Under review as a conference paper at ICLR 2026

CLARC: C/C++ BENCHMARK FOR ROBUST CODE
SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective retrieval of code snippets from natural language queries is essential for
code reuse and developer productivity. However, current benchmarks are limited:
they predominantly focus on Python, lack support for industry-focused languages
like C/C++, miss structured categorization, and are susceptible to models that
exploit superficial lexical features instead of code semantics. To address these
limitations, we introduce CLARC (C/C++ LAnguage Retrieval with Anonymized
Code), a benchmark of 1,245 C/C++ query-code pairs that is fully compilable,
configurable, and extensible. CLARC systematically categorizes snippets into
three groups based on dependency complexity, allowing for a nuanced evalua-
tion of retrieval performance under varying levels of code complexity. CLARC
also provides configurable settings, including anonymized identifiers and low-
level representations, to evaluate model robustness across different levels of code
context and abstraction. Evaluation of six state-of-the-art code search methods
shows dramatic performance drops under identifier anonymization, exposing ex-
isting models’ persistent reliance on superficial cues. Their poor performance
on low-level languages such as Assembly and WebAssembly further reveals lim-
ited effectiveness beyond high-level programming languages. We also introduce
an automated pipeline for scalable benchmark generation, validated through hy-
pothesis tests, enabling the efficient creation of high-quality code search datasets
that can be reused by other dataset builders. Our dataset is publicly available at
https://huggingface.co/datasets/ClarcTeam/CLARC.

1 INTRODUCTION

As the computer science community expands rapidly, its reliance on automated systems for code
analysis also grows. Efficiently understanding, categorizing, and retrieving code is becoming in-
dispensable due to the increasing size and complexity of public codebases (Shekhar, [2024). Code
search aims to retrieve the code snippet that best aligns with a natural language query, thus fostering
code reuse and improving developers’ efficiency (D1 Grazia and Pradel 2023} Sun et al., 2024)). The
current code search models achieve this by projecting the query and code snippet into the same vector
space, followed by similarity metrics to rank the candidate snippets.

Although recent auto-regressive Large Language Models (LLMs) and Code Language Models
(CLMs) show strong reasoning capabilities for tasks such as code completion and vulnerability
detection (Jiang et al., [2024; Roziere et al., [2024; Hui et al.| 2024} |Chen et al.,|2021), their direct
application to large-scale code search is challenging. Searching extensive repositories with thousands
or millions of candidates (Potvin and Levenberg, [2016; Benraml [2024; Howell et al., 2023) demands
methods for compact feature storage and efficient reranking (D1 Grazia and Pradell 2023} |Liu et al.,
2021). Consequently, embedding-based retrieval models, which map code snippets to the dense
vector space for efficient storage and similarity calculation, are more practical. Furthermore, effective
code retrieval can also improve LLM’s performance in generation tasks through Retrieval-Augmented
Generation (RAG) (Chen et al., 2024aj; [Wang et al., [2025; |Zhao et al., 2024).

Various benchmarks and datasets have been developed to evaluate their efficacy (Husain et al., [2020;
Khan et al.| 2024; Huang et al 2021; Lu et al.|, 2021} [Liu et al., [2024a} |Li et al., 2025} 2024; | Yao
et al.,|2018; [Heyman and Cutsem), |2020; |Yin et al.,2018)). However, existing code search benchmarks
suffer from limitations that undermine their practical utility. First, most current datasets (Huang et al.,

https://huggingface.co/datasets/ClarcTeam/CLARC

Under review as a conference paper at ICLR 2026

2021} Husain et al., 2020; |Li et al.,2025; |Lu et al., [2021} [Li et al.| 2024} Yao et al.||2018;/[Heyman and
Cutsem, [2020; | Yin et al.l |2018)) prioritize research-favored languages like Python, while systematically
neglecting text-to-code tasks of industrially prevalent languages such as C/C++ (Twist et al., |2025) or
failing to collect samples from real-world projects (Khan et al.,[2024])). This imbalance restricts the
application of research findings to real-world software development scenarios. Second, many code
snippets in current benchmarks lack compilability, often due to missing include/import statements
or necessary helper functions/classes (Cao et al2025)). This contrasts with the professional human
developer practice, where inspecting helper functions and dependencies is crucial for validating
a piece of code against query requirements. Furthermore, existing benchmarks, even those that
contain C/C++ text-to-code tasks (Liu et al., 2024a; Khan et al., [2024)), fail to evaluate the impact of
superficial textual features (such as variable and function names) on models (Chen et al., [2024b}; |Qu
et al.,[2024). Consequently, it is unclear whether high benchmark scores are based on genuine code
comprehension or superficial pattern recognition of textual features.

To address the identified limitations of current code-search benchmarks, we introduce CLARC
(C/C++ LAnguage Retrieval with Anonymized Code), a comprehensive benchmark comprising
1,245 query-code snippet pairs in C/C++. These code snippets, sourced from popular GitHub
repositories, are all compilable within a standardized environment. The snippets are then categorized
based on their dependency, allowing for a nuanced evaluation of how models handle varying levels
of code complexity and contextual information. Moreover, CLARC provides distinct settings that
anonymize code identifiers or use snippets compiled into low-level languages such as Assembly or
WebAssembly (Wasm). These settings are specifically designed to analyze how textual identifiers
impact retrieval accuracy and to assess a model’s adaptability in understanding and retrieving code
across different levels of abstraction, including low-level languages.

On CLARC, we evaluated six diverse code search methods, including two black-box systems, a
lightweight encoder model, a robustness-focused model fine-tuned with augmented data, and a model
adapted from large-scale CLMs. In experiments, we find that the retrieval metrics drop on all models
under the settings when original identifiers are replaced by less meaningful names. This suggests
that the state-of-the-art code search models still rely on superficial features within the code snippets
rather than code semantics. We also observe that models perform poorly when code is compiled to
Assembly or WebAssembly, indicating their limited capability on low-level language representations.

Besides the evaluation results, to enable scalable benchmark generation and minimize the influence
of knowledge contamination, we also propose an innovative pipeline for the automated generation of
code search benchmarks. The pipeline systematically extracts code snippets from various sources and
then utilizes LLMs to generate corresponding natural language descriptions, which serve as queries.
The quality of LLM-generated queries is ensured through statistical validation. Our automated
approach facilitates the scalable and cost-effective expansion of benchmark datasets, paving the way
for more extensive and varied evaluations of code search models.

In summary, our main contributions of this work are:

¢ introducing CLARC, a C/C++ benchmark of 1,245 fully compilable query-snippet pairs
with various settings, to rigorously evaluate retrieval performance and model robustness
across varying levels of complexity, context, and abstraction;

 providing empirical evidence that current code search models’ overreliance on non-
functional features and the large performance disparity between high and low-level program-
ming languages; and

* designing an automated pipeline for scalable benchmark generation, validated through
rigorous hypothesis testing, enabling efficient creation of diverse, high-quality evaluation
resources that can be reused by other dataset builders.

2 RELATED WORKS

Code Search Models. Code retrieval has become a critical component of software engineering
in terms of efficient development and code quality improvement (L1 et al., [2025). Like general
dense retrieval models (Karpukhin et al., 2020; Izacard et al., 2022} Wang et al.l |2024a; |Li et al.|
2023} [Xiao et al., 2024} Bai et al.| [2024; |Wang et al., [2024b)), modern code search models encode
the code and queries as embeddings and calculate their similarities. Popular code models, such as

Under review as a conference paper at ICLR 2026

CodeBERT (Feng et al., [2020), UniXcoder (Guo et al.|[2022)), and CodeT5+ (Wang et al., 2023b)),
have demonstrated significant utility in code search tasks. Subsequently, recent studies have improved
the quality of code embedding for retrieval in several directions (Liu et al.} 2024bj |Gao et al., 2025}
Gurioli et all 2025; [Zhang et al) 2024 Nomic Teaml 2025; Voyage All 2024; OpenAl 2024).
CodeXEmbed (Liu et al.l 2024b) proposes a generalizable training approach for code embedding
that converts multiple code-related tasks into retrieval tasks. OASIS (Gao et al., [2025)) leverages
order-based similarity labels to capture semantic nuances. Nomic-emb-code (Nomic Teaml, [2025)
utilizes the CoRNStack dataset (Suresh et al.,|[2025) and a curriculum-based hard negative mining
strategy to boost the model’s performance. Closed-source code search models, such as voyage-code-
3 (Voyage AlL[2024) and Open-Al-text-embedding (OpenAlL 2024), also show outstanding results on
code retrieval tasks.

