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ABSTRACT

Reinforcement learning (RL) with verifiable rewards has recently catalyzed a
wave of “MLLM-r1” approaches that bring RL to vision language models. Most
representative paradigms begin with a cold start, typically employing supervised
fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold
start adopts the reasoning paradigm intertwined with task solution and output for-
mat, which may induce instruction-style overfitting, weakens out-of-distribution
generalization, and ultimately affects downstream RL. We revisit the cold start
along two views, its training method and data construction, and introduce the
Generalization Factor (GF) coefficient to quantify the generalization capability
under different methods. Our empirical study finds that preference–based train-
ing methods (e.g. DPO) generalizes better than SFT-based methods in cold start.
Motivated by this, we propose SPECS—a Self-distilled, Preference-based Cold
Start framework that decouples multimodal learning: (1) generates introspective
preference data pairs via self-distillation, avoiding reliance on larger teachers or
manual annotation; (2) performs preference–based training to learn, focusing on
shallow, transferable surface-form criteria (format, structure, style) rather than
memorizing content; and (3) hands off to RL with verifiable rewards for deep
reasoning results. Experimental results across multiple multimodal benchmarks
show that our decoupling learning framework yields consistent performance gains
over strong baselines, improving MEGA-BENCH by 4.1% and MATHVISTA by
12.2%. Additional experiments indicate that SPECS contributes to reducing in-
distribution “stuckness,” improving exploration, stabilizing training, and raising
the performance ceiling.

1 INTRODUCTION

Recently, inspired by the success of DeepSeek-R1 (Guo et al., 2025), in effectively enhancing the
reasoning capabilities of large models through reinforcement learning (RL) with verifiable reward
(Lambert et al., 2024; Guo et al., 2025), a growing body of work has begun to apply RL directly to
vision language models (VLMs). This has led to a wave of exciting “MLLM-r1” research (Meng
et al., 2025; Shen et al., 2025; Peng et al., 2025; Zhou et al., 2025; Zhang et al., 2025a; Wang
et al., 2025b;a; Zheng et al., 2025; Ma et al., 2025), which leverage similar principles to advance
multimodal reasoning.

Previous research has indicated that prior to RL, employing a pre-training or warm-up phase (which
is termed “cold start”), can significantly improve the readability, stability, and even the final per-
formance of RL training (Guo et al., 2025). Currently, the most commonly used cold start strategy
is supervised fine-tuning (SFT) , where the model is first fine-tuned on a set of high-quality Chain-
of-Thought reasoning data to provide a better initial policy for the subsequent RL phase (Wei et al.,
2025; Yang et al., 2025; Huang et al., 2025; Deng et al., 2025b). This strategy enables the model
to be trained on complex reasoning data during the cold start phase, thereby acquiring reasoning
ability.

The common understanding behind SFT-based cold start is that reasoning abilities, reasoning for-
mat and other learning objectives can be jointly learned during the cold start phase. However, such
an SFT-based joint learning paradigm may largely affect the model’s generalization capability (Wu
et al., 2025; Chu et al., 2025), and consequently degrade subsequent RL (Chen et al., 2025a). This
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raises an important research issue of quantifying and improving the model’s generalization capabil-
ity during cold start and working in concert with subsequent RL.

To address the above limitations, we consider an alternative learning paradigm, which separates the
learning process into hierarchical stages based on the idea that cold start phase focused more on
shallow, surface-form learning to avoid prematurely getting stuck in in-distribution problem solv-
ing, while subsequent RL focuses on the deep-level learning of a solution to boost the overall perfor-
mance (Bengio et al., 2009). Thus, the intuition of our adopting decoupling learning for multimodal
reasoning is that the selection of pre-training methods in cold start needs to better support the subse-
quent RL, both in terms of generalization and by having separate objectives to facilitate better final
results.

Another important issue is the generation of cold start data. Previously, the prohibitive cost of human
annotation has motivated a growing body of research to explore the use of synthetic data. This often
involves using a more capable large model as a “teacher” to distill data for a smaller “student” model.
(Zhang et al., 2025b; Yao et al., 2024; Xu et al., 2024; Huang et al., 2025). However, when the
capability gap between the teacher model and the student model is too large, it can lead to a decline
in model performance (Zhang et al., 2023). Alternatively, the DeepSeek-R1-Zero paradigm (Guo
et al., 2025) first directly applies RL to the base model for obtaining R1-Zero and then generates cold
start data by zero model itself. This paradigm has achieved very remarkable performance; yet it still
has the limitation of reliance on the SFT cold start and the constraints between SFT and subsequent
RL, thereby leaving room for further improvement.

In this paper, to examine the suitable cold start training method, we propose the Generalization Fac-
tor (GF) coefficient in Section 2 to quantify the generalization capability of the model and conduct
an empirical study to evaluate different training methods. We identify that Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) based on preference data is a cold start approach that enables
the model to have better performance. On this basis, we present the Self-distilled Preference-based
Cold-Start (SPECS) framework in Section 3. By decoupling the learning objectives during DPO to
focus on output format, we create a pre-aligned model that serves as a superior starting point for the
final RL fine-tuning. Our experiments show that this method leads to more stable, efficient training,
and a higher performance ceiling compared to the advanced and strong baseline.

The main contributions of this paper can be summarized as follows.

1. We present the SPECS framework, a three-stage cold start strategy. It generates preference
data through self-distillation, uses DPO for cold start training, and separates training objectives
so that the model first aligns with output formats, providing a stronger starting point for RL.

2. We propose Generalization Factor as a metric to evaluate a model’s generalization capability
under different cold start training methods by comparing its performance on in-distribution
and out-of-distribution tasks.

3. We reveal the importance of Decoupling Learning between the cold-start and RL phases.
This separation improves exploration and reduces the risk of the model getting stuck on in-
distribution solutions.

4. Our experimental results prove that a preference-based DPO cold start gives the model stronger
generalization ability. In terms of the model’s final results, it achieves consistent performance
gains across benchmarks, improving MEGA-Bench by 4.1% and MathVista by 12.2% over
strong baselines, demonstrating the effectiveness of the SPECS.

2 EMPIRICAL INVESTIGATION

2.1 EVALUATING DEGREE OF GENERALIZATION

To evaluate the impact of preference-based versus supervised data on a model’s generalization ca-
pabilities under a fixed sample size, we introduce the metric of Generalization Factor (GF).

Setup. We define an evaluation function ψ(fn, P ) ∈ R that measures the performance of a model
f on a data distribution P and n refers to the size of the training data samples. A higher value of ψ
indicates better performance.
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Generalization Factor. To accurately evaluate the generalization ability of a model, we first need
to test the model’s performance on in-distribution (ID) and out-of-distribution (OOD) tasks. Among
them, ID tasks require the same as the task requirements during training, while OOD tasks require
different from the task requirements during training.

