1” approaches that bring RL to vision language models. Most representative paradigms begin with a cold start, typically employing supervised fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold start adopts the reasoning paradigm intertwined with task solution and output format, which may induce instruction-style overfitting, weakens out-of-distribution generalization, and ultimately affects downstream RL. We revisit the cold start along two views, its training method and data construction, and introduce the *Generalization Factor* (GF) coefficient to quantify the generalization capability under different methods. Our empirical study finds that preference-based training methods (e.g. DPO) generalizes better than SFT-based methods in cold start. Motivated by this, we propose **SPECS**—a Self-distilled, Preference-based Cold Start framework that decouples multimodal learning: (1) generates introspective preference data pairs via self-distillation, avoiding reliance on larger teachers or manual annotation; (2) performs preference-based training to learn, focusing on shallow, transferable surface-form criteria (format, structure, style) rather than memorizing content; and (3) hands off to RL with verifiable rewards for deep reasoning results. Experimental results across multiple multimodal benchmarks show that our decoupling learning framework yields consistent performance gains over strong baselines, improving MEGA-BENCH by 4.1% and MATHVISTA by 12.2%. Additional experiments indicate that SPECS contributes to reducing in-distribution “stuckness,” improving exploration, stabilizing training, and raising the performance ceiling.

1 INTRODUCTION

Recently, inspired by the success of DeepSeek-R1 (Guo et al., 2025), in effectively enhancing the reasoning capabilities of large models through reinforcement learning (RL) with verifiable reward (Lambert et al., 2024; Guo et al., 2025), a growing body of work has begun to apply RL directly to vision language models (VLMs). This has led to a wave of exciting “MLLM-r1” research (Meng et al., 2025; Shen et al., 2025; Peng et al., 2025; Zhou et al., 2025; Zhang et al., 2025a; Wang et al., 2025b;a; Zheng et al., 2025; Ma et al., 2025), which leverage similar principles to advance multimodal reasoning.

Previous research has indicated that prior to RL, employing a pre-training or warm-up phase (which is termed “**cold start**”), can significantly improve the readability, stability, and even the final performance of RL training (Guo et al., 2025). Currently, the most commonly used cold start strategy is supervised fine-tuning (SFT), where the model is first fine-tuned on a set of high-quality Chain-of-Thought reasoning data to provide a better initial policy for the subsequent RL phase (Wei et al., 2025; Yang et al., 2025; Huang et al., 2025; Deng et al., 2025b). This strategy enables the model to be trained on complex reasoning data during the cold start phase, thereby acquiring reasoning ability.

The common understanding behind SFT-based cold start is that reasoning abilities, reasoning format and other learning objectives can be jointly learned during the cold start phase. However, such an SFT-based joint learning paradigm may largely affect the model’s generalization capability (Wu et al., 2025; Chu et al., 2025), and consequently degrade subsequent RL (Chen et al., 2025a). This

054 raises an important research issue of quantifying and improving the model’s *generalization capability* 055 during cold start and working in concert with subsequent RL.

056 To address the above limitations, we consider an alternative learning paradigm, which separates the 057 learning process into hierarchical stages based on the idea that cold start phase focused more on 058 shallow, surface-form learning to avoid prematurely getting stuck in in-distribution problem 059 solving, while subsequent RL focuses on the deep-level learning of a solution to boost the overall 060 performance (Bengio et al., 2009). Thus, the intuition of our adopting decoupling learning for multimodal 061 reasoning is that the selection of pre-training methods in cold start needs to better support the 062 subsequent RL, both in terms of generalization and by having separate objectives to facilitate better final 063 results.

064 Another important issue is the generation of cold start data. Previously, the prohibitive cost of human 065 annotation has motivated a growing body of research to explore the use of synthetic data. This often 066 involves using a more capable large model as a “teacher” to distill data for a smaller “student” model. 067 (Zhang et al., 2025b; Yao et al., 2024; Xu et al., 2024; Huang et al., 2025). However, when the 068 capability gap between the teacher model and the student model is too large, it can lead to a decline 069 in model performance (Zhang et al., 2023). Alternatively, the DeepSeek-R1-Zero paradigm (Guo 070 et al., 2025) first directly applies RL to the base model for obtaining R1-Zero and then generates cold 071 start data by zero model itself. This paradigm has achieved very remarkable performance; yet it still 072 has the limitation of reliance on the SFT cold start and the constraints between SFT and subsequent 073 RL, thereby leaving room for further improvement.

074 In this paper, to examine the suitable cold start training method, we propose the *Generalization Factor* 075 (GF) coefficient in Section 2 to quantify the generalization capability of the model and conduct 076 an empirical study to evaluate different training methods. We identify that Direct Preference Opti- 077 mization (DPO) (Rafailov et al., 2023) based on preference data is a cold start approach that enables 078 the model to have better performance. On this basis, we present the Self-distilled **Preference-based** 079 **Cold-Start** (SPECS) framework in Section 3. By decoupling the learning objectives during DPO to 080 focus on output format, we create a pre-aligned model that serves as a superior starting point for the 081 final RL fine-tuning. Our experiments show that this method leads to more stable, efficient training, 082 and a higher performance ceiling compared to the advanced and strong baseline.

083 The main contributions of this paper can be summarized as follows.

- 085 1. We present the **SPECS** framework, a three-stage cold start strategy. It generates preference 086 data through self-distillation, uses DPO for cold start training, and separates training objectives 087 so that the model first aligns with output formats, providing a stronger starting point for RL.
- 088 2. We propose **Generalization Factor** as a metric to evaluate a model’s generalization capability 089 under different cold start training methods by comparing its performance on in-distribution 090 and out-of-distribution tasks.
- 091 3. We reveal the importance of **Decoupling Learning** between the cold-start and RL phases. 092 This separation improves exploration and reduces the risk of the model getting stuck on in- 093 distribution solutions.
- 094 4. Our experimental results prove that a preference-based DPO cold start gives the model stronger 095 generalization ability. In terms of the model’s final results, it achieves consistent performance 096 gains across benchmarks, improving MEGA-Bench by 4.1% and MathVista by 12.2% over 097 strong baselines, demonstrating the effectiveness of the SPECS.

100 2 EMPIRICAL INVESTIGATION

101 2.1 EVALUATING DEGREE OF GENERALIZATION

103 To evaluate the impact of preference-based versus supervised data on a model’s generalization ca- 104 pabilities under a fixed sample size, we introduce the metric of **Generalization Factor (GF)**.

105 **Setup.** We define an evaluation function $\psi(f_n, P) \in \mathbb{R}$ that measures the performance of a model 106 f on a data distribution P and n refers to the size of the training data samples. A higher value of ψ 107 indicates better performance.

108 **Generalization Factor.** To accurately evaluate the generalization ability of a model, we first need
 109 to test the model’s performance on in-distribution (ID) and out-of-distribution (OOD) tasks. Among
 110 them, ID tasks require the same as the task requirements during training, while OOD tasks require
 111 different from the task requirements during training.
 112

- 113 • ID Performance: $\Psi_{ID}(n)$, is evaluated on a hold-out set from the same distribution P_{train} .

$$114 \quad \Psi_{ID}(n) = \psi(f_n, P_{train})$$

- 116 • OOD Performance: $\Psi_{OOD}(n)$, is the weighted average performance across a set of m distinct
 117 OOD distributions, $Q = \{Q_1, \dots, Q_m\}$, with weights defined by a distribution α .

$$118 \quad \Psi_{OOD}(n) = \mathbb{E}_{Q \sim \alpha}[\psi(f_n, Q)]$$

120 We establish a baseline model, f_0 , which serves as a reference point. The performance gains over
 121 this baseline are calculated as:

$$122 \quad G_{ID}(n) = \Psi_{ID}(n) - \Psi_{ID}(0)$$

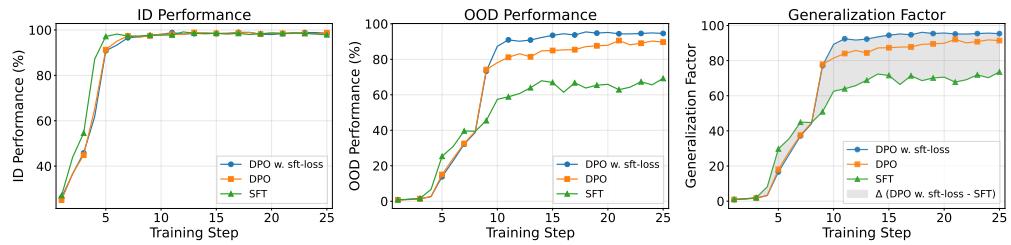
$$124 \quad G_{OOD}(n) = \Psi_{OOD}(n) - \Psi_{OOD}(0)$$