Code Search Benchmarks. Numerous benchmarks have been developed to evaluate code search
models (Husain et al.,|2020; |Khan et al., 2024; Huang et al.,2021; Lu et al., 2021} Liu et al., 2024a;
Li et al., 2025} |2024; [Yao et al., 2018} |Heyman and Cutsem, 2020; |Yin et al., 2018)). CodeSearchNet
challenge (Husain et al.| 2020) established an extensive multilingual dataset for semantic code search,
while XCodeEval (Khan et al.,2024)) built a large executable multilingual benchmark. CoSQA (Huang
et al.| 2021) and CodeXGLUE (Lu et al., 2021} incorporated real-world user queries, RepoQA (Liu
et al.,[2024a)) focused on understanding long-context code, and COIR (Li et al.| 2025)) introduced
more diverse retrieval tasks and domains. However, these benchmarks have limitations regarding
the C/C++ code search. Some neglect C/C++ samples for text-to-code retrieval (Huang et al., 2021}
Husain et al., [2020; [Li et al.l 2025 [Lu et al., 2021} |Li et al., 2024} [Yao et al., [2018; Heyman
and Cutsem, 2020; Y1in et al., [2018)), and others, like XCodeEval (Khan et al., [2024), do not use
samples from real-world projects. Furthermore, several benchmarks with C/C++ datasets, such as
XCodeEval (Khan et all |[2024) and RepoQA (Liu et al., [2024a), fail to address the influence of
superficial textual features. In contrast, CLARC constructs a compilable and extendable C/C++
code search benchmark from real-world GitHub repositories and more deeply evaluates code search
models through code anonymization, filling a gap in existing studies.

LLMs for Benchmarks With the rapid advancement of LLMs and their remarkable capabilities,
researchers have increasingly utilized these models to help build benchmarks. LL.Ms help constructing
critical evaluation components, including natural language instructions (Zhu et al., [2024)), code
solutions (Ahmad et al., [2025]), and test cases (Schafer et al., [2024} |Alshahwan et al.,[2024)). They
are also applied to support the description generation (Dilgren et al.,|2025)) and annotation (Sghaier
et al., 2025} |Liu et al.| 2024a; Li et al., 2024; |Wang et al., 2023a)) of existing datasets. In CLARC, we
similarly harness LLMs’ ability in code summarization to generate queries for code candidates with
hypothesis testing as the validation mechanism, significantly reducing the manual effort required in
the benchmark construction process and enhancing the scalability.

3 DATASET

This section details the construction of CLARC. First, C/C++ functions and their corresponding call
graphs are extracted from popular GitHub repositories. These functions are then categorized into
groups based on their dependencies (Sections[3.Tand [3.Z). We then generate detailed descriptions
for each function using LLMs (Section[3.3). These descriptions serve as the queries within the dataset,
and their quality is validated through hypothesis tests (Section[3.4). Finally, we introduce different
settings beyond the standard task, facilitating comprehensive evaluations on code search models’
robustness (Section [3.3).

3.1 DATASET SUMMARY

Table [T] presents the statistics for CLARC. Functions within CLARC were classified into three
distinct categories based on their dependencies: Group 1 consists of functions that solely depend on
whitelisted standard library functions and types; Group 2 contains functions that rely on standard
library functions, but utilize custom-defined variable types; and Group 3 encompasses all functions
that involve other helper functions. Figure [T]illustrates brief example functions from each group. The
full examples with their corresponding queries can be found in Appendix

Under review as a conference paper at ICLR 2026

Table 1: Statistics of Datasets in CLARC Benchmark. LOC stands for lines of code; CC stands for
the Cyclomatic Complexity; Src stands for the original code; Asm stands for the Assembly Code,
and Wasm stands for the WebAssembly code in . wat format. All Code Statistics reported in the
table are the average values in the corresponding category.

Code Statistics
of Tokens
Category # of Pairs in Query # of Tokens LOC CC
Src Asm Wasm Src Asm Wasm Src
Group 1 526 88.3 119.2 753.7 665.5 12.8 80.7 96.2 2.9
Group 2 469 84.7 137.7 8313 947.1 133 844 1344 28
Group 3 250 774 706.9 22726 967.8 715 2123 1383 54
Total 1245 84.8 2442 10927 8114 248 1089 116.1 34
bool IsDigit (const char d) { typedef unsigned charx string;
return (/0’7 <= d)&&(d <= ’97); int scmp(string sl, string s2) {
} // Helper function
}
void simplesort (string al], int n, int b) {
(a) GI'Ollpl int i’. J; stJlfing tmp;
for (1 = 1; 1 < n; i++)
for (j = 1i; 3 > 0 && scmp(a[j-1]1+b,
int is_set_opt_anc_info —aljl+b) > 0; j--) {
(OptAnc* to, int anc) { tmp = aljl;
if ((to->leftsanc) !=0) aljl = alj-11;
return 1; alj-1] = tmp;
return ((to->righté&anc) !=021:0); }
} }
(b) Group 2 (c) Group 3

Figure 1: Example Functions of CLARC

To investigate the influence of helper functions on the Code Search Task, we designed two distinct
variants: Group 3 Short and Group 3 Long. In the Group 3 Short variant, the main function and its
associated helper functions are treated as separate relevant functions for retrieval. In contrast, the
Group 3 Long variant merges the main function and its helper functions into a single contiguous
code snippet, allowing us to evaluate retrieval performance when the main logic and its immediate
functional dependencies are presented as a unified whole.

3.2 DATA COLLECTION

We constructed the CLARC dataset by crawling 45 popular C/C++ repositories on GitHubﬂ First, we
established a compilation environment by creating a whitelist of all standard libraries used across
these repositories. We then extracted each function along with its dependencies, including its call
graph and necessary definitions. To ensure the quality of code snippets in CLARC, we only retained
the functions that successfully compiled within this predefined environment. Finally, these filtered
functions were categorized into three groups based on their dependencies, as detailed in Section [3.1]

3.3 QUERY FORMATION

A significant challenge in developing natural language to programming language code search bench-
marks is obtaining high-quality code descriptions to serve as queries. To address this, our approach
utilized LLM (gpt—-40 and grok—-4) to automatically generate descriptions for extracted C/C++
functions. The prompts for description generation are provided in Appendix |G| The quality of these
LLM-generated descriptions was subsequently validated through the hypothesis tests detailed in
Section[3.4

To enhance the LLM’s comprehension of functions in Group 2 and Group 3, we incorporated
the functional dependencies, including the definitions of the custom-defined variables and helper

"Licensing information is provided in Appendix

Under review as a conference paper at ICLR 2026

Table 2: Hypothesis Testing Results. The LLM-generated descriptions for functions in all 3 groups
are comparable or superior in quality to those written by human annotators.

LLM LLM Human Human lue (%) Avg.

Score 95% CI Score 95% CI P-YAU¢L70) Krippendorff’s o
Group1 86.0 (80.5,91.0) 60.0 (52.5,67.0) 99.99 68.41
Group2 76.5 (72.5,80.5) 720 (67.5,76.5) 76.32 74.77
Group3 755 (72.0,79.5) 715 (67.0,76.0) 84.92 65.51

functions, into the prompts. Additionally, three manually authored function-description pairs were
provided for all three groups as few-shot examples to guide the desired format and style of the
generated queries. As CLARC aims to assess the ability of code search models on code semantics,
we explicitly instructed the LLM to avoid including identifier names and generate descriptions based
on the code’s purpose.

3.4 HYPOTHESIS TESTING

To statistically compare the quality of function descriptions generated by an LLM against those from
human experts, we adapted the hypothesis testing procedure from |Wang et al.|(2023a)). First, both
the LLM and a group of expert software engineers (5+ years of experience) created descriptions for
125 sampled functions in each category. These descriptions were then evaluated by three Computer
Science PhD students. To measure inter-annotator agreement, a shared set of 50 functions was rated
by all three students, while the remaining 75 functions were divided equally among them, with each
student rating a unique set of 25. This design resulted in a total workload of 75 evaluations per student.
Finally, we applied bootstrapping to the complete set of scores to compare the quality distributions
and calculate a p-value. This entire hypothesis test was conducted independently for three distinct
function groups to account for varying task complexity.