• ID Performance: ΨID(n), is evaluated on a hold-out set from the same distribution Ptrain.

ΨID(n) = ψ(fn, Ptrain)

• OOD Performance: ΨOOD(n), is the weighted average performance across a set of m distinct
OOD distributions, Q = {Q1, . . . , Qm}, with weights defined by a distribution α.

ΨOOD(n) = EQ∼α[ψ(fn, Q)]

We establish a baseline model, f0, which serves as a reference point. The performance gains over
this baseline are calculated as:

GID(n) = ΨID(n)−ΨID(0)

GOOD(n) = ΨOOD(n)−ΨOOD(0)

We define GF, Γ(n) as the Fβ-score of the model with respect to OOD performance gains and ID
performance gains. The reason for adopting this metric is that the Fβ-score is particularly suitable
for average ratios. Its most prominent feature is that the result tends to lean toward the smaller
number. This perfectly aligns with our needs: as long as either the ID or OOD performance is very
poor, the final score will be very low. We can also control the size of β to reflect the degree of
importance we attach to OOD performance gains during the training process.

Γ(n) = (1 + β2)
GID(n)GOOD(n)

β2 ·GID(n) +GOOD(n)

where the weighting coefficient β is generally set to 2 to reflect the importance of the OOD perfor-
mance gain in the generalization capabilities of the model. To ensure that the metric behaves well
and is dimensionless, the evaluation function ψ should be normalized to a consistent range.

2.2 EXPERIMENTAL FINDINGS
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Figure 1: Performance Comparison: DPO vs. SFT on In-Distribution and Out-of-Distribution Task

To preliminarily examine how preference data and supervised data affect model generalization, we
construct a preference dataset Dpref = {(xi, y+i , y

−
i )}Ni=1 , where y+i is the chosen response and

y−i is the rejected response, and a supervised dataset DSFT = {(xi, yi)}Ni=1 with yi = y+i around
reasoning tasks defined by a specific answer format. Under equal data budgets, we evaluate two
settings: (i) an in-distribution setting in which the required reasoning format matches that used in
training, and (ii) an out-of-distribution setting in which the required reasoning format differs 1. We
compare DPO training, SFT training, and DPO training augmented with SFT loss (see Section 3.3).
The resulting ΨID(n), ΨOOD(n), and the Γ(n) are reported in Figure 1.

From the experimental results, it can be observed that SFT achieves the fastest convergence on ID
tasks. However, due to its reliance on a single cross-entropy loss that maximizes the log-likelihood
of the correct answer, it demonstrates poor OOD performance. By contrast, DPO converges more

1For more detailed description, see Appendix B

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

slowly at the beginning of ID tasks but yields better OOD performance. Remarkably, the model
trained with a combination of DPO with SFT loss achieves the strongest generalization capability
overall. As the number of training steps increases, the GF gap between the SFT training method and
the DPO training method also increases.

3 METHODOLOGY: THE SPECS FRAMEWORK

3.1 SELF-DISTILLED PREFERENCE COLD-START

A model with superior generalization capabilities provides a more effective starting point for RL.
Inspired by the discussion in Section 2, we employ self-distillation to construct preference data
focusing format learning. This data is then used in place of standard SFT data to enhance the
model’s generalization performance during the cold-start phase.

To implement this, we propose SPECS, illustrated in Figure 2, a three-stage training optimization
strategy consisting of 1) Self-Distillation for Preference Data Generation, 2) DPO-based Pre-
Alignment for Cold-Start, and 3) Final GRPO Fine-tuning.

...... The response need to enclose within <think> </think> and <answer> </answer> tags......

Self-Distillation Preference-based Cold Start

Base Model

Ours-zero

Step1 Ours-zero RL Training and Preference Data Generation

Rejected Response Pollution.   &      Chosen Response Filtration.

Base Model

Ours-zero

rejected*

chosen*

Preference
Data

Base
Model

Warmup
Model

Ansewr filter

format pollution

Ansewr filter

format supplement

rejected

chosen

Step2 DPO-based Cold-Start

GRPO Step3 Final GRPO Fine-Tuning 

Final
Model

Warmup
Model

Format

RLVR

Solution

DPO

Figure 2: Method Overview. We propose the SPECS cold-start strategy, a three-stage pipeline to
enhance final RL fine-tuning. Firstly, where we generate a preference dataset focused on teaching
the correct output format by self distillation. Next, The base model is pre-aligned on this data using
DPO to create a format-aware “Warmup Model”. Finally, this pre-aligned model undergoes Final
RL tuning with GRPO, allowing the optimization process to focus on enhancing reasoning.

3.2 SELF-DISTILLATION FOR PREFERENCE DATA GENERATION

Objective: The foundational stage of our framework aims to achieve two interconnected goals:
first, to cultivate a preliminary “seed model” with enhanced reasoning capabilities, and second, to
leverage this model to autonomously generate a high-quality preference dataset through a process
we term self-distillation.

Methodology: A critical initial challenge is that a standard base VLM often lacks the capability
to generate outputs of sufficient reasoning ability. To address this, we first conduct a brief, initial
phase of RL fine-tuning on the base model using GRPO. This step aims not at achieving the final
performance, but at creating an initial policy, denoted πGRPO−zero, which is more adept at exploring
the solution space.

With the exploratory πGRPO−zero model, we proceed to generate the preference dataset. The data
construction process involves four key steps:

• Response Generation. We prompt two models, our exploratory πGRPO−zero and πbase, with
specific format instructions ( <think>...</think><answer>...</answer> ) to create a
dataset, which is designed to contain pairs of responses that are both correct in their final answer,
but differ in their reasoning paradigm and answer format.

• Chosen Response Filtration. For the chosen response (y+i ), we use Gemini-2.5 flash (Co-
manici et al., 2025) as an evaluator. Assesses whether the reasoning path in the πGRPO−zero

4
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       Given that ∠AED = ∠B and ∠DAE = ∠CAB, we can conclude that △ADE ∼ △ABC (AA similarity
criterion). Therefore, the ratios of corresponding sides are equal, which gives us:

\[ \frac{DE}{BC} = \frac{AE}{AB} \implies \frac{6}{BC} = \frac{5}{10} \implies \frac{6}{BC} =
\frac{1}{2} \implies BC = 12 \]

Thus, the length of BC is 12.
         The answer is $\boxed{12}$ 

</think>

<think>

</answer><answer>

As shown in the figure, it is known that ∠AED = ∠B, DE = 6; AB = 10, AE = 5,
the length of BC is ?

