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Abstract

In this work, we study reinforcement learning
(RL) with trajectory feedback. Compared to the
standard RL setting, in RL with trajectory feed-
back, the agent only observes the accumulative
reward along the trajectory, and therefore, this
model is particularly suitable for scenarios where
querying the reward in each single step incurs pro-
hibitive cost. For a finite-horizon Markov Deci-
sion Process (MDP) with S states, A actions and a
horizon length of H , we develop an algorithm that
enjoys an asymptotically nearly optimal regret of
Õ
(√

SAH3K
)

in K episodes. To achieve this
result, our new technical ingredients include (i)
constructing a tighter confidence region for the
reward function by incorporating the RL with tra-
jectory feedback setting with techniques in linear
bandits and (ii) constructing a reference transition
model to better guide the exploration process.

1. Introduction
In the standard reinforcement learning (RL) framework, it
is assumed that the agent acts in an unknown environment,
and in each step, the agent receives feedback in the form of
a state-action dependent reward signal, and then transits to
the next state. Although such an interaction model might
be reasonable when a simulator is available, for real-life
applications, such feedback model could be hard to realize.
For practical scenarios, querying the reward function could
be costly, or even impossible in certain circumstances.

As a motivating example, in healthcare, a doctor repeatedly
interacts with a patient for the purpose of treatment. In
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each step, the doctor decides an action (e.g., taking certain
medicines) and observes the new state (e.g., information
like body temperature or blood pressure). On the other
hand, the state-action dependent reward signal could be
costly to observe, since the extent to which the disease has
been cured might be expensive to measure as it requires
comprehensive medical tests. In this case, in order to apply
the RL framework, it is more reasonable to assume that
the agent observes only the current state in each step, and
the cumulative reward value is revealed only after a whole
trajectory is finished.

As another example (which was also discussed in prior work
on RL with trajectory feedback (Efroni et al., 2021)), in
autonomous car driving, defining a state-action dependent
reward function could be a challenging task, as it requires
associating all possible state-action pairs with a real number.
A possible workaround is to have human experts involved
to produce the reward signals. However, defining reward
signals could be a highly subjective matter, and waiting for
reward values from human experts could take unacceptable
amount of time for RL algorithms.

To circumvent issues mentioned above, practitioners often
rely on heuristics (e.g., reward shaping (Ng et al., 1999)).
RL with trajectory feedback has been recently proposed
by Efroni et al. (2021) as a more principled framework. In
this framework, the agent no longer has access to a per state-
action reward function. Instead, it receives the cumulative
reward on the trajectory as well as all the visited state-action
pairs. Clearly, this new feedback model is harder than the
standard RL setting and could be more applicable for real-
life scenarios like healthcare or autonomous driving as men-
tioned in previous paragraphs. In the work by Efroni et al.
(2021), algorithms based on the principle of optimism and
Thompson sampling were proposed for RL with trajectory
feedback. Although the algorithms in (Efroni et al., 2021)
achieve

√
K-type regret bounds, the dependence on the

number of states is far from being asymptotically optimal, 1

and obtaining asymptotically nearly optimal regret bounds

1In this paper, by asymptotically nearly optimal, we mean
that the regret bound is optimal up to logarithm factors when the
number of episodes K approaches infinity, which is standard in the
RL theory literature (cf. (Azar et al., 2017; Agarwal et al., 2020)).
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in this setting is the main focus of the present paper.

Our contribution. In this paper, we prove the first asymp-
totically nearly optimal regret for RL with trajectory feed-
back. Our main result is summarized as follows.

Theorem 1.1 (Informal version of Theorem 5.6). Fix δ > 0.
There exists an algorithm (Algorithm 1) such that for any
episodic MDP with trajectory feedback, with probabil-
ity 1 − δ, the regret in K episodes is upper bounded by
Õ
(√

SAH3K
)

2 for sufficiently large K.3 Here S is the
number of states, A is the number of actions, H is the hori-
zon length, and K is the total number of episodes.

It is known that for episodic MDPs, even if the agent
has access to the per state-action reward function, the
regret bound of any RL algorithm is lower bounded by
Ω(
√
SAH3K) (Jin et al., 2018; Domingues et al., 2021). 4

Thus, the regret bound in Theorem 1.1 has nearly optimal
dependence on S, A and H as K approaches infinity, and
therefore, our regret bound is asymptotically nearly optimal.

Conceptually, Theorem 1.1 shows that RL with trajectory
feedback, a seemingly harder setting, has the same asymp-
totically optimal regret bound as the standard RL setting.
Therefore, at least statistically, RL with trajectory feedback
is no harder than the standard setting.

Why trajectory-feedback is no harder. It is well-known
that in tabular MDPs, learning the transition kernel is harder
than learning the reward, and RL algorithms usually pay
more for learning the transition kernel. As a result, if the
price of learning the rewards in RL with trajectory feedback
is upper bounded by that of learning the transition kernel,
RL with trajectory feedback would have the same asymp-
totically optimal regret bound as the standard RL setting.
As will be shown later in Section 4, the regret incurred by
learning the reward is indeed upper bounded by that of learn-
ing the transition kernel, and therefore, RL with trajectory
feedback is no harder than the standard setting statistically.

