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Abstract

While deep learning techniques have become extremely popular for solving a
broad range of optimization problems, methods to enforce hard constraints during
optimization, particularly on deep neural networks, remain underdeveloped. In-
spired by the rich literature on meshless interpolation and its extension to spectral
collocation methods in scientific computing, we develop a series of approaches
for enforcing hard constraints on neural fields, which we refer to as Constrained
Neural Fields (CNF). The constraints can be specified as a linear operator ap-
plied to the neural field and its derivatives. We also design specific model rep-
resentations and training strategies for problems where standard models may
encounter difficulties, such as conditioning of the system, memory consumption,
and capacity of the network when being constrained. Our approaches are demon-
strated in a wide range of real-world applications. Additionally, we develop a
framework that enables highly efficient model and constraint specification, which
can be readily applied to any downstream task where hard constraints need to
be explicitly satisfied during optimization. Source code is publicly available at
https://zfc946.github.io/CNF.github.io/.

1 Introduction

Deep neural networks serve as universal function approximators [10] and have achieved tremendous
success across a wide variety of tasks. Gradient-based learning algorithms enable optimizing the
parameters of networks to approximate any desired model. However, despite the existence of
numerous advanced optimization algorithms, the issue of enforcing strict equality constraints during
training has not been sufficiently addressed. Constrained optimization has a broad spectrum of
real-world applications. For example, in trajectory optimization ([38][Chapter 10], and, e.g., [4, 29]),
the agent poses at the start, end, and potentially intermediate steps are to be explicitly enforced. In
signal representation, it is desirable for the continuous model to interpolate the discrete samples [22].
In physics, the models of interest must comply with fundamental physical principles [14, 27].

Applying traditional solvers for general constrained optimization, such as SQP [26], to neural
networks can be nontrivial. Since traditional methods express constraints as a function of learnable
parameters, this formulation becomes extremely high-dimensional, nonlinear, and non-convex in the
context of neural networks. As the number of constraints increases, the computational complexity
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grows substantially. Other solutions for deep neural networks may encounter issues related to system
conditioning, memory consumption, and network capacity when subject to constraints [20].

In this work, we consider the following constrained optimization problem:

argmin
θ

L (fθ; θ) s.t. F [fθ] (x) = g (x) ∀x ∈ S, (1)

where fθ is a parametric model with learnable parameters θ; and F is a linear operator1 that
transforms f into another function F [f ] which has the same input and output dimensions as f .
Common examples of valid operators F include the identity map, integration, partial differentiation
of arbitrary order, and many composite operators that involve differentiation, such as Laplacian,
divergence, and advection operators. F can represent a broad class of constraints on the function
f in real-world applications. Enforcement of multiple constraints, expressed as different operators
on f , is also possible. In practice, one typically does not have access to (or require) a closed-form
expression of g, but rather the evaluation of g on a set S of discrete samples of x. In this work, we
focus on equality constraints, as inequality constraints can be more easily satisfied through heavy
regularization or a judicious choice of the activation function.

Our solution draws inspiration from meshless interpolation [6] and its extension to spectral collocation
methods [7] in the scientific computing literature. These methods model a parametric function as a
linear sum of basis functions. By computing the weights of the bases, hard constraints on the local
behavior of the function at the collocation points, where the constraints need to be satisfied, are
enforced accordingly. However, the selection of the basis functions also determines the inductive bias
of the model, i.e., the behavior of the function outside the collocation points. Our perspective is to
formulate the problem of constrained optimization as a collocation problem with learnable inductive
bias. Instead of using a set of fixed basis functions, we allow each basis function to have additional
learnable parameters. While the weights of the basis functions are used to enforce constraints, other
learnable parameters are optimized via a training loss to match the optimal inductive bias.

With this formulation of the problem, we demonstrate a series of approaches for enforcing hard
constraints in the form of Eq. 1 onto a neural field, i.e., a parametric function modeled as a neural
network that takes continuous coordinates as input. In theory, we can formulate basis functions
from existing neural fields of any architecture and enforce constraints. Nevertheless, certain network
architectures may encounter difficulties as the number of collocation points or the order of differ-
entiation increases. To tackle these challenges, we propose specific network designs and training
strategies, and demonstrate their effectiveness in several real-world applications spanning physics, sig-
nal representation, and geometric processing. Furthermore, we establish a theoretical foundation that
elucidates the superiority of our approach over existing solutions, and extend prior works with shared
underlying designs to a broader context. Finally, we develop a PyTorch framework for the highly
efficient adoption of Constrained Neural Fields (CNF), which can be applied to any downstream task
requiring explicit satisfaction of hard constraints during optimization.

In summary, our work makes the following key contributions:

• We introduce a novel approach for enforcing linear operator constraints on neural fields;
• We propose a series of model representations and training strategies to address various challenges

that may arise within the problem context, while offering a theoretical basis for CNF’s superior
performance and its generalization of prior works;

• Our framework is effective across a wide range of real-world problems; in particular, CNF:

– achieves state-of-the-art performance in learning material appearance representations.
– is the first that can enforce an exact normal constraint on a neural implicit field.
– improves the performance of the Kansa method [18], a meshless partial differential equation

(PDE) solver, when applied to irregular input grids.

2 Related Work

Applying constraints to a deep learning model has been a long-standing problem. Numerous studies
have aimed to enforce specific properties on neural networks. For instance, sigmoid and softmax