Since ∠AED = ∠B and ∠A = ∠A, we have △ADE ∼ △ACB. So, $\frac{AE}{AB} = \frac{DE}{BC}$.
Given AB = 10, AE = 5, and DE = 6, we can calculate $\frac{5}{10} = \frac{6}{BC}$. 
Therefore, $BC = \frac{12}{1} . Thus, the answer is 12.

Base Model

Ours-zero

Figure 3: Example of a self-distilled preference data pair.

response aligns correctly with its final answer. Only responses in which the reasoning and the
answer are consistent are retained, forming a high-quality pool of candidates. For more analysis
of this content, please refer to Appendix E.

• Rejected Response Pollution. For the rejected response (y−i ), we select responses that also
contain the correct answer, but deviate from the required format. Recognizing that some gen-
erated responses might incidentally have the correct format, We randomly apply one of the
following five types of format corruption to these responses to ensure a clear learning signal.

1. Remove all tags (<think>, </think>, <answer>, </answer>).
2. Remove the <answer> and </answer> tags.
3. Remove the <think> and </think> tags.
4. Remove the <answer> and </answer> tags and move the closing </think> tag to

the end of the response.
5. Replace the <answer> tags with the string Answer: and remove </answer> tags.

• Preference Pair Construction via Self-Distillation. We construct the chosen response and
the rejected response into pairs of self-distilled preference data (y+, y−). As shown in Figure
3. Both Chosen Responses (y+i ) and Rejected Responses (y−i ) are selected from the filtered
pool and contain the correct final answer. This data set is designed to facilitate decoupled
learning, separating the learning of reasoning paradigms and answer formats from the core
logical reasoning ability. This approach serves as a more effective cold-start method for the
final alignment stage.

3.3 DPO-BASED PRE-ALIGNMENT FOR COLD-START

Objective: The primary goal of this stage is to leverage the self-distilled preference dataset gener-
ated in the Stage 1 (Section 3.2) to pre-align the base VLM. This process yields a “cold-start” model
that serves as a significantly improved starting point for the final RL fine-tuning. We conceptualize
this phase as a “warm-up,” which shifts the model’s policy into a more advantageous region of the
policy landscape before the intensive final training.

Methodology: To achieve this pre-alignment, we employ DPO (Rafailov et al., 2023), a powerful
technique that directly optimizes the language model on preference data without the need for an
explicit reward model. The standard DPO loss function is defined as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
where πθ is the policy being optimized, πref is the reference policy (the initial base model), β is a
temperature parameter, and (x, yw, yl) represents a triplet of prompt, chosen response, and rejected
response from our self-distilled dataset D.

To augment this process, we incorporate an SFT loss computed on the “chosen” samples, which
serves as a form of regularization. It ensures that while the model learns the directional preference
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signal from DPO, it does not drift far from the core distribution of high-quality text embodied by the
chosen responses (Rao et al., 2025). The combined loss function is thus:

Lhybrid = LDPO + λLSFT

where LSFT is the conventional negative log-likelihood loss on the chosen responses, and λ is a
weighting coefficient to balance the two objectives. For a discussion for λ, see Appendix C.

3.4 FINAL GRPO FINE-TUNING

Objective: To achieve peak performance by fine-tuning the pre-aligned cold-start model, focusing
computational resources on enhancing complex reasoning capabilities.

Methodology: This final stage leverages the cold-start model obtained from Stage 2 as the initial-
ization point for RL, rather than starting from the base model or a conventional SFT model. The
pre-alignment from the DPO phase ensures that the model has already mastered the output format.
Consequently, the model is not required to expend resources on learning basic structural compli-
ance. Instead, credit assignment during RL training can be more accurately attributed to the core
challenge: improving the quality and precision of its reasoning process. This targeted optimization
explains the observed stable convergence in our experiments and the model’s ability to achieve a
higher performance ceiling.

For the final stage of fine-tuning, we employ the GRPO algorithm (Shao et al., 2024). This process is
guided by a composite reward function that combines format and accuracy components to evaluate
the model’s output, o, for a given question, q.

The total reward Rtotal, is the sum of a format reward Rformat, and an accuracy reward Racc:

Rtotal(o, q) = Rformat(o) +Racc(o, q)

The format reward Rformat(o), assigns a fixed value of 0.5 for structurally correct outputs, rein-
forcing the policy’s formatting discipline.

The accuracy reward Racc(o,q), provides a binary signal: 1.0 for a correct answer and 0 other-
wise. We use a hybrid mechanism to determine correctness based on the question type, T (q):

Racc(o, q) =

{
Rrule(o, q) if T (q) ∈ {Multiple-Choice, Numerical}
Rllm(o, q) if T (q) = Short-Answer

For objective types like multiple-choice and numerical questions, a rule-based function assesses
correctness. For subjective short-answer questions, we employ GPT-4o as an external judge.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Dataset and Benchmark: The data utilized for training πGRPO−zero model in Stage 1 and for
the final GRPO fine-tuning of the cold-started model in Stage 3 is composed of the Orsta47K (Ma
et al., 2025) and virl39K (Wang et al., 2025a) datasets. In Stage 2 of cold start training, we used 9K
self-distilled data. This composition is designed to enhance the model’s general and mathematical
reasoning capabilities. We conduct evaluations on multiple benchmark datasets, including MEGA-
Bench (Chen et al., 2025b), MMMU (Yue et al., 2024), MathVista (Lu et al., 2024b), MATH-Vision
(Wang et al., 2024a), and MathVerse (Zhang et al., 2024).

Baseline: Our comparative analysis is grounded on two primary categories of models. The first
category comprises open-source general VLMs, including QwenVL-2-7B (Wang et al., 2024b),
QwenVL-2.5-7B (Bai et al., 2025), InternVL2-8B (Chen et al., 2024), InternVL2.5-8B (Chen et al.,
2024), Kimi-VL-A3B (Team et al., 2025), and DeepSeek-VL-7B (Lu et al., 2024a). The second cat-
egory focuses on models specifically engineered for advanced reasoning tasks. This group includes
Kimi-VL-A3B-Thinking (Team et al., 2025), R1-Onevision (Yang et al., 2025), VLAA-Thinking
(Chen et al., 2025a), MM-Eureka-7B (Meng et al., 2025), VL-Rethinker-7B (Wang et al., 2025a),
and Orsta-7B (Ma et al., 2025).
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Table 1: Model performance comparison on MEGA-Bench Core.