Computational efficiency. Despite achieving an asymp-
totically nearly optimal regret bound, the algorithm for
achieving Theorem 1.1 is not computationally efficient as it
requires maintaining a set of deterministic policies whose
cardinality could be exponential in S and H , and an in-
triguing open problem is to design computationally-efficient
algorithms for RL with trajectory feedback with asymptot-

2Throughout, we use Õ(·) to suppress logarithmic factors.
3As our main focus is to obtain asymptotically nearly optimal

regret bounds, here we consider the case that K approaches infinity
while S, A and H are all fixed.

4In fact, the regret lower bound proved by Jin et al. (2018)
is Ω(

√
SAH2T ) with T = KH , which would be translated to

Ω(
√
SAH3K) using our notations.

ically nearly optimal regret bounds, or show that such an
algorithm does not exist.

2. Related Work
RL with limited feedback. As mentioned in the intro-
duction, RL with trajectory feedback was first introduced
by Efroni et al. (2021). Compared to the results in Efroni
et al. (2021), our regret bound is asymptotically nearly op-
timal, while the results in Efroni et al. (2021) are not. In
Section 4, a detailed comparison with the results in Efroni
et al. (2021) from a technical perspective will be provided.

Cohen et al. (2021) designed an algorithm with
√
K-type

regret bound that works for RL with trajectory feedback
even when the noise is adversarially chosen. However, the
regret bound by Cohen et al. (2021) is not asymptotically
nearly optimal. Chatterji et al. (2021) considered a more
general setting, where the reward revealed to the learner is
no longer the cumulative reward on the sampled trajectory,
but instead drawn from a logistic model. It is an interesting
future direction to generalize our techniques to their setting
and obtain asymptotically nearly optimal regret bounds.

Very recently, Cassel et al. (2024) considered RL with tra-
jectory feedback in linear MDPs (Yang & Wang, 2019; Jin
et al., 2020) and achieved a regret bound of Õ(

√
d5H7K).

Translating their regret bound to the tabular setting con-
sidered in the present paper, the regret bound would be
Õ(
√
S5A5H7K) which is far from being asymptotically

optimal. It would be interesting to generalize our techniques
to RL with trajectory feedback when function approxima-
tion schemes are used and obtain improved regret bounds.

Preference-based RL (PbRL) (Wirth et al., 2017) is another
RL paradigm to deal with the lack of reward signals. In
PbRL, the agent receives feedback in terms of preferences
over a trajectory pair instead of numerical rewards values.
Compared to RL with trajectory feedback, PbRL is concep-
tually harder due to the lack of numerical feedback, and
indeed, existing regret bounds for PbRL in the tabular set-
ting (Novoseller et al., 2020; Xu et al., 2020b; Saha et al.,
2023) is much worse than the nearly optimal regret bound
obtained in this paper. PbRL was also studied in function
approximation settings (Chen et al., 2022; Wu & Sun, 2023;
Wang et al., 2023) and the bandit setting (Yue et al., 2012;
Falahatgar et al., 2017; Bengs et al., 2021; Xu et al., 2020a).

Linear bandits. Linear bandit is a classical setting for
modeling sequential decision-making problems, and various
sample complexity bounds and regret bounds have been
obtained in this setting and its generalizations (Dani et al.,
2008; Abbasi-Yadkori et al., 2011; Li et al., 2019; Filippi
et al., 2010; Li et al., 2019). We refer readers to Lattimore
& Szepesvári (2020) for a comprehensive survey on this
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topic. As observed in Efroni et al. (2021), there is a deep
connection between RL with trajectory feedback and linear
bandits. More specifically, RL with trajectory feedback can
be understood as an instance of linear bandits over a convex
set. Such a connection is also exploited in the present paper
which will be discussed in more details in Section 4.

Regret bounds in the standard RL setting. There
is a long line of work studying regret minimization in
RL (Kakade, 2003; Jaksch et al., 2010; Azar et al., 2017; Jin
et al., 2018; Zanette & Brunskill, 2019; Zhang & Ji, 2019;
Zhang et al., 2020; Li et al., 2021; Zhang et al., 2022b;
2024). In particular, an asymptotically nearly optimal regret
upper bound of Õ

(√
SAH3K

)
has been known in the lit-

erature (Azar et al., 2017), and more recent work typically
focuses on the lower order terms, i.e., by considering the
case where the total number of episodes K is not that large
compared to the number of states S, the number of actions
A and the horizon length H . In particular, the most recent
work by Zhang et al. (2024) shows that an upper bound of
Õ
(√

SAH3K +KH
)

can be achieved for any K ≥ 1.

In this paper, to learn the transition kernel, we use a pol-
icy elimination framework similar to that in Zhang et al.
(2022b). Compared to our algorithm, the algorithm in Zhang
et al. (2022b) is designed for the standard RL setting and
does not require the tighter confidence region construction
for rewards. Such confidence region construction is the
main technical contribution of the present paper.

3. Preliminaries
Throughout this paper, for an integer N ≥ 1, we use [N ] to
denote the set {1, 2, . . . , N}.

Episodic RL with trajectory feedback. An MDP
is defined as M = ⟨S,A, R, P, µ⟩, where S is
the state space, A is the action space, R =
{Rh(s, a)}(s,a)∈S×A,h∈[H] is the unknown reward distribu-
tion, P = {Ps,a,h}(s,a)∈S×A,h∈[H] is the unknown transi-
tion kernel and µ is the initial distribution. For a state-action
pair (s, a) ∈ S × A, a level h ∈ [H] and state s′ ∈ S,
Ps,a,h,s′ is the probability of transiting from s to s′ at level
h after taking action a. We assume that the reward distribu-
tion Rh(s, a) is supported on [0, 1] with mean Rh(s, a).

