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ABSTRACT

Dense video captioning requires solving the challenging tasks of temporally local-
izing events and generating descriptive captions within long video sequences. Ex-
isting methods often struggle to capture the evolving context within video streams
and to produce accurate temporal alignment. To address this, we propose an online
retrieval-augmented approach that processes video segments incrementally while
dynamically retrieving relevant action phrases from a pre-constructed action-text
corpus. This enriches the contextual information for both the video representation
and the subsequent text decoder, improving the caption generation. Additionally,
we present image-based simulated video pretraining, which mitigates the reliance
on extensive video datasets by using image-level text-paired data aligned with the
online video captioning format. Our experiments on the ViTT, YouCook2, and Ac-
tivityNet benchmarks demonstrate that our model significantly outperforms both
existing global and online methods, validating its effectiveness.

1 INTRODUCTION

As video content continues to grow exponentially, the need for automatic video understanding has
become increasingly critical. Dense video captioning (Zhu et al., 2022; Wang et al., 2021a; Yang
et al., 2023; Wu et al., 2024) involves generating detailed, temporally localized captions for multiple
events or actions in long video sequences. This capability is crucial for various applications includ-
ing video retrieval, summarization, and accessibility. Traditional video captioning approaches often
generate a single, global caption for an entire video, missing the temporal granularity required to
describe and localize specific events as they occur.

Recent work (Zhou et al., 2024) introduced the concept of online dense video captioning, where
video segments are processed incrementally as they become available. This allows captions to be
generated progressively, addressing the challenge of handling long video sequences by breaking
them into manageable segments, thereby improving dense video captioning performance. Yet, even
with this advancement, challenges remain in effectively capturing and utilizing the evolving context
in video streams, which is critical for generating contextually relevant captions for each segment.

To address these challenges, we propose Actions Inspire Every Moment (AIEM), a novel online
retrieval-augmented approach for dense video captioning. AIEM enhances dense video captioning
by dynamically retrieving and integrating relevant action phrases from a pre-constructed action-
text corpus as it processes video segments in an online manner. This integration enriches video
representation and caption generation by providing the visual encoder and text decoder with evolving
contextual information, resulting in more accurate and contextually relevant captions. Notably, we
demonstrates that retrieving concise action phrases is more effective than using full captions, which
can be redundant or less focused. Furthermore, to address the scarcity of large-scale dense video
caption datasets, we explore an image-based simulated video pretraining, which leverages image-
text paired data to align pretraining with the online video captioning format and improve model
performance. Experiments on the ViTT, YouCook2, and ActivityNet benchmarks show significant
performance gains, highlighting the effectiveness of our approach.

2 RELATED WORK

Dense video captioning. Dense video captioning is essential for video understanding, provid-
ing detailed descriptions of multiple events with their temporal localization. Unlike conventional
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Figure 1: Dense video captioning results of our AIEM method. Ground truth captions and their timestamps
(green), our non-augmented baseline (gray), and action-augmented model prediction (blue) with retrieved ac-
tion phrases in blue boxes. Our model generates more accurate and temporally aligned captions, demonstrating
the benefit of dynamic action retrieval and integration.

methods that produce a single embedding or caption per video (Wu & Krahenbuhl, 2021; Sun
et al., 2022; Ashutosh et al., 2023; Gao et al., 2023; Cheng & Bertasius, 2022; Islam & Berta-
sius, 2022; Lin et al., 2022; Zhang et al., 2019; Ashutosh et al., 2023), dense video captioning offers
temporally aligned captions, which is particularly beneficial for long, untrimmed videos in tasks
such as retrieval, summarization, and accessibility. Approaches vary, with some using a two-stage
method to detect segment boundaries before generating captions (Iashin & Rahtu, 2020), while
others jointly predict boundaries and captions (Wang et al., 2018; 2021a; Zhang et al., 2022; Zala
et al., 2023). Vid2Seq (Yang et al., 2023) introduces a sequence-based model, combining event
captions and timestamps into a unified sequence for efficient processing. Recent multimodal and
video LLMs (Lin et al., 2023; Song et al., 2024; Zhang et al., 2023; Li et al., 2023; Ren et al., 2024)
typically process videos offline using short selected clips. While some of them are explored for
dense video captioning, they often underperform compared to state-of-the-art methods. Most exist-
ing models typically rely on global, offline video processing, requiring access to the entire video and
facing challenges with contextual relevance and temporal localization, especially in long videos. Our
work focuses on online methods, with a particular emphasis on integrating online action retrieval to
improve temporal alignment and captioning accuracy as the video is processed incrementally.

Online dense video captioning. Online video understanding, including tasks like online action
detection (De Geest et al., 2016; Wang et al., 2021b; Kondratyuk et al., 2021; Zhao & Krähenbühl,
2022; Zhao et al., 2023) and online temporal action localization (Singh et al., 2017; Buch et al.,
2017; Kang et al., 2021), focuses on predicting actions and their timing without access to future
frames. This approach enables dynamic caption generation, making it more scalable for handling
long and complex videos. Zhou et al. (2024) pioneered online dense video captioning demonstrat-
ing its benefits, while Chen et al. (2024) extended this idea to video-based dialogue. However,
current online methods still face challenges in capturing dynamic context and recognizing intricate
actions and events using only vision-based models. Our work introduces retrieval augmentation to
incorporate timely and relevant external information about actions an events, improving contextual
understanding and captioning accuracy in online settings.