1While our approach can be theoretically extended to nonlinear operators, we focus on linear ones due to the
efficiency of linear solvers and GPU vectorization.
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activation functions are used to ensure that the network output represents a valid probability mass
function. Convolutional neural networks (CNNs) were introduced to address translation invariance.
Pointnet [30] was proposed to achieve permutation invariance. POLICE [3] was introduced to enforce
affine properties on the network. However, these works were not specifically designed to handle
strict and general-form equality constraints. There are also studies that train a multilayer perceptron
(MLP) [34, 37] or neural basis functions [8, 43] with a regression loss to approximate the equality
constraints through overfitting, which we refer to as soft constraint approaches. However, in those
works, strict adherence to hard constraints is rarely guaranteed. DC3 [12] is the first work that can
enforce general equality constraints onto deep learning models by selecting a subset of network
parameters for constraint enforcement and utilizing the remaining parameters for optimization.
However, this approach cannot offer a theory or guidance regarding the existence of a solution when
selecting a random subset of the network. In contrast, our method rigorously analyzes and guarantees
the existence of a solution. Linearly constrained neural networks [17] can also explicitly satisfy linear
operator constraints, but their method only applies to the degenerate case where g(x) (Eq. 1) is zero
everywhere. Neural kernel fields (NKF) [41] employs kernel basis functions similar to ours to solve
constrained optimization problems in geometry, but their method cannot accommodate strict higher-
order constraints. Their use of a dense matrix also cannot scale up to accommodate a large number
of constraints, due to limitations in processor memory. A concurrent work, PDE-CL [24], utilizes a
constrained layer to solve partial differential equations as a constrained optimization problem. We
demonstrate that a constrained layer may not be the ideal choice for designing basis functions and
propose alternative solutions. In fact, our approach can be seen as a generalization of NKF and
PDE-CL. While seemingly unrelated, both works approach constrained optimization problems by
leveraging the weights of basis functions to enforce constraints. They differ only in the design of
the basis and the optimization function. Finally, there has been substantial development in implicit
layers [13] that can enforce equality constraints between the layer’s input and output while efficiently
tracking gradients. However, this approach is not specifically designed for constraints over the entire
network, although it can be potentially incorporated into our method to facilitate computation.

3 Method

At the core of our approach is the representation of a neural field f (·) : RM 7→ RN as a linear sum
of basis functions, as with the collocation methods:

f (x) =
∑
i

βi ⊙Ψi (x) , (2)

where each Ψi (·) : RM 7→ RN represents a basis function that can be expressed as any parametric
function with learnable parameters, such as neural networks; βi ∈ RN is the weight of the i-th basis;
and ⊙ indicates the Hadamard product.

3.1 Constrained Optimization

Consider S := {xi}Ii=1, a set of I constraint points such that F [f ] (xi) = g (xi) ,∀i where the
ground truth value of g (xi) is accessible. Using the neural basis representation (2), and assuming
that F is linear and F [Ψi] is well-defined for all i, the following needs to hold for the constraints:

F [f ] (x) = F

[∑
i

βi ⊙Ψi

]
(x) =

∑
i

βi ⊙F [Ψi] (x) = g (x) , ∀x ∈ S. (3)

Eq. 3 is a collocation equation in the context of spectral collocation methods for solving differential
and integral equations [9, 1]. These constraints can be explicitly satisfied by defining I basis functions
and solving Eq. 3 for their weights. For a linear F , we can expand Eq. 3 into batched matrix form:F [Ψ1] (x1) F [Ψ2] (x1) · · · F [ΨI ] (x1)

F [Ψ1] (x2) F [Ψ2] (x2) · · · F [ΨI ] (x2)

.

.

.
.
.
.

. . .
.
.
.

F [Ψ1] (xI ) F [Ψ2] (xI ) · · · F [ΨI ] (xI )


︸ ︷︷ ︸

Af

β1
β2

.

.

.
βI

 =

g (x1)
g (x2)

.

.

.
g (xI )

. (4)

There are in total N such matrix equations to solve, each corresponding to an output dimension of f
if N > 12. We denote the matrix as Af for reference. As long as we apply a differentiable linear

2In Einstein summation notation, the batched matrix equation in Eq. 4 can be expressed as IIN, IN → IN .
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Algorithm 1 Training
1: repeat
2: Compute β as the solution of Eq. 4
3: Compute gradient ∂L

∂θ = ∂L
∂f

∂f
∂θ

4: Update θ
5: until converged

Algorithm 2 Inference

Input: x
Output: fθ (x)

1: if β is None then
2: Compute β from Eq. 4 w/o gradients
3: end if
4: fθ (x)←

∑
i βi ⊙Ψi (x)

solver that provides valid gradients to compute the weights, the neural basis representation (Eq. 2)
can be integrated with any optimization loss L (fθ; θ) to approximate the desired behavior, while
ensuring that the hard constraints are strictly enforced. Algorithm 1 describes the training procedure
in detail, where Step 2 solves for the weights β in every iteration, ensuring consistent satisfaction
of hard constraints throughout the entire training process, while Steps 3 and 4 update the training
parameters θ to optimize for the training loss L under the constraints. We compute β using an LU
decomposition with partial pivoting and row interchanges, which is fully differentiable when Af is
full rank. The computation of β constructs a computational graph that tracks ∂β

∂θ , thereby ensuring
a valid ∂f

∂θ . Consequently, any loss function with a valid gradient ∂L
∂f can be smoothly integrated

into this training procedure. The inference procedure is detailed in Algorithm 2. Here, β only needs
to be pre-computed once since it is independent of the evaluation point x. As a result, performing
inference with CNF is highly efficient and boils down to computing a linear combination of I basis
functions without solving any matrix equations, a task that can be vectorized for efficiency.

This approach can also be extended to multiple linear operator constraints, indexed by j:

Fj [f ] (x) = gj (x) ,∀x ∈ Sj , (5)

where Sj indicates the set of points x where the values of Fj [f ] (x) are constrained. Note that
Sj corresponding to different operator constraints can have repeated x elements. For example, to
constrain ∇f(x) where x ∈ S ⊆ RM , a partial differentiation operator needs to be specified for
each of the M partial derivatives at the same point x. These constraints can be explicitly satisfied by
defining

∑
j |Sj | basis functions and computing their weights by solving the batched matrix equation:

F1 [Ψ1] (x
1
1) F1 [Ψ2] (x

1
1) · · ·

F1 [Ψ1] (x
1
2) F1 [Ψ2] (x

1
2) · · ·

.

.

.
.
.
.

. . .
F2 [Ψ1] (x

2
1) F2 [Ψ2] (x

2
1) · · ·

F2 [Ψ1] (x
2
2) F2 [Ψ2] (x

2
2) · · ·

.

.

.
.
.
.

. . .




β1
1

β1
2

.

.

.
β2
1

β2
2

.

.

.

 =


g1(x

1
1)

g1(x
1
2)

.

.

.
g2(x

2
1)

g2(x
2
2)

.

.

.

, (6)

where xj
n indicates the n-th point in Sj . The training and inference procedures are the same as

previously described, except that β is now solved using Eq. 6 instead.

3.2 Neural Basis Functions

To construct a set of basis functions from an existing neural field, we consider a few approaches.