Double-blind scoring was a crucial step in the hypothesis test. The annotators first checked for errors.
If both descriptions for a function were correct, they then judged their relative quality. Incorrect
descriptions scored -1. A correct description versus an incorrect one scored +1. Two correct and
equally good descriptions each received +0.5. Otherwise, if one description was better, it scored +1
and the other +0.5.

We conducted a statistical comparison between the scores of human and LLM generated descriptions
using a bootstrap analysis, with the results presented in Table 2] We measured inter-annotator
agreement using Krippendorff’s « to establish the reliability of the human annotation. The average «
values indicated a consistent and reliable level of agreement among the three annotators.

Our analysis tested the null hypothesis that the quality of LLM-generated descriptions is greater
than or equal to that of human-generated descriptions. The p-value was defined as the proportion of
bootstrap iterations where the total LLM score equaled or surpassed the total human score. For all
experimental groups, the p-values were insufficient to reject the null hypothesis. Moreover, the 95%
confidence intervals for the LLM scores were comparable to, or higher than, those for the human
scores. Collectively, these results indicate that the LLM-generated descriptions achieve the quality on
par with human-generated descriptions, validating their use as queries in our task. This validation
serves as a strong foundation for our automated pipeline, ensuring that benchmark construction or
extension can scale without requiring human expert annotation.

3.5 DIFFERENT SETTINGS

Beyond the standard code search task, CLARC was also designed to evaluate models’ ability to com-
prehend code functionality based on its semantics, rather than relying solely on non-functional lexical
features (e.g., function, variable, class names). To facilitate this evaluation under different conditions,
we introduce several different settings of CLARC. The settings were detailed in Appendix

* Neutralized: Identifiers in the code snippets were replaced with generic, neutral placeholders
like func_a, var_b, MACRO_c, or class_d, to reduce non-functional information while
preserving the structural role of each identifier.

Under review as a conference paper at ICLR 2026

* Randomized: Identifiers in the code snippets were replaced with random names to eliminate all
lexical information in the identifiers.

» Assembly: The C/C++ code is compiled to x86 assembly using the g++ compiler. Most identifiers
were eliminated when compiled to assembly, while for function names, we removed the symbols
by post-processing the assembly using objcopy -strip-all.

* WebAssembly (Wasm): We used Emscripten (Emscripten Teaml, [2024)) for compilation in We-
bAssembly with default settings, ensuring no identifiers are preserved in the Wasm version.

4 EXPERIMENT SETUP

Models A small number of embedding models support C/C++, Assembly, and Wasm, due to the
focus on Python in existing code search research. We evaluated the following models on CLARC
across its standard, neutralized, and randomized settings, unless noted otherwise. The details of the
models can be found in Appendix [E]

* BM25 (Trotman et al., 2014) A classical TF-IDF based retrieval algorithm using term frequency,
inverse document frequency, and length normalization. It relies on lexical features (e.g., identifier
names) and serves as our baseline, and is evaluated only on the standard setting.

* CodeT5+(110M) (Wang et al., 2023b) An encoder-decoder Transformer trained on code and text.
Its encoder half is used to generate the embeddings for code search.

* OASIS(1.5B) (Gao et al.,2025) A code embedding model using an Order-Augmented Strategy with
generated hard negatives and order-based similarity labels to learn finer code semantic distinctions.

* Nomic-emb-code(7B) (Nomic Team, [2025) A large code embedding model trained on CoRN-
Stack (Suresh et al.}[2025) using curriculum-based hard negative mining.

* OpenAl-text-embedding-large (OpenAl, 2024) A large, closed-source, general-purpose text
embedding model. Despite not being code-specific, its broad training enables effective semantic
representation of code. This model is evaluated on all settings.

* Voyage-code-3 (Voyage Al, 2024) A closed-source embedding model optimized for code retrieval,
trained on a diverse corpus including extensive code data. It claims state-of-the-art performance on
code benchmarks. This model is evaluated on all settings.

Metrics We evaluated model performance using standard information retrieval metrics: NDCG
(Normalized Discounted Cumulative Gain) to assess the quality of ranked lists, MRR (Mean Recip-
rocal Rank) to measure how quickly the first relevant item is found, MAP (Mean Average Precision)
to gauge overall ranking quality across queries, and Recall@k (R @k) to determine the proportion of
relevant items retrieved within the top k results.

5 EVALUATION

This section evaluates the code search models’ performance across three settings: standard (Sec-
tion[5.T), neutralized/randomized (Section[5.2)), and low-level languages (Section[5.3). A comparison
between the standard and neutralized/randomized settings reveals a dramatic performance drop when
identifier names are anonymized, indicating that current models rely heavily on lexical information
rather than pure code semantics. Furthermore, the poor performance of general-purpose embedding
models like OpenAl-text-embedding-large and Voyage-code-3 on low-level languages underscores
the need for specialized solutions for retrieval tasks involving Assembly or Wasm.

5.1 STANDARD SETTING

Table 3| shows model performance on the CLARC standard setting. The limitations of simple text
similarity (BM25) and older models like CodeT5+ (early 2023) become clear when compared to
newer releases. Models such as OpenAl-text-embedding-large (early 2024), Voyage-code-3 (late
2024), and Nomic-emb-code and OASIS (2025), demonstrate substantially higher effectiveness. The
dominance of the latest models underscores the rapid evolution of code search technology.

Beyond general performance differences, Table [3] also reveals how model performance varies in
different CLARC categories. First, the latest models—Nomic-emb-code, OASIS, OpenAl-text-
embedding-large, and Voyage-code-3—achieve higher retrieval scores in Group 2 over Group 1,

Under review as a conference paper at ICLR 2026

Table 3: Evaluation Results on the Standard Setting. Bold entries stand for the maximum values
for the metrics in the category. OpenAl stands for OpenAl-text-embedding-large. Voyage stands for
Voyage-code-3.

Model NDCG MRR MAP Re@1 R@5 R@10 R@20
Group 1
BM25 10.50 8.20 9.33 4.75 12.55 18.06 23.00
CodeT5+ 64.54 58.84 59.57 4734 7414 82.51 89.54
Nomic 88.61 86.23 86.41 80.04 94.11 95.82 96.96
OASIS 89.08 86.54 86.71 79.85 94.11 96.77 98.48
OpenAl 83.57 80.16 80.45 71.67 91.06 93.92 96.01
Voyage 88.99 86.93 87.18 80.99 94.11 95.06 97.53
Group 2
BM25 17.83 14.64 16.42 9.81 20.47 28.36 40.72
CodeT5+ 52.97 46.67 4780 3582 60.77 73.35 83.16
Nomic 93.61 91.61 91.63 86.14 98.72 99.57 99.57
OASIS 91.11 88.30 88.33 81.02 98.29 99.57 100.00
OpenAl 85.87 81.66 81.73 71.86 95.52 98.72 99.57
Voyage 94.06 92.10 92.11 85.93 99.57 99.79 100.00
Group 3 Short
BM25 10.50 11.52 7.94 2.35 7.98 11.51 15.45
CodeT5+ 43.55 47.82 31.24 14.68 32.44 44.83 53.93
Nomic 65.39 80.58 48.81 25.33 49.99 57.22 65.78
OASIS 63.15 73.70 47.35 2522 48.58 56.87 62.43
OpenAl 62.97 74.54 4750 2580 48.33 54.87 62.65
Voyage 66.66 80.53 5093 27.28 51.01 57.04 64.67
Group 3 Long
BM25 19.09 15.82 17.47 1040 23.60 29.60 40.40
CodeT5+ 21.12 17.78 19.97 12.80 26.00 32.00 50.40
Nomic 69.46 64.93 65.66 5520 77.20 83.60 90.00
OASIS 68.59 63.53 64.04 5320 78.40 84.40 87.20
OpenAl 83.80 78.76 78.83 66.40 94.00 99.20 100.00
Voyage 89.13 85.43 8543 7440 98.80 100.0 100.00

suggesting these recent models can effectively utilize custom-defined types for the retrieval task.
Additionally, with the exception of CodeT5+, all other models perform better on most retrieval
metrics in Group 3 Long than in Group 3 Short. This implies that the richer contextual information
from helper functions in longer code snippets generally enhances code search performance for these
models. On the other hand, CodeT5+ displays a contrasting pattern, indicating that CodeT5+ is less
effective when dealing with these more complex code features.