Model MEGA-Bench MEGA-Bench

Knowledge Mathematics Perception Coding Info. Ex. Planning Science Metrics Core

Open-Source General Models
QwenVL-2-7B 39.96 25.95 39.99 31.49 40.29 16.64 28.59 43.61 34.47
QwenVL-2.5-7B 38.84 27.67 41.24 28.93 50.23 16.32 36.75 41.64 35.07
InternVL2-8B 33.94 22.08 32.15 24.7 29.13 12.17 24.61 39.96 25.96
InternVL2.5-8B 34.78 25.86 33.27 25.45 35.10 15.97 28.83 44.96 28.34
InternVL3-8B 42.76 34.85 42.76 34.05 44.84 17.10 35.21 49.60 36.02
Llava-OV-7B 31.37 22.11 27.64 13.9 17.07 9.16 24.38 37.31 21.36
Kimi-VL-A3B 37.63 27.07 39.50 22.30 40.99 22.17 33.94 46.65 34.40

Open-Source Reasoning Models
R1-Onevision† 29.47 20.94 28.65 23.38 43.04 12.67 26.84 42.19 27.18
VLAA-Thinking† 38.23 28.83 40.73 28.84 44.58 17.05 36.69 45.57 34.86
Kimi-VL-A3B-Thinking 33.45 17.76 28.11 14.69 41.14 12.64 28.60 43.97 27.08
MM-Eureka-7B 40.12 31.59 39.71 28.75 49.32 16.64 37.25 46.39 35.96
VL-Rethinker-7B 40.65 30.08 42.02 29.87 52.03 17.83 36.82 46.90 37.25
Orsta-7B 41.65 31.48 43.84 32.82 54.07 17.83 36.91 41.66 38.31

Ours-zero 42.44 29.87 43.77 32.80 49.59 17.76 37.39 47.32 37.96
Ours-7B 42.64 31.71 44.58 34.14 51.68 18.76 38.73 51.87 39.17
∆ (Ours - Backbone) +3.8 +4.0 +3.3 +5.2 +1.4 +2.4 +2.0 +10.2 +4.1
1 The †symbol indicates that the results were evaluated with VLMEvalKit2.
2 The remaining results are from the MEGA-Bench Leaderboard and Ma et al. (2025).

Table 2: Model Performance Comparison On Other Benchmarks

Model MMMU MathVision MathVisita MathVerse Overall
val vision only

Backbone
QwenVL-2.5-7B 54.2† 25.40 63.70 38.20 45.38

QwenVL-2.5-7B based Reasoning Models
R1-Onevision 49.67† 29.90 64.1 40.0 45.92
VLAA-Thinking 52.67† 26.40 68.00 48.20 48.82
MM-Eureka-7B 55.55† 26.90 73.00 47.58† 50.76
VL-Rethinker-7B 56.7 29.70 73.60 48.98† 52.25
Orsta-7B† 54.33 25.76 70.20 32.10 45.60

Ours-zero 54.3 26.88 72.90 47.33 50.35
Ours-7B 56.78 29.50 75.90 48.73 52.73
∆ (Ours - Backbone) +2.5 +4.1 +12.2 +10.5 +7.3

The †symbol indicates that the results were evaluated with VLMEvalKit3.

Implementation Details: We utilize the open-source Multimodal Large Language Model,
Qwen2.5-VL-7B (Bai et al., 2025), as our base model. For the GRPO training in Stage 1 and Stage
3, we employ the MM-EUREKA 4 framework. The rollout and training batch sizes are both set to
128, with 8 rollouts generated per sample. The learning rate is configured to 1× 10−6. For the DPO
training in Stage 2, as well as for the comparative SFT experiments, we leverage the LlamaFactory 5

framework. In this configuration, the training batch size is set to 64, the learning rate is maintained
at 1 × 10−6, and the hyperparameter λ for the hybrid loss function is set to 1. The prompt used
during training is shown in Appendix B. Some more detailed settings can be found in Appendix F.

4.2 MAIN RESULTS

Table 1 presents the overall performance of our model on MEGA-Bench Core, along with the scores
for each subtask, in comparison with other baseline models. Table 2 reports the performance of
various inference models built on the QwenVL-2.5-7B backbone across additional benchmarks.
Our model has improvements in general task benchmarks (MEGA-BENCH core, MMMU) and
mathematical reasoning benchmarks (MathVision, MathVisita, MathVerse), and some benchmarks
are in a leading position among models of the same size, demonstrating the effectiveness of our
approach.

4https://github.com/ModalMinds/MM-EUREKA
5https://github.com/hiyouga/LLaMA-Factory
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4.3 ABLATION ON SELF-DISTILLATION AND DECOUPLED DATA STRATEGY

Self-distillation proves more effective than external teacher models. First, we evaluate the ef-
fectiveness of the self-distillation mechanism by substituting it with preference data generated from
powerful external teacher models, specifically QwenVL-2.5-32B and QwenVL-2.5-72B. The re-
sults shown in Tabel 4 clearly indicate that our self-distillation approach outperforms both teacher-
based alternatives. We also observe that performance degradation is more pronounced when using
the QwenVL-2.5-32B model, whose output distribution diverges more significantly from our base
model. This finding suggests that preference data closely aligned with the model’s intrinsic capa-
bility distribution is more effective for alignment than guidance from a more capable but dissimilar
external model.

Distilling from GRPO-zero instead of the base model. We directly perform RL on the base model
to obtain GRPO-zero, and then distill the chosen response through the GRPO-zero model. This
choice of scheme is based on considerations of data utilization and training data quality. As shown
in Table 3 below, we have conducted statistics on some indicators of the responses of the original
model and the GRPO-zero model to the training data questions. Obviously, the GRPO-zero model
has higher data utilization in the collection of chosen responses due to its higher format accuracy and
answer accuracy. At the same time, we counted the number of reasoning words (including transition
words, causal words, sequential words, etc.) per 1000 characters for both models. We also used
the same data collection method to collect responses with correct formatting and correct answers
distilled from the base model as chosen responses. The experimental results shown in Table 4.

Table 3: Statistical indicators of response in training data for the base model and GRPO-Zero model

Model Format Acc. (%) Answer Acc. (%) Reasoning Words / 1k Chars
Qwen2.5-7B-Instruct 41.62 30.42 4.26
Ours-GRPO-zero 96.74 52.82 4.99

The decoupled data strategy outperforms the coupled approach for DPO cold-starting. Next,
we investigate the impact of our decoupled data strategy for DPO cold-starting. We compare it
against a “coupled” DPO approach, where preference data is mixed, containing pairs that differ in
both answer correctness and reasoning format. The experimental results shown in Table 4 demon-
strate the clear superiority of the decoupled approach. We found that while coupled data helps
initially, decoupled data provides a better foundation for the main RL phase. We attribute this to
decoupled data’s sharp focus: it trains only the reasoning paradigms during the cold start, which
ultimately leads to better performance after RL (GRPO), even if the initial cold-start performance is
lower.