Independent basis The most straightforward method is to specify a separate neural field for each
basis. This method is the most expressive but can only be used with a small number of constraints.
This is because the number of networks and learnable parameters increases linearly with the number
of constraints. A bigger concern is the quadratic growth in the size of the matrix Af . As a result, even
high-end processors are guaranteed to run out of memory working with a large number of constraints.

Constraint basis We can directly use the last hidden layer of a multi-layer perceptron (MLP) as
the basis and compute the weight of each node to enforce the constraints. This strategy has been
referred to as a constraint layer in concurrent work [24]. The size of the network, excluding the
hidden layer, does not grow as the number of constraints increases. However, this approach may lead
to linearly-dependent basis functions, resulting in the matrix Af being singular or having a large
condition number. This can lead to a significant error bound in the satisfaction of hard constraints.
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Hypernetwork basis The third approach is to generate the parameters of each neural basis function
using a hypernetwork [16]. The input to the hypernetwork is a one-hot encoding of length equal to
the number of bases. The hypernetwork ensures that the network size does not increase with the
number of basis functions. Nonetheless, the quadratic growth in the size of Af remains an issue for
both the constraint and the hypernetwork bases.

In several empirical studies, we found that the two aforementioned approaches hinder the network’s
capacities when subjected to hard constraints. They also encountered difficulties reducing the
condition number; see Appendix.

Kernel basis As a result, we propose several variants of a neural kernel function as a special design
of basis functions:

Ψi (x) = κ (ϕ (xi) , ϕ (x)) , (7)
where ϕ(·) is a neural encoder that maps x into a high-dimensional feature space; κ(·, ·) is a kernel
function that measures the similarity between two points in the feature space; xi is the i-th constraint
point, which we refer to as an anchor point. With this design, the higher-dimensional feature space
bolsters the learning capacity of the basis function. The size of parameters in the network also
does not grow with the number of constraints. If κ(·, ·) is a dot-product kernel, Eq. 7 becomes the
same basis function used in NKF [41]. However, we empirically found that a Gaussian kernel better
promotes the linear independence of basis functions due to its local compact support, while still
preserving sufficient learning capacity; see Appendix.

Hypernetwork kernel basis One drawback of the kernel basis function is that only one constraint
can be applied to each anchor point. For example, one cannot enforce constraints on both the value of
f(x) and its gradient ∇f(x) at the same anchor point, as it would result in repeated basis functions
Ψi ≡ Ψj ≡ κ (ϕ (xanchor) , ϕ (x)) and thus an ill-conditioned system; see Appendix for math details.
For multiple constraints at repeated anchor points, we propose a hypernet kernel function:

Ψi (x) = κ (ϕi (xi) , ϕi (x)) , (8)
where the weights of ϕi are controlled by a hypernetwork conditioned on the anchor point xi. This
hypernet construction of the encoder ensures that the network would not have repeated basis functions
and the number of network parameters does not grow with the number of basis functions.

Hybrid kernel basis Central to our approach is the construction and inversion of a linear system,
the size of which grows quadratically with the number of constraints. To mitigate severe memory
issues in large-scale constraints, we design a basis that promotes sparsity in matrix Af for large-scale
problems. While using a Gaussian kernel can promote sparsity, it is difficult to select a proper
bandwidth to explicitly control the number of nonzero elements since the kernel operates in the
feature space rather than the original domain. To overcome this, we propose a hybrid kernel function:

Ψi (x) = κ (ϕi (xi) , ϕi (x))κG (xi,x) , (9)
where the first part κ (ϕi (xi) , ϕi (x)) can be either a Gaussian kernel basis or a hypernet kernel basis,
depending on the task, and κG is some compactly supported kernel function, allowing for explicit
adjustment of the zero behavior of Ψi. A candidate κG can be a truncated Gaussian kernel such as:

κG (xi,x) =

{
exp

(
−∥xi−x∥2

2σ2

)
if ∥xi − x∥ < 3σ

0 if ∥xi − x∥ ≥ 3σ.
(10)

Reducing the magnitude of σ yields a matrix Af with more zero entries, breaking the quadratic
dependency on the number of constraint points.

Properties of various basis functions are summarized in Tab. 1. We recommend using the regular
Gaussian kernel basis for standard-scale problems without multiple constraints at repeated anchor
points, and employing hypernet kernel and hybrid kernel for corresponding advanced scenarios. In
Sec. 4, we demonstrate the application of each type of basis function in concrete real-world examples.

3.3 Training Strategies

Regularization In many applications, we recommend incorporating an additional loss term to
regularize the condition number of the matrix Af during optimization. A low condition number
corresponds to a reduced level of matrix singularity and a smaller error bound in the solution vector,
which is crucial for satisfying hard constraints.
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Table 1: Basis functions summary.

Independent
basis

Constraint
basis

Hypernetwork
basis

Kernel
basis

(Dot-product)

Kernel
basis

(Gassian)

Hypernetwork
kernel basis
(Gassian)

Hybrid
kernel basis
(Gassian)

Learning capacity Poor Poor Fair Good Good Good

Linear independence Poor Fair Poor Good Good Good

Matrix sparsity Dense Dense Dense Dense Sparse Sparse Sparse

Params # independent
of constraints # No Yes Yes Yes Yes Yes Yes

Controllable sparsity No No No No No No Yes

Multiple constraints
at repeated anchor points Yes Yes Yes No No Yes Yes

(if using hypernet)

Transfer learning Since CNF is formulated as a collocation method with a learnable inductive
bias, we can pre-train the inductive bias of basis functions with custom configurations, such as
well-conditioning, smoothness, or more advanced variations. This allows us to apply the pre-trained
basis functions to unseen data, directly computing the weights with little or no additional training,
as the problem reduces to a near-collocation scenario. We demonstrate this by solving a partial
differential equation on an irregular grid in inference time and without further training; see Appendix.

Sparse solver Drawing inspiration from classical reconstruction techniques [23, 40], we introduce
a patch-based approach that leverages the restricted support induced by the hybrid kernel function
(Eq. 9) to solve the sparse linear system. For each evaluation point x, we construct a subset of basis
functions such that Ψi (x) ̸= 0 using the support criterion induced by κG. This enables us to create a
lower-dimensional dense submatrix (Af )κG

to solve for the weights of only the nonzero items so
that the size of the system is sufficiently small to fit within the processor’s memory limitations.