5.2 NEUTRALIZED AND RANDOMIZED SETTINGS

Table [presents the results of the model evaluation in the neutralized and randomized settings of
CLARC. A comparison with the standard setting (Table [3) reveals a universal decline in performance
across all models, especially for the randomized setting. The extent of this degradation varies:
CodeT5+ experiences the most significant drop, followed by OpenAl. In contrast, Nomic-emb-
code, OASIS, and Voyage-code-3 have smaller performance decreases. This disparity suggests that
CodeT5+ and OpenAl are more vulnerable, whereas the other three models demonstrate relatively
stronger robustness. Nevertheless, the performance drop observed in code search models reveals their
dependence on lexical information in the identifiers.

In particular, the model performance degrades more severely in the randomized setting. We hypothe-
size that the higher performance metrics observed in the neutralized setting are attributable to the
residual lexical cues within the identifier, such as their classification as variables or functions. In
contrast, performance in the randomized setting reflects the models’ comprehension of code semantics
without these cues. Among the open-box models, OASIS has the smallest performance reduction,

Under review as a conference paper at ICLR 2026

Table 4: Evaluation Results on the Neutralized and Randomized Settings. Neu stands for Neutralized
and Ran stands for Randomized. Bold entries stand for the maximum values for the metrics in the
category. The evaluation results on the Randomized Setting are the average after ten trials, and results
with standard errors could be found in Appendix

NDCG MRR MAP R@1 R@5

Model Neu Ran | Neu Ran | Neuw Ran | Neu Ran | Neu Ran

Group 1
CodeT5+ 46.44 3496 | 40.18 29.52 | 41.48 31.03 | 29.66 20.57 | 53.42 41.52
Nomic 87.46 77.05 | 84.03 72.78 | 84.15 73.26 | 76.43 63.35 | 93.54 85.21
OASIS 87.13 82.33 | 83.66 78.74 | 83.78 79.02 | 76.62 70.11 | 91.44 89.62
OpenAl 74.82 66.60 | 70.13 60.75 | 70.62 61.40 | 59.89 48.90 | 84.22 76.41
Voyage 87.56 83.85 | 84.22 80.68 | 84.33 81.00 | 76.05 72.66 | 94.87 90.53

Group 2
CodeT5+ 19.15 1442 | 15.67 11.27 | 17.63 12.79 | 10.66 6.50 | 22.60 16.91
Nomic 73.37 5527 | 67.65 4823 | 68.14 49.24 | 54.80 34.75 | 84.65 66.74
OASIS 74.79 6720 | 6891 60.19 | 69.30 60.77 | 56.50 46.63 | 8529 78.29
OpenAl 4420 3245 |37.14 2755|3853 29.11 | 2495 19.21 | 52.88 38.51
Voyage 81.09 7522 | 77.18 69.43 | 77.52 69.82 | 68.23 56.84 | 88.27 85.97

Group 3 Short
CodeT5+ 6.52 573 | 537 559 | 456 428 | 1.33 140 | 482 4.13
Nomic 2440 19.13 | 27.24 21.21 | 17.24 1344|1023 7.55 | 18.83 14.36
OASIS 27.14 2571 |29.08 29.14 | 19.18 17.48 | 11.68 10.24 | 21.28 19.96
OpenAl 19.46 15.95|21.37 1842 | 13.69 10.38 | 830 5.63 | 14.55 11.58
Voyage 27.65 30.54 | 31.40 35.28 | 1891 20.72 | 11.14 12.85 | 20.94 23.00

Group 3 Long
CodeT5+ 7.28 7.11 | 521 5.8 | 7.15 6.87 | 1.60 2.40 | 10.00 8.52
Nomic 38.70 30.30 | 34.22 26.06 | 35.73 27.86 | 26.80 19.04 | 44.40 34.60
OASIS 39.35 34.69 | 36.08 30.51 | 37.65 32.15]29.20 2296 | 45.20 39.00
OpenAl 34.80 33.28 | 29.44 28.64 | 30.83 30.03 | 20.00 20.16 | 42.40 39.64
Voyage 63.90 66.40 | 58.58 61.15 | 59.45 61.95 | 4840 50.48 | 72.80 75.04

indicating that its training methodology, which incorporates enhanced data for robustness, is also
beneficial in the neutralized and randomized environment in CLARC.

The retrieval metrics across different groups in the neutralized and randomized setting also diverge
from those observed in the standard setting. Specifically, all models now achieve higher performance
on Group 1 than on Group 2. The reversal suggests that the models’ comprehension of custom-
defined types might be more closely tied to the type or variable names themselves, rather than the
underlying logic of these types, which becomes obscured in the neutralized and randomized settings.
Additionally, the performance drop in neutralized and randomized settings is more dramatic in Group
3. The larger performance drop suggests models rely more heavily on textual cues to understand
program functionality when the code snippets are more complex. Meanwhile, the performance gap
between Group 3 Short and Group 3 Long widens for most models from the standard setting to the
neutralized and randomized settings. An analysis of the reranking results shows that the code search
models often fail to retrieve the main function rather than the helper functions in the neutralized
and randomized setting. This is likely because the loss of descriptive helper function names due to
neutralization increases the difficulty in understanding the main function’s overall purpose.

5.3 ASSEMBLY & WASM SETTINGS

Table [5] presents the performance of models on the Assembly and Wasm settings of CLARC. As
noted in Section 4] only two general-purpose embedding models, OpenAl and Voyage-code-3, were
evaluated due to the incompatibility of other models with Assembly and Wasm. Also, when compiled
to low-level languages, the helper functions have to be compiled with the main function. Thus, there
is only one variant for Group 3.

Under review as a conference paper at ICLR 2026

Table 5: Evaluation Results on the Assembly and Wasm Settings.

NDCG MRR MAP R@1 R@5

Model Asm Wasm | Asm Wasm | Asm Wasm | Asm Wasm | Asm Wasm

Group 1
OpenAl 11.50 8.89 | 861 6.60 | 10.12 829 | 425 322 | 1351 10.30
Voyage 34.12 31.40 |29.02 27.19 | 30.21 28.81 | 19.88 20.17 | 40.15 37.12

Group 2
OpenAl 6.86 1085 | 5.15 8.14 | 670 10.11 | 240 420 | 9.15 13.09
Voyage 35.28 30.56 | 28.77 24.36 | 30.19 2596 | 17.43 14.81 | 44.01 39.26

Group 3
OpenAl 479 890 | 346 586 | 504 814 | 1.60 2.63 | 520 8.77
Voyage 18.77 23.17 | 1520 19.26 | 17.02 21.20 | 9.20 13.16 | 22.80 26.32

When comparing the models’ performance in Assembly and Wasm settings to their results in Table[3]
and Table 4 we see a more substantial performance drop. The significant performance drops in
both OpenAl-text-embedding-large and Voyage-code-3 demonstrate their limited proficiency in
understanding these low-level languages. Also, the direct comparison between the two models in
these challenging low-level language settings reveals that Voyage-code-3 consistently outperforms
OpenAl-text-embedding-large. Note that both Assembly and Wasm environments inherently remove
superficial identifier information, and the performance of Voyage-code-3, under these two low-level
language settings, shows its capacity to understand the program logic to some extent.

When comparing the models’ performance across different categories within these low-level language
settings, Group 1 and Group 2 exhibit broadly comparable results. The similarity suggests that
custom-defined types do not introduce substantial retrieval challenges in the low-level language
setting. In contrast, the models’ performance on Group 3 is generally weaker across most metrics. We
hypothesize that this disparity arises because functions in Group 3 often involve more dependencies.
While such dependencies may not substantially increase complexity in a high-level language or
standard setting, compiling them into a low-level language can result in more intricate instruction
sequences, consequently making the retrieval task more challenging.

6 CONCLUSION & FUTURE WORKS

This paper introduces CLARC, a new benchmark designed to evaluate the robustness of code search
models. We also present an automated pipeline for augmenting this benchmark, which produces
data of a quality comparable to human experts and mitigates potential knowledge contamination.
Our evaluation reveals that while existing models perform decently under standard conditions, their
effectiveness substantially degrades when superficial textual features are obfuscated or when code is
compiled into a low-level language. These findings demonstrate that current code search models lack
a robust understanding of code semantics.

The performance degradation observed across CLARC settings highlights the need for in-depth
research into the robustness of code search models. Current models are too reliant on lexical
variations, making them unreliable in real-world scenarios involving varied code styles or deliberate
obfuscation by malicious attackers. Future investigations can explore methods to enhance model
resilience against such perturbations. CLARC and its automatic augmenting pipeline provide a
good starting point for retrieving high-quality training data. Furthermore, since C/C++ code can be
translated into low-level languages, another natural future direction involves leveraging our proposed
pipeline to generate data to train/test code search models that target Assembly or Wasm.