A (deterministic) policy π can be viewed as a collection of
mappings {πh}Hh=1 where each πh : S → A is a mapping
from the state space to the action space. We use Πdet to
denote the set of all deterministic policies. We also consider
mixtures of deterministic policies which can be seen as
a distributions over Πdet. A policy π induced a random
trajectory (s1, a1, s2, a2, . . . , sH , aH), where s1 ∼ µ, ah =
πh(sh) and sh+1 ∼ Psh,ah,h for all h ∈ [H].

In each episode, the agent decides a policy and observes the
induced trajectory (s1, a1, s2, a2, . . . , sH , aH). At the end
of each episode, the agent also receives a trajectory reward
feedback Y =

∑H
h=1 rh, where each rh is independently

drawn from Rh(sh, ah). We use T denote the set of all
possible trajectories. Note that |T | = (SA)H .

For a policy π, the Q-function and V -function are given by

Qπ
h(s, a) = Eπ

[
H∑

h′=h

rh′(sh′ , ah′)
∣∣∣(sh, ah) = (s, a)

]
;

V π
h (s) = Eπ

[
H∑

h′=h

rh′(sh′ , ah′)
∣∣∣sh = s

]
.

The optimal Q-function and V -function are given by

Q∗
h(s, a) = sup

π∈Πdet

Qπ
h(s, a);

V ∗
h (s) = max

π∈Πdet

V π
h (s) = max

a
Q∗

h(s, a).

We use π∗ to denote an optimal deterministic policy5 such
that Q∗

h(s, a) = Qπ∗

h (s, a) for all (s, a, h). Moreover, for a
given transition kernel p and reward distribution r, define

Wπ(r, p) = Eπ,p

[
H∑

h=1

rh(sh, ah)

]
;

W ∗(r, p) = max
π∈Πdet

Wπ(r, p).

Let πk be the policy executed by the agent in the k-th
episode, the regret is defined by

Regret(K) :=

K∑
k=1

(
W ∗(R,P )−Wπk

(R,P )
)
.

Other Notations. Given a policy π and a transition kernel
p, we use Eπ,p[·] (Prπ,p[·]) to denote the expectation (proba-
bility) under the policy π and transition kernel p. In particu-
lar, for a trajectory τ = {(sh, ah)}Hh=1, Prπ,p[τ ] is the prob-
ability of observing τ under π and p. We also define the oc-
cupancy function dπp (s, a, h) = Eπ,p [I[(sh, ah) = (s, a)]] .
We use dπp to denote the SAH-dimensional vector
{dπp (s, a, h)}(s,a,h)∈S×A×[H]. We may also regard R
as a SAH-dimensional vector {Rh(s, a)}(s,a,h)∈S×A×[H].
Given a trajectory τ = {(sh, ah)}Hh=1, we let ϕτ ∈ RSAH

to be the vector such that ϕτ (s
′, a′, h) = I[(s′, a′) =

(sh, ah)]. We use I to denote the SAH-dimensional identity
matrix. We use EC to denote the complement of the set E .

4. Technical Overview
In this section, we give an overview of the technical chal-
lenges for obtaining the asymptotically nearly optimal regret

5It is well known that optimal Q-function and V -function can
be achived by a deterministic policy.
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bound for RL with trajectory feedback, together with our
approaches to tackle these challenges. To explain the high-
level ideas, we first consider the simpler setting that the
transition kernel P is known, and then switch to the general
setting in which case the transition kernel is unknown.

Connection with linear bandits. As observed in prior
work (Efroni et al., 2021), when the transition kernel P is
known, RL with trajectory feedback can be seen as an in-
stance of linear bandits. More specifically, in each episode,
suppose the trajectory observed by the agent is τ , the ex-
pected trajectory reward feedback would be ϕ⊤

τ R, i.e., a
linear function with respect to ϕτ . Based on this observa-
tion, Efroni et al. (2021) showed how to build appropri-
ate confidence regions for RL with trajectory feedback by
adapting analysis for linear bandits algorithm and obtained
a regret bound of Õ

(√
S2A2H4K

)
. Although it is plau-

sible to improve their regret bound to Õ
(√

S2AH3K
)

by a more refined analysis, it is unclear how to improve
the dependence on S in their regret bound. Indeed, in the
work by Efroni et al. (2021), RL with trajectory feedback is
naı̈vely treated as an instance of linear bandits with feature
dimension d = SAH , and the best known regret bound for
any linear bandits algorithm is Õ(d

√
T ) (Dani et al., 2008),

or O(
√
dT logK) for linear bandits with K arms (Bubeck

et al., 2012). Since there are ASH policies for an MDP, and
each of them can be seen as an arm in the linear bandits
problem instance, improving the order of S in the regret
bound of prior work requires fundamentally new ideas.