Retrieval augmented methods. Retrieval-augmented methods, initially popular in NLP, have
been widely used in vision-language tasks like video retrieval (Zhang et al., 2021; Jing et al., 2023;
Chen et al., 2023), pretraining (Xu et al., 2021), and captioning (Xu et al., 2024; Kim et al., 2024).
Most video captioning approaches rely on global, offline retrieval, where segment-level information
is merged into a global context for captioning. However, this can limit temporal precision, as the
global context may not align well with the dynamic nature of video content.

In this work, we propose a dynamic online retrieval mechanism coupled with autoregressive model-
ing, where action phrases are retrieved and integrated incrementally at each time step as the video
streams. This autoregressive integration allows for a causal, segment-by-segment adaptation, im-
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proving temporal alignment and caption quality by incorporating timely information from both cur-
rent and previous segments By synchronizing the retrieval with the video’s progression, our ap-
proach aims to improve upon the global retrieval methods. Unlike existing methods that use either
text prefixing or embedding fusion, our approach integrates retrieved information as both a prefix
to the text decoder and as embeddings fused with visual features. Additionally, We simplify action
phrases into compact forms, such as action-object pairs, instead of using full captions as in other
retrieval-augmented methods. This distills lengthy captions into compact action phrases, enhancing
both efficiency and performance by focusing on essential information.

3 METHOD

3.1 PRELIMINARIES

Captioning model. Our captioning model follows the standard setup of a vision encoder followed
by a text decoder. We utilize the CLIP model (Radford et al., 2021), pretrained on the LAION-
2B (Schuhmann et al., 2021) dataset. Specifically, we adopt CLIP’s Vision Transformer (ViT) as the
visual encoder and the 12-layer Transformer as the text decoder. Since the original CLIP text model
is designed for contrastive learning rather than text generation, we modify it by applying causal
attention masking across all layers and further pretrain it for the image captioning task using the
LAION-2B dataset. We keep the vision encoder frozen during the captioning training to preserve
the original vision-text alignment from CLIP’s pretraining.

Dense video captioning. Given a video V ∈ RT×H×W×3, our goal is to generate a set of tem-
porally localized captions: {( [s1][e1][caption text1] ), ..., ( [sn] [en] [caption textn] )}, where each
caption is associated with start [s] and end [e] times that mark the event boundaries within the video.
Inspired by Vid2Seq (Yang et al., 2023), we adopt their data format of representing temporal infor-
mation as discrete vocabulary tokens. The start and end times [s] and [e] are included as text tokens
within the caption sequence, enabling both temporal and caption information to be encoded in the
text format. This avoids the need for separate output heads for time prediction and text generation.

Autoregressive modeling for online video captioning. Unlike global offline methods like
Vid2Seq (Yang et al., 2023), which caption the entire video at once and become computationally
expensive for long videos, Zhou et al. (2024) introduce an online approach where captions are gen-
erated incrementally as frames are processed. Building on this concept, our approach employs an
autoregressive online model that processes video segment-by-segment, enhancing both temporal
alignment and contextual coherence across current and past segments.

An overview of our model is illustrated in figure 2. We divide the video V into S segments process
them incrementally, simulating an online scenario where segments become available over time. Each
segment contains L frames (T = S ×L) which are processed by the visual encoder, e.g. ViT which
outputs M tokens of dimension D per segment. A token reduction Transformer then reduces the
segment features by sampling N tokens (N � M ), resulting in a tensor of shape N × D. As
new segments are processed, let S′ denote the number of segments streamed up to the current time
step, where S′ ≤ S. The outputs of all available segments are stacked as S′ × N × D. On top of
this, we apply an autoregressive Transformer with causal attention along the segment axis (S-axis).
This incorporates information from both current and preceding segments, generating an evolving
and contextualized video representation as segments are processed incrementally.

Once the autoregressive Transformer generates a contextualized video representation, the text de-
coder generates captions for each segment independently. Instead of concatenating all event captions
into one long sequence, our method aligns captions with their respective video segments. During
training, the target text for each segment is determined by the captions whose end times fall within
the segment’s temporal interval. This ensures that captions are accurately associated with the events
from each segment. This allows each segment to include events that span multiple segments, with
the start time [s] potentially from any prior segment and the end time [e] within the current segment
(see figure 1). For a segment without events, we label it as “[BOS][EOS]” using Beginning/End-
Of-Segment tokens. For a segment with multiple actions, captions are combined sequentially with
corresponding start and end times as “[BOS][s1][e1][caption text1][s2][e2][caption text2] ... [EOS]”.
This segment-by-segment processing allows for the online generation of temporally localized cap-
tions as each segment is processed, avoiding the need to generate all captions at the end of the video.
It also makes the approach efficient and well-suited for the online dense video captioning task.
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Figure 2: Overview of AIEM: Actions Inspire Every Moment framework for online action-augmented dense
video captioning. Our model processes video segments incrementally, dynamically retrieving relevant action
phrases from a pre-constructed text corpus. The top-k retrieved action phrases are integrated into both the visual
encoder and text decoder for each segment, enhancing contextual information through fused embeddings and
prefixing to the text decoder (shown in yellow).

3.2 ONLINE ACTION AUGMENTED DENSE VIDEO CAPTIONING

We present an approach that enhances online dense video captioning by dynamically retrieving and
incorporating relevant action priors for each video segment. This provides additional context to the
video representation and text decoder, improving the performance of dense video captioning.