We hope that our findings can also encourage the research community to expand its focus beyond
Python by developing code search benchmarks for diverse programming languages. Furthermore, we
emphasize the importance of dataset quality, particularly with respect to compilable code snippets. As
our experiments demonstrate, compilable code offers inherent versatility, facilitating straightforward
conversion into diverse formats suitable for evaluation and potentially for training purposes.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The code and data required to reproduce the experimental results presented in Section [5|are publicly
available. The codebase is hosted on GitHub athttps://github.com/ClarcTeam/CLARC),
and the dataset is available on Hugging Face at https://huggingface.co/datasets/
ClarcTeam/CLARC. All results were verified to be reproducible with our implementation as of
the submission date (September 22, 2025). We note the specific date as certain experimental results
rely on API calls (OpenAl-text-embedding-large, Voyage-code-3).

REFERENCES

Wasi Uddin Ahmad, Aleksander Ficek, Mehrzad Samadi, Jocelyn Huang, Vahid Noroozi, Somshubra
Majumdar, and Boris Ginsburg. Opencodeinstruct: A large-scale instruction tuning dataset for
code llms, 2025. URL https://arxiv.org/abs/2504.04030.

Nadia Alshahwan, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark Harman, Inna Harper,
Alexandru Marginean, Shubho Sengupta, and Eddy Wang. Automated unit test improvement
using large language models at meta. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering, FSE 2024, page 185-196, New York,
NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706585. doi: 10.1145/
3663529.3663839. URL https://doi.org/10.1145/3663529.36638309.

Yang Bai, Anthony Colas, Christan Grant, and Zhe Wang. M3: A multi-task mixed-objective learning
framework for open-domain multi-hop dense sentence retrieval. In Nicoletta Calzolari, Min-Yen
Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue, editors, Proceedings
of the 2024 Joint International Conference on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 10846—-10857, Torino, Italia, May 2024. ELRA and
ICCL. URL https://aclanthology.org/2024.lrec—main.947/.

Gad Benram. Understanding the cost of large language
models (Ilms). https://www.tensorops.ai/post/
understanding-the-cost-of-large-language-models-11lms, February

2024. TensorOps Al Blog. Updated March 5, 2024. Accessed May 1, 2025.

Jialun Cao, Yuk-Kit Chan, Zixuan Ling, Wenxuan Wang, Shuqing Li, Mingwei Liu, Chaozheng
Wang, Boxi Yu, Pinjia He, Shuai Wang, et al. How should i build a benchmark? arXiv preprint
arXiv:2501.10711, 2025.

Junkai Chen, Xing Hu, Zhenhao Li, Cuiyun Gao, Xin Xia, and David Lo. Code search is all
you need? improving code suggestions with code search. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ICSE *24, New York, NY, USA, 2024a.
Association for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3639085.
URL https://doi.org/10.1145/3597503.3639085.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Yuchen Chen, Weisong Sun, Chunrong Fang, Zhenpeng Chen, Yifei Ge, Tingxu Han, Quanjun Zhang,

Yang Liu, Zhenyu Chen, and Baowen Xu. Security of language models for code: A systematic
literature review. arXiv preprint arXiv:2410.15631, 2024b.

10

https://github.com/ClarcTeam/CLARC
https://huggingface.co/datasets/ClarcTeam/CLARC
https://huggingface.co/datasets/ClarcTeam/CLARC
https://arxiv.org/abs/2504.04030
https://doi.org/10.1145/3663529.3663839
https://aclanthology.org/2024.lrec-main.947/
https://www.tensorops.ai/post/understanding-the-cost-of-large-language-models-llms
https://www.tensorops.ai/post/understanding-the-cost-of-large-language-models-llms
https://doi.org/10.1145/3597503.3639085
https://arxiv.org/abs/2107.03374

Under review as a conference paper at ICLR 2026

Luca Di Grazia and Michael Pradel. Code search: A survey of techniques for finding code. ACM
Computing Surveys, 55(11):1-31, 2023.

Connor Dilgren, Purva Chiniya, Luke Griffith, Yu Ding, and Yizheng Chen. Secrepobench:
Benchmarking llms for secure code generation in real-world repositories, 2025. URL https:
//arxiv.orqg/abs/2504.21205.

Emscripten Team. Emscripten: a complete open source LLVM-based compiler toolchain for We-
bAssembly. https://emscripten.org, 2024.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for programming and
natural languages. In Trevor Cohn, Yulan He, and Yang Liu, editors, Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 1536—1547, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.139. URL https://
aclanthology.org/2020.findings-emnlp.139/.

Zuchen Gao, Zizheng Zhan, Xianming Li, Erxin Yu, Ziqi Zhan, Haotian Zhang, Bin Chen, Yuqun
Zhang, and Jing Li. Oasis: Order-augmented strategy for improved code search. arXiv preprint
arXiv:2503.08161, 2025.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. UniXcoder: Unified
cross-modal pre-training for code representation. In Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 7212—7225, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.499. URL
https://aclanthology.org/2022.acl-1ong.499/.

Andrea Gurioli, Federico Pennino, Jodo Monteiro, and Maurizio Gabbrielli. One model to train
them all: Hierarchical self-distillation for enhanced early layer embeddings, 2025. URL https |
//arxiv.org/abs/2503.03008!.

Geert Heyman and Tom Van Cutsem. Neural code search revisited: Enhancing code snippet retrieval
through natural language intent, 2020. URL https://arxiv.org/abs/2008.12193,

Kristen Howell, Gwen Christian, Pavel Fomitchov, Gitit Kehat, Julianne Marzulla, Leanne Rolston,
Jadin Tredup, [lana Zimmerman, Ethan Selfridge, and Joseph Bradley. The economic trade-offs of
large language models: A case study. arXiv preprint arXiv:2306.07402, 2023.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming Zhou, and Nan
Duan. Cosqa: 20,000+ web queries for code search and question answering, 2021. URL https:
//arxiv.org/abs/2105.13239.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search, 2020. URL https:
//arxiv.org/abs/1909.09436.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning,
2022. URL https://arxiv.org/abs/2112.09118.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL https://arxiv.org/abs/2406.00515)

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Dangqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 6769—6781, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.
550. URLhttps://aclanthology.org/2020.emnlp-main.550/.

11

https://arxiv.org/abs/2504.21205
https://arxiv.org/abs/2504.21205
https://emscripten.org
https://aclanthology.org/2020.findings-emnlp.139/
https://aclanthology.org/2020.findings-emnlp.139/
https://aclanthology.org/2022.acl-long.499/
https://arxiv.org/abs/2503.03008
https://arxiv.org/abs/2503.03008
https://arxiv.org/abs/2008.12193
https://arxiv.org/abs/2105.13239
https://arxiv.org/abs/2105.13239
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2406.00515
https://aclanthology.org/2020.emnlp-main.550/

Under review as a conference paper at ICLR 2026

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan Parvez,
and Shafiq Joty. XCodeEval: An execution-based large scale multilingual multitask benchmark
for code understanding, generation, translation and retrieval. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 6766—6805, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.367.
URLhttps://aclanthology.org/2024.acl-1long.367/.

Rui Li, Qi Liu, Liyang He, Zheng Zhang, Hao Zhang, Shengyu Ye, Junyu Lu, and Zhenya Huang.
Optimizing code retrieval: High-quality and scalable dataset annotation through large language
models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pages 2053-2065, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-main.123. URL https://aclanthology.org/2024.emnlp-main.123/.

Xiangyang Li, Kuicai Dong, Yi Quan Lee, Wei Xia, Hao Zhang, Xinyi Dai, Yasheng Wang, and
Ruiming Tang. Coir: A comprehensive benchmark for code information retrieval models, 2025.
URLhttps://arxiv.org/abs/2407.02883.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning, 2023. URL https://arxiv,
org/abs/2308.03281.

Chao Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and John Grundy. Opportunities and
challenges in code search tools. ACM Comput. Surv., 54(9), October 2021. ISSN 0360-0300. doi:
10.1145/3480027. URL https://doi.org/10.1145/3480027.

Jiawei Liu, Jia Le Tian, Vijay Daita, Yuxiang Wei, Yifeng Ding, Yuhan Katherine Wang, Jun
Yang, and Lingming Zhang. Repoqa: Evaluating long context code understanding, 2024a. URL
https://arxiv.org/abs/2406.06025.