4 Applications

For efficient adoption of CNF in real-world applications, we have developed a PyTorch framework
that abstracts the definition of the basis function, enabling users to conveniently define and experiment
with custom architectures. The framework also enables vectorized basis function operations for
highly efficient training and inference. Additionally, users have the flexibility to specify an arbitrary
linear differential operator constraint by providing a regular expression in LATEX. This can be
processed to compute the exact post-operation function evaluation via automatic differentiation,
thereby eliminating the need for manual execution. Further clarification of the features and usage of
our framework, along with illustrative examples, is provided alongside the code release.

With this framework, we leverage CNF in four real-world applications, utilizing distinct basis
functions tailored to the specific context of the problem. We elucidate and empirically demonstrate
the merits of the chosen basis function in each scenario. Our intention is to use these examples as a
guideline for selecting appropriate basis functions, which has been briefly summarized at the end of
Sec. 3.2. Apart from Sec. 4.1, which serves as a toy example, we demonstrate unique advantages or
state-of-the-art results achieved in each application when employing CNF.

4.1 Fermat’s Principle

Fermat’s principle in optics states that the path taken by a ray between two given points is the path
that can be traveled in the least time. This can be formulated as a constrained optimization problem:

argmin
C

∫
C

ds

v
s.t. ∂C = {p0,p1}, (11)

where ds is the differential arc length that the ray travels along contour C and v is the light speed
that varies along the contour due to the refractive index of the medium. The contour’s entry and
exit points ∂C are hard constraints and the contour is optimized to minimize the travel time

∫
C

ds
v .

We model the contour C as a collection of points from a parametric equation, i.e. C := {p(x) :=
β1f1(x) + β2f2(x) | x ∈ [0, 1]}. As there are in total two constraint points, we use two independent
quadratic polynomials {f1, f2} as basis functions. We chose polynomials over neural networks due
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Figure 1: The optical paths and travel
time before and after the optimization.
The constraints are strictly enforced
throughout the optimization.

Table 2: Quantitative evaluation of learning material appear-
ance representations. We evaluate each method by render-
ing the learned BRDFs with environment map illumination
and computing the mean and standard deviation of image
metrics across all materials in the MERL dataset [21].

RMSE×10−2↓ PSNR↑ SSIM↑
NBRDF [35] 1.57 ± 2.86 44.96 ± 11.55 .96 ± .07
FFN [37] 1.16 ± 1.36 44.72 ± 10.46 .98 ± .03
SIREN [34] 3.32 ± 3.05 33.43 ± 8.84 .93 ± .08
Kernel FFN 0.94 ± 1.16 46.32 ± 9.92 .98 ± .03
Kernel SIREN 0.60 ± 0.54 47.95 ± 7.99 .99 ± .01

to the simplicity of the problem. The weights {β1, β2} are solved differentially to fit hard constraints,
while the coefficients of the polynomials are learnable parameters that can be updated with respect to
the loss function. We show the results in Fig. 1 with an increasing refractive index along the Y-axis.

4.2 Learning Material Appearance

In visual computing, the synthesis of realistic renderings fundamentally requires an accurate descrip-
tion of the reflection of light on surfaces [11]. This is commonly expressed by the Bidirectional
Reflectance Distribution Function (BRDF), described by Nicodemus et al. [25], which quantifies the
ratio of incident and outgoing light intensities for a single material: fr(ωi,ωo), where ωi,ωo ∈ S2

are the incident and outgoing light directions.

Our aim is to learn a neural field Φθ(ωi,ωo) with parameters θ that closely matches the ground
truth BRDF fr(ωi,ωo),∀ωi,ωo ∈ S2. We constrain Φθ by selecting 100 sample pairs of (ω̂i, ω̂o),
where half of the pairs are uniformly sampled, and the other half of ω̂o are concentrated around the
direction of the perfect reflection of ω̂i. This means that the latter constraint points are situated around
the specular highlight, which contains high-frequency details that regular neural networks struggle
to learn [32, 31, 19, 35]. We illustrate these issues in Fig. 2, where we compare CNF, formulated
with a Gaussian kernel basis (Eq. 7), with SIREN [34] or FFN [37] as the encoder network, against
multiple state-of-the-art neural-based fitting approaches [34, 37, 35] for BRDF reconstruction. We
perform this evaluation on highly specular materials from the MERL dataset [21], with size-matching
networks for a fair assessment, and subsequently rendering a standard fixed scene; see Appendix for
the complete MERL rendering results. Following previous work [35], we train Φθ on 640k (ωi,ωo)
samples, minimizing L1 loss in the logarithmic domain to account for the large variation of BRDF
values due to the specular highlight, while enforcing the aforementioned hard constraints on (ω̂i, ω̂o):

argmin
θ

Eωi,ωo |Φθ(ωi,ωo)− log (fr(ωi,ωo) + 1) |

s.t. Φθ(ω̂i, ω̂o) = log (fr(ω̂i, ω̂o) + 1) .
(12)

We summarize the results computed over all MERL materials in Tab. 2, where CNF demonstrates
superior performance in learning material appearances with state-of-the-art accuracy; see Appendix
for additional evaluations and ablation studies.

4.3 Interpolatory Shape Reconstruction

The representation of shapes via neural implicit functions [15] has recently garnered much attention
[28, 2, 34]. Compared to traditional forms of representation such as point clouds, meshes, or voxel
grids, neural implicit functions offer a flexible and continuous representation capable of handling
unrestricted topology. In this section, we demonstrate how CNF can be applied to enforce exact
interpolation constraints on implicit shape representations, while retaining the ability to train the
field with geometry-specific inductive bias. Given an oriented point cloud P := {(xi,ni)}i∈I ,
our aim is to construct a continuous implicit function Φ(x) on the domain Ω whose 0-level-set
S := {p ∈ Ω | Φ(p) = 0} represents the surface of the geometry.