125 We define GF , $\Gamma(n)$ as the F_β -score of the model with respect to OOD performance gains and ID
 126 performance gains. The reason for adopting this metric is that the F_β -score is particularly suitable
 127 for average ratios. Its most prominent feature is that the result tends to lean toward the smaller
 128 number. This perfectly aligns with our needs: as long as either the ID or OOD performance is very
 129 poor, the final score will be very low. We can also control the size of β to reflect the degree of
 130 importance we attach to OOD performance gains during the training process.

$$131 \quad \Gamma(n) = (1 + \beta^2) \frac{G_{ID}(n)G_{OOD}(n)}{\beta^2 \cdot G_{ID}(n) + G_{OOD}(n)}$$

134 where the weighting coefficient β is generally set to 2 to reflect the importance of the OOD perfor-
 135 mance gain in the generalization capabilities of the model. To ensure that the metric behaves well
 136 and is dimensionless, the evaluation function ψ should be normalized to a consistent range.
 137

138 2.2 EXPERIMENTAL FINDINGS



148 Figure 1: Performance Comparison: DPO vs. SFT on In-Distribution and Out-of-Distribution Task
 149

150 To preliminarily examine how preference data and supervised data affect model generalization, we
 151 construct a preference dataset $\mathcal{D}_{pref} = \{(x_i, y_i^+, y_i^-)\}_{i=1}^N$, where y_i^+ is the chosen response and
 152 y_i^- is the rejected response, and a supervised dataset $\mathcal{D}_{SFT} = \{(x_i, y_i)\}_{i=1}^N$ with $y_i = y_i^+$ around
 153 reasoning tasks defined by a specific answer format. Under equal data budgets, we evaluate two
 154 settings: (i) an in-distribution setting in which the required reasoning format matches that used in
 155 training, and (ii) an out-of-distribution setting in which the required reasoning format differs¹. We
 156 compare DPO training, SFT training, and DPO training augmented with SFT loss (see Section 3.3).
 157 The resulting $\Psi_{ID}(n)$, $\Psi_{OOD}(n)$, and the $\Gamma(n)$ are reported in Figure 1.

158 From the experimental results, it can be observed that SFT achieves the fastest convergence on ID
 159 tasks. However, due to its reliance on a single cross-entropy loss that maximizes the log-likelihood
 160 of the correct answer, it demonstrates poor OOD performance. By contrast, DPO converges more
 161

¹For more detailed description, see Appendix B

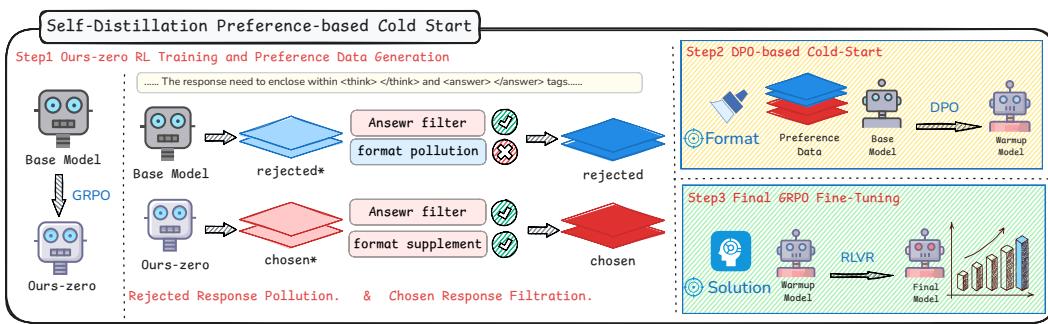
162 slowly at the beginning of ID tasks but yields better OOD performance. Remarkably, the model
 163 trained with a combination of DPO with SFT loss achieves the strongest generalization capability
 164 overall. As the number of training steps increases, the GF gap between the SFT training method and
 165 the DPO training method also increases.

167 3 METHODOLOGY: THE SPECS FRAMEWORK

169 3.1 SELF-DISTILLED PREFERENCE COLD-START

171 A model with superior generalization capabilities provides a more effective starting point for RL.
 172 Inspired by the discussion in Section 2, we employ self-distillation to construct preference data
 173 focusing format learning. This data is then used in place of standard SFT data to enhance the
 174 model’s generalization performance during the cold-start phase.

175 To implement this, we propose SPECS, illustrated in Figure 2, a three-stage training optimization
 176 strategy consisting of 1) **Self-Distillation for Preference Data Generation**, 2) **DPO-based Pre-**
 177 **Alignment for Cold-Start**, and 3) **Final GRPO Fine-tuning**.



190 **Figure 2: Method Overview.** We propose the SPECS cold-start strategy, a three-stage pipeline to
 191 enhance final RL fine-tuning. Firstly, where we generate a preference dataset focused on teaching
 192 the correct output format by self distillation. Next, The base model is pre-aligned on this data using
 193 DPO to create a format-aware “Warmup Model”. Finally, this pre-aligned model undergoes Final
 194 RL tuning with GRPO, allowing the optimization process to focus on enhancing reasoning.

197 3.2 SELF-DISTILLATION FOR PREFERENCE DATA GENERATION

199 **Objective:** The foundational stage of our framework aims to achieve two interconnected goals:
 200 first, to cultivate a preliminary “seed model” with enhanced reasoning capabilities, and second, to
 201 leverage this model to autonomously generate a high-quality preference dataset through a process
 202 we term self-distillation.

203 **Methodology:** A critical initial challenge is that a standard base VLM often lacks the capability
 204 to generate outputs of sufficient reasoning ability. To address this, we first conduct a brief, initial
 205 phase of RL fine-tuning on the base model using GRPO. This step aims not at achieving the final
 206 performance, but at creating an initial policy, denoted $\pi_{GRPO-zero}$, which is more adept at exploring
 207 the solution space.

208 With the exploratory $\pi_{GRPO-zero}$ model, we proceed to generate the preference dataset. The data
 209 construction process involves four key steps:

- 211 • **Response Generation.** We prompt two models, our exploratory $\pi_{GRPO-zero}$ and π_{base} , with
 212 specific format instructions (`<think>...</think><answer>...</answer>`) to create a
 213 dataset, which is designed to contain pairs of responses that are both correct in their final answer,
 214 but differ in their reasoning paradigm and answer format.
- 215 • **Chosen Response Filtration.** For the chosen response (y_i^+), we use Gemini-2.5 flash (Comanici et al., 2025) as an evaluator. Assesses whether the reasoning path in the $\pi_{GRPO-zero}$

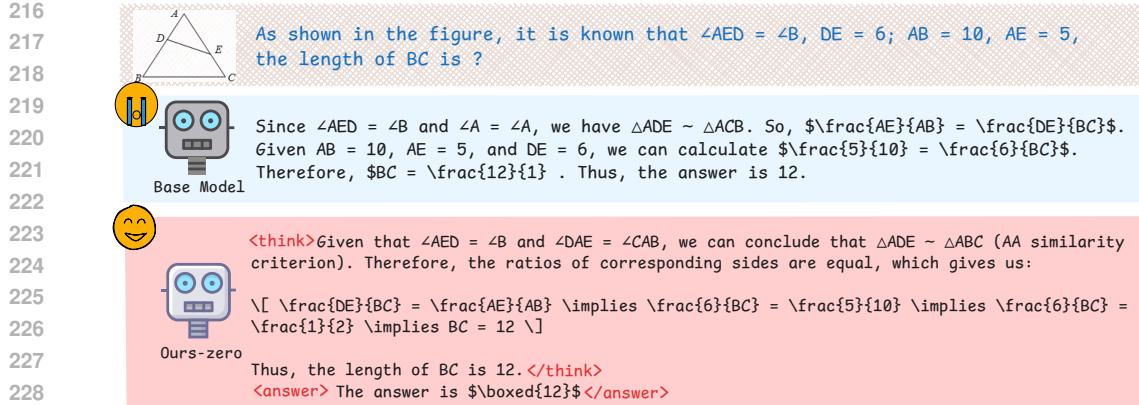


Figure 3: Example of a self-distilled preference data pair.

response aligns correctly with its final answer. Only responses in which the reasoning and the answer are consistent are retained, forming a high-quality pool of candidates. For more analysis of this content, please refer to Appendix E.

- **Rejected Response Pollution.** For the rejected response (y_i^-), we select responses that also contain the correct answer, but deviate from the required format. Recognizing that some generated responses might incidentally have the correct format, We randomly apply one of the following five types of format corruption to these responses to ensure a clear learning signal.

1. Remove all tags (`<think>`, `</think>`, `<answer>`, `</answer>`).
2. Remove the `<answer>` and `</answer>` tags.
3. Remove the `<think>` and `</think>` tags.
4. Remove the `<answer>` and `</answer>` tags and move the closing `</think>` tag to the end of the response.
5. Replace the `<answer>` tags with the string `Answer:` and remove `</answer>` tags.