Tighter confidence region based on trajectories. In or-
der to achieve a minimax optimal regret bound, our first new
idea is to build a tighter confidence region by exploiting
structures of the linear bandits instance associated with RL
with trajectory feedback. Before getting into more details,
we first review least squares regression (LSR), an estimator
commonly used in linear bandits algorithms (also in prior
work on RL with trajectory feedback (Efroni et al., 2021)).

Given a set of data points {πt, τ t, Y t}Tt=1, where for each
1 ≤ t ≤ T , πt is the policy executed in the t-th episode, τ t

is the trajectory sampled by executing πt and the Y t is the
trajectory reward feedback. Clearly, E[Y t] = ϕ⊤

τtR, which
motivates the design of the LSR estimator

R̂ = argmin
r

T∑
t=1

(
Y t − ϕ⊤

τtr
)2

+ λ∥r∥22 = Λ−1
T∑

t=1

ϕτtY t,

(1)

where Λ = λI +
∑T

t=1 ϕτtϕ⊤
τt is the information matrix.

Optimism-based linear bandits algorithms typically main-
tain a set of arms, and eliminate arms outside the confidence
region during the execution of the algorithm. For RL with

trajectory feedback, each arm in the linear bandits instance
corresponds to a deterministic policy in the original MDP.

Our construction of the tighter confidence region is based
on the following two observations:

• Although the total number of deterministic policies
could be as large as ASH , the number of trajectories is
|T | = (SA)H which is much smaller than the number
of deterministic policies;

• For any deterministic policy π, dπP =
∑

τ∈T Prπ,P [τ ]·
ϕτ which is a convex combination of {ϕτ}τ∈T .

Based on these observations, instead of building confidence
region for |(dπP )⊤(R̂−R)| for each deterministic policy π
and applying a union bound over all policies which result in
suboptimal regret bounds, we consider the following event

E :=

{
∀τ ∈ T ,

∣∣∣ϕ⊤
τ (R̂−R)

∣∣∣
≤ c

(
min

{√
ϕ⊤
τ Λ

−1ϕτσ2 log

(
|T |
δ

)
, H

})}
, (2)

where c is an absolute constant and σ2 ≤ H is a constant
such that {Y t − ϕ⊤

τtR}Tt=1 is a group of independent zero-
mean σ2-subgaussian random variables. By standard con-
centration arguments, E holds with probability at least 1− δ.
We assume E holds in the remaining part of the discussion.

Note that second observation mentioned above implies that
for any policy π,∣∣∣(dπP )⊤(R̂−R)

∣∣∣
≤
∑
τ∈T

Prπ,P [τ ]
∣∣∣ϕ⊤

τ (R̂−R)
∣∣∣

≤ O

(∑
τ∈T

Prπ,P [τ ] min

{√
ϕ⊤
τ Λ

−1ϕτH log(2|T |/δ), H
})

≤ Õ

H

√∑
τ∈T

Prπ,P [τ ] min {ϕ⊤
τ Λ

−1ϕτ , 1}

 , (3)

where the last step holds by Cauchy-Schwarz inequality, the
fact that |T | = (SA)H , and suppressing log(SA) factors
into the Õ(·) notation.

Exploration by optimal design. During the execution of
the algorithm, we maintain a set of deterministic policies Π
that have not been eliminated. According to (3), in order to
prove a uniform upper bound for

∣∣∣(dπP )⊤(R̂−R)
∣∣∣ for all

deterministic policies π ∈ Π, it suffices to bound

max
π∈Π

∑
τ∈T

Prπ,P [τ ] min
{
ϕ⊤
τ Λ

−1ϕτ , 1
}
. (4)
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For this purpose, we need to carefully choose a set of poli-
cies {πt}Tt=1, so that the quantity in (4) is upper bounded.
As another new technical ingredient, we show how to
generalize the classical Kiefer–Wolfowitz Theorem (see
Lemma B.1) to our setting. In particular, in Lemma B.2
in the supplementary material, we show that there exists π̄
which is a mixture of deterministic policies, such that

max
π∈Π

∑
τ∈T

Prπ,P [τ ]ϕ
⊤
τ Λ

−1
π̄ ϕτ = SAH, (5)

where Λπ̄ :=
∑

τ∈T Prπ̄,P [τ ]ϕτϕ
⊤
τ . Therefore, by running

π̄ for T steps, we could collect an information matrix Λ ≽
cTΛπ̄ with high probability for some absolute constant c >
0. Combining (3) and (5), we obtain that

max
π∈Π

∣∣∣(dπP )⊤(R̂−R)
∣∣∣ ≤ Õ

(
H
√

SAH/T
)
. (6)

In summary, with the arguments above, for any policy set
Π, we are able to collect a dataset {πt, τ t, Y t}Tt=1 in T
episodes to obtain R̂, such that

max
π∈Π

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ = max

π∈Π

∣∣∣(dπP )⊤(R̂−R)
∣∣∣

≤ Õ
(√

SAH3/T
)
.

(7)

Online batch learning by policy elimination. Finally,
we show how to combine the two technical ingredients
mentioned above into the framework of online policy elimi-
nation. In this framework, the learning process is divided
into consecutive batches. The algorithm maintains a policy
set during its execution. Suppose the policy set maintained
is Πℓ at the beginning of the ℓ-th batch. The algorithm will
eliminate a subset of policies from Πℓ to form Πℓ+1 in the
ℓ-th batch. Initially, we set Π1 to be the set of all determin-
istic policies. Moreover, there are O(log logK) batches for
the whole algorithm, and there are Kℓ = 2K1− 1

2ℓ episodes
in the ℓ-th batch.