Exact normal constraints We first demonstrate how our framework can be utilized to learn an
implicit shape representation, while exactly interpolating both surface points and their associated
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Figure 2: Learned material appearance by enforcing hard constraints around the specular highlights.
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Figure 3: (a): Learning shapes from 2D point clouds (yellow points) with oriented normals (black
arrows) using CNF; black lines depict the zero level sets of the learned implicit field. The method
interpolates both exact point and normal constraints during initialization and throughout training,
yielding a plausible surface upon minimizing the Eikonal constraint across the field. (b): Surface
reconstruction of 3D point clouds containing 10,000 points.

normals. We conduct experiments in 2D, and formulate CNF with a hypernetwork kernel basis (Eq. 8),
as the problem involves both zero-order and higher-order constraints at repeated constraint points.
Note that this approach is the first to enforce exact normal constraints on a neural implicit field, as
prior works [34, 41] can only approximate the exact normal with a pseudo-normal constraint [39]. In
contrast, we constrain the implicit field such that Φ(xi) = 0,∀xi ∈ P and∇Φ(xi) = ni, ∀xi,ni ∈
P . Inspired by the geometrically motivated initialization [2], we use weights that are pre-trained to
represent the signed distance function (SDF) of a circle with the desired number of constraint points.
We found this placed the network in a more favorable starting position to produce plausible surfaces
under new constraint points. We then train the network to solve the Eikonal equation, following
previous work [15], via minimizing the quadratic loss function:

L = Ex (∥∇xΦ(x)∥ − 1)
2
, (13)

where the expectation is taken with respect to a uniform distribution over the domain Ω. As shown
in Fig. 3(a), CNF produces plausible surfaces to explain the point cloud, with the advantage of not
depending on manufactured offset points [39] to ensure the existence of a non-trivial implicit surface.

Large-scale constraints To demonstrate our hybrid kernel approach (Eq. 9) with the sparse solver
for handling large-scale constraints, we reconstruct 3D point clouds comprising 10,000 points
uniformly sampled over the surface. We set the support radius of the kernel to four times the average
nearest neighbor distance, and assign a constant value of 105 to regions of space with no support. The
reconstruction is obtained by adhering to the points and pseudo-normal constraints [39, 41] during
initialization, with no additional training required for the dense reconstruction to produce smooth
surfaces, as shown in Fig. 3(b); see Appendix for additional results and evaluations.
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Figure 4: Left: Ground truth advection function
and skewed input grid with σ = 0.1 perturbation.
Right: Error maps for simple and skewed RBF.

Table 3: Solving the 1D advection PDE (β = 0.1)
with a simple (left) and skewed (right) RBF kernel.
Both versions were optimized by our framework.
We can see the benefit of using the skewed RBF
at various perturbation levels.

Pertubation RBF Skewed RBF

RMSE nRMSE RMSE nRMSE

0.01 0.0086 0.0149 0.0061 0.0116
0.05 0.0252 0.0442 0.0024 0.0043
0.10 0.1484 0.2534 0.0344 0.0651
0.50 0.0170 0.0297 0.0167 0.0282
1.00 0.2830 0.4838 0.0231 0.0365

4.4 Self-tuning PDE Solver

Our framework can also be applied to solve partial differential equations (PDEs). If using fixed radial
basis functions (RBFs) without optimization, CNF simplifies to the Kansa method [18], a type of
spectral collocation method where partial derivatives are enforced via hard constraints. Compared
to the classical mesh-based numerical PDE solvers such as the finite difference method (FDM) and
finite element method (FEM), Kansa has the advantage of offering an analytical and closed-form
solution function across the entire domain, and solving a PDE on an irregular grid without requiring
interpolation or meshing, i.e. grouping the points into triangles or quadrilaterals. Meshing on an
irregular grid proves to be extremely difficult and severely harms the accuracy of these methods [9].
However, one disadvantage of the Kansa method is the difficulty in choosing the appropriate RBF
kernel [5]. When using a Gaussian kernel, a large bandwidth may lead to an ill-conditioned system,
while a small bandwidth may break the global smoothness of the solution function. This is especially
challenging when the number or dimensionality of collocation points is large, or when the points are
closely or irregularly spaced, making it difficult to manually fine-tune the hyperparameters of the RBF.
Our method addresses this limitation by supporting the automatic fine-tuning of hyperparameters,
optimizing both the conditioning and global smoothness of the solution:

argmin
θ

ω1 cond(Afθ ) + ω2

∫
|∇fθ(x)| dx︸ ︷︷ ︸
total variation

s.t. Fj [f ] (x) = gj (x) ∀j , (14)

where cond(Af ) is the condition number of the linear system and Fj corresponds to the PDE
constraints along with the initial and boundary conditions. We demonstrate this approach by solving
the following 1D advection equation [36] on an irregular grid:

∂u(x, t)

∂t
+ β(x)

∂u(x, t)

∂x
= 0, x ∈ (0, 1) , t ∈ (0, 1) ,

u(x, t = 0) = u0(x), x ∈ (0, 1) ,
(15)

where u0(x) represents the initial state of the system. We sample 32 points on the boundary t = 0
and 31× 32 points on the space-time domain (0, 1)× (0, 1), which amount to a total of 1024 points,
as hard constraints. The non-boundary samples, shown as red crosses in Fig. 4 are generated by a
uniform grid perturbed by Gaussian noise. In this example, we cannot apply a single unified RBF
bandwidth to fit such an irregular grid. Rather, we design a skewed radial basis function:

κ′
i (xi,x) = exp

(
−1

2
(x− xi)

TΣi
−1(x− xi)

)
, (16)

where x = (x, t) and Σi = diag([ai, bi]) is a per-basis learnable covariance matrix. Our results
in Tab. 3 show that using the skewed RBF kernel and optimizing per-basis parameters consistently
improves performance on the irregular grid; see Appendix for additional results and evaluations.
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The skewed RBF is essentially another variant of the Gaussian kernel (Eq. 7) but without the neural
encoder. We recommend using neural networks only when the behavior of the basis functions to
be optimized away from the constraint points is highly complex, as seen in the BRDF and shape-
reconstruction examples. For problems where the desirable priors are as simple as linear independence
and smoothness, such as solving PDEs, our proposed skewed RBF demonstrates sufficient capacity.

5 Discussion

Training and inference efficiency CNF is highly efficient in training (minutes) and inference
(seconds); see Appendix for detailed reports, learning curves, and additional evaluations.