Action text corpus construction. We first construct a corpus of action phrases to serve as contex-
tual priors during the dense video captioning process. These action phrases are designed to capture
the key actions or events in each video segment while also identifying the relevant objects

To construct this action phrase corpus, we collect captions from the training splits of existing video
captioning datasets, such as ViTT, YouCook2, and ActivityNet. Importantly, we only utilize the
text captions, excluding the corresponding video frames. This approach enables us to extend be-
yond video-text paired datasets and incorporate diverse action descriptions from text-based sources,
allowing for a larger set of action phrases.

To explore a broader and less domain-specific corpus, we use the HowTo100M dataset (Miech et al.,
2019), which contains instructional videos with transcribed speech subtitles. Since HowTo100M is
not specifically designed for dense video captioning, it offers a more generic set of action descrip-
tions. Again, we only use the subtitle text, discarding the video content. Our experiments show that
this more generic corpus performs comparably well.

Unlike existing works that use raw video captions (Xu et al., 2024) which can be lengthy and less
focused, we propose summarizing them into concise action phrases. We use a publicly available
language model, Gemma (Team et al., 2024). It is prompted to extract key actions from raw captions,
in the form of an action-object pair, e.g., “baking ham”. An example prompt is: Your goal is to
summarize the input sentence using as few words as possible. Focus on the words describing actions
or events. Use singular nouns, avoid articles and numeric terms. Respond in the format of <action
verb (ing)> <target object (if any)>. Input: {raw caption}. Answer:

This approach ensures that the resulting action phrases are concise and focused, filtering out ir-
relevant details from the original captions. By summarizing captions in this way, we enhance the
effectiveness of vision-text retrieval, leading to more accurate captioning results. Our experiments
show that these simplified action phrases outperform the use of full captions. We collect 30,000
action phrases in total and precompute their text embeddings.
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Precomputation of text embeddings. To optimize the retrieval of action phrases during training
and inference, we precompute the text embeddings for the collected action phrases. This step is
performed once at the precomputation stage, ensuring efficient retrieval without redundant embed-
ding computations during the video captioning process. For this precomputation, we use the frozen
instance of the CLIP text model, which retains its original contrastive learning capabilities, as op-
posed to the captioning-trained instance described in section 3.1. This frozen model is solely used
for precomputing text embeddings and does not participate in the actual captioning process. The
vision encoder is also kept frozen throughout the dense video captioning training. Once the text
features are extracted from each action phrase, they are globally pooled into a single embedding.

Online retrieval and integration of action phrases. Our vision encoder processes each video
segment Vi ∈ RL×H×W×3 in an online manner. After the visual features are extracted (before
token reduction), global pooling is applied to represent the segment as a single embedding. The
pooled segment embedding is then compared to the precomputed text embeddings of the action
phrases using cosine similarity, selecting the top-k phrases based on their alignment. This ensures
that the most relevant actions or events are identified for each video segment.

We integrate the retrieved action phrases into the captioning process in an online manner using sev-
eral approaches. Note that each approach involves training a new model. 1) Prefixing the text
decoder: The retrieved action phrases are added as natural language prefixes to the text decoder.
This approach offers direct guidance on the key actions or events in each video segment, improving
caption accuracy and relevance by providing the decoder with explicit information about the seg-
ment’s content. 2) Embedding fusion: The text embeddings of the retrieved action phrases are fused
with the visual embeddings after the token reduction and before the autoregressive Transformer (see
section 3.1). The top-k text embeddings of the retrieved action phrases are average-pooled into one
embedding, then concatenated with the token-reduced visual embeddings. This creates enriched
multimodal features that offer a more comprehensive representation of each segment. The fused
features are then processed by the autoregressive Transformer, enabling each segment to incorporate
both visual and retrieved text information, along with the preceding sequences of such multimodal
information. This results in a temporally and causally aware video representation, which is particu-
larly important for dense video captioning, where understanding the temporal span and boundaries
of events is critical. 3) Combined approach: Lastly, we employ a hybrid method that combines
both prefixing and embedding fusion. The action phrases serve as both natural language prefixes for
the text decoder and fused embeddings with the visual features. This strategy leverages the strengths
of both sources of information: it provides explicit action guidance for the decoder while enriching
the autoregressive Transformer with a temporally-aligned, multimodal context. This combination
enhances the model’s ability to generate accurate and temporally aligned captions by maintaining
awareness of immediate actions and the evolving context throughout the video stream.

Mixed training. We propose a mixed training strategy that alternates between action retrieval-
augmented and standard (non-augmented) training. By randomly alternating between these modes
during training, the model is better prepared for varied inference settings, ensuring consistent per-
formance even without retrieval support.

Frame construction for video segment representation. To better capture the visual content
within each video segment, we propose a frame sampling strategy that tiles multiple frames (n2)
into an n × n spatial grid. This approach better aligns with CLIP’s pretraining on static images,
enabling it to capture inter-frame relationships without video-specific adaptations. Empirically, it
outperforms independently processing and merging frames with temporal positional embeddings of
shape L×D added for each segment.

3.3 SIMULATED VIDEO PRETRAINING VIA IMAGE STITCHING

In addition, we explore an image-based pretraining method for dense video captioning to address the
challenge of limited access to densely captioned video datasets. Unlike Vid2Seq (Yang et al., 2023),
which uses large-scale video data with ASR-generated pseudo captions, we investigate whether we
can benefit from image-based pretraining by simulating video sequences. We utilize the LAION-2B
image-text paired dataset without relying on costly video datasets.