- **Preference Pair Construction via Self-Distillation.** We construct the chosen response and the rejected response into pairs of self-distilled preference data (y_i^+ , y_i^-). As shown in Figure 3. Both Chosen Responses (y_i^+) and Rejected Responses (y_i^-) are selected from the filtered pool and contain the correct final answer. This data set is designed to facilitate decoupled learning, separating the learning of reasoning paradigms and answer formats from the core logical reasoning ability. This approach serves as a more effective cold-start method for the final alignment stage.

3.3 DPO-BASED PRE-ALIGNMENT FOR COLD-START

Objective: The primary goal of this stage is to leverage the self-distilled preference dataset generated in the Stage 1 (Section 3.2) to pre-align the base VLM. This process yields a “cold-start” model that serves as a significantly improved starting point for the final RL fine-tuning. We conceptualize this phase as a “warm-up,” which shifts the model’s policy into a more advantageous region of the policy landscape before the intensive final training.

Methodology: To achieve this pre-alignment, we employ DPO (Rafailov et al., 2023), a powerful technique that directly optimizes the language model on preference data without the need for an explicit reward model. The standard DPO loss function is defined as:

$$\mathcal{L}_{DPO}(\pi_\theta; \pi_{ref}) = -\mathbb{E}_{(x, y_w, y_l) \sim D} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{ref}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{ref}(y_l|x)} \right) \right]$$

where π_θ is the policy being optimized, π_{ref} is the reference policy (the initial base model), β is a temperature parameter, and (x, y_w, y_l) represents a triplet of prompt, chosen response, and rejected response from our self-distilled dataset D.

To augment this process, we incorporate an SFT loss computed on the “chosen” samples, which serves as a form of regularization. It ensures that while the model learns the directional preference

270 signal from DPO, it does not drift far from the core distribution of high-quality text embodied by the
 271 chosen responses (Rao et al., 2025). The combined loss function is thus:
 272

$$273 \quad \mathcal{L}_{hybrid} = \mathcal{L}_{DPO} + \lambda \mathcal{L}_{SFT}$$

274 where \mathcal{L}_{SFT} is the conventional negative log-likelihood loss on the chosen responses, and λ is a
 275 weighting coefficient to balance the two objectives. For a discussion for λ , see Appendix C.
 276

277 3.4 FINAL GRPO FINE-TUNING
 278

279 **Objective:** To achieve peak performance by fine-tuning the pre-aligned cold-start model, focusing
 280 computational resources on enhancing complex reasoning capabilities.

281 **Methodology:** This final stage leverages the cold-start model obtained from Stage 2 as the initial-
 282 ization point for RL, rather than starting from the base model or a conventional SFT model. The
 283 pre-alignment from the DPO phase ensures that the model has already mastered the output format.
 284 Consequently, the model is not required to expend resources on learning basic structural compli-
 285 ance. Instead, credit assignment during RL training can be more accurately attributed to the core
 286 challenge: improving the quality and precision of its reasoning process. This targeted optimization
 287 explains the observed stable convergence in our experiments and the model’s ability to achieve a
 288 higher performance ceiling.

289 For the final stage of fine-tuning, we employ the GRPO algorithm (Shao et al., 2024). This process is
 290 guided by a composite reward function that combines format and accuracy components to evaluate
 291 the model’s output, o , for a given question, q .

292 The total reward R_{total} , is the sum of a format reward R_{format} , and an accuracy reward R_{acc} :
 293

$$294 \quad R_{total}(o, q) = R_{format}(o) + R_{acc}(o, q)$$

295 **The format reward $R_{format}(o)$** , assigns a fixed value of 0.5 for structurally correct outputs, rein-
 296 forcing the policy’s formatting discipline.
 297

298 **The accuracy reward $R_{acc}(o, q)$** , provides a binary signal: 1.0 for a correct answer and 0 other-
 299 wise. We use a hybrid mechanism to determine correctness based on the question type, $T(q)$:
 300

$$301 \quad R_{acc}(o, q) = \begin{cases} R_{rule}(o, q) & \text{if } T(q) \in \{\text{Multiple-Choice, Numerical}\} \\ R_{llm}(o, q) & \text{if } T(q) = \text{Short-Answer} \end{cases}$$

303 For objective types like multiple-choice and numerical questions, a rule-based function assesses
 304 correctness. For subjective short-answer questions, we employ GPT-4o as an external judge.
 305

306 4 EXPERIMENTS
 307

308 4.1 EXPERIMENT SETTINGS
 309

310 **Dataset and Benchmark:** The data utilized for training $\pi_{GRPO-zero}$ model in Stage 1 and for
 311 the final GRPO fine-tuning of the cold-started model in Stage 3 is composed of the Orsta47K (Ma
 312 et al., 2025) and virl39K (Wang et al., 2025a) datasets. In Stage 2 of cold start training, we used 9K
 313 self-distilled data. This composition is designed to enhance the model’s general and mathematical
 314 reasoning capabilities. We conduct evaluations on multiple benchmark datasets, including MEGA-
 315 Bench (Chen et al., 2025b), MMMU (Yue et al., 2024), MathVista (Lu et al., 2024b), MATH-Vision
 316 (Wang et al., 2024a), and MathVerse (Zhang et al., 2024).

317 **Baseline:** Our comparative analysis is grounded on two primary categories of models. The first
 318 category comprises open-source general VLMs, including QwenVL-2-7B (Wang et al., 2024b),
 319 QwenVL-2.5-7B (Bai et al., 2025), InternVL2-8B (Chen et al., 2024), InternVL2.5-8B (Chen et al.,
 320 2024), Kimi-VL-A3B (Team et al., 2025), and DeepSeek-VL-7B (Lu et al., 2024a). The second cat-
 321 egory focuses on models specifically engineered for advanced reasoning tasks. This group includes
 322 Kimi-VL-A3B-Thinking (Team et al., 2025), R1-Onevision (Yang et al., 2025), VLAA-Thinking
 323 (Chen et al., 2025a), MM-Eureka-7B (Meng et al., 2025), VL-Rethinker-7B (Wang et al., 2025a),
 324 and Orsta-7B (Ma et al., 2025).

324
325
326 Table 1: Model performance comparison on MEGA-Bench Core.
327
328

Model	MEGA-Bench								MEGA-Bench Core
	Knowledge	Mathematics	Perception	Coding	Info. Ex.	Planning	Science	Metrics	
<i>Open-Source General Models</i>									
QwenVL-2-7B	39.96	25.95	39.99	31.49	40.29	16.64	28.59	43.61	34.47
QwenVL-2.5-7B	38.84	27.67	41.24	28.93	50.23	16.32	36.75	41.64	35.07
InternVL2-8B	33.94	22.08	32.15	24.7	29.13	12.17	24.61	39.96	25.96
InternVL2.5-8B	34.78	25.86	33.27	25.45	35.10	15.97	28.83	44.96	28.34
InternVL3-8B	42.76	34.85	42.76	<u>34.05</u>	44.84	17.10	35.21	<u>49.60</u>	36.02
Llava-OV-7B	31.37	22.11	27.64	13.9	17.07	9.16	24.38	37.31	21.36
Kimi-VL-A3B	37.63	27.07	39.50	22.30	40.99	22.17	33.94	46.65	34.40
<i>Open-Source Reasoning Models</i>									
R1-Onevision [†]	29.47	20.94	28.65	23.38	43.04	12.67	26.84	42.19	27.18
VLAA-Thinking [†]	38.23	28.83	40.73	28.84	44.58	17.05	36.69	45.57	34.86
Kimi-VL-A3B-Thinking	33.45	17.76	28.11	14.69	41.14	12.64	28.60	43.97	27.08
MM-Eureka-7B	40.12	31.59	39.71	28.75	49.32	16.64	<u>37.25</u>	46.39	35.96
VL-Rethinker-7B	40.65	30.08	42.02	29.87	<u>52.03</u>	17.83	36.82	46.90	37.25
Orsta-7B	41.65	31.48	<u>43.84</u>	32.82	54.07	17.83	36.91	41.66	<u>38.31</u>
Ours-zero	42.44	29.87	43.77	32.80	49.59	17.76	37.39	47.32	37.96
Ours-7B	42.64	<u>31.71</u>	44.58	34.14	51.68	<u>18.76</u>	38.73	51.87	39.17
Δ (Ours - Backbone)	+3.8	+4.0	+3.3	+5.2	+1.4	+2.4	+2.0	+10.2	+4.1

341¹ The †symbol indicates that the results were evaluated with VLMEvalKit².342² The remaining results are from the MEGA-Bench Leaderboard and Ma et al. (2025).343
344 Table 2: Model Performance Comparison On Other Benchmarks