As an invariant, during the execution of the algorithm, we
always have that the optimal policy π∗ ∈ Πℓ for all ℓ. By (7),
for each ℓ, we obtain a set of estimated reward values R̂ℓ

such that

max
π∈Πℓ

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≤ Õ

(√
SAH3/Kℓ

)
.

By setting

Πℓ+1 =

{
π ∈ Πℓ : max

π′∈Πℓ

Wπ′
(R̂, P )−Wπ(R̂, P ) ≤ ϵℓ

}
(8)

where ϵℓ = Õ
(√

SAH3/Kℓ

)
, it holds that π∗ ∈ Πℓ+1

and

W ∗(R,P )−Wπ(R,P ) ≤ Õ
(√

SAH3/Kℓ

)
for any π ∈ Πℓ+1. Therefore, the regret in the (ℓ + 1)-th
batch is bounded by

Õ(Kℓ+1

√
SAH3/Kℓ) = Õ(

√
SAH3K),

which means that the total regret is at most Õ(
√
SAH3K).

Dealing with unknown transition kernels. In the discus-
sion above, we assume that the transition kernel P is known.
Now we discuss how to remove such an assumption by
learning the transition kernel in an online fashion. In order
to implement the elimination-based online batch learning
process mentioned above, we only need the transition kernel
(i) to design the exploration policy so that (5) is ensured
and (ii) to ensure the policy elimination step in (8) can be
accurately implemented.

To achieve (i) and (ii), we first obtain a reference transition
kernel P̃ , which serves as an efficient tool to help design the
exploration policy. Following the regret analysis for online
batch learning in (Zhang et al., 2022b), the regret stemming
from learning P̃ can be bounded by Õ(

√
SAH3K) (with

lower order terms ignored). Moreover, for (i), an exact
solution for (5) is not necessary. Instead, an approximate
solution with a constant competitive ratio is sufficient to
guide the exploration process, which could be found with the
assistance of a reference model. For (ii), by using samples
obtained by executing the exploration policy found in (i),
we could build an empirical transition kernel which would
be sufficient for implementing the policy elimination step
in (8).

Computational efficiency. Given an approximate transi-
tion kernel, the algorithm by Zhang et al. (2022b) achieves
computationally efficient batch learning in the standard RL
setting. In contrast, in the RL with trajectory feedback set-
ting studied in this work, even with full knowledge of the
transition kernel, we suffer from computational inefficiency
due to the lack of reward information. In our algorithm, we
maintain a subset of deterministic policies and solve opti-
mization problems over the remaining policies (cf. Line 4
in Algorithm 3). Recall that initially we include all deter-
ministic policies, and therefore the number of remaining
policies could be exponential in S and H during the execu-
tion of the algorithm. To our best of knowledge, no existing
algorithm could solve such optimization problem efficiently
even if the transition kernel is known and approximation
is allowed, and therefore, our algorithm is also not com-
putationally efficient. We leave obtaining computationally
efficient algorithm as an interesting future direction.
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5. Algorithm
In this section, we present our algorithm. The specific choice
of the parameters could be found in Appendix A. The main
algorithm (Algorithm 1) has two stages.

The first stage (Line 3 in Algorithm 1) serves to acquire a
coarse approximation p of the transition kernel P , guiding
the design of exploration policy. Instead of approximating
P to the L1-norm, it is required the trajectory distribution
under P could be covered by that under p up to a constant
ratio. Formally, we have the definition below to measure the
similarity between two transition kernels.

Definition 5.1. For two transition kernels p and p′, we say
p is an (n, x)-approximation of p′ with respect to a set of
policies Π iff S ×A× S × [H] could be divided into two
sets K and KC such that

e−
log(n)

H p′s,a,h,s′ ≤ ps,a,h,s′ ≤ e
log(n)

H p′s,a,h,s′ ,

∀(s, a, h, s′) ∈ K; (9)

Prπ,p[KC] = 0, ∀π ∈ Πdet; (10)

max
π∈Π

Prπ,p′ [KC] ≤ x, (11)

where Prπ,q[KC] is the probability of visiting KC under
policy π and transition kernel q.

The second stage consists of several consecutive batches.
In each batch of the second stage (Line 5 in Algorithm 1),
we search for an exploration policy π̄ by using the coarse
model p obtained during the first stage. Subsequently, we
execute π̄ to collect the trajectory feedback, and construct
reward confidence regionR with least squares regression to
conduct policy elimination.

Algorithm 1
1: Input: total number of episodes K.
2: Initialization: Set K0, L, {Kℓ}1≤ℓ≤L, ϵ0, σ0, κ ac-

cording to Appendix A;
3: {P̃ ,Π1} ← Ref-Model(K0,K);
4: for ℓ = 1, 2, . . . , L do
5: Πℓ+1 ← Traj-Learning(P̃ ,Kℓ,Πℓ);
6: end for

5.1. Learning the Reference Model (the First Stage)

We present the algorithm for learning the reference model in
Algorithm 2. The algorithm consists of four stages. Initially,
the goal is to acquire a coarse reference model. In the sub-
sequent stage, the focus shifts to learning a coarse reward
estimator. The third stage involves gathering samples to
execute policy elimination, ensuring that the remaining poli-
cies are approximately O(ϵ0)-optimal. In the final stage, we
invoke Raw-Exploration with a larger length to obtain
a more refined reference model.