We simulate video sequences by stitching together multiple images, repeating each image for sev-
eral frames. To create smoother transitions between images, we blend the pixels at the boundaries
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and apply random augmentations to each frame, adding variability and avoiding overly monotonous
sequences. Each stitched sequence is paired with its corresponding image captions, with the tem-
poral span of each image defined by the stitching process. This setup replicates the dense video
captioning task, reproducing the annotation format for temporally localized captions as described
in section 3.1: {( [s1][e1][caption text1] ), ..., ( [sn] [en] [caption textn] )}. By pretraining on
these synthetic video sequences, our model learns to generate temporally localized captions from
stitched image sequences. This process follows the same autoregressive framework for online dense
video captioning (section 3.1), providing a warm start for the autoregressive Transformer and token
reduction Transformer, which are newly added for dense video captioning.

4 EXPERIMENTAL RESULTS

Datasets. We evaluate our model on three widely-used dense video captioning datasets:
ViTT (Huang et al., 2020), YouCook2 (Zhou et al., 2018a), and ActivityNet Captions (Heilbron
et al., 2015). ViTT features instructional videos averaging 4.7 minutes in length with about 7 events
per video, making it ideal for testing both caption generation and temporal alignment. YouCook2,
consists of cooking videos averaging 5.3 minutes and 7.8 events per video, and ActivityNet Cap-
tions includes human activity videos with an average length of 2 minutes and 3.7 events per video.

Evaluation metrics. We use standard dense video captioning metrics for evaluation. SODA (Fu-
jita et al., 2020) provides a comprehensive assessment of temporal alignment and caption accuracy
across all event captions in a video. CIDEr (Vedantam et al., 2015) is averaged over IoU thresholds
(0.3, 0.5, 0.7, 0.9) to measure caption relevance and alignment with ground truth events. We also re-
port METEOR (Banerjee & Lavie, 2005) for caption quality, averaged over the same IoU thresholds,
and the F1 score for temporal localization accuracy based on IoU with ground truth.

Model architecture and training. Our model consists of approximately 500M parameters, in-
cluding 303M for the vision encoder (ViT-Large) and 128M for the text decoder, both initialized
from the CLIP model pretrained on the publicly available LAION-2B dataset (Schuhmann et al.,
2021). The text decoder is further pretrained for 0.2 epochs on the same LAION-2B dataset, focus-
ing on the image captioning task (see section 3.1). For dense video captioning, we add the token
reduction Transformer and autoregressive Transformer, each with 8 layers and 32M parameters. Un-
like prior approaches that rely on large-scale video-text datasets for pretraining (Yang et al., 2023;
Zhou et al., 2024) or specially curated datasets (Wu et al., 2024), our model only leverages image-
text data for pretraining. To simulate video sequences, we sample 3 to 5 images from the LAION-2B
dataset, repeating each image multiple times to form a 16-frame sequence. This simulated video
data is then used to pretrain the entire dense video captioning model for 100,000 steps with batch
size 32. This allows us to explore the effectiveness of image-based pretraining in scenarios where
video-text paired datasets are limited or unavailable. During dense video captioning finetuning, the
full model is trained for 20,000 steps with batch size 8, taking about 12 hours on 16 devices. The
CLIP-initialized ViT encoder remains frozen throughout the pretraining and fine-tuning stages. At
inference, we employ beam search to generate 6 candidate captions with a temperature of 1. Tem-
poral non-maximum suppression (NMS) is applied to filter out intervals with a temporal IoU greater
than 0.7, and the remaining intervals with their corresponding captions are used for evaluation.

Video segment processing. We divide each video into 16 segments (S = 16) and process them
incrementally, simulating an online scenario where segments become available over time. Each
segment consists of multiple frames. For our main comparison with state-of-the-art methods, we
use a total of 144 frames per video, with 9 frames per segment (L = 9). Each frame is resized
to 176×176 pixels, and the frames are then combined into a 3×3 grid, resulting in a 528×528
composite image per segment. For the ablation studies, we use a simpler setup, with 16 frames per
video and 1 frame per segment (L = 1), resizing each frame to 256×256 pixels. The token reduction
Transformer samples N = 64 tokens from each segment.

4.1 ESTABLISHING A BASELINE MODEL

We present our baseline model for online dense video captioning and compare it with a global,
offline counterpart. Although our approach shares the basic principle of online processing with the
recent method (Zhou et al., 2024), we independently establish our own baseline, as their model
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weights are not publicly available. Both methods utilize CLIP pretrained models, particularly the
CLIP vision encoder ViT-Large, but differ in infrastructure and model design. Zhou et al. (2024)
use a larger 256M parameter T5-Base model (Raffel et al., 2020) as the text decoder, pretrained
on Web text corpora. In contrast, we explore a smaller 128M parameter CLIP text model, further
trained on the LAION-2B dataset for image captioning. Despite its smaller size, our experiments
show that it remains highly effective. Their method also introduces additional features, such as
a recursive feedback loop, which we omit as it did not provide gains in our setup, along with a
token clustering-based memory module and an online decoding algorithm, which we also did not
use. Instead, as described in section 3.1, our model processes videos by segments, using an inter-
segment autoregressive Transformer followed by a factorized per-segment text decoder, resulting in
a distinct yet effective online model.