Ye Liu, Rui Meng, Shafiq Joty, Silvio Savarese, Caiming Xiong, Yingbo Zhou, and Semih Yavuz.
Codexembed: A generalist embedding model family for multiligual and multi-task code retrieval,
2024b. URL https://arxiv.org/abs/2411.12644.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B.
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code understanding
and generation. CoRR, abs/2102.04664, 2021.

Nomic Team. Nomic Embed Code: A State-of-the-Art Code Retriever. https://www.nomic.
ai/blog/posts/introducing—-state-of-the—art-nomic—-embed-code, 2025.
Nomic Blog; accessed May 5, 2025.

OpenAl. New embedding models and api updates, January 2024. URL https://openai.com/
index/new—embedding-models—and-api—updates/l

OpenAl. Introducing openai 03-mini, January 2025. URL https://openai.com/index/
openai-o3-mini/l Accessed: 2025-09-22.

Rachel Potvin and Josh Levenberg. Why google stores billions of lines of code in a single repository.
Communications of the ACM, 59:78-87, 2016. URL http://dl.acm.org/citation.
cfm?1d=2854146.

Yubin Qu, Song Huang, and Yongming Yao. A survey on robustness attacks for deep code models.
Automated Software Engineering, 31(2):65, 2024.

Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. An empirical study of bugs in
webassembly compilers. In Proceedings of the 36th IEEE/ACM International Conference on
Automated Software Engineering, ASE *21, page 42-54. IEEE Press, 2022. ISBN 9781665403375.
doi: 10.1109/ASE51524.2021.9678776. URL https://doi.org/10.1109/ASE51524,
2021.9678776.

12

https://aclanthology.org/2024.acl-long.367/
https://aclanthology.org/2024.emnlp-main.123/
https://arxiv.org/abs/2407.02883
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://doi.org/10.1145/3480027
https://arxiv.org/abs/2406.06025
https://arxiv.org/abs/2411.12644
https://www.nomic.ai/blog/posts/introducing-state-of-the-art-nomic-embed-code
https://www.nomic.ai/blog/posts/introducing-state-of-the-art-nomic-embed-code
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
http://dl.acm.org/citation.cfm?id=2854146
http://dl.acm.org/citation.cfm?id=2854146
https://doi.org/10.1109/ASE51524.2021.9678776
https://doi.org/10.1109/ASE51524.2021.9678776

Under review as a conference paper at ICLR 2026

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024. URL
https://arxiv.org/abs/2308.12950.

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
language models for automated unit test generation. IEEE Transactions on Software Engineering,
50(1):85-105, 2024. doi: 10.1109/TSE.2023.3334955.

Oussama Ben Sghaier, Martin Weyssow, and Houari Sahraoui. Harnessing large language models for
curated code reviews, 2025. URL https://arxiv.org/abs/2502.03425.

Gaurav Shekhar. The impact of ai and automation on software
development: A deep dive. https://ieeechicago.org/
the-impact-of-ai-and-automation-on-software—-development—a—-deep-dive/,
November 2024. IEEE Chicago Section. Accessed 2025-05-01.

Weisong Sun, Chunrong Fang, Yifei Ge, Yuling Hu, Yuchen Chen, Quanjun Zhang, Xiuting Ge,
Yang Liu, and Zhenyu Chen. A survey of source code search: A 3-dimensional perspective. ACM
Trans. Softw. Eng. Methodol., 33(6), June 2024. ISSN 1049-331X. doi: 10.1145/3656341. URL
https://doi.org/10.1145/3656341.

Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach Nussbaum, Andriy Mulyar, Brandon Duderstadt,
and Heng Ji. Cornstack: High-quality contrastive data for better code retrieval and reranking, 2025.
URL https://arxiv.org/abs/2412.01007.

Andrew Trotman, Antti Puurula, and Blake Burgess. Improvements to bm25 and language models
examined. In Proceedings of the 19th Australasian Document Computing Symposium, ADCS
"14, page 58-65, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450330008. doi: 10.1145/2682862.2682863. URL https://doi.org/10.1145/
2682862.2682863l

Lukas Twist, Jie M Zhang, Mark Harman, Don Syme, Joost Noppen, and Detlef Nauck. Llms
love python: A study of llms’ bias for programming languages and libraries. arXiv preprint
arXiv:2503.17181, 2025.

Voyage Al. voyage-code-3: more accurate code retrieval with lower dimensional, quantized embed-
dings, December 2024.

Jianyou Wang, Kaicheng Wang, Xiaoyue Wang, Prudhviraj Naidu, Leon Bergen, and Ramamohan
Paturi. Doris-mae: scientific document retrieval using multi-level aspect-based queries. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS °23, Red Hook, NY, USA, 2023a. Curran Associates Inc.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2024a. URL
https://arxiv.org/abs/2212.03533!.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models, 2024b. URL https://arxiv.org/abs/2401,
00368.

Yuchen Wang, Shangxin Guo, and Chee Wei Tan. From code generation to software testing: Ai
copilot with context-based rag. IEEE Software, pages 1-9, 2025. doi: 10.1109/MS.2025.3549628.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv preprint
arXiv:2305.07922, 2023b.

WebAssembly Community. WABT: The WebAssembly Binary Toolkit. https://github.com/
WebAssembly/wabt) 2025. Accessed: 2025-05-01.

13

https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2502.03425
https://ieeechicago.org/the-impact-of-ai-and-automation-on-software-development-a-deep-dive/
https://ieeechicago.org/the-impact-of-ai-and-automation-on-software-development-a-deep-dive/
https://doi.org/10.1145/3656341
https://arxiv.org/abs/2412.01007
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2401.00368
https://arxiv.org/abs/2401.00368
https://github.com/WebAssembly/wabt
https://github.com/WebAssembly/wabt

Under review as a conference paper at ICLR 2026

xAlL Grok 4.
urlhttps://x.ai/news/grok-4, July 2025. Accessed: 2025-09-22.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings, 2024. URL https://arxiv.org/abs/
2309.07597.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan Sun. Staqc: A systematically mined question-
code dataset from stack overflow. In Proceedings of the 2018 World Wide Web Conference on
World Wide Web - WWW 18, WWW 18, page 1693-1703. ACM Press, 2018. doi: 10.1145/
3178876.3186081. URL http://dx.doi.org/10.1145/3178876.3186081l

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning
to mine aligned code and natural language pairs from stack overflow, 2018. URL https:
//arxiv.org/abs/1805.089409.

Dejiao Zhang, Wasi Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, and
Bing Xiang. Code representation learning at scale, 2024. URL https://arxiv.org/abs/
2402.01935.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling Yang,
Wentao Zhang, Jie Jiang, and Bin Cui. Retrieval-augmented generation for ai-generated content: A
survey. arXiv preprint arXiv:2402.19473, 2024.

Qiming Zhu, Jialun Cao, Yaojie Lu, Hongyu Lin, Xianpei Han, Le Sun, and Shing-Chi Cheung.

Domaineval: An auto-constructed benchmark for multi-domain code generation, 2024. URL
https://arxiv.org/abs/2408.13204.

14

https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
http://dx.doi.org/10.1145/3178876.3186081
https://arxiv.org/abs/1805.08949
https://arxiv.org/abs/1805.08949
https://arxiv.org/abs/2402.01935
https://arxiv.org/abs/2402.01935
https://arxiv.org/abs/2408.13204

Under review as a conference paper at ICLR 2026

A THE USE OF LLMS

In this work, the LLMs are used to generate the queries in the dataset, and the quality of the queries
is validated by the hypothesis test in Section We also use LLMs for post-writing assistance,
including proofreading for typographical errors, fixing grammatical errors, enhancing the clarity of
expression in human-authored drafts.

B LICENSES

B.1 DATA SOURCE LICENSE

The GitHub repositories utilized by our dataset have various licensing schemes. While the majority
use permissive licenses such as the MIT License, a small subset utilizes relatively restrictive licenses
like the GPL. To address potential licensing concerns for users, we tag our dataset samples with cor-
responding license information and provide separate data splits based on license type, distinguishing
between permissive and restrictive licenses.

B.2 MODEL LICENSES

« CodeT5+: BSD 3-Clause License]
« OASIS: MIT Licensd|
* Nomic-emb-code: Apache-Z.OE]

* OpenAl text-embedding-large: Users own the embeddings generated by this model
according to OpenAlT’s policies. The linked documentation provides guidance on sharing
these embeddingsE]

* Voyage-code-3: Unclear, but we do not include any embeddings from voyage-code-3 in our
codebase.