Raw exploration. In Algorithm 2, we invoke
Raw-Exploration (see Algorithm 6 in Appendix C) to
learn a proper reference model. This algorithm is based on
Algorithm 2 (Zhang et al., 2022b), with slight modification
so that it could be applied to general policy set Π.

Algorithm 2 Ref-Model(K0,K)

1: Input: length K0, total length K;
2: K̄1 = 1000

√
SAHK, K̄2 = K0 − 3K̄1

3: P̂1 ← Raw-Exploration(Πdet, K̄1);
4: R̂← Reward-Regression(P1,Πdet, K̄1);
5: Π1 ← Plan(R̂, P̂1, K̄1,Πdet, ϵ0);
6: P̂2 ← Raw-Exploration(Π1, K̄2);
7: return: {P̂2,Π1}.

Properties of the learned model are summarized as below.

Lemma 5.2. By running Ref-Model(K0,K), with prob-
ability 1− δ, it holds that

• P̂2 is a (3, σ0)-approximation of P w.r.t. Π1;

• π∗ ∈ Π1;

• Wπ(R,P ) ≥W ∗(R,P )− 2ϵ0 for any π ∈ Π1.

The proof of Lemma 5.2 is postponed to Appendix D.1

5.2. Policy Elimination with Reward Regression (the
Second Stage)

Algorithm 3 Traj-Learning(p, Ǩ,Π)

1: Input: reference model p, length Ǩ, policy set Π;
2: R̂← Reward-Regression(p, Ǩ,Π);
3: Πnext ← Plan(R̂, p, Ǩ,Π, κ);
4: return: Πnext.

We present the algorithm for reward regression and policy
elimination in Algorithm 3, which has two parts. In the
first part, the goal is to learn the reward by least squares
regression, while the goal of the second part is to eliminate
policies in Π based on the reward learned in the first part.

Throughout Algorithm 3, the agent only executes policies
within Π, and therefore, the regret incurred by running Al-
gorithm 3 is upper bounded by Ǩ ·maxπ∈Π(W

∗(R,P )−
Wπ(R,P )) where Ǩ is the total number of episodes.

Reward regression. We compute the optimal design pol-
icy according to the reference model p, and then collect
trajectory feedback to learn the reward function. It is worth
noting that the least squares regression estimator R̄ (see
Line 12 in Algorithm 4) might escape [0, 1]SAH , and thus
we construct a reward confidence region R (see Line 13

6
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Algorithm 4 Reward-Regression(p, Ǩ,Π)

1: Input: reference model p, length Ǩ, policy set Π;
2: λ← 1

SAH2Ǩ
, Λ← λI , Ǩ1 ← Ǩ

54 log( 2d
δ )

3: for t = 1, 2, . . . , Ǩ1 do
4: πt ← argmax

π∈Π

∑
τ∈T

Prπ,p[τ ] ·min{ϕ⊤
τ Λ

−1ϕτ , 1};

5: Λ← Λ +
∑

τ∈T Prπt,p[τ ]ϕτϕ
⊤
τ · 1

max{ϕ⊤
τ Λ−1ϕτ ,1} ;

6: end for
7: π̄ be the mixed policy which plays πt with probability

1/Ǩ1 for each 1 ≤ t ≤ Ǩ1;
8: for t = 1, 2, . . . , Ǩ do
9: Run π̄ to get trajectory τ t and trajectory reward feed-

back Y t;
10: end for
11: Λ̂← 18λ log(2d/δ)I+

∑Ǩ
t=1 ϕτtϕ⊤

τt ;

12: R̄← Λ̄−1
∑Ǩ

t=1 Y
tϕτt

13: R ← {R̃ ∈ [0, 1]SAH : |ϕ⊤
τ (R̃− R̄)|

≤ 8
√

H2 log2( 4SAH
δ )ϕ⊤

τ Λ̂
−1ϕτ ,∀τ ∈ T };

14: ifR ≠ ∅ then
15: Choose R̂ ∈ R ;
16: else
17: R̂← 0;
18: end if
19: return: R̂

in Algorithm 4) instead. For Algorithm 4, we have the
following lemma to bound the error of reward regression.

Lemma 5.3. If p is a (3, x)-approximation of P with respect
to Π for some x ≥ 0, with probability 1− δ, it holds that

max
π∈Π

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣

≤ H

√
log2

(
4SAH

δ

)
·

x+ 325

√
SAH log2( 2SAHǨ

δ )

Ǩ

 ,

where R̂ = Reward-Regression(p, Ǩ,Π).

Policy elimination. With the reward estimator R̂, we pro-
ceed to construct the confidence region to facilitate policy
elimination. As described in Algorithm 5, for every batch,
we use the reference model p and policy design to find an
exploration policy π̄ with nearly optimal coverage. By ex-
ecuting π̄, we obtain an empirical transition model which
is then used to eliminate policies. Formally, we have the
uniform convergence guarantee for Algorithm 5.