We perform an exploratory comparison between our online model and its global captioning coun-
terpart to assess the performance of our baseline for online dense video captioning. For the global
baseline, we modified our online model by removing the segment-wise processing. The global
model processes all video segments simultaneously, assuming access to the entire video. In this
setup, the text decoder operates on the full set of segment representations at once, generating a sin-
gle long caption sequence that concatenates all event captions and their timestamps, similar to the
global method (Yang et al., 2023). The key difference between the two models lies in how the text
decoder processes video segments: segment-by-segment for the online model versus all-at-once for
the global model. We evaluate both baselines on the ViTT benchmark as follows:

method SODA CIDEr METEOR

Global (offline) 6.8 23.1 6.5
Online 7.6 27.7 7.2

The results show that our online model outperforms the global model across all metrics. This is likely
due to the model’s ability to process video segments independently, leading to more temporally accu-
rate captions. Also, our global and online baselines are in a comparable range to the state-of-the-art
results of Vid2Seq (Yang et al., 2023) and Streaming (Zhou et al., 2024), respectively (see Table 9).
This provides a reasonable foundation for evaluating the impact of our proposed contributions in the
following sections, without introducing significant inherent advantages or disadvantages. Building
on the strengths of the online per-segment model, our main contribution in this work is to further
enhance dense video captioning through the incorporation of online action retrieval augmentation,
dynamically enriching the representation of each video segment as the video is streamed.

4.2 ABLATION STUDIES

Our ablation uses the ViTT dataset (Tables 1-8). We use a simplified setup where each video is
divided into 16 segments, with 1 frame per segment at 256×256 resolution, unless otherwise noted.

4.2.1 ONLINE ACTION RETRIEVAL AND INTEGRATION

Retrieval integration format. We compare different methods for incorporating the retrieved ac-
tion phrases into our online dense video captioning model (see section 3.2). Table 1 compares the
performance of no retrieval, prefixing the text decoder with action phrases, text embedding fusion
with vision features, and the combined approach. The combined approach (our full method), which
integrates action phrases both as text prefixes and fused multimodal embeddings, performs best
across all metrics, highlighting the complementary benefits of both strategies.

Number of retrieved phrases. Next, we study the effect of number of retrieved action phrases by
varying the top-k phrases used as prefixes and embeddings. As presented in Table 2, using 1 prefix
and 10 embeddings offers the best balance, resulting in the highest scores across all metrics.

Action text corpus. Table 3 compares various sources for action phrases, including original cap-
tions and summarized action phrases from YouCook2, ViTT, and ActivityNet Captions, as well
as 12k object names from the V3Det (Wang et al., 2023) and 700 action names from the Kinet-
ics (Carreira et al., 2018; 2019) dataset. The summarized action phrases significantly outperform
full captions, highlighting the importance of concise action descriptors. The best performance is
achieved with summarized phrases from the union of YouCook2, ViTT, and ActivityNet. Notably,
HowTo100M summarized corpus performs comparably well despite being more generic, showing
the robustness of our approach with generic action descriptions. Table 4 further shows that ViTT
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method S C M
No retrieval 7.6 27.7 7.2
Prefixing text decoder 8.5 31.4 8.3
Embedding fusion 9.2 35.6 9.0
Both combined 9.9 37.2 9.6

Table 1: Retrieval integration. Combining prefix-
ing and embedding fusion performs best.

k (prefix) k (embeds) S C M
1 prefix 1 embed 8.7 32.5 8.4
1 prefix 10 embeds 9.9 37.2 9.6
1 prefix 50 embeds 9.8 37.0 9.4
5 prefixes 1 embeds 8.1 30.0 7.8
5 prefixes 10 embed 8.3 30.8 8.0

Table 2: Number of retrieved action phrases used
as prefixes and fused embeddings

method S C M
Y+V+A original captions 8.4 33.7 8.1
Y+V+A action phrases 9.9 37.2 9.6
HowTo100M action phrases 9.9 37.0 9.7
V3Det object names 9.0 34.9 8.6
Kinetics action names 9.1 35.4 8.9

Table 3: Action text corpus. Summarized ac-
tion phrases from the union of YouCook2 (Y),
ViTT (V), ActivityNet Captions (A) as well as the
HowTo100M perform the best.

method S C M
ViTT action phrases 9.7 36.9 9.3
Y+A action phrases 9.5 36.3 9.0

Table 4: Action text corpus (more analysis).

method S C M
Global (offline, all concat) 8.4 29.5 7.8
Online (per-segment) 9.9 37.2 9.6

Table 5: Online retrieval and integration signifi-
cantly outperforms global, offline retrieval.

Inference with retrieval Inference without retrieval
method S C M S C M
Non-augmented training N/A N/A N/A 7.6 27.7 7.2
Action-augmented training 9.9 37.2 9.6 4.2 18.9 3.8
Mixed training 9.8 37.4 9.4 7.8 28.0 7.5

Table 6: Mixed training enhances the model’s adaptability, improving performance in scenarios both with
and without retrieval-based augmentation.

action phrases yield better results than the out-of-domain YouCook2 + ActivityNet (Y+A) corpus,
likely due to closer alignment with the train/test data. Nevertheless, Y+A still achieves competitive
results, indicating our method’s generalization ability.

Online vs global retrieval. To evaluate the benefits of online retrieval over global retrieval, we
compare the two approaches in Table 5. In the global retrieval setup, action phrases are retrieved
for the entire video and concatenated both as prefixes and embeddings. The results show that online
retrieval significantly outperforms global retrieval. This suggests that the online retrieval provides
more temporally relevant and localized information for each segment, leading to improved perfor-
mance in online dense video captioning.

Mixed training with non-augmented setting. Our mixed training strategy alternates between
action-augmented and non-augmented training to enhance the model’s adaptability to inference set-
tings without retrieval-based augmentation. Table 6 shows the mixed training significantly improves
the non-augmented inference while maintaining strong performance when augmentation is available.