Model	MMMU val	MathVision	MathVisita	MathVerse vision only	Overall
<i>Backbone</i>					
QwenVL-2.5-7B	54.2†	25.40	63.70	38.20	45.38
<i>QwenVL-2.5-7B based Reasoning Models</i>					
R1-Onevision	49.67†	29.90	64.1	40.0	45.92
VLAA-Thinking	52.67†	26.40	68.00	48.20	48.82
MM-Eureka-7B	55.55†	26.90	73.00	47.58†	50.76
VL-Rethinker-7B	56.7	<u>29.70</u>	<u>73.60</u>	48.98†	<u>52.25</u>
Orsta-7B†	54.33	<u>25.76</u>	70.20	32.10	45.60
Ours-zero	54.3	26.88	72.90	47.33	50.35
Ours-7B	56.78	29.50	75.90	<u>48.73</u>	52.73
Δ (Ours - Backbone)	+2.5	+4.1	+12.2	+10.5	+7.3

357 The †symbol indicates that the results were evaluated with VLMEvalKit³.

358
359 **Implementation Details:** We utilize the open-source Multimodal Large Language Model,
360 Qwen2.5-VL-7B (Bai et al., 2025), as our base model. For the GRPO training in Stage 1 and Stage
361 3, we employ the MM-EUREKA⁴ framework. The rollout and training batch sizes are both set to
362 128, with 8 rollouts generated per sample. The learning rate is configured to 1×10^{-6} . For the DPO
363 training in Stage 2, as well as for the comparative SFT experiments, we leverage the LlamaFactory⁵
364 framework. In this configuration, the training batch size is set to 64, the learning rate is maintained
365 at 1×10^{-6} , and the hyperparameter λ for the hybrid loss function is set to 1. The prompt used
366 during training is shown in Appendix B. Some more detailed settings can be found in Appendix F.

367
368 4.2 MAIN RESULTS

369
370 Table 1 presents the overall performance of our model on MEGA-Bench Core, along with the scores
371 for each subtask, in comparison with other baseline models. Table 2 reports the performance of
372 various inference models built on the QwenVL-2.5-7B backbone across additional benchmarks.
373 Our model has improvements in general task benchmarks (MEGA-BENCH core, MMMU) and
374 mathematical reasoning benchmarks (MathVision, MathVisita, MathVerse), and some benchmarks
375 are in a leading position among models of the same size, demonstrating the effectiveness of our
376 approach.

377⁴<https://github.com/ModalMinds/MM-EUREKA>⁵<https://github.com/hiouga/LLaMA-Factory>

378 4.3 ABLATION ON SELF-DISTILLATION AND DECOUPLED DATA STRATEGY
379380 **Self-distillation proves more effective than external teacher models.** First, we evaluate the ef-
381 fectiveness of the self-distillation mechanism by substituting it with preference data generated from
382 powerful external teacher models, specifically QwenVL-2.5-32B and QwenVL-2.5-72B. The re-
383 sults shown in Tabel 4 clearly indicate that our self-distillation approach outperforms both teacher-
384 based alternatives. We also observe that performance degradation is more pronounced when using
385 the QwenVL-2.5-32B model, whose output distribution diverges more significantly from our base
386 model. This finding suggests that preference data closely aligned with the model’s intrinsic capa-
387 bility distribution is more effective for alignment than guidance from a more capable but dissimilar
388 external model.
389390 **Distilling from GRPO-zero instead of the base model.** We directly perform RL on the base model
391 to obtain GRPO-zero, and then distill the chosen response through the GRPO-zero model. This
392 choice of scheme is based on considerations of data utilization and training data quality. As shown
393 in Table 3 below, we have conducted statistics on some indicators of the responses of the original
394 model and the GRPO-zero model to the training data questions. Obviously, the GRPO-zero model
395 has higher data utilization in the collection of chosen responses due to its higher format accuracy and
396 answer accuracy. At the same time, we counted the number of reasoning words (including transition
397 words, causal words, sequential words, etc.) per 1000 characters for both models. We also used
398 the same data collection method to collect responses with correct formatting and correct answers
399 distilled from the base model as chosen responses. The experimental results shown in Table 4.
400401 Table 3: Statistical indicators of response in training data for the base model and GRPO-Zero model
402403

Model	Format Acc. (%)	Answer Acc. (%)	Reasoning Words / 1k Chars
Qwen2.5-7B-Instruct	41.62	30.42	4.26
Ours-GRPO-zero	96.74	52.82	4.99

404 **The decoupled data strategy outperforms the coupled approach for DPO cold-starting.** Next,
405 we investigate the impact of our decoupled data strategy for DPO cold-starting. We compare it
406 against a “coupled” DPO approach, where preference data is mixed, containing pairs that differ in
407 both answer correctness and reasoning format. The experimental results shown in Table 4 demon-
408 strate the clear superiority of the decoupled approach. We found that while coupled data helps
409 initially, decoupled data provides a better foundation for the main RL phase. We attribute this to
410 decoupled data’s sharp focus: it trains only the reasoning paradigms during the cold start, which
411 ultimately leads to better performance after RL (GRPO), even if the initial cold-start performance is
412 lower.
413414 Table 4: Ablation Results to show the impact of Self Distillation and Decoupled Data
415416

Model	Megabench	MMMU	MathVista	MathVision	MathVerse	AVG
Qwen-VL-2.5-7B	35.07	54.2	63.70	25.40	38.20	43.31
- Qwen32b Distillation	27.04 / 29.87	51.44 / 56.67	66.90 / 71.50	25.53 / 28.03	43.53 / 46.07	42.89 / 46.43
- Qwen72b Distillation	34.00 / 37.30	53.89 / 58.56	67.50 / 73.30	25.62 / 28.91	43.53 / 46.83	44.90 / 48.98
- Base model Distillation	35.37 / 37.92	53.11 / 56.11	67.90 / 74.40	25.55 / 28.68	43.40 / 46.82	45.07 / 48.79
- Self Distillation	37.52 / 39.17	54.89 / 56.78	72.00 / 75.90	25.75 / 29.50	46.19 / 48.73	47.27 / 50.02
- Coupled Data	37.02 / 38.76	55.44 / 55.44	71.10 / 73.10	27.37 / 28.65	47.46 / 47.46	47.67 / 48.68
- Decoupled Data	37.52 / 39.17	54.89 / 56.78	72.00 / 75.90	25.75 / 29.50	46.19 / 48.73	47.27 / 50.02

417 The value on the left side of the slash ‘/’ represents the score after cold-start training, and the value on the right side of the slash
418 represents the score after cold start + RL.
419420 4.4 ANALYSIS OF THE IMPACT OF DPO-BASED COLD START AND SFT-BASED COLD START
421422 We examine the downstream effects of our DPO cold-start strategy, assessing its impact on the
423 efficiency and stability of the final RL phase.
424425 **Performance and Training Efficiency.** To evaluate performance and training efficiency, we tracked
426 MEGA-Bench scores throughout the GRPO training process. As illustrated in Figure 4, the DPO-
427

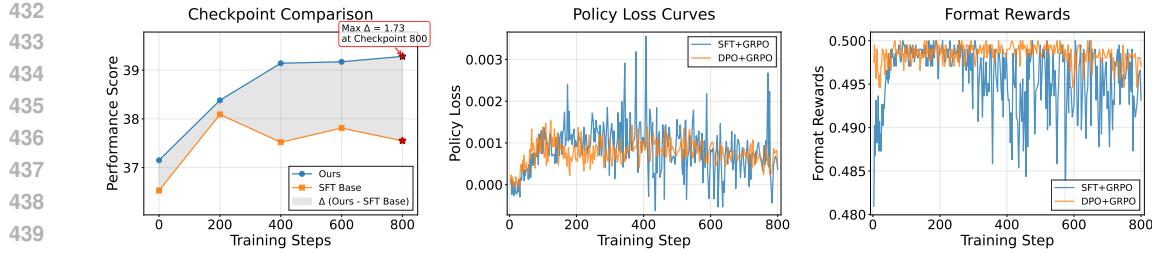


Figure 4: Impact on RL Training Efficiency and stability.

based GRPO model begins with a substantially higher initial score, demonstrating the immediate benefit of preference-based pre-alignment. Furthermore, it maintains a clear advantage throughout training, converging more rapidly and ultimately achieving a higher performance ceiling than its SFT-based GRPO counterpart. The final performance comparison of other benchmarks is shown in Table 5 below. For more analysis on this content, please refer to Appendix D.