Table 4: Ablation Results to show the impact of Self Distillation and Decoupled Data

Model Megabench MMMU MathVista MathVision MathVerse AVG
Qwen-VL-2.5-7B 35.07 54.2 63.70 25.40 38.20 43.31

- Qwen32b Distillation 27.04 / 29.87 51.44 / 56.67 66.90 / 71.50 25.53 / 28.03 43.53 / 46.07 42.89 / 46.43
- Qwen72b Distillation 34.00 / 37.30 53.89 / 58.56 67.50 / 73.30 25.62 / 28.91 43.53 / 46.83 44.90 / 48.98
- Base model Distillation 35.37 / 37.92 53.11 / 56.11 67.90 / 74.40 25.55 / 28.68 43.40 / 46.82 45.07 / 48.79
- Self Distillation 37.52 / 39.17 54.89 / 56.78 72.00 / 75.90 25.75 / 29.50 46.19 / 48.73 47.27 / 50.02

- Coupled Data 37.02 / 38.76 55.44 / 55.44 71.10 / 73.10 27.37 / 28.65 47.46 / 47.46 47.67 / 48.68
- Decoupled Data 37.52 / 39.17 54.89 / 56.78 72.00 / 75.90 25.75 / 29.50 46.19 / 48.73 47.27 / 50.02

The value on the left side of the slash ’/’ represents the score after cold-start training, and the value on the right side of the slash
represents the score after cold start + RL.

4.4 ANALYSIS OF THE IMPACT OF DPO-BASED COLD START AND SFT-BASED COLD START

We examine the downstream effects of our DPO cold-start strategy, assessing its impact on the
efficiency and stability of the final RL phase.

Performance and Training Efficiency. To evaluate performance and training efficiency, we tracked
MEGA-Bench scores throughout the GRPO training process. As illustrated in Figure 4, the DPO-
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Figure 4: Impact on RL Training Efficiency and stability.

based GRPO model begins with a substantially higher initial score, demonstrating the immediate
benefit of preference-based pre-alignment. Furthermore, it maintains a clear advantage throughout
training, converging more rapidly and ultimately achieving a higher performance ceiling than its
SFT-based GRPO counterpart. The final performance comparison of other benchmarks is shown in
Table 5 below. For more analysis on this content, please refer to Appendix D.

Table 5: Performance Comparison of SFT-based, and DPO-based Models on Various Benchmarks

Model Megabench MMMU MathVista MathVision MathVerse AVG
Qwen2.5-7B-Instruct 35.07 54.20 63.70 25.40 38.20 43.31

SFT-based GRPO 37.52 54.44 74.10 28.61 43.60 47.65
DPO-based GRPO 39.17 56.78 75.90 29.50 48.73 50.02

Training Stability. Beyond performance metrics, we analyzed training stability by comparing the
policy loss curves, presented in Figure 4. The curve for DPO-based GRPO is visibly smoother and
more stable, indicating a more consistent and reliable optimization trajectory. In contrast, the SFT-
based GRPO policy exhibits greater volatility, suggesting that the RL algorithm make more drastic
and potentially erratic updates. In terms of format rewards, RL based on SFT cold start is also
weaker than RL based on DPO cold start in terms of the stability of format rewards. Regarding the
impact of different cold-start training methods on the stability of model training, we believe this is
related to the training objectives of the cold-start phase and the RL phase. The SFT training objective
is to maximize log likelihood, which is a form of imitation learning, while the loss function of DPO
can be seen as directly optimizing an implicit reward model consistent with preference data, which
is more aligned with the subsequent reward-driven GRPO optimization objective. Therefore, using
a DPO-based model as a starting point also brings more stable training for subsequent RL.

4.5 ANALYSIS OF THE RELATIONSHIP BETWEEN GF AND FINAL PERFORMANCE
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Figure 5: GF vs. Final Performance

We evaluate the correlation between the
model’s GF value during the cold-start phase
and its final performance (represented here by
the average score on MEGA-Bench, MMMU,
and MathVerse Vision Only). By comparing
three cold-start methods with different GF val-
ues, presented in Figure 5, we can see that GF
and the model’s final performance are corre-
lated to a certain extent. This also confirms that
the stronger the model’s generalization ability
in the cold-start phase, the more it will con-
tribute to the model’s improvement in the RL
phase.

In addition, we can also prove that the cold-start
method based on preference data has higher
generalization ability compared with the tradi-
tional SFT cold-start paradigm, thus bringing greater potential for improvement to subsequent RL.
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5 RELATED WORK

The application of RL has emerged as a highly effective method for enhancing the reasoning capabil-
ities of large language models, with notable successes in the text-only domain such as DeepSeek-R1
(Guo et al., 2025), which leverages RLVR (Lambert et al., 2024; Guo et al., 2025). Inspired by these
advancements, a substantial and rapidly growing body of research has begun adapting RL techniques
for VLMs. This has catalyzed a wave of “MLLM-r1” studies, all aiming to harness similar princi-
ples to unlock more advanced multimodal reasoning abilities. For instance, MM-Eureka (Meng
et al., 2025) explores the enhancement of multimodal reasoning abilities through rule-based RL by
constructing high-quality multimodal reasoning datasets. VL-Rethinker (Wang et al., 2025a) stim-
ulates the slow thinking and self-reflection abilities of VLMs through RL. Orsta (Ma et al., 2025)
establishes a unified RL system that supports VLMs in jointly learning visual reasoning and per-
ception tasks. VLM-R1 (Shen et al., 2025) extends R1-style RL to VLMs for visual understanding
tasks to improve their visual reasoning abilities. LMM-R1 (Peng et al., 2025) enhances the model’s
basic reasoning ability and multimodal generalization ability through a two-stage training strategy of
basic reasoning enhancement and multimodal generalization training. R1-VL (Zhang et al., 2025a)
realizes the self-improvement of MLLMs’ reasoning ability by solving the sparse reward problem
through Step-wise GRPO. DeepEyes (Zheng et al., 2025) motivates the model’s “Thinking with Im-
ages” ability through RL. VisualThinker-R1-Zero (Zhou et al., 2025) performs RL directly without
any supervised fine-tuning of the model to reproduce the “aha moment”.

A crucial precursor to effective RL is the “cold-start” phase, which initializes the model’s policy
before the RL stage begins. The conventional strategy for this phase is SFT, a foundational step
adopted by many leading models to establish a strong baseline performance (Wei et al., 2025; Yang
et al., 2025; Huang et al., 2025; Deng et al., 2025b). In parallel with refining cold-start methods,
the prohibitive cost of human annotation has driven the field towards synthetic data generation. This
approach often involves using powerful teacher models to distill vast amounts of data for training
smaller student models (Zhang et al., 2025b; Xu et al., 2024; Huang et al., 2025). Vision-R1 (Huang
et al., 2025) cold-starts the model before applying RL by synthesizing 100K high-quality long CoT
instructions. LLaVA-CoT (Xu et al., 2024) integrates multiple mainstream visual question answer-
ing datasets and uses advanced large models to synthesize 99K valid image-question-answer pairs.
R1-Onevision (Yang et al., 2025) adopts a two-stage training strategy of SFT + RL by synthesizing
a 155K instruction set.