Frame construction per video segment. We evaluate different strategies for constructing video
segment representations, as shown in Table 7. The 3×3 tiled combination of 9 frames achieves the
best results across all metrics. This approach aligns well with CLIP’s pretraining on static images
especially given our frozen vision encoder (see section 3.1), capturing inter-frame information more
effectively and leading to improved captioning performance compared to using single frames or
processing multiple frames independently.

4.2.2 IMAGE-BASED SIMULATED VIDEO PRETRAINING

Table 8 evaluates the effect of image-based simulated video pretraining (section 3.3) which simulates
video sequences by stitching together multiple images from the LAION-2B image-text dataset. This
provides notable improvements, with an effective warm-start for our dense video captioning model.

4.3 COMPARISON TO STATE-OF-THE-ART METHODS

To compare with state-of-the-art models, our full method uses 144 frames per video with 9 frames
per segment, along with online action augmentation and image-based simulated video pretraining.

As shown in Table 9, our model outperforms both global and online methods across all benchmarks.
On the ViTT dataset, it achieves 11.8 SODA, 44.9 CIDEr, 11.3 METEOR, and 45.1 F1, surpassing
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# frames per segment S C M
1 frame (1×256×256) 9.8 37.4 9.4
9 frames (9×256×256) 10.5 40.5 10.0
3×3 tiled 9 frames (1×528×528) 11.1 43.8 10.4

Table 7: Frame construction per video segment.

method S C M
w/o simulated video pretraining 9.8 37.4 9.4
Simulated video pretraining 10.8 39.1 10.3

Table 8: Image-based pretraining.

ViTT YouCook2 ActivityNet
method backbone S C M F1 S C M F1 S C M F1

E2ESG (Zhu et al., 2022) C3D - - - - - 25.0 3.5 - - - - -
MT (Zhou et al., 2018b) TSN - - - - - 6.1 3.2 - - 9.3 5.0 -
PDVC (Wang et al., 2021a) TSN - - - - 4.9 28.9 5.7 - 6.0 29.3 7.6 -
GIT (Wang et al., 2022) GIT 7.1 15.1 3.4 32.5 3.1 12.1 3.4 17.7 5.7 29.8 7.8 50.6
OmniViD (Wang et al., 2024) VideoSwin - - - - - - - - - 26.0 7.5 -
TimeChat (Ren et al., 2024) 7B MLLM - - - - 3.4 11.0 - 19.5 - - - -
Vid2Seq † (Yang et al., 2023) CLIP 9.8 23.0 5.0 37.7 5.7 25.3 6.4 23.5 5.9 30.2 8.5 51.8
DoYou (Kim et al., 2024) CLIP - - - - 5.3 31.7 6.1 33.4 6.2 33.0 8.6 55.2
DIBS (Wu et al., 2024) CLIP - - - - 6.4 44.4 7.5 31.4 5.9 31.9 8.9 55.6
Streaming ? (Zhou et al., 2024) CLIP 10.0 25.2 5.8 35.4 6.0 32.9 7.1 24.1 6.2 37.8 10.0 52.9

AIEM (our full method) ? CLIP 11.8 44.9 11.3 45.1 8.7 48.5 10.6 34.8 8.2 38.5 14.0 55.8

Table 9: Comparison to the state-of-the-art on dense video captioning. We evaluate on the ViTT,
YouCook2, and ActivityNet benchmarks. We report SODA (S), CIDEr (C), and METEOR (M) for caption
quality, and F1 score for temporal localization. Our full method uses 144 frames per video with 9 frames per
segment. †: version with visual-only inputs. ?: online methods (all others are global offline methods).

the previous best method Streaming (Zhou et al., 2024) across all metrics, including gains of +1.8
SODA scores. Similar improvements are observed on YouCook2 and ActivityNet across all metrics,
including gains of +2.3 and +2.0 in SODA, over the previous best methods.

These results demonstrate the effectiveness of our online action-augmented dense video captioning
approach. Our dynamic action retrieval and integration provide a significant advantage in tasks re-
quiring fine-grained temporal localization and action description, while avoiding the need for access
to the entire video as required by global methods. Unlike previous methods that rely on large-scale
video-text datasets like YT-Temporal-1B (Zellers et al., 2022) for pretraining (Yang et al., 2023;
Zhou et al., 2024) or specifically curated HowTo100M video-pretraining datasets (Wu et al., 2024),
our model leverages only image-text data for pretraining. We employ an online retrieval-augmented
strategy combined with image-based pretraining, delivering strong performance without the need
for extensive video-text pairs. Notably, our retrieval of concise action phrases proves more effective
than using full captions, as it avoids redundancy and is more readily available.

While additional performance gains could come from incorporating Automatic Speech Recognition
(ASR) (Yang et al., 2023; Wang et al., 2021a), we intentionally avoid it. ASR often overlaps with
ground truth captions and is closely tied to action occurrences, which can potentially inflate per-
formance metrics without accurately reflecting the model’s visual understanding. Although some
earlier models use ASR to make the task easier, more recent methods tend to avoid it.

4.4 VISUALIZATION

Figure 1 presents the results of our method on the ActivityNet Captions dataset. Our model produces
more temporally aligned and accurate captions, such as identifying actions like ‘twirling discus’ and
‘throwing disc’, demonstrating the effectiveness of dynamic action retrieval and integration.