Theoretical analysis We offer a theoretical basis for CNF’s superior performance:

Comparison with general solvers Most numerical methods for constrained optimization in scientific
computing, including the popular SQP [26] and the more recent DC3 [12], adopt the following
formulation for the constrained optimization problem:

argmin
θ

L (θ) s.t. h1 (θ) = 0, h2 (θ) = 0, ... (17)

where θ denotes the learnable parameters. For problems where θ represents the weights of a deep
neural network, these constraints become extremely high-dimensional and nonlinear, especially as the
number of constraints increases. In this formulation, a constraint is only linear when h(θ) is a linear
function of θ. Therefore, linearity no longer holds as h(θ) involves constraints of a neural function.
In contrast, our formulation (Eq. 1, 3, and 5) only requires the operator F to be linear, while the
neural function f can still be highly nonlinear with respect to θ. Hence, CNF significantly reduces the
problem’s complexity, enabling the explicit determination and promotion of a solution’s existence.

Comparison with soft constraint approaches While there have been attempts to model constraints
by overfitting a neural function trained with regression [34, 37], CNF offers several clear advantages
over such soft approaches. Most notably, CNF satisfies hard constraints without the need for training,
whereas soft approaches may require extensive training to approximate constraints. Furthermore,
despite extensive training, soft approaches may still fail to satisfy hard constraints due to inherent
limitations in their learning capacity. In contrast, CNF provides a robust guarantee of hard constraint
satisfaction within machine precision error, provided the condition number is small. Another drawback
of employing soft approaches becomes evident when effectively imposing priors. The incorporation
of priors often involves introducing additional terms to the loss. Consequently, a tradeoff arises
between the constraints and the prior, which is controlled by a hyperparameter. In contrast, CNF
offers a clean solution without such a tradeoff. With CNF, the inclusion of priors does not compromise
hard constraints, thereby maintaining a harmonious balance among various aspects of the model.

Generalization of NKF and PDE-CL CNF generalizes prior works NKF [41] and PDE-CL [24]. NKF
employed a dot-product kernel basis for 3D reconstruction, while PDE-CL used a constraint basis to
solve PDEs. Yet, these bases exhibit suboptimal performance in terms of linear independence and
learning capacity. Their use of dense matrices also renders them impractical for large-scale problems.
Moreover, the dot-product kernel used by NKF cannot address strict higher-order constraints; see
Appendix. We propose several novel variants of basis functions to enhance linear independence,
learning capacity, and matrix sparsity, with strategies for analyzing and facilitating convergence. Our
methodology unifies NKF and PDE-CL, extending their formulations to a broader theoretical context.

Extension to nonlinear operator constraints Although we restrict the operator to be linear in
this work, CNF can be extended to accommodate nonlinear operators by solving a nonlinear version
of Eq. 3, provided that the solver is differentiable. This could be accomplished through the use of
implicit layers [13], which we leave as future work.

6 Summary

We introduce Constrained Neural Fields (CNF), a method that imposes linear operator constraints on
deep neural networks, and demonstrate its effectiveness through real-world examples. As constrained
optimization is a fundamental problem across various domains, we anticipate that CNF will unlock a
host of intriguing applications in fields such as physics, engineering, finance, and visual computing.
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Neural Fields with Hard Constraints
of Arbitrary Differential Order

Appendix

In this appendix, we provide additional evaluations of various designs of neural basis functions
(Sec. A), along with additional details and results regarding their applications in material appearance
learning (Sec. B), interpolatory shape reconstruction (Sec. C), and the self-tuning PDE solver (Sec. D),
which also includes a transfer learning example (Sec. D.3).

A Neural Basis Functions

A.1 Issues with the Neural Kernel Basis Function

We illustrate how, when using the neural kernel basis function (Eq. 7), enforcing multiple linear
operator constraints at the same anchor point would result in repeated basis functions Ψi ≡ Ψj ≡
κ (ϕ (xanchor) , ϕ (x)), consequently leading to an ill-conditioned linear system. Recall Eq. 6:

F1 [Ψ1] (x
1
1) F1 [Ψ2] (x

1
1) · · ·

F1 [Ψ1] (x
1
2) F1 [Ψ2] (x

1
2) · · ·

.

.

.
.
.
.

. . .
F2 [Ψ1] (x

2
1) F2 [Ψ2] (x

2
1) · · ·

F2 [Ψ1] (x
2
2) F2 [Ψ2] (x

2
2) · · ·

.

.

.
.
.
.

. . .




β1
1

β1
2

.

.

.
β2
1

β2
2

.

.

.

 =


g1(x

1
1)

g1(x
1
2)

.

.

.
g2(x

2
1)

g2(x
2
2)

.

.

.

, (18)

where xj
n indicates the n-th point in Sj such that Fj [f ] (x) = gj (x) ,∀x ∈ Sj . When applying

the neural kernel basis function Ψi (x) = κ (ϕ (xi) , ϕ (x)) = κN (xi,x), the above matrix equation
becomes: 
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Without loss of generality, assuming f : R 7→ R; F1 is identity map; F2 is differentiation; and
S1 = S2 = {x0} (same anchor point for both constraints), the matrix equation reduces to:[

κN (x0, x0) κN (x0, x0)
κ′
N (x0, x0) κ′

N (x0, x0)

]
︸ ︷︷ ︸

singular

[
β1

β2

]
=

[
g1(x0)
g2(x0)

]
. (20)

Therefore, the system is ill-conditioned as the matrix has repeated columns. NKF [41] uses this basis
function with a dot-product kernel and thus cannot enforce strict constraints simultaneously on both
the points and their normals in shape reconstruction, which we further evaluate in Sec. C.1.1. We also
discovered significant disadvantages of using a dot-product kernel as opposed to a Gaussian kernel.
We elaborate on these findings in Sec. A.2 and Sec. B.2.

A.2 Basis Function Ablation

Choosing the appropriate basis function for an application requires consideration of two fundamental
properties of basis functions: their linear independence and learning capacity. Linear independence is
crucial for satisfying hard constraints, whereas learning capacity is key for fitting the inductive bias.
In this ablation study, we train various neural basis functions discussed in Sec. 3.2 to regularize the
condition number of the matrix Af , which is used to constrain a 2D function over 4096 points. A
large condition number often corresponds to a substantial error in satisfying hard constraints. This
study offers insights into how each design is prone to the ill-conditioning of the linear system. For
a fair comparison, we use the same architecture for all neural encoders—a 2-layer MLP with Tanh
activations and a total of 1.3M trainable parameters.
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As shown in Fig. 5, the Gaussian kernel basis is well-conditioned throughout training, while all other
methods struggle to reduce the condition number.