Table 5: Performance Comparison of SFT-based, and DPO-based Models on Various Benchmarks

Model	Megabench	MMMU	MathVista	MathVision	MathVerse	AVG
Qwen2.5-7B-Instruct	35.07	54.20	63.70	25.40	38.20	43.31
SFT-based GRPO	37.52	54.44	74.10	28.61	43.60	47.65
DPO-based GRPO	39.17	56.78	75.90	29.50	48.73	50.02

Training Stability. Beyond performance metrics, we analyzed training stability by comparing the policy loss curves, presented in Figure 4. The curve for DPO-based GRPO is visibly smoother and more stable, indicating a more consistent and reliable optimization trajectory. In contrast, the SFT-based GRPO policy exhibits greater volatility, suggesting that the RL algorithm make more drastic and potentially erratic updates. In terms of format rewards, RL based on SFT cold start is also weaker than RL based on DPO cold start in terms of the stability of format rewards. Regarding the impact of different cold-start training methods on the stability of model training, we believe this is related to the training objectives of the cold-start phase and the RL phase. The SFT training objective is to maximize log likelihood, which is a form of imitation learning, while the loss function of DPO can be seen as directly optimizing an implicit reward model consistent with preference data, which is more aligned with the subsequent reward-driven GRPO optimization objective. Therefore, using a DPO-based model as a starting point also brings more stable training for subsequent RL.

4.5 ANALYSIS OF THE RELATIONSHIP BETWEEN GF AND FINAL PERFORMANCE

We evaluate the correlation between the model’s GF value during the cold-start phase and its final performance (represented here by the average score on MEGA-Bench, MMMU, and MathVerse_Vision_Only). By comparing three cold-start methods with different GF values, presented in Figure 5, we can see that GF and the model’s final performance are correlated to a certain extent. This also confirms that the stronger the model’s generalization ability in the cold-start phase, the more it will contribute to the model’s improvement in the RL phase.

In addition, we can also prove that the cold-start method based on preference data has higher generalization ability compared with the traditional SFT cold-start paradigm, thus bringing greater potential for improvement to subsequent RL.

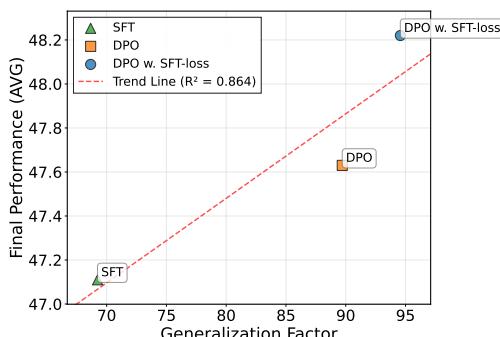


Figure 5: GF vs. Final Performance

486

5 RELATED WORK

488 The application of RL has emerged as a highly effective method for enhancing the reasoning capabilities of large language models, with notable successes in the text-only domain such as DeepSeek-R1
 489 (Guo et al., 2025), which leverages RLVR (Lambert et al., 2024; Guo et al., 2025). Inspired by these
 490 advancements, a substantial and rapidly growing body of research has begun adapting RL techniques
 491 for VLMs. This has catalyzed a wave of “MLLM-r1” studies, all aiming to harness similar principles
 492 to unlock more advanced multimodal reasoning abilities. For instance, **MM-Eureka** (Meng
 493 et al., 2025) explores the enhancement of multimodal reasoning abilities through rule-based RL by
 494 constructing high-quality multimodal reasoning datasets. **VL-Rethinker** (Wang et al., 2025a) stim-
 495 ulates the slow thinking and self-reflection abilities of VLMs through RL. **Orsta** (Ma et al., 2025)
 496 establishes a unified RL system that supports VLMs in jointly learning visual reasoning and per-
 497 ception tasks. **VLM-R1** (Shen et al., 2025) extends R1-style RL to VLMs for visual understanding
 498 tasks to improve their visual reasoning abilities. **LMM-R1** (Peng et al., 2025) enhances the model’s
 499 basic reasoning ability and multimodal generalization ability through a two-stage training strategy of
 500 basic reasoning enhancement and multimodal generalization training. **R1-VL** (Zhang et al., 2025a)
 501 realizes the self-improvement of MLLMs’ reasoning ability by solving the sparse reward problem
 502 through Step-wise GRPO. **DeepEyes** (Zheng et al., 2025) motivates the model’s “Thinking with Im-
 503 ages” ability through RL. **VisualThinker-R1-Zero** (Zhou et al., 2025) performs RL directly without
 504 any supervised fine-tuning of the model to reproduce the “aha moment”.

505 A crucial precursor to effective RL is the “cold-start” phase, which initializes the model’s policy
 506 before the RL stage begins. The conventional strategy for this phase is SFT, a foundational step
 507 adopted by many leading models to establish a strong baseline performance (Wei et al., 2025; Yang
 508 et al., 2025; Huang et al., 2025; Deng et al., 2025b). In parallel with refining cold-start methods,
 509 the prohibitive cost of human annotation has driven the field towards synthetic data generation. This
 510 approach often involves using powerful teacher models to distill vast amounts of data for training
 511 smaller student models (Zhang et al., 2025b; Xu et al., 2024; Huang et al., 2025). **Vision-R1** (Huang
 512 et al., 2025) cold-starts the model before applying RL by synthesizing 100K high-quality long CoT
 513 instructions. **LLaVA-CoT** (Xu et al., 2024) integrates multiple mainstream visual question answer-
 514 ing datasets and uses advanced large models to synthesize 99K valid image-question-answer pairs.
 515 **R1-Onevision** (Yang et al., 2025) adopts a two-stage training strategy of SFT + RL by synthesizing
 516 a 155K instruction set.

517

6 CONCLUSIONS

519 In this study, we introduced the Self-Distilled Preference-based Cold-Start framework, a novel three-
 520 stage methodology. By leveraging a self-distillation process to generate preference data, we decou-
 521 ple the learning of shallow objectives, such as output format, from the deep, logical reasoning skills
 522 targeted during the final RL phase. Our method utilizes DPO to pre-align the model, providing
 523 a superior initial policy for RL. The creative insight of decoupling learning objectives solves the
 524 practical problem of SFT-induced overfitting, which often constrains exploration and leads to sub-
 525 optimal performance. Our results demonstrate the practical value of this approach. The introduction
 526 of the Generalization Factor also provides a valuable new metric for quantifying model generaliza-
 527 tion. This work shows considerable application prospects for developing more robust and capable
 528 multimodal reasoning systems.

529 Despite these promising results, this study has certain limitations that suggest avenues for future
 530 research. Our experiments were focused on the multimodal domain; further studies should be con-
 531 ducted to validate the efficacy of the SPECS framework in text-only reasoning tasks. The gener-
 532 alization of our findings could also be strengthened through more extensive testing across a more
 533 diverse set of out-of-distribution benchmarks. Such investigations would continue to refine our un-
 534 derstanding of how to most effectively structure learning pipelines for complex AI systems.

540 ETHICS STATEMENT

541

542 All of the paper’s authors have read and adhered to the ICLR Code of Ethics. This work focuses on
 543 advancing the reasoning capabilities of multimodal large language models through a novel training
 544 methodology. The core contributions are algorithmic, aimed at improving the efficiency, stability,
 545 and performance ceiling of reinforcement learning pipelines for such models.

546 **Data and Models:** The datasets used for training and evaluation, including Orsta47K, virl39K,
 547 MEGA-Bench, MMMU, MathVista, MATH-Vision, and MathVerse, are publicly available datasets
 548 and benchmarks established within the academic community. Our use of these standard datasets is
 549 intended to ensure transparency, facilitate reproducibility, and allow for direct comparison with prior
 550 work. We do not use any private or sensitive user data. The base model used, Qwen2.5-VL-7B, is
 551 an open-source model, promoting accessibility and further research.

552 **External Evaluators:** For evaluating subjective short-answer questions where automated rule-based
 553 metrics are insufficient, we employed proprietary models (GPT-4o) as external judges. We acknowl-
 554 edge that these models may have their own inherent biases. This approach was chosen to provide a
 555 consistent and scalable evaluation standard for complex, open-ended responses, a common practice
 556 in current AI research. The specific prompts and evaluation criteria were designed to be as objective
 557 as possible to mitigate these potential biases.

558 **Potential Societal Impact:** The goal of this research is to enhance the general reasoning abilities of
 559 AI systems. While this can lead to positive applications in fields like education, scientific research,
 560 and accessibility tools, we recognize that, like any powerful technology, it could potentially be
 561 misused. Our work does not introduce any new applications but rather improves the underlying
 562 training methodology. We encourage the responsible development and deployment of AI systems
 563 built upon these foundational research advancements.

564 **Bias and Fairness:** Our proposed framework, SPECS, is not designed for a specific downstream
 565 application and was evaluated on broad-domain academic benchmarks. We have not conducted an
 566 in-depth analysis of social or demographic biases, as the datasets primarily consist of math, science,
 567 and general knowledge problems. We acknowledge that the underlying base model and training data
 568 may contain biases, and future work should investigate how different training strategies impact the
 569 propagation or mitigation of such biases.