5 CONCLUSION

In this work, we introduced Actions Inspire Every Moment (AIEM), a novel approach for online
dense video captioning that enhances caption quality by dynamically retrieving and integrating rel-
evant action phrases at each time step. Our method leverages an autoregressive model to align
retrieval with the video’s temporal progression, enabling more precise and contextually appropriate
captions. Additionally, our image-based simulated video pretraining further improves performance.
Experiments on the ViTT, YouCook2, and ActivityNet benchmarks demonstrate that AIEM signifi-
cantly improves both caption quality and temporal localization, outperforming state-of-the-art global
and online methods, establishing it as a leading approach in the field.
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ETHICS STATEMENT AND LIMITATIONS

The task of dense video captioning inherently involves a level of subjectivity, which can lead to
ambiguous boundaries and mismatches between model outputs and the ground truth data used for
evaluation. This may result in discrepancies between the model’s performance and its evaluation
through standard metrics. To construct our action text corpus, we utilize a publicly available lan-
guage model for retrieval augmentation. While these models perform well on benchmarks, they
may carry biases, stereotypes, or inaccuracies from the data they were trained on. Since our corpus
is generated and filtered automatically, there may be instances where undesirable content persists.
While we made efforts to mitigate these issues by enforcing strict formatting in the model’s out-
put, it remains essential to re-assess these models before applying them for specific purposes. Our
model is designed for research purposes with the primary goal of evaluating its performance relative
to state-of-the-art methods. While it introduces new capabilities that could inspire further positive
advancements in research, the model is not intended for commercial or non-research applications.

REPRODUCIBILITY STATEMENT

Our method is based on the CLIP model pretrained on the publicly available LAION-2B
dataset (Schuhmann et al., 2021). Our further pretraining methods also use the same dataset. We
provide all details on model architecture, pretraining, finetuning, and inference in section 4 and sec-
tion A.1 of the Appendix. For action text corpus construction, we use the publicly available Gemma
model (Team et al., 2024) alongside the dense video captioning datasets or HowTo100M (Miech
et al., 2019) dataset, all of which are publicly available. Details of the corpus construction are
provided in section 3.2 and section A.3 of the Appendix. The dense video captioning benchmarks
used in this work, including ViTT (Huang et al., 2020), YouCook2 (Zhou et al., 2018a), and Ac-
tivityNet (Heilbron et al., 2015), are publicly available and widely used in the community. All
evaluation settings follow established practices.
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A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

We utilize the CLIP model pretrained on the LAION-2B dataset. Specifically, we use its ViT-Large
model (303M parameters) and its 12-layer Transformer text model (128M parameters). The CLIP-
initialized ViT is kept frozen throughout all stages of training described below.

We further pretrain the CLIP text model on the image captioning task using the same LAION-2B
dataset, with batch size 1024 for 0.2 epochs. We use the Adam optimizer with momentum 0.9, an
initial learning rate (LR) of 5e-5, 5000 warmup steps, linear LR decay, weight decay 1e-2.

For dense video captioning, the token reduction Transformer and autoregressive Transformer mod-
ules are added. Each module consists of 8 layers with a model dimension of 512, and 32 M param-
eters. In total, the entire model contains approximately 500M parameters.
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As described in section 3.3, we apply image-based simulated video pretraining on the entire model,
including the newly added modules. To simulate video sequences, we sample 3 to 5 images from
the LAION-2B dataset, repeating each image multiple times to form a 16-frame sequence. To create
smoother transitions, we blend pixels at the boundaries by applying a weighted sum of two images,
using a randomly selected blending ratio α ∈ [0.1, 0.9], e.g., blending pixels of images A and B
as αA + (1 − α)B. We apply random augmentations to each frame to avoid overly monotonous
sequences. This pretraining follows the same segment-by-segment autoregressive framework for
online dense video captioning. We use a batch size of 32 and train the model for 100000 steps. The
optimizer is Adam with momentum 0.9, an initial LR of 1e-4, 5000 warmup steps, cosine LR decay,
and a weight decay of 1e-5.

When finetuning on dense video captioning, the model is trained for 20000 steps with a batch size 16.
We again use the Adam optimizer with momentum 0.9, an initial LR of 1e-4, 5000 warmup steps,
cosine LR decay and a weight decay of 1e-5. For time tokenization, we use relative time tokens
following Vid2Seq (Yang et al., 2023). We quantize a video of duration T frames into B = 32
equally spaced time bins.

For inference, we follow the standard protocol to use beam search, with a beam size of 6 and tem-
perature 1, followed by temporal NMS with a threshold of 0.7 to remove overlapping intervals.

A.2 COMPUTATIONAL COST OF OUR MODEL

Our model uses 410 GFLOPs per segment, totaling 6560 GFLOPs for 16 segments. The retrieval
operates on the precomputed text embeddings.

A.3 PROMPTING FOR ACTION TEXT CORPUS CONSTRUCTION

We construct a corpus of action phrases to serve as contextual priors during the dense video caption-
ing process. These phrases are designed to capture key actions or events in each video segment and
identify relevant objects. To build this corpus, we draw from two main sources: 1) Captions from
the training splits of dense video captioning datasets: ViTT, YouCook2, and ActivityNet, where we
use only the text captions excluding the video frames. 2) A broader, less domain-specific corpus
from the HowTo100M dataset (Miech et al., 2019), again using only the subtitle text without the
video content.

Unlike previous methods that use raw video captions, which tend to be lengthy and unfocused (Xu
et al., 2024), we summarize these captions into concise action phrases using the publicly available
language model, Gemma (Team et al. (2024), huggingface.co/google/gemma-2-27b).