In Sec. B.2, we also discovered that the Gaussian kernel basis, when constrained, exhibits the superior
learning capacity for fitting the BRDF. In contrast, the performance of other methods was found to be
extremely poor. Note that the dot-product kernel and the constrained layer are the basis functions
used in [41] and [24], respectively. Based on our findings, we strongly recommend employing the
Gaussian kernel basis function when performing constrained optimization for neural fields.

Figure 5: Condition number of different neural basis functions in the following order (left to right):
constraint layer (pink), hypernet basis (yellow), dot-product kernel (blue), and Gaussian kernel (black)
throughout training.

B Learning Material Appearance

B.1 Experiment Details

In the experiments on material appearance fitting, all neural networks have a single hidden layer
and we controlled the network width so that all methods have roughly 200k parameters for a fair
comparison. Both baseline FFN and kernel FFN use a frequency of 16, meaning that the inputs are
mapped to encodings of size 38 before feeding to the MLP. The kernel FFN model uses FFN as an
encoder which has a width of 248 and outputs a latent vector of dim 512. The baseline FFN MLP has
a width of 718. The kernel SIREN model has a width of 256 and also outputs a latent vector of size
512. The baseline SIREN and NBRDF have a width of 442. We use Adam optimizer with a learning
rate of 5× 10−4 for all methods except for SIREN baseline and kernel SIREN, which use a learning
rate of 1× 10−4 for more stable performance.

For constraint points, we sample the angles θh, θd and ϕd as in Rusinkiewicz’s parameterization [33].
A figure of those angles is shown in Fig. 6. We sample θd and ϕd uniformly at random within range
[0, π/2] and [0, 2π] respectively. Half of the θh are also sampled uniformly at random within [0, π/2],
whereas the other half are sampled from a Gaussian distribution with a mean of 0 and a standard
deviation of 0.1. Those angles are then converted to 6D in-going and out-going directions as inputs
to the networks.

B.2 Ablation Studies

In Tab. 4 and Fig. 7, we report the ablation results of fitting the BRDF with constraints, including
the dot-product kernel using SIREN as the encoder, the hypernet basis with SIREN as the main
network, and the constrained layer integrated into SIREN. The hypernet basis uses a SIREN that
has a width of 442 as the main network, and a ReLU MLP with one hidden layer with 100 nodes as
the hypernetwork. The constraint layer has a width of 319. The hypernet basis and constraint layer
produce extremely poor results and are completely unable to perform this task. While the dot-product
kernel performs better than both the hypernet basis and the constraint layer, it still significantly
underperforms when compared to the Gaussian kernel.

B.3 Learning Curves

In Fig. 8 and Tab. 5, we report the learning curves, training times, and inference times for various
approaches in the BRDF reconstruction experiment. CNF with a Gaussian kernel basis outperforms
other approaches in terms of convergence, while maintaining similar training and inference efficiency.
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Figure 6: Angles for sampling
constraint points for material
learning. Figure from [33].

Table 4: Ablations on material appearance learning task. All methods
here are based on SIREN [34].

RMSE×10−2 PSNR SSIM

Hypernet Basis 39.02 ± 16.92 9.74 ± 6.41 0.70 ± 0.06
Dot-product Kernel 9.49 ± 11.32 28.33 ± 13.22 0.86 ± 0.13
Constraint Layer 41.85 ± 14.14 8.37 ± 4.37 0.70 ± 0.06
Gaussian Kernel 0.60 ± 0.54 47.95 ± 7.99 0.99 ± 0.01
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Figure 7: Ablation on the material appearance fitting.
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Figure 8: Learning curves of various approaches
for BRDF reconstruction.

Table 5: Training and inference time (in seconds)
of various approaches for BRBF reconstruction.

Method Training Inference

SIREN [34] 578.89 0.3348
NBRDF [35] 19.702 0.2966
Constraint layer [26] 577.49 0.2539
Gaussian kernel 1101.3 0.7284
Hypernet basis 2997.5 0.6933
Hypernet kernel 1784.1 1.1692

B.4 Full Results

The complete rendering results for all materials included in the MERL dataset [21] are shown
in Fig. 9, Fig. 10, Fig. 11, Fig. 12, Fig. 13, and Fig. 14, and are available on the project page
https://zfc946.github.io/CNF.github.io/. We also show the SSIM errors along with the
renderings.
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C Interpolatory Shape Reconstruction

C.1 Experiment Details

C.1.1 Exact Normal Interpolation

In the experiments on exact normal interpolation, the shapes are represented by the level sets of our
hypernet kernel. The encoder of our hypernet is constructed of an MLP, which has a single hidden
layers containing 1200 hidden units. Between each layer we use a softplus activation, with β = 10
and the encoder maps to a feature space of size 800. We use a Gaussian kernel which is initialized
with a standard deviation of 50. For all experiments shown, we use a maximum of 50 epochs, a
learning rate of 10−5, and the Adam optimizer. To extract the zero-order level set of the implicit
representation we use the Marching Cubes algorithm, on a uniform grid sampled at a step size of 1/60.
For all shapes except the circle, we pretrain the weights of the hypernet encoder to first represent a
circle with uniformly sampled constraints equal to the number of constraints of the target shape. The
Eikonal loss function defined in Eq. 13 is defined on the domain Ω = [−2, 2]× [−2, 2], and at each
iteration we use 1000 points randomly sampled from Ω.

C.1.2 Large Scale Constraints

In the demonstration of our patched-based approach, we reconstruct point clouds with 10,000
uniformly sampled points. Our current implementation of the patch-based solver doesn’t support the
hypernet kernel, so we regularize the reconstruction problem using a finite difference scheme [39, 42]
and impose the point constraints of Φ(xi + εni) = ε and Φ(xi− εni) = −ε, where we set ε = 0.01
for all reconstructions. As well as the tunable support size, our implementation also places a hard
limit on the total number of constraints that are considered for each query point; for all experiments
we limit the nearest neighborhood size to 60. Furthermore, as our current implementation does
not support tensor batching, the run-time for the patch-based approach, with a marching cubes grid
resolution of [160× 160× 160], is approximately 8 hours.