6 CONCLUSIONS

In this study, we introduced the Self-Distilled Preference-based Cold-Start framework, a novel three-
stage methodology. By leveraging a self-distillation process to generate preference data, we decou-
ple the learning of shallow objectives, such as output format, from the deep, logical reasoning skills
targeted during the final RL phase. Our method utilizes DPO to pre-align the model, providing
a superior initial policy for RL. The creative insight of decoupling learning objectives solves the
practical problem of SFT-induced overfitting, which often constrains exploration and leads to sub-
optimal performance. Our results demonstrate the practical value of this approach. The introduction
of the Generalization Factor also provides a valuable new metric for quantifying model generaliza-
tion. This work shows considerable application prospects for developing more robust and capable
multimodal reasoning systems.

Despite these promising results, this study has certain limitations that suggest avenues for future
research. Our experiments were focused on the multimodal domain; further studies should be con-
ducted to validate the efficacy of the SPECS framework in text-only reasoning tasks. The gener-
alization of our findings could also be strengthened through more extensive testing across a more
diverse set of out-of-distribution benchmarks. Such investigations would continue to refine our un-
derstanding of how to most effectively structure learning pipelines for complex AI systems.
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ETHICS STATEMENT

All of the paper’s authors have read and adhered to the ICLR Code of Ethics. This work focuses on
advancing the reasoning capabilities of multimodal large language models through a novel training
methodology. The core contributions are algorithmic, aimed at improving the efficiency, stability,
and performance ceiling of reinforcement learning pipelines for such models.

Data and Models: The datasets used for training and evaluation, including Orsta47K, virl39K,
MEGA-Bench, MMMU, MathVista, MATH-Vision, and MathVerse, are publicly available datasets
and benchmarks established within the academic community. Our use of these standard datasets is
intended to ensure transparency, facilitate reproducibility, and allow for direct comparison with prior
work. We do not use any private or sensitive user data. The base model used, Qwen2.5-VL-7B, is
an open-source model, promoting accessibility and further research.

External Evaluators: For evaluating subjective short-answer questions where automated rule-based
metrics are insufficient, we employed proprietary models (GPT-4o) as external judges. We acknowl-
edge that these models may have their own inherent biases. This approach was chosen to provide a
consistent and scalable evaluation standard for complex, open-ended responses, a common practice
in current AI research. The specific prompts and evaluation criteria were designed to be as objective
as possible to mitigate these potential biases.

Potential Societal Impact: The goal of this research is to enhance the general reasoning abilities of
AI systems. While this can lead to positive applications in fields like education, scientific research,
and accessibility tools, we recognize that, like any powerful technology, it could potentially be
misused. Our work does not introduce any new applications but rather improves the underlying
training methodology. We encourage the responsible development and deployment of AI systems
built upon these foundational research advancements.

Bias and Fairness: Our proposed framework, SPECS, is not designed for a specific downstream
application and was evaluated on broad-domain academic benchmarks. We have not conducted an
in-depth analysis of social or demographic biases, as the datasets primarily consist of math, science,
and general knowledge problems. We acknowledge that the underlying base model and training data
may contain biases, and future work should investigate how different training strategies impact the
propagation or mitigation of such biases.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a detailed account of our methodology and ex-
perimental setup. The core SPECS framework, including its three stages of self-distillation for data
generation, DPO-based pre-alignment, and final GRPO fine-tuning, is described in Section 3. Our
complete experimental settings, including the datasets, benchmarks, and baselines used for evalu-
ation, are detailed in Section 4.1 . This section also specifies crucial implementation details, such
as learning rates and batch sizes for all training stages . We utilized publicly available frameworks,
MM-EUREKA and LlamaFactory, for our implementation. Furthermore, the appendix offers ad-
ditional resources to aid in reproduction, including the exact system prompts used for training and
inference (Appendix B) and a detailed analysis of the hybrid loss coefficient (Appendix C).
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A THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we utilized the Large Language Model (LLM) Gemini-2.5-pro (Co-
manici et al., 2025) to polishing the text. Its application was strictly limited to correcting spelling
and grammatical errors. The authors manually reviewed and verified all AI-assisted modifications
to ensure factual accuracy. The core ideas, methodologies, and figures presented are entirely the
original work of the human authors.

B PROMPTS

The following are the System Prompts for the model during the cold start training phase and the
RL training phase. In the instruction format generalization experiment in Section 2, the Inference
System Prompt for the ID Task is consistent with these.

System Prompt for Cold Start Training and ID Task Inference

Solve the question. The user asks a question, and you solve it. You
first think about the reasoning process in the mind and then provide
the user with the answer. The answer is in latex format and wrapped
in $...$. The final answer must be wrapped using the \boxed{}
command. The reasoning process and answer are enclosed within <think>
</think> and <answer> </answer> tags, respectively, i.e., <think>

Since $1+1=2$, so the answer is $2$. </think> <answer> The answer is
$\boxed{2}$ </answer> , which means assistant’s output should start
with <think> and end with </answer>.

The following is the Inference System Prompt for the OOD Task in the instruction format general-
ization experiment of Section 2.

System Prompt for OOD Task Inference

Solve the question. The user asks a question, and you solve it. You
first think about the reasoning process in the mind and then provide
the user with the answer. The answer is in latex format and wrapped
in $...$. The final answer must be wrapped using the \boxed{}
command. The reasoning process and answer are enclosed within <cot>
</cot> and <response> </response> tags, respectively, i.e., <cot>
Since $1+1=2$, so the answer is $2$. </cot> <response> The answer is
$\boxed{2}$ </response> , which means assistant’s output should
start with <cot> and end with </response>.

The following Prompt is used for filtering chosen responses, see Section 3.2.

System Prompt for Chosen Response Filtration

You are an expert evaluator. Please analyze the following
problem-solving response and evaluate whether the final answer is
consistent with the reasoning steps.
Question: {question}
Response to analyze: {chosen_answer}
Please output only digit 1 if the answer is consistent with the
reasoning, or digit 0 if the reasoning has obviously theoretical
errors OR the answer is inconsistent with the reasoning.
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C ANALYSIS OF LOSS BALANCE COEFFICIENTS IN COLD-START TRAINING

C.1 PRELIMINARIES

Supervised Fine-Tuning. SFT adapts pre-trained models by optimizing a cross-entropy loss func-
tion to maximize the log-likelihood of a desired output yc for a given prompt x. The loss is defined
as:

LSFT (πθ) = E(x,yc)∼D [− log πθ (yc|x)]

By training exclusively on positive examples, SFT creates a sharply peaked probability distribu-
tion that closely mimics the training data. While this accelerates model convergence, it can limit
generalization capabilities.