570

571 REPRODUCIBILITY STATEMENT

572

573 To ensure the reproducibility of our work, we provide a detailed account of our methodology and ex-
 574 perimental setup. The core SPECS framework, including its three stages of self-distillation for data
 575 generation, DPO-based pre-alignment, and final GRPO fine-tuning, is described in Section 3. Our
 576 complete experimental settings, including the datasets, benchmarks, and baselines used for evalua-
 577 tion, are detailed in Section 4.1. This section also specifies crucial implementation details, such
 578 as learning rates and batch sizes for all training stages. We utilized publicly available frameworks,
 579 MM-EUREKA and LlamaFactory, for our implementation. Furthermore, the appendix offers ad-
 580 ditional resources to aid in reproduction, including the exact system prompts used for training and
 581 inference (Appendix B) and a detailed analysis of the hybrid loss coefficient (Appendix C).

582

583 REFERENCES

584

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

585

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

586

Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
 Xie. Sft or rl? an early investigation into training rl-like reasoning large vision-language models.
arXiv preprint arXiv:2504.11468, 2025a.

594 Jiacheng Chen, Tianhao Liang, Sherman Siu, Zhengqing Wang, Kai Wang, Yubo Wang, Yuansheng
 595 Ni, Wang Zhu, Ziyan Jiang, Bohan Lyu, Dongfu Jiang, Xuan He, Yuan Liu, Hexiang Hu, Xiang
 596 Yue, and Wenhui Chen. Mega-bench: Scaling multimodal evaluation to over 500 real-world tasks.
 597 In *International Conference on Learning Representations (ICLR)*, 2025b.

598

599 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 600 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 601 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer
 602 Vision and Pattern Recognition*, pp. 24185–24198, 2024.

603 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 604 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 605 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

606

607 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 608 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 609 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 610 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

611 Jia Deng, Jie Chen, Zhipeng Chen, Daixuan Cheng, Fei Bai, Beichen Zhang, Yinqian Min,
 612 Yanzipeng Gao, Wayne Xin Zhao, and Ji-Rong Wen. From trial-and-error to improvement: A
 613 systematic analysis of llm exploration mechanisms in rlvr. *arXiv preprint arXiv:2508.07534*,
 614 2025a.

615

616 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
 617 An early exploration to complex vision-language reasoning via iterative self-improvement. *arXiv
 618 preprint arXiv:2503.17352*, 2025b.

619 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 620 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 621 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

622

623 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 624 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
 625 *arXiv preprint arXiv:2503.06749*, 2025.

626

627 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 628 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
 629 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

630

631 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
 632 Zhusuo Li, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan. Deepseek-
 633 vl: Towards real-world vision-language understanding, 2024a.

634

635 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 636 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
 637 foundation models in visual contexts. In *International Conference on Learning Representations
 638 (ICLR)*, 2024b.

639

640 Yan Ma, Linge Du, Xuyang Shen, Shaoxiang Chen, Pengfei Li, Qibing Ren, Lizhuang Ma, Yuchao
 641 Dai, Pengfei Liu, and Junjie Yan. One rl to see them all: Visual triple unified reinforcement
 642 learning. *arXiv preprint arXiv:2505.18129*, 2025.

643

644 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
 645 Han, Botian Shi, Wenhui Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng
 646 Zhang, and Wenqi Shao. Mm-eureka: Exploring the frontiers of multimodal reasoning with rule-
 647 based reinforcement learning. *arXiv preprint arXiv:2503.07365*, 2025.

648

649 Yingzhe Peng, Gongrui Zhang, Miaozen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
 650 Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning
 651 abilities through two-stage rule-based rl. *arXiv preprint arXiv:2503.07536*, 2025.

648 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 649 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 650 *in neural information processing systems*, 36:53728–53741, 2023.

651 Jun Rao, Zepeng Lin, Xuebo Liu, Xiaopeng Ke, Lian Lian, Dong Jin, Shengjun Cheng, Jun Yu,
 652 and Min Zhang. Apt: Improving specialist llm performance with weakness case acquisition and
 653 iterative preference training. *arXiv preprint arXiv:2506.03483*, 2025.

654 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 655 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 656 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

657 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 658 Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. Vlm-r1: A stable and
 659 generalizable r1-style large vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

660 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
 661 Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang,
 662 Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding,
 663 Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng
 664 Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie,
 665 Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Meng-
 666 fan Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu,
 667 Sihan Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin
 668 Xu, Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinxing Zu, Xinyu Zhou, Xinyuan Wang,
 669 Y. Charles, Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yeqie Wang, Yibo Liu, Yibo Miao,
 670 Yidao Qin, Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yulun Du,
 671 Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng Zhang, Zhilin
 672 Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, and Ziwei Chen. Kimi-VL technical report, 2025.
 673 URL <https://arxiv.org/abs/2504.07491>.

674 Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhui Chen. VI-
 675 rethinker: Incentivizing self-reflection of vision-language models with reinforcement learning.
 676 *arXiv preprint arXiv:2504.08837*, 2025a.

677 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
 678 Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In *The*
 679 *Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks*
 680 *Track*, 2024a. URL <https://openreview.net/forum?id=QWTCCxMpPA>.

681 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 682 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 683 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
 684 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

685 Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
 686 Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
 687 visual reasoning self-improvement. *arXiv preprint arXiv:2504.07934*, 2025b.

688 Lai Wei, Yuting Li, Kaipeng Zheng, Chen Wang, Yue Wang, Linghe Kong, Lichao Sun, and Weiran
 689 Huang. Advancing multimodal reasoning via reinforcement learning with cold start. *arXiv*
 690 *preprint arXiv:2505.22334*, 2025.

691 Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
 692 Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
 693 perspective with reward rectification. *arXiv preprint arXiv:2508.05629*, 2025.

694 Guowei Xu, Peng Jin, Ziang Wu, Hao Li, Yibing Song, Lichao Sun, and Li Yuan. Llava-cot: Let
 695 vision language models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024.

696 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 697 Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal rea-
 698 soning through cross-modal formalization. *arXiv preprint arXiv:2503.10615*, 2025.

702 Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie Wang,
 703 Yuxin Song, Haocheng Feng, Li Shen, et al. Mulberry: Empowering mllm with o1-like reasoning
 704 and reflection via collective monte carlo tree search. *arXiv preprint arXiv:2412.18319*, 2024.

705

706 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 707 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 708 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

709

710 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 711 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 712 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF
 Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

713

714 Chen Zhang, Dawei Song, Zheyu Ye, and Yan Gao. Towards the law of capacity gap in distilling
 715 language models. *arXiv preprint arXiv:2311.07052*, 2023.

716

717 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
 718 Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
 719 relative policy optimization. *arXiv preprint arXiv:2503.12937*, 2025a.

720

721 Letian Zhang, Quan Cui, Bingchen Zhao, and Cheng Yang. Oasis: One image is all you need for
 722 multimodal instruction data synthesis. *arXiv preprint arXiv:2503.08741*, 2025b.

723

724 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
 725 Pan Lu, Kai-Wei Chang, Peng Gao, et al. Mathverse: Does your multi-modal llm truly see the
 726 diagrams in visual math problems? *arXiv preprint arXiv:2403.14624*, 2024.

727

728 Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and
 729 Xing Yu. Deepeyes: Incentivizing” thinking with images” via reinforcement learning. *arXiv
 730 preprint arXiv:2505.14362*, 2025.

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A THE USE OF LARGE LANGUAGE MODELS
757758 In preparing this manuscript, we utilized the Large Language Model (LLM) Gemini-2.5-pro (Co-
759 manici et al., 2025) to polishing the text. Its application was strictly limited to correcting spelling
760 and grammatical errors. The authors manually reviewed and verified all AI-assisted modifications
761 to ensure factual accuracy. The core ideas, methodologies, and figures presented are entirely the
762 original work of the human authors.
763764 B PROMPTS
765766 The following are the System Prompts for the model during the cold start training phase and the
767 RL training phase. In the instruction format generalization experiment in Section 2, the Inference
768 System Prompt for the ID Task is consistent with these.
769770 **System Prompt for Cold Start Training and ID Task Inference**771 Solve the question. The user asks a question, and you solve it. You
772 first think about the reasoning process in the mind and then provide
773 the user with the answer. The answer is in latex format and wrapped
774 in \$...\$. The final answer must be wrapped using the \boxed{}
775 command. The reasoning process and answer are enclosed within **<think>**
776 **</think>** and **<answer>** **</answer>** tags, respectively, i.e., **<think>**
777 Since \$1+1=2\$, so the answer is \$2\$. **<think>** **<answer>** The answer is
778 \$\\boxed{2}\$ **</answer>**, which means assistant's output should start
779 with **<think>** and end with **</answer>**.
780781
782 The following is the Inference System Prompt for the OOD Task in the instruction format general-
783 ization experiment of Section 2.
784785 **System Prompt for OOD Task Inference**786 Solve the question. The user asks a question, and you solve it. You
787 first think about the reasoning process in the mind and then provide
788 the user with the answer. The answer is in latex format and wrapped
789 in \$...\$. The final answer must be wrapped using the \boxed{}
790 command. The reasoning process and answer are enclosed within **<cot>**
791 **</cot>** and **<response>** **</response>** tags, respectively, i.e., **<cot>**
792 Since \$1+1=2\$, so the answer is \$2\$. **<cot>** **<response>** The answer is
793 \$\\boxed{2}\$ **</response>**, which means assistant's output should
794 start with **<cot>** and end with **</response>**.
795796
797 The following Prompt is used for filtering chosen responses, see Section 3.2.
798799 **System Prompt for Chosen Response Filtration**800 You are an expert evaluator. Please analyze the following
801 problem-solving response and evaluate whether the final answer is
802 consistent with the reasoning steps.
803 Question: {question}
804 Response to analyze: {chosen_answer}
805 Please output only digit 1 if the answer is consistent with the
806 reasoning, or digit 0 if the reasoning has obviously theoretical
807 errors OR the answer is inconsistent with the reasoning.
808