Lemma 5.4. Fix x, y, z, ϵ ≥ 0. Assume that

• π∗ ∈ Π;

• p is a (3, x)-approximation of P w.r.t. Π;

• Wπ(u, P ) ≥W ∗(u, P )− y for any π ∈ Π;

• maxπ∈Π |Wπ(u, P )−Wπ(R,P )| ≤ z;

• ϵ ≥ 2(b+ z), where

b = 30

√
SAH2(H + Sy) log

(
8SAH

δ

)
Ǩ

+
360S2AH3 log

(
8SAH

δ

)
Ǩ

+ 4SAH2x.

Let Πnext = Plan(u, p, Ǩ,Π, ϵ). With probability 1− δ, it
holds that:

• the optimal policy π∗ ∈ Πnext;

• Wπ(R,P ) ≥W ∗(R,P )− 2ϵ for any π ∈ Πnext.

Lemma 5.4 states that, given some proper reference tran-
sition kernel p and a policy set Π such that π∗ ∈ Π, Al-
gorithm 5 could return a policy set with better confidence
bounds by policy elimination.

Algorithm 5 Plan(u, p, Ǩ,Π, ϵ)

1: Input: reward function u, reference model p, episode
length Ǩ, policy set Π, threshold ϵ

2: π̄ ← Design(Π, p);
3: Execute π̄ in the next Ǩ episodes, and collect samples

as D;
4: Nh(s, a)← the count of (s, a, h) in D;
5: for (s, a, h) ∈ S ×A× [H] do
6: p̂s,a,h ← the empirical transition probability of the

samples of (s, a, h) in D;
7: end for
8: Πnext ←

{
π ∈ Π : Wπ(u, p̂) ≥ maxπ′∈Π Wπ′

(u, p̂)− ϵ
}

9: return: Πnext.
10: Function: Design(Π, p);
11: Let λ = {λπ}π∈Π ∈ ∆Π be the distribution

λ← argminλ′={λ′
π}π∈Π∈∆Π max

π∗∈Π

∑
s,a,h

dπ
∗

p (s, a, h)∑
π λ

′
πd

π
p (s, a, h)

;

12: return: π̄ be the mixed policy which plays π ∈ Π with
probability λπ;

Based on Lemma 5.3 and Lemma 5.4, we summarize the
guarantees of Algorithm 3 as below.

Lemma 5.5. Let ι = log2
(

16SAHǨ
δ

)
. Let Πnext =

Traj-Learning(p, Ǩ,Π). Fix x̃, ỹ, κ ≥ 0. Assume that

• π∗ ∈ Π;

• p is a (3, x̃)-approximation of P with respect to Π;

7
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• Wπ(R,P ) ≥W ∗(R,P )− ỹ for any π ∈ Π;

• κ ≥ 20
(
72
√

SAH3ι
Ǩ

+ 6
√

S2AH2ỹι
Ǩ

+ 100S2AH3ι
Ǩ

+

SAH2x̃ι
)
.

With probability 1− δ, it holds that π∗ ∈ Π and

Wπ(R,P ) ≥W ∗(R,P )− 2κ

for any π ∈ Πnext.

The full proofs of Lemma 5.3, Lemma 5.4 and Lemma 5.5
are presented in Appendix D.

5.3. The Final Regret Bound

Theorem 5.6. Fix δ > 0. For any episodic MDP with
trajectory feedback, with probability 1− δ, the regret in K
episodes of Algorithm 1 is upper bounded by

Regret(K) ≤ Õ
(√

SAH3K +
√
S3A2H3K

3
8

+
√
S11A3H19K

1
4 +
√
S17A3H27

)
.

Below we sketch the proof of Theorem 5.6.

Regret in the first stage. Recall the definition of Π1 in
Line 3 Algorithm 1. By Lemma 5.2 and the fact that π∗ ∈
Πdet with probability 1− δ, we have that

• π∗ ∈ Π1;

• P̃ is a (3, σ0)-approximation of P with respect to Π1,
hence it is also a (3, σ0)-approximation of P with re-
spect to Πℓ for any ℓ ≥ 1;

• Wπ(R,P ) ≥W ∗(R,P )− 2ϵ0 for all π ∈ Π1.

By the third property, the regret in the first stage is at most

O
(
K̄2ϵ0 + K̄1H

)
= Õ

(√
SAH3K + S

11
2 A

3
2H

19
2 K

1
4 + S

17
2 A

3
2H

27
2

)
,

(12)

where K̄1 = 1000
√
SAHK and K̄2 = K0 − 3K̄1 are

defined in Algorithm 2 and Appendix A.

Regret in the second stage. Recall that the second stage
comprises consecutive batches. We bound the regret in each
batch separately.

Fix 1 ≤ ℓ ≤ L = O(log log(K)) and assume π∗ ∈ Πℓ. Re-
call that ι = log2

(
16SAK

δ

)
. Set x̃ = σ0, ỹ = 2ϵℓ, and ϵℓ =

20
(
72
√

SAH3ι
Kℓ

+9
√

S2AH2ϵ0ι
Kℓ

+ 100S2AH3ι
Kℓ

+SAH2σ0ι
)
.

We can then verify the conditions in Lemma 5.5:

• π∗ ∈ Πℓ;

• P̃ is a (3, x̃)-approximation of P with respect to Πℓ;

• Wπ(R,P ) ≥W ∗(R,P )− ỹ for any π ∈ Πℓ;

• ϵℓ ≥ 20
(
72
√

SAH3ι
Kℓ

+ 6
√

S2AH2ỹι
Kℓ

+ 100S2AH3ι
Kℓ

+

SAH2x̃ι
)
.