Direct Preference Optimization. DPO(Rafailov et al., 2023) refines models by learning directly
from preference data, consisting of a prompt x, a chosen response yc, and a rejected response yr.
The DPO loss function is designed to increase the relative probability of the chosen response over
the rejected one:

LDPO(πθ;πref) = −E(x,yc,yr)∼D

[
log σ

(
β log

πθ(yc|x)
πref(yc|x)

− β log
πθ(yr|x)
πref(yr|x)

)]
where πθ is the policy being optimized, πref is a reference policy, σ is the logistic function and
β is a temperature parameter. This approach maximizes the margin between chosen and rejected
responses, cultivating a smoother and more robust probability distribution that enhances the model’s
generalization performance.

C.2 ANALYSIS OF LOSS BALANCE COEFFICIENTS

In Section 3.3, we proposed that in our cold start, in addition to the basic DPO loss, we also added
the SFT loss to ensure that the model does not deviate too much from the chosen samples during the
training process. The combined loss function is thus:

Lhybrid = LDPO + λLSFT

Among the Lhybrid, the DPO loss function is designed to increase the relative probability of the
chosen response over the rejected one:

Lhybrid = −E(x,yc,yr)∼D

[
log σ

(
β log

πθ(yc|x)
πref(yc|x)

− β log
πθ(yr|x)
πref(yr|x)

)]
+λE(x,yc)∼D[− log πθ(yc|x)]

We recorded the model’s rewards for chosen, rewards for rejected, and margins during cold start
training when λ = 0, λ = 0.5, and λ = 1, as shown in Figure 6 below.

From the picture, we can see a lot. Since the training loss of DPO can expand the margin between the
chosen and the rejected, when λ = 0, this margin is the largest. However, this margin causes both
the chosen and rejected rewards to decrease (the rejected rewards decrease faster than the chosen
rewards). When λ = 0.5 and λ = 1, it ensures that the chosen rewards increase during the DPO
training process.
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Figure 6: Effect of λ on Chosen and Rejected Rewards and Reward Margins During Training
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Table 6: Average RBF by Sample Size

Model
Sample Size 120 240 480

base 1.7686 1.9166 1.9206
sft 1.8086 1.8961 1.9336
ours 1.8216 1.9268 1.9596

D PERFORMANCE POTENTIAL OF DPO-BASED COLD-START VS. SFT

To evaluate the effectiveness of our proposed cold-start strategy, we first compare our DPO-based
approach against a conventional SFT baseline. For this comparison, the SFT model was fine-tuned
exclusively on the “chosen” responses from our preference dataset, while our model was trained
using the full preference pairs with the DPO algorithm.

Base SFT Ours
Model

65
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90
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e
66.89

76.88 77.55
74.89

86.88 87.33MMMU@8
MMMU@64

Figure 7: MMMU Pass@K Performance

Performance Potential via Pass@K. We assessed
the performance of both the DPO and SFT cold-start
models on the MMMU benchmark. As delineated in
Figure 7, the DPO-based model demonstrates supe-
rior performance across evaluated metrics, including
Pass@8, and Pass@32. This indicates that the DPO
cold-start method endows the model with greater ini-
tial capabilities and higher potential for future align-
ment tasks compared to the standard SFT approach.

Exploration Capability via Rollout Branching
Factor (RBF). Beyond task performance, we inves-
tigated the intrinsic exploratory capacity of models,
a critical factor for successful RL. We measure this
using the RBF (Deng et al., 2025a), which quantifies
the diversity of a model’s generation by counting the
number of candidate tokens within the probability mass of top p (0.95) during decoding. A higher
RBF signifies greater generation diversity and, consequently, a stronger capacity for exploration.
As shown in Table 6, our DPO-based cold-start method yields a substantially higher RBF than the
SFT baseline. This finding suggests that our approach cultivates a broader exploration space, which
is highly beneficial for the subsequent RL phase, enabling the model to discover more diverse and
potentially higher-quality solutions. This outcome highlights a key advantage of our method in
preparing models for alignment.

E ANALYSIS OF CHOSEN RESPONSE FILTRATION

We believe it is crucial to ensure the quality and accuracy of chosen response in cold start parse.
However, we found that there are a small number of cases (generated by GRPO-zero) in chosen
response where the answers are not consistent with the reasoning, which could affect training, such
as the following case:

Case Example

<think>To determine the total number of dogs in the picture, we need to count each dog
individually. From the image, we can see that there are 4 dogs. </think>

<answer>The answer is 3 </answer>

The reasons for this situation still need to be explored, and we think it may be related to reward
hacking in GRPO training (because the answer to this training data was incorrectly labeled as 3,
while the correct answer should be 4 as in the reasoning process). To prevent these data from
affecting the cold start training, we use another LLM to verify the data. This evaluation process is
simple and objective, with no significant errors, and will not introduce bias into data filtering. The
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table 7 below shows the differences in the final model performance between the data filtered by the
advanced LLM and the randomly filtered data.

Table 7: Performance Comparison of Self-Distillation with and without Verification on Various
Benchmarks

Model Megabench MMMU MathVista MathVision MathVerse AVG
Qwen2.5-7B-Instruct 35.07 54.20 63.70 25.40 38.20 43.31

w.o verification 38.72 55.11 73.50 26.90 46.44 48.13
w verification 39.17 56.78 75.90 29.50 48.73 50.02

It can be seen from the experimental results that the model after data filtering performs better than
the final model obtained by randomly selecting data. On the other hand, regarding the selection of
large models for screening, in addition to using some advanced large models, due to the simplicity
of the task instructions, some open-source large models can also be used as alternatives.

F EXPERIMENTS IMPLEMENTATION DETAILS

All experiments were conducted on a cluster of 32 NVIDIA H800 (80G) GPUs. We utilize the
open-source Multimodal Large Language Model, Qwen2.5-VL-7B (Bai et al., 2025), as our base
model.

For the GRPO training in Stage 1 and Stage 3, we employ the MM-EUREKA 6 framework. The
rollout and training batch sizes are both set to 128, with 8 rollouts generated per sample. The
learning rate is configured to 1 × 10−6. Following the DAPO (Yu et al., 2025) methodology, we
set the clipping thresholds to 0.2 (lower) and 0.28 (upper), and we do not apply a KL penalty. The
maximum output length is restricted to 10, 240 tokens. This training phase spanned 400 steps and
was completed in approximately 12 hours.