810 C ANALYSIS OF LOSS BALANCE COEFFICIENTS IN COLD-START TRAINING
811812 C.1 PRELIMINARIES
813814 **Supervised Fine-Tuning.** SFT adapts pre-trained models by optimizing a cross-entropy loss function to maximize the log-likelihood of a desired output y_c for a given prompt x . The loss is defined as:
815

816
$$\mathcal{L}_{SFT}(\pi_\theta) = \mathbb{E}_{(x, y_c) \sim D} [-\log \pi_\theta(y_c|x)]$$

817

818 By training exclusively on positive examples, SFT creates a sharply peaked probability distribution that closely mimics the training data. While this accelerates model convergence, it can limit
819 generalization capabilities.
820821 **Direct Preference Optimization.** DPO(Rafailov et al., 2023) refines models by learning directly
822 from preference data, consisting of a prompt x , a chosen response y_c , and a rejected response y_r .
823 The DPO loss function is designed to increase the relative probability of the chosen response over
824 the rejected one:
825

826
$$\mathcal{L}_{DPO}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_c, y_r) \sim D} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_c|x)}{\pi_{\text{ref}}(y_c|x)} - \beta \log \frac{\pi_\theta(y_r|x)}{\pi_{\text{ref}}(y_r|x)} \right) \right]$$

827

828 where π_θ is the policy being optimized, π_{ref} is a reference policy, σ is the logistic function and
829 β is a temperature parameter. This approach maximizes the margin between chosen and rejected
830 responses, cultivating a smoother and more robust probability distribution that enhances the model's
831 generalization performance.
832833 C.2 ANALYSIS OF LOSS BALANCE COEFFICIENTS
834835 In Section 3.3, we proposed that in our cold start, in addition to the basic DPO loss, we also added
836 the SFT loss to ensure that the model does not deviate too much from the chosen samples during the
837 training process. The combined loss function is thus:
838

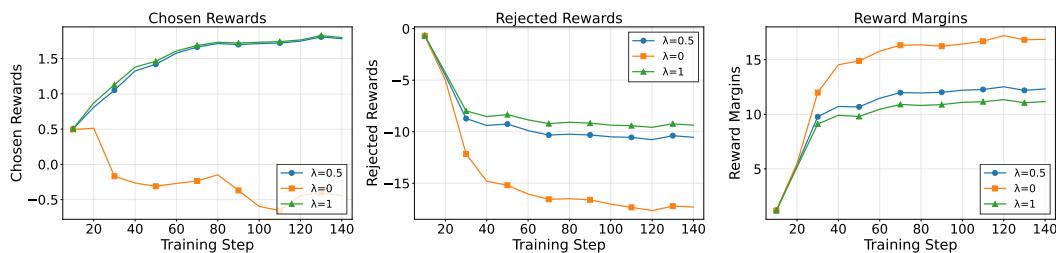
839
$$\mathcal{L}_{\text{hybrid}} = \mathcal{L}_{DPO} + \lambda \mathcal{L}_{SFT}$$

840

841 Among the $\mathcal{L}_{\text{hybrid}}$, the DPO loss function is designed to increase the relative probability of the
842 chosen response over the rejected one:
843

844
$$\mathcal{L}_{\text{hybrid}} = -\mathbb{E}_{(x, y_c, y_r) \sim D} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_c|x)}{\pi_{\text{ref}}(y_c|x)} - \beta \log \frac{\pi_\theta(y_r|x)}{\pi_{\text{ref}}(y_r|x)} \right) \right] + \lambda \mathbb{E}_{(x, y_c) \sim D} [-\log \pi_\theta(y_c|x)]$$

845

846 We recorded the model's rewards for chosen, rewards for rejected, and margins during cold start
847 training when $\lambda = 0$, $\lambda = 0.5$, and $\lambda = 1$, as shown in Figure 6 below.
848849 From the picture, we can see a lot. Since the training loss of DPO can expand the margin between the
850 chosen and the rejected, when $\lambda = 0$, this margin is the largest. However, this margin causes both
851 the chosen and rejected rewards to decrease (the rejected rewards decrease faster than the chosen
852 rewards). When $\lambda = 0.5$ and $\lambda = 1$, it ensures that the chosen rewards increase during the DPO
853 training process.
854863 Figure 6: Effect of λ on Chosen and Rejected Rewards and Reward Margins During Training

864
865
866
867
868
869
870
871

Table 6: Average RBF by Sample Size

Model	Sample Size	120	240	480
base		1.7686	1.9166	1.9206
sft		1.8086	1.8961	1.9336
ours		1.8216	1.9268	1.9596

D PERFORMANCE POTENTIAL OF DPO-BASED COLD-START VS. SFT

To evaluate the effectiveness of our proposed cold-start strategy, we first compare our DPO-based approach against a conventional SFT baseline. For this comparison, the SFT model was fine-tuned exclusively on the “chosen” responses from our preference dataset, while our model was trained using the full preference pairs with the DPO algorithm.

Performance Potential via Pass@K. We assessed the performance of both the DPO and SFT cold-start models on the MMMU benchmark. As delineated in Figure 7, the DPO-based model demonstrates superior performance across evaluated metrics, including Pass@8, and Pass@32. This indicates that the DPO cold-start method endows the model with greater initial capabilities and higher potential for future alignment tasks compared to the standard SFT approach.

Exploration Capability via Rollout Branching Factor (RBF). Beyond task performance, we investigated the intrinsic exploratory capacity of models, a critical factor for successful RL. We measure this using the RBF (Deng et al., 2025a), which quantifies the diversity of a model’s generation by counting the number of candidate tokens within the probability mass of top p (0.95) during decoding. A higher RBF signifies greater generation diversity and, consequently, a stronger capacity for exploration. As shown in Table 6, our DPO-based cold-start method yields a substantially higher RBF than the SFT baseline. This finding suggests that our approach cultivates a broader exploration space, which is highly beneficial for the subsequent RL phase, enabling the model to discover more diverse and potentially higher-quality solutions. This outcome highlights a key advantage of our method in preparing models for alignment.

E ANALYSIS OF CHOSEN RESPONSE FILTRATION

We believe it is crucial to ensure the quality and accuracy of chosen response in cold start parse. However, we found that there are a small number of cases (generated by GRPO-zero) in chosen response where the answers are not consistent with the reasoning, which could affect training, such as the following case:

Case Example

<think>To determine the total number of dogs in the picture, we need to count each dog individually. From the image, we can see that there are **4** dogs. </think>
<answer>The answer is **3** </answer>

The reasons for this situation still need to be explored, and we think it may be related to reward hacking in GRPO training (because the answer to this training data was incorrectly labeled as 3, while the correct answer should be 4 as in the reasoning process). To prevent these data from affecting the cold start training, we use another LLM to verify the data. This evaluation process is simple and objective, with no significant errors, and will not introduce bias into data filtering. The

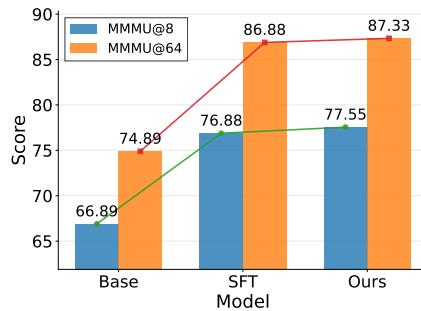


Figure 7: MMMU Pass@K Performance

918 table 7 below shows the differences in the final model performance between the data filtered by the
 919 advanced LLM and the randomly filtered data.
 920

921
 922 Table 7: Performance Comparison of Self-Distillation with and without Verification on Various
 923 Benchmarks

Model	Megabench	MMMU	MathVista	MathVision	MathVerse	AVG
Qwen2.5-7B-Instruct	35.07	54.20	63.70	25.40	38.20	43.31
w.o verification	38.72	55.11	73.50	26.90	46.44	48.13
w verification	39.17	56.78	75.90	29.50	48.73	50.02

924
 925 It can be seen from the experimental results that the model after data filtering performs better than
 926 the final model obtained by randomly selecting data. On the other hand, regarding the selection of
 927 large models for screening, in addition to using some advanced large models, due to the simplicity
 928 of the task instructions, some open-source large models can also be used as alternatives.
 929

930 F EXPERIMENTS IMPLEMENTATION DETAILS

931 All experiments were conducted on a cluster of 32 NVIDIA H800 (80G) GPUs. We utilize the
 932 open-source Multimodal Large Language Model, Qwen2.5-VL-7B (Bai et al., 2025), as our base
 933 model.