To improve the extraction process, we refine the prompt to ensure concise and consistently formatted
action phrases. Specifically, we emphasize singular nouns, avoid numerical terms, and enforce a
strict format of<action verb(ing)><target object (if any)>. For example, our prompt is: Your goal
is to summarize the input sentence using as few words as possible. Focus on the words describing
actions or events. Use singular nouns, avoid articles and numeric terms. Respond in the format of
<action verb (ing)> <target object (if any)>. Input: {raw caption}. Answer:

For HowTo100M subtitles, which are often longer, we adjust the prompt to focus on extracting a
single main action or event: The input is video subtitle text. Choose the main action or event in the
video and summarize it using as few words as possible. Focus on the words describing actions or
events. Use singular nouns, avoid articles and numeric terms. Respond in the format of <action
verb(ing)> <target object (if any)>. Input: {video subtitles}. Answer:

These prompts effectively generate concise action phrases. After processing all text in each source,
we deduplicate phrases by merging those with the same set of words, regardless of word order. After
filtering out some least frequent phrases, we obtain 30,000 action phrases for each corpus.

A.4 ADDITIONAL ABLATIONS

We conduct additional ablation studies using the same setup described in section 4.2, where we use
16 frames per video, with 1 frame per segment at a resolution of 256×256 pixels, and report the

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

text decoder pretraining S C M
X 9.9 37.2 9.6
x 8.3 30.4 8.0

Table 10: Ablation on text model pretraining on the image captioning task. Results on ViTT.

size of action text corpus S C M
1% 8.7 33.0 8.4
10% 9.3 35.2 9.1
50% 9.7 36.7 9.5

100% 9.9 37.2 9.6

Table 11: Effect of size of action text corpus. Results on ViTT.

# segments # frames S C M
8 8 9.3 36.2 8.9
8 16 9.6 37.0 9.1
16 16 9.9 37.2 9.6
16 32 10.0 37.7 9.8
32 32 9.7 36.8 9.0

Table 12: Number of segments which controls the number of decoding outputs. Results on ViTT.

ViTT YouCook2 ActivityNet
method S C M F1 S C M F1 S C M F1

baseline online model 7.6 27.7 7.2 34.0 5.3 27.7 6.8 22.4 5.4 31.6 9.8 45.8
online action-augmentation 9.8 37.4 9.4 35.5 6.9 39.4 8.0 25.5 6.7 34.6 11.2 46.2
image-based simulated video pretraining 8.9 34.1 8.5 37.8 6.1 35.0 7.2 27.8 6.2 33.7 10.4 47.6
both combined 10.8 39.1 10.3 39.2 8.0 45.6 9.3 30.7 7.5 36.4 12.1 49.9

Table 13: Ablation of our method on ViTT, YouCook2, ActivityNet datasets. This ablation uses S=16
segments per video, L=1 frame per segment at a resolution of 256× 256 pixels.

method online video-text pretraining backbone

E2ESG (Zhu et al., 2022) N ∅ C3D
PDVC (Wang et al., 2021a) N ∅ TSN
OmniViD (Wang et al., 2024) N Kinetics VideoSwin + Bart
TimeChat (Ren et al., 2024) N YT-Temporal, ViTT, ActivityNet, etc. Eva-CLIP-G + Llama-7B
Vid2Seq † (Yang et al., 2023) N YT-Temporal-1B CLIP-L + Bert-B
DoYou (Kim et al., 2024) N ∅ CLIP-L
DIBS (Wu et al., 2024) N Howto100M CLIP-L
Streaming (Zhou et al., 2024) Y YT-Temporal-1B CLIP-L + Bert-B

AIEM (ours) Y ∅ CLIP-L

Table 14: Comparison to the state-of-the-art on dense video captioning.

results on the ViTT dataset. In this ablation, the mixed training (Table 6) and image-based simulated
video pretraining (Table 8) are not used, unless otherwise noted.

Effect of text decoder pretraining. In Table 10, we show the effect of pretraining the text decoder
for image captioning using the LAION-2B dataset (section 3.1). While image captioning pretraining
improves performance, our model still performs reasonably well without it. Notably, most recent
dense video captioning methods (Yang et al., 2023; Wang et al., 2024; Ren et al., 2024; Wu et al.,
2024; Zhou et al., 2024) employ language pretraining for their text decoders, and we follow this
approach to enhance the captioning performance.

Ablation on the size of action text corpus. Table 11 presents the effect of varying the size of
the action text corpus. We randomly sample subsets of the corpus at 1%, 10%, 50%, and 100%.
Increasing the corpus size improves performance, with the most notable gains observed up to 50%.
This shows that our constructed corpus is effective in covering a broad range of action phrases for
retrieval augmentation.

Ablation on the number of segments. Table 12 studies the effect of the number of segments.
Overall, more frames improves performance. Across different segment configurations, our model
performs robustly overall, with 16 segments yielding the best results.

Ablation on ViTT, YouCook2, ActivityNet datasets. In Table 13, we evaluate the effects of
our key method components. The baseline refers to the online model described in section 4.1.
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We observe both our main contributions – online action-augmentation section 3.2 and image-based
simulated video pretraining section 3.3 – make complimentary improvements to performance across
all three benchmarks: ViTT, YouCook2, and ActivityNet.

A.5 COMPARISON OF APPROACHES IN EXISTING METHODS

Table 14 compares various strategies used in existing methods, focusing on key aspects such as
support for online video captioning, reliance on video-text pretraining, and the backbone models
employed.
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