C COMPUTE RESOURCE

For the query generation component of CLARC, we utilized OpenAI’s 03-mini (OpenAl, 2025) and
XAT’s grok4 xAll (2025). The combined expense for the prompt engineering, hypothesis testing, and
query generation phase was approximately $30.

The evaluation environment for the computational experiments was an x86_64-based system running
Ubuntu 22.04. This server was configured with two AMD 48-Core Processors and possessed 1.0
TiB of system RAM. An NVIDIA L40 GPU, featuring 46068 MiB of memory, was utilized for the
relevant computational tasks; this GPU operated with NVIDIA driver version 550.54.15 and CUDA
version 12.4. The aggregate time spent on evaluation across all experiments amounted to roughly 5
GPU hours.

D SUPPLEMENTARY DISCUSSION OF THE DATASET

D.1 DATASET STATISTICS

We present the statistics of CLARC in Table|l} For the x86 assembly and WebAssembly code-query
pairs, we excluded 20 and 227 samples from the total, respectively, due to technical limitations. The
exclusions resulted from challenges in function name extraction from the assembly code, and the
higher number of WebAssembly exclusions stemmed from differences in the compilation environment
compared to the g++ compiler (for instance, some header files are unsupported for the Wasm compiler).

https://github.com/salesforce/CodeT5?tab=BSD-3-Clause-1-ov—-file

Shttps://huggingface.co/Kwaipilot/OASIS-code—embedding—1.5B

4https://huggingface.co/nomic—ai/nomic—embed—code

5https://platform.openai.com/docs/guides/embeddings#
can-i-share-my-embeddings-online

15

https://github.com/salesforce/CodeT5?tab=BSD-3-Clause-1-ov-file
https://huggingface.co/Kwaipilot/OASIS-code-embedding-1.5B
https://huggingface.co/nomic-ai/nomic-embed-code
https://platform.openai.com/docs/guides/embeddings#can-i-share-my-embeddings-online
https://platform.openai.com/docs/guides/embeddings#can-i-share-my-embeddings-online

Under review as a conference paper at ICLR 2026

As these exclusions represent only a relatively small fraction of our dataset and do not affect our
compilability claims, we consider this acceptable.

D.2 DATASET SETTINGS

Neutralized: Identifiers in the code snippets are replaced with generic, neutral placeholders like
func_a, var_b, MACRO_c, or class_d, to reduce non-functional information while preserving
the structural role of each identifier.

Randomized: Identifiers in the code snippets are replaced with random strings. To ensure stability,
we performed randomization ten times to create corresponding dataset versions, reporting mean
results in Table[d] Complete results including standard errors are provided in Appendix [

Assembly: Leveraging the fact that all functions in the benchmark are compilable C/C++ code, we
provide the low-level assembly code generated by compiling the original functions. The objective
is to directly assess a model’s capability to interpret assembly language instructions and structure.
The C/C++ code is compiled to x86 assembly using the g++ compiler. To achieve a complete
anonymization, we remove the function symbols by post-processing the assembly using ob jcopy
-strip-all.

WebAssembly (Wasm): Analogous to the Assembly setting, we first compile functions into
WebAssembly binaries by Emscripten (Emscripten Team), 2024), the most widely used WebAssembly
compiler (Romano et al.||2022). These binaries are subsequently converted to the WebAssembly Text
Format (. wat) using the WABT toolkit (WebAssembly Community, 2025). This setting specifically
tests a model’s comprehension of WebAssembly code structure and semantics. Compared to the
assembly setting, WebAssembly code features inherent anonymization, as Emscripten does not
preserve the function names in the compiled code by default.

E MODEL DETAILS

BM25 (Trotman et al., 2014) BM?2S5 calculates a relevance score for each function by considering
the frequency of query terms within that function (Term Frequency), the inverse frequency of those
query terms across the entire code collection (Inverse Document Frequency or IDF), and the function’s
length relative to the average function length. Since BM2S5 is based on the superficial features like
the identifiers’ name, we only use BM25 as the baseline for the standard setting.

CodeT5+(110M) (Wang et al., 2023b) CodeT5+ is an encoder-decoder transformer model pre-
trained on a vast corpus of source code and associated natural language text. For code search, its
encoder generates dense embedding to capture the meaning of both natural queries and functions in
programming languages. CodeT5+ is evaluated on the standard, neutralized, and randomized settings.

OASIS(1.5B) (Gao et al., 2025) OASIS (Order-Augmented Strategy for Improved code Search) is
a code embedding model designed to capture finer semantic distinctions than traditional contrastive
learning approaches. It is trained on generated hard-negatives with assigned “order-based similarity
labels” to provide a more granular training signal. OASIS learned to generate embeddings that encode
a more nuanced understanding of code functionality, aiming to improve code search performance by
better discriminating between semantically close but incorrect candidates. OASIS is evaluated in the
standard, neutralized, and randomized settings.

Nomic-emb-code(7B) (Nomic Team,[2025) Nomic-emb-code is a large-scale embedding model
optimized for code retrieval tasks. It utilized the CoRNStack dataset (Suresh et al.| [2025) and a
curriculum-based hard negative mining strategy, which progressively introduces more challenging
negative examples to the model over time using softmax-based sampling during training. Nomic-
emb-code has strong code search performance according to its reported state-of-the-art results
on benchmarks like CodeSearchNet upon release. Nomic-emb-code is evaluated on the standard,
neutralized, and randomized settings.

16

Under review as a conference paper at ICLR 2026

OpenAl-text-embedding-large (OpenAl, 2024) OpenAl’s text-embedding-3-large is a large-scale,
close-source embedding model accessible via API, widely regarded as a state-of-the-art model for
generating general-purpose text representations. While not exclusively trained for code, its training
on vast and diverse datasets allows it to produce high-dimensional embeddings that effectively capture
semantic meaning for a wide range of inputs, including natural language queries and code snippets.
Because of its general-purpose design, we evaluated OpenAl-text-embedding-large on all setting of
CLARC.

Voyage-code-3 (Voyage AL, 2024) Voyage-code-3 is a specialized, proprietary embedding model
explicitly optimized for code retrieval tasks. It is trained on a large, curated corpus combining
general text, mathematical content, and extensive code-specific data to handle the nuances of code
semantics. Voyage-code-3 demonstrates state-of-the-art performance on a wide suite of code retrieval
benchmarks compared to strong generalist models. Similar to OpenAl-text-embedding-large, we also
evaluate Voyage-code-3 on all settings of the benchmark.

F EVALUATION

F.1 FULL EVALUATION RESULTS ON RANDOMIZED SETTINGS

As shown in Table[6] the models’ performance under the Randomized Setting is stable across trials,
with standard errors below 1.0 for most metrics.

Table 6: Evaluation Results on Randomized Setting. Bold entries stand for the maximum values for
the metrics in the category. Results shown as Mean + Standard Error after 10 trials.

Model NDCG MRR MAP R@1 R@5
Group 1
CodeT5+ 34.96+1.12 29.52+1.21 31.03£1.17 20.57+1.41 41.52+1.88
Nomic 77.05+0.63 72.78+0.78 73.26+0.77 63.35+1.32 85.21+0.51
OASIS 82.33+0.24 78.74+0.33 79.02+0.33 70.11+0.58 89.62+0.49
OpenAl 66.60+0.70 60.75+0.95 61.40+0.97 48.90+1.47 76.41+£0.53
Voyage 83.85+0.44 80.68+0.58 81.00+0.59 72.66+1.06 90.53+0.51
Group 2
CodeT5+ 14.4240.54 11.274+0.49 12.79+0.49 6.50+0.52 16.91£1.13
Nomic 55.27+1.19 48.23+1.32 49.24+1.27 34.75+1.60 66.74+1.80
OASIS 67.20+0.73 60.19+0.82 60.77+0.80 46.63+1.33 78.29+1.42
OpenAl 32.45+0.65 27.55+0.79 29.11+0.77 19.21£1.14 38.51£1.32
Voyage 75.2240.54 69.43+0.64 69.82+0.63 56.84+1.18 85.97+0.92
Group 3 Short
CodeT5+ 5.73+£0.78 5.59+1.04 4.28+0.46 1.40+0.43 4.13+£0.69
Nomic 19.13+0.71 21.21£1.01 13.44+0.47 7.55+0.61 14.36+0.53
OASIS 25.71+0.68 29.14+1.29 17.48+0.50 10.24+0.67 19.96+0.62
OpenAl 15.95+0.63 18.42+1.00 10.38+0.42 5.63+0.56 11.58+0.52
Voyage 30.54+0.36 35.28+0.52 20.72+0.37 12.85+0.63 23.00+0.63
Group 3 Long

CodeT5+ 7.11£0.78 5.18+0.69 6.87+0.67 2.40+0.75 8.52+1.53
Nomic 30.30+1.38 26.06+1.14 27.86£1.06 19.04+1.27 34.60+1.97
OASIS 34.69+0.67 30.51+0.78 32.15+0.75 22.96+1.20 39.00+0.85
OpenAl 33.28+0.74 28.64+1.01 30.03£1.07 20.16+1.56 39.64+1.72
Voyage 66.40+0.50 61.15+0.72 61.95+0.74 50.48+1.56 75.04+0.95

17

Under review as a conference paper at ICLR 2026

G QUERY GENERATION PROMPTS

G.1 PROMPT FOR GROUP 1

Please refer to Figure 2| for the prompt.