934 For the GRPO training in Stage 1 and Stage 3, we employ the MM-EUREKA⁶ framework. The
 935 rollout and training batch sizes are both set to 128, with 8 rollouts generated per sample. The
 936 learning rate is configured to 1×10^{-6} . Following the DAPO (Yu et al., 2025) methodology, we
 937 set the clipping thresholds to 0.2 (lower) and 0.28 (upper), and we do not apply a KL penalty. The
 938 maximum output length is restricted to 10,240 tokens. This training phase spanned 400 steps and
 939 was completed in approximately 12 hours.

940 For the DPO training in Stage 2, as well as for the comparative SFT experiments, we leverage the
 941 LlamaFactory⁷ framework using a total dataset size of 9,155 samples. In this configuration, the
 942 training batch size is set to 64, the learning rate is maintained at 1×10^{-6} , and the hyperparameter
 943 λ for the hybrid loss function is set to 1. The maximum output length is extended to 16,384 tokens.
 944 These models were trained for 140 steps, with the training process completing in under 30 minutes.
 945 The prompt used during training is shown in Appendix B.

946 We have counted the computing time for DPO and SFT training using 8 GPUs under the same
 947 training parameters (including steps, batch size, data length, max new tokens, etc.), as shown in the
 948 following table 8.

949
 950 Table 8: Comparison of training performance between SFT and DPO.

Training Method	Train Samples/s	Train Steps/s	Total FLOPs	Run Time/s
SFT	1.035	0.129	2.82×10^{17}	8848
DPO	0.979	0.123	6.22×10^{17}	9346
Δ	-0.056	-0.006	$+3.4 \times 10^{17}$	+498

951 As can be seen from the table, in actual computation, the computational cost between SFT and DPO
 952 is not significantly different. For the computation of 9,000 pieces of data, the total computation time
 953 only increased by approximately 8.3 minutes.

954
 955⁶<https://github.com/ModalMinds/MM-EUREKA>

956⁷<https://github.com/hiouga/LLaMA-Factory>

972 G QUALITATIVE EXAMPLES
973974
975 QA Case Analysis: Case #001
976

977 **Question:** Hint: Please answer the question requiring an integer answer
978 and provide the final value, e.g., 1, 2, 3, at the end. Question: Subtract all
979 yellow matte blocks. Subtract all tiny brown cylinders. How many objects
980 are left?
981

982 **Ground Truth:** 5
983

984 **Qwen2.5-VL-7B response:** 6
985

986 Ours-7B response
987

988 <think>To solve the problem, first identify all objects in the image:
989

1. Yellow matte cylinder
2. Green metallic cylinder (left)
3. Green metallic cylinder (front)
4. Silver metallic cylinder
5. Tiny brown cylinder
6. Yellow matte block
7. Red matte sphere

990 Next, follow the instructions:
991

1. Subtract all yellow matte blocks: Removing the yellow matte block leaves 6 objects.
2. Subtract all tiny brown cylinders: Removing the tiny brown cylinder leaves 5 objects.

992 Thus, the remaining objects are 5.
993

994 </think>
995

996 <answer>The answer is 5</answer>
997

998 Qwen2.5-VL-7B response
999

1000 To solve this, we first identify all objects in the image: there are 8 objects in total. The
1001 yellow matte block is one object, and the tiny brown cylinder is another. Subtracting
1002 these two objects leaves us with $8 - 1 - 1 = 6$ objects.
1003 So, the number of objects left is 6.
1004

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

QA Case Analysis: Case #002

Web pages visited	
Person	Number of Web pages
Bonnie	84
Winston	56
Percy	70
Derek	68
Jake	60
Finn	47
Carter	75
Kurt	52

Question: Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1, 2, 3, at the end. Question: Several people compared how many Web pages they had visited. What is the mean of the numbers?

Ground Truth: 64

Qwen2.5-VL-7B response: 67.75

1036
1037
1038
1039
1040
1041
1042
1043

Ours-7B response

<think>To find the mean of the numbers, first sum all the numbers and then divide by the count of numbers.

The numbers are: 84, 56, 70, 68, 60, 47, 75, 52.

Sum of the numbers:

$$84 + 56 + 70 + 68 + 60 + 47 + 75 + 52$$

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

Calculating step by step:

$$\begin{aligned} 84 + 56 &= 140 \\ 140 + 70 &= 210 \\ 210 + 68 &= 278 \\ 278 + 60 &= 338 \\ 338 + 47 &= 385 \\ 385 + 75 &= 460 \\ 460 + 52 &= 512 \end{aligned}$$

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

The sum of the numbers is 512.

Next, count the number of values: There are 8 values.

The mean is the sum divided by the count:

$$\text{Mean} = \frac{512}{8} = 64$$

So, the mean of the numbers is 64.

</think>

<answer>The answer is 64</answer>

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Qwen2.5-VL-7B response

To find the mean of the numbers, we need to follow these steps:

1. Add up all the numbers in the list.
2. Count how many numbers there are.
3. Divide the sum by the count.

Let's start with step 1: Add up all the numbers.

The numbers are: 84, 56, 70, 68, 60, 47, 75, 52.

Sum = 84 + 56 + 70 + 68 + 60 + 47 + 75 + 52

Sum = 542

...

Mean = 542 / 8

Mean = 67.75

So, the mean of the numbers is 67.75.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

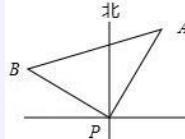
1131

1132

1133

QA Case Analysis: Case #003

Question: Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end. Question: At a certain moment, there is a passenger ship at sea point P, and lighthouse A is measured in the direction 30.0 north by east of P, and is 50.0 nautical miles away. The passenger ship sails at the speed of 60.0 nautical mile/hour in the direction of 60.0 from north by west for $\frac{2}{3}$ hours to reach point B, then $\tan \angle BAP =$ Choices:



(A) $\frac{4}{5}$ (B) $\frac{6}{5}$ (C) $\frac{\sqrt{5}}{5}$ (D) $\frac{2\sqrt{5}}{5}$

Ground Truth: (A) $\frac{4}{5}$

Qwen2.5-VL-7B response: (B) $\frac{6}{5}$

Ours-7B response

<think>First, we need to determine the coordinates or distances relevant to the problem. The initial position of the passenger ship is at point P, and it is 50 nautical miles away from lighthouse A in the direction 30.0 degrees north by east. The passenger ship then sails in the direction 60.0 degrees from north by west for $\frac{2}{3}$ hours at a speed of 60 nautical miles per hour, reaching point B.

The distance PB can be calculated as follows:

$$PB = 60 \times \frac{2}{3} = 40 \text{ nautical miles}$$

The direction 60.0 degrees from north by west means that the angle $\angle BPA = 30.0^\circ + 60.0^\circ = 90.0^\circ$. Therefore, $\triangle ABP$ is a right triangle with $\angle BAP = 30.0^\circ$. In a right triangle, the tangent of an angle is the ratio of the opposite side to the adjacent side. Here, $\tan \angle BAP = \frac{BP}{AP}$.

Since $AP = 50$ nautical miles and $PB = 40$ nautical miles, we can use the Pythagorean theorem to verify:

$$AB = \sqrt{AP^2 + BP^2} = \sqrt{50^2 + 40^2} = \sqrt{2500 + 1600} = \sqrt{4100} = 10\sqrt{41}$$

However, we only need the ratio $\frac{BP}{AP}$:

$$\tan \angle BAP = \frac{BP}{AP} = \frac{40}{50} = \frac{4}{5}$$

Thus, the answer is A.</think>

<answer>The answer is A</answer>

Qwen2.5-VL-7B response

To solve this problem, we need to determine the coordinates of points A and B relative to point P, and then find the tangent of the angle $\angle BAP$.

1. Determine the coordinates of point A relative to point P:

...

2. Determine the coordinates of point B relative to point P:

...

3. Calculate the tangent of $\angle BAP$:

... - Simplifying the expression, we get $\frac{625\sqrt{3}-500-1250\sqrt{3}-1500}{625\sqrt{3}+1500-625\sqrt{3}+500} = \frac{-925\sqrt{3}-1000}{2000} = \frac{-925\sqrt{3}-1000}{2000} = \frac{-925\sqrt{3}-1000}{2000} = \frac{6}{5}$.

Therefore, the correct answer is B.