Using Lemma 5.5, with probability 1 − δ, it holds that:
(1) π∗ ∈ Πℓ+1; (2) Wπ(R,P ) ≥ W ∗(R,P ) − 2ϵℓ for
any π ∈ Πℓ+1. By induction on ℓ = 1, 2, . . . , L, with
probability 1− Lδ

(L+1) , it holds that

Wπ(R,P ) ≥W ∗(R,P )− 2ϵℓ.

Recall that Kℓ = 2K1− 1

2l for 1 ≤ ℓ ≤ L − 1 and KL ≤
2K1− 1

2L . The regret in the (ℓ+ 1)-th batch is bounded by

O(Kℓ+1ϵℓ) = Õ
(√

SAH3K +
√
S3A2H3K

3
8

+
√
S6A2H7K

1
4 + S2AH3K

1

2ℓ+1
)
(13)

for 1 ≤ ℓ ≤ L− 1. Moreover, the regret incurred in the first
batch is bounded by O(K1H) = O(

√
KH2).

Putting all together. By (12) and (13), we obtain that the
total regret is bounded by

Regret(K) ≤ O

(
K̄2ϵ0 + K̄1 +

L∑
ℓ=2

Kℓϵℓ−1 +K1H

)
= Õ

(√
SAH3K +

√
S3A2H3K

3
8

+
√
S11A3H19K

1
4 +
√
S17A3H27

)
.

The proof is finished by replacing δ with δ
16S2AH(L+1) .

6. Conclusion
In this work, we design an algorithm to achieve an asymptot-
ically nearly optimal regret bound of Õ(

√
SAH3K) for RL

with trajectory feedback. However, the proposed algorithm
is based on elimination, resulting in exponential running
time. An intriguing future direction to investigate whether
the optimal regret bound is achievable using a computation-
ally efficient algorithm. Additionally, another interesting
future direction involves minimizing the lower-order terms
in the regret bound.
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A. Parameter Settings

Set K0 = 100000S
9
2A

3
2H

17
2 K

1
2 log

(
SAHK

δ

)
and Kℓ = 2K1− 1

2ℓ for ℓ ≥ 1. Let L := minℓ′(K0 +
∑ℓ′

ℓ=1 Kℓ) ≥
K. Set ϵ0 = 90000 log3(SAHK

δ )
(

SAH2

K
1
4

+ S4AH6

K
1
2

)
, σ0 = 1

S
3
2 A

1
2 H

7
2 K

1
2

, ι = log2
(
16SAHT

δ

)
and κ =

20

(
72
√

SAH3ι
T + 9

√
S2AH2ϵ0ι

T + 100S2AH3ι
T + SAH2σ0ι

)
.

By this definition, we have L ≤ 2 log2 log(K). With a slightly abuse of notation, we re-define KL = K− (K0+
∑L−1

ℓ=1 Lℓ).
It then holds that K0 +

∑L
ℓ=1 Kℓ = K.

B. Technical Lemmas
Lemma B.1 (General Equivalence Theorem in (Kiefer & Wolfowitz, 1960)). For any bounded subset X ⊂ Rd, there exists
a distribution K(X) supported on X , such that for any ϵ > 0, it holds that

max
x∈X

x⊤ (ϵI+ Ey∼K(X)[yy
⊤]
)−1

x ≤ d. (14)

Furthermore, there exists a mapping πG, which maps a context X to a distribution over X such that

max
x∈X

x⊤(ϵI+ Ey∼πG(X)[yy
⊤])−1x ≤ 2d. (15)

In particular, when supp(X) has a finite size, πG(X) could be implemented within poly(|supp(X)|) time.

Lemma B.2 (Generalized KW Theorem). For any policy set Π ⊂ Πdet,

min
π̄∈∆Π

max
π∈Π

∑
τ∈T

Prπ,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ = SAH, (16)

where Λ(π) :=
∑

τ∈T Prπ,P [τ ]ϕτϕ
⊤
τ .

Proof of Lemma B.2. Let F (π) := log(det(Λ(π))) for π ∈ ∆Π. Because ∆Π is a closed set and F (π) ≤ d log(d) for
any π ∈ ∆Π with d = SAH , there exists some π̄ such that π̄ = argmaxπ∈∆Π F (π). We assume that det(Λ(π̄)) ̸= 0.
Otherwise det(Λ(π)) is always 0, which implies there is redundant dimension.

Because π̄ could be viewed as a distribution over Π, we use λ(π̄, π) to denote the probability that π̄ distributes on π for
π ∈ Π. It then holds that

∑
π∈Π λ(π̄, π) = 1 and

Λ(π̄) =
∑
π∈Π

λ(π̄, π)Λ(π).

As a result, F (π̄) could be viewed as a multi-variable function with respect to the distribution {λ(π̄, π)}π∈Π. For two
different π1, π2 ∈ Π such that λ(π̄, π1) > 0, λ(π̄, π2) > 0 , by the condition that π̄ = argmaxπ∈∆Π F (π), we have that

∂F (π̄)

∂λ(π̄, π1)
=

∂F (π̄)

∂λ(π̄, π2)
, (17)