For the DPO training in Stage 2, as well as for the comparative SFT experiments, we leverage the
LlamaFactory 7 framework using a total dataset size of 9, 155 samples. In this configuration, the
training batch size is set to 64, the learning rate is maintained at 1 × 10−6, and the hyperparameter
λ for the hybrid loss function is set to 1. The maximum output length is extended to 16, 384 tokens.
These models were trained for 140 steps, with the training process completing in under 30 minutes.
The prompt used during training is shown in Appendix B.

We have counted the computing time for DPO and SFT training using 8 GPUs under the same
training parameters (including steps, batch size, data length, max new tokens, etc.), as shown in the
following table 8.

Table 8: Comparison of training performance between SFT and DPO.

Training Method Train Samples/s Train Steps/s Total FLOS Run Time/s

SFT 1.035 0.129 2.82× 1017 8848
DPO 0.979 0.123 6.22× 1017 9346

∆ -0.056 -0.006 +3.4× 1017 +498

As can be seen from the table, in actual computation, the computational cost between SFT and DPO
is not significantly different. For the computation of 9,000 pieces of data, the total computation time
only increased by approximately 8.3 minutes.

6https://github.com/ModalMinds/MM-EUREKA
7https://github.com/hiyouga/LLaMA-Factory
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G QUALITATIVE EXAMPLES

QA Case Analysis: Case #001
Question: Hint: Please answer the question requiring an integer answer
and provide the final value, e.g., 1, 2, 3, at the end. Question: Subtract all
yellow matte blocks. Subtract all tiny brown cylinders. How many objects
are left?
Ground Truth: 5
Qwen2.5-VL-7B response: 6

Ours-7B response

<think>To solve the problem, first identify all objects in the image:
1. Yellow matte cylinder
2. Green metallic cylinder (left)
3. Green metallic cylinder (front)
4. Silver metallic cylinder
5. Tiny brown cylinder
6. Yellow matte block
7. Red matte sphere
Next, follow the instructions:
1. Subtract all yellow matte blocks: Removing the yellow matte block leaves 6
objects.
2. Subtract all tiny brown cylinders: Removing the tiny brown cylinder leaves 5
objects.
Thus, the remaining objects are 5.
</think>
<answer>The answer is 5 </answer>

Qwen2.5-VL-7B response

To solve this, we first identify all objects in the image: there are 8 objects in total. The
yellow matte block is one object, and the tiny brown cylinder is another. Subtracting
these two objects leaves us with 8− 1− 1 = 6 objects.
So, the number of objects left is 6.
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QA Case Analysis: Case #002

Question: Hint: Please answer the question requiring an integer answer
and provide the final value, e.g., 1, 2, 3, at the end. Question: Several
people compared how many Web pages they had visited. What is the
mean of the numbers?’
Ground Truth: 64
Qwen2.5-VL-7B response: 67.75

Ours-7B response

<think>To find the mean of the numbers, first sum all the numbers and then divide
by the count of numbers.
The numbers are: 84, 56, 70, 68, 60, 47, 75, 52.
Sum of the numbers:

84 + 56 + 70 + 68 + 60 + 47 + 75 + 52

Calculating step by step:
84 + 56 = 140

140 + 70 = 210

210 + 68 = 278

278 + 60 = 338

338 + 47 = 385

385 + 75 = 460

460 + 52 = 512

The sum of the numbers is 512.
Next, count the number of values: There are 8 values.
The mean is the sum divided by the count:

Mean =
512

8
= 64

So, the mean of the numbers is 64.
</think>
<answer>The answer is 64 </answer>

Qwen2.5-VL-7B response

To find the mean of the numbers, we need to follow these steps:
1. Add up all the numbers in the list. 2. Count how many numbers there are. 3.
Divide the sum by the count.
Let’s start with step 1: Add up all the numbers.
The numbers are: 84, 56, 70, 68, 60, 47, 75, 52.
Sum = 84 + 56 + 70 + 68 + 60 + 47 + 75 + 52
Sum = 542
...
Mean = 542 / 8
Mean = 67.75
So, the mean of the numbers is 67.75.
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QA Case Analysis: Case #003
Question: Hint: Please answer the question and provide the correct op-
tion letter, e.g., A, B, C, D, at the end. Question: At a certain moment,
there is a passenger ship at sea point P, and lighthouse A is measured in
the direction 30.0 north by east of P, and is 50.0 nautical miles away. The
passenger ship sails at the speed of 60.0 nautical mile/hour in the direction
of 60.0 from north by west for 2

3hours to reach point B, then tan∠BAP =
Choices:
(A) 4

5 (B) 6
5 (C)

√
5
5 (D) 2

√
5

5

Ground Truth: (A) 4
5

Qwen2.5-VL-7B response: (B) 6
5

Ours-7B response

<think>First, we need to determine the coordinates or distances relevant to the prob-
lem. The initial position of the passenger ship is at point P , and it is 50 nautical miles
away from lighthouse A in the direction 30.0 degrees north by east. The passenger
ship then sails in the direction 60.0 degrees from north by west for 2

3 hours at a speed
of 60 nautical miles per hour, reaching point B.
The distance PB can be calculated as follows:

PB = 60× 2

3
= 40 nautical miles

The direction 60.0 degrees from north by west means that the angle ∠BPA =
30.0◦ +60.0◦ = 90.0◦. Therefore, △ABP is a right triangle with ∠BAP = 30.0◦.
In a right triangle, the tangent of an angle is the ratio of the opposite side to the
adjacent side. Here, tan∠BAP = BP

AP .
Since AP = 50 nautical miles and PB = 40 nautical miles, we can use the
Pythagorean theorem to verify:

AB =
√
AP 2 +BP 2 =

√
502 + 402 =

√
2500 + 1600 =

√
4100 = 10

√
41

However, we only need the ratio BP
AP :

tan∠BAP =
BP

AP
=

40

50
=

4

5

Thus, the answer is A .</think>
<answer>The answer is A </answer>

Qwen2.5-VL-7B response

To solve this problem, we need to determine the coordinates of points A and B rela-
tive to point P, and then find the tangent of the angle ∠BAP.
1. Determine the coordinates of point A relative to point P:
...
2. Determine the coordinates of point B relative to point P:
...
3. Calculate the tangent of ∠BAP:
... - Simplifying the expression, we get 625

√
3−500−1250

√
3−1500

625
√
3+1500−625

√
3+500

= −925
√
3−1000

2000 =

−925
√
3−1000

2000 = −925
√
3−1000

2000 = −925
√
3−1000

2000 = 6
5 .

Therefore, the correct answer is B .
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