@se write a summary for the following C/C++ function that focuses on its functionality without includb
overly detailed discussions about the specific algorithm or process used. The goal is to ensure that
someone who treats the function as a black box can understand its functionality after reading your
summary.

Here is the function:
{function_text}

Please read and understand the function step by step. At last, generate your summary after "SUMMARY:".
Please note that in your final summary, you should not consider the background of the function, and only
focus on the functionality. Also, you should also mention the type of the input and output variables while
a&oid mentioning the variable names in your final summary. J

Figure 2: Prompt for Group 1

G.2 PROMPT FOR GROUP 2

Please refer to Figure 3] for the prompt.

Please analyze the following function with name {function_name} and generate a concise summary of its
functionality. Your summary should:

- Focus solely on what the function does (its functionality) rather than detailing the specific algorithms or
processes used.

- Be written from the perspective of a black-box user; that is, someone using the function without
needing to know its internal workings.

- Not include any examples or discuss the function’s background—only describe its behavior.

- Use high-level language where possible. If a high-level description isn’t sufficient, include necessary
details.

- Explicitly state the types of the input and output variables (as defined in the provided type declarations)
without mentioning any variable names or the function name.

Here are the declaration(s) of the variable types used in the function:
{type_declaration}

Here is the function:
{function_text}

Instructions:

1. Read and understand the function step by step.

2. After your analysis, output your summary on a new line starting with "SUMMARY:"

3. In the final summary, describe only the functionality of the function, explicitly mention the input and
output types, while avoiding any reference to variable names, function names, or too much
implementation details.

Figure 3: Prompt for Group 2

18

Under review as a conference paper at ICLR 2026

G.3 PROMPT FOR GROUP 3

Please refer to Figure] for the prompt.

Generate a high-quality description for the following C/C++ function based on the provide
guidelines. Focus on summarizing the function's purpose and behavior without reproducing the
code or referencing internal variable/function names.

Please follow these guidelines strictly:

1. **Function Summarization**:
- Do not reproduce the entire function or any code in the description.
- Focus on summarizing the function's purpose and behavior at a high level.

- If the snippet includes helper functions or other code, treat them as context to better
understand the target function's behavior, but only describe the target function (after the label
'Function to Summarize:') in the summary. This a critical requirement.

- Explicitly mention the input and output types of the function, while avoiding mentioning
specific variable names, function names, or too much implementation details.

2. **Description Quality**:
- Write clear, concise, and accurate descriptions that avoid unnecessary details.
- Use high-level descriptions when possible, focusing on what the function does rather than
how it does it.
- If a high-level description is insufficient, include comprehensive details covering all necessary
aspects of the function's behavior.
- Be careful about the details and ensure the description correctly aligns with the function's
behavior.

3. **Naming Conventions**:
- Do not reference internal function or variable names defined within the function body.
- You may reference names of types, classes, or structs if they are relevant to the description.

4. **Output Format**:

- Provide the description as plain text.

- Ensure the description is standalone and does not assume prior context beyond the provided
shippet.

5. **Constraints**:
- Avoid speculative details or assumptions about the code's broader context.
- Focus only on the functionality implied by the provided snippet.
- Do not mention any specific identifiers (e.g., variable or function names) unless they are
types, classes, or structs.

Your goal is to produce a description that is precise, professional, and aligned with the provided
guidelines, suitable for documentation purposes.

Here is the code snippet for description:

{function_text}

Provide the description as plain text, following the guidelines strictly. At last, generate your
summary after "SUMMARY:\n". Please note that in your final summary, you should not consider
the background of the function, and only focus on the functionality. Also, you should also mention
the type of the input and output variables while avoid mentioning the variable names in your final

summary.

Here are some examples of how the final summary should look like:

{few_shot_examples}

Figure 4: Prompt for Group 3

19

Under review as a conference paper at ICLR 2026

G.4 PROMPT FOR STYLE ALIGNMENT

Please refer to Figure 5] for the prompt. The few-shot examples used in the prompt are sampled from
the prompt engineering set.

Your task is to rewrite a summary for a function in C/C++ so that the revised summary is in the same
format as the provided examples. Remember, the revised function should not include specific function
name or variable names.

Here are the example summaries:

Example Summary 1:
{few_shot_example}

Example Summary 2:
{few_shot_example}

Example Summary 3:
{few_shot_example}

Here is the summary you should rewrite:
SUMMARY: {original_query}

For reference, here is the original function:
{function_text}

Please only output the revised summary. Feel free to include additional details if you think it's helpful to
make the format of your revised summary more similar to the examples.

Figure 5: Prompt for Style Alignment

20

Under review as a conference paper at ICLR 2026

H EXAMPLES

H.1 EXAMPLES FROM GROUP 1

Query Example

The function takes a single input of type char. It verifies whether the
input character is a numeric digit by checking if it lies between ’0’
and "9’ (inclusive). If the input character meets this condition, the
function returns true; otherwise, it returns false. The output of the
function is of type bool.

Code Snippet Example

static bool IsDigit (const char d) {
return (0’ <= d) && (d <= "9");
}

H.2 EXAMPLES FROM GROUP 2

Query Example

The function accepts an input of type pointer to a structure (OptAnc)
containing two integers ("left" and "right") and a second input of type
int. It checks whether the int input is represented as a set bit in the
first integer element; if not, it then checks the second integer
element. The output is an int that indicates success (1) if the bit is
set in either of the integer fields, or failure (0) otherwise.

Code Snippet Example

static int is_set_opt_anc_info (OptAncx to, int anc) {
if ((to-—>left & anc) != 0) return 1;
return ((to->right & anc) !'= 0 2?2 1 : 0);

H.3 EXAMPLES FROM GROUP 3

Query Example

This function performs an in-place sort on an array of unsigned char
pointers, which represent strings, for a specified number of elements
starting from the beginning of the array. It orders the strings in
ascending lexicographical order based on the substrings beginning at a
given offset position in each string. The function takes an array of
unsigned char pointers, an integer specifying the number of elements to
sort, and an integer offset for comparisons, and returns void.

Code Snippet Example

typedef unsigned charx string;

int scmp (unsigned char xsl, unsigned char xs2)
{
while(*sl != "\0’ && *sl == xs2)
{
SHCh

21

Under review as a conference paper at ICLR 2026

S2++;
}

return(*sl-*s2);

static void simplesort (string al], int n, int b)
{

int i, J;

string tmp;

for (i = 1; i < n; i++)
for (j = i; 3 0 && scmp(alj-1]1+b, aljl+b) > 0; j—-)
{ tmp = aljl; aljl = alj-1]; alj-1] = tmp; }

22

	Introduction
	Related Works
	Dataset
	Dataset Summary
	Data Collection
	Query Formation
	Hypothesis Testing
	Different Settings

	Experiment Setup
	Evaluation
	Standard Setting
	Neutralized and Randomized Settings
	Assembly & Wasm Settings

	Conclusion & Future Works
	The Use of LLMs
	Licenses
	Data Source License
	Model Licenses

	Compute Resource
	Supplementary Discussion of the Dataset
	Dataset Statistics
	Dataset Settings

	Model Details
	Evaluation
	Full Evaluation Results on Randomized Settings

	Query Generation Prompts
	Prompt for Group 1
	Prompt for Group 2
	Prompt for Group 3
	Prompt for Style Alignment

	Examples
	Examples from Group 1
	Examples from Group 2
	Examples from Group 3