In the context of sparse solvers, we acknowledge that our current implementation is not completely
vectorized for fast GPU execution with batched training points, although the operation of the solver
itself is highly efficient (execution within seconds). This limitation primarily arises due to the limited
support of sparse matrix operations in popular ML frameworks. However, it is crucial to emphasize
that this constraint does not reflect a shortcoming in CNF’s design. We hope to attract more attention
from the ML community to enhance support for sparse matrix operations within the frameworks to
resolve this implementation constraint.

C.2 Evaluation of Normal Interpolation

To evaluate the merit of our normal interpolation approach for shape representation, we compare
shape representation using our exact gradient constraints and pseudo-normal constraints as used in
NKF [41] and SIREN [34]. We use the same hypernet kernel approach for all experiments, with the
same training setup as Sec. C.1.1, except that we do not pretrain the hypernet encoder to represent a
circle. For the pseudo-normal constraints, we set the value of ϵ = 0.1.

In Fig. 15 we show a visual comparison between the reconstructions achieved when using pseudo-
normal constraints and exact gradient constraints. To quantitatively assess each approach we also
report the mean normal error:

En =
1

N

N∑
i=1

∥n(xi)− n̂(xi)∥, (21)

where n(xi) = ∇xΨ(xi) and n̂(xi) is the ground truth normal value at xi. The results are tabulated
in Table 6.

As is evident both from our qualitative visualization and quantitative evaluation, CNF is able to
impose exact normal constraints on neural implicit surfaces during initialization and throughout
training (to within floating point accuracy).
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SIREN (∗) Pseudo-normal (†) Pseudo-normal (∗) Exact normal (†) Exact normal (∗)
Circle 1.71× 10−2 0.776 0.499 4.516× 10−6 1.083× 10−6

Line 1.02× 10−3 3.817 1.589× 10−2 2.737× 10−6 6.963× 10−6

Triangle 3.21× 10−1 0.466 0.238 7.371× 10−5 6.292× 10−6

Diamond 1.05× 10−1 1.588 0.277 1.450× 10−5 3.368× 10−6

Table 6: Evaluation of error in the normal vector of the implicit field, as defined in Eq. 21. The
symbols † and ∗ refer to measurements taken on initialization and after training the field, respectively.

Figure 15: We assess the effectiveness of our precise normal interpolation technique for shape
representation. We present the normal vector of the encoded implicit surface (red arrow) before and
after training to minimize an Eikonal constraint, for fields bound by pseudo-normal constraints and
our exact constraint method. We compare with the ground-truth shape normal vectors (black arrow);
our approach produces a surface that faithfully represents both the constraint points and the constraint
normal vector.
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C.3 Learning Curves

In Fig. 16 and Tab. 7, we report the learning curves, training times, and inference times for various
approaches in the experiment on interpolatory surface reconstruction with exact normal constraints.
CNF outperforms prior work in terms of convergence, while maintaining similar training and inference
efficiency.

Figure 16: Learning curves of various approaches for surface
reconstruction with exact normal interpolation.

Table 7: Average training and inference
time (in seconds) for surface reconstruc-
tion with exact normal interpolation.

Method Training Inference

Hypernet kernel 242 0.0663
SIREN [34] 148.4 0.1437

D Self-tuning PDE Solver

D.1 Experiment Details

We selected 1D advection (described in Eq. 15 in Sec. 4.4) as a demonstration of the effectiveness of
CNF in solving partial differential equations (PDEs). This choice was made due to its simple, linear
form. Additionally, one of the advantages is that the ground truth function has a convenient analytical
expression, eliminating the need for iterative solvers for validation. Specifically, our objective is to
recover the following function:

u(x, t) = sin 2π(x− βt) , x ∈ (0, 1) , t ∈ (0, 1) . (22)

D.2 Learning Curves

In Fig. 17 and Tab. 8, we report the learning curves, training times, and inference times for various
approaches in the PDE experiment. We include SIREN [34] as an additional baseline for evaluation.
CNF outperforms SIREN in terms of convergence, while maintaining similar training and inference
efficiency.
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Figure 17: Learning curves of various approaches for
self-tuning PDE solver.

Table 8: Training and inference time (in sec-
onds) of various approaches for self-tuning
PDE solver.

Method Training Inference

SIREN [34] 36.7 0.0087
RBF 160.7 0.0056
Skewed RBF 265.6 0.0061

D.3 Transfer Learning

In Sec. 4.4, we detail how CNF can automatically fine-tune the hyperparameters of the skewed RBF
on an irregular grid. Here, we illustrate that, given optimized hyperparameters of the skewed RBF for
a particular grid, we can employ the resulting skewed RBF to directly solve a different advection
equation (such as a different initial condition) at inference time, without additional training, if the
grid remains the same.

For demonstration, we incrementally add a shift, µ, to the initial condition of the advection equation,
starting from small to large shifts:

u0(x) = sin (2πx) + µ , x ∈ (0, 1) . (23)

The hyperparameters of the skewed RBFs were trained solely when µ = 0. When the initial condition,
u0(x), is shifted, the new advection equation can be solved with the same kernel at inference time.
No further training was conducted; see Tab. 9 for the results.

The efficacy of this approach can be explained by our perspective of formulating the constrained
optimization problem as a collocation problem with learnable inductive bias. Once the preferred
inductive bias away from the collocation points is obtained, solving a PDE at the same collocation
points is reduced to a pure collocation problem, which requires minimal to no further training.

Table 9: Demonstration of transfer learning with the skewed RBF kernels. The kernels were initially
trained exclusively for a 1D advection function with no shift (first row). Subsequently, their transfer
learning capabilities were tested at varying shifts. No training was conducted other than for the first
row.

Shift Random init Pre-trained
µ Skewed RBF Skewed RBF

RMSE nRMSE RMSE nRMSE

0 0.0127 0.0227 0.0070 0.0129
1 0.0460 0.0736 0.0049 0.0074
10 0.5788 0.0594 0.0177 0.0018

100 5.8613 0.0587 0.2221 0.0022
1000 60.143 0.0602 2.3113 0.0023
10000 635.78 0.0636 23.844 0.0024
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Figure 10: Learned material appearance.
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Figure 11: Learned material appearance.
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Figure 12: Learned material appearance.
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Figure 13: Learned material appearance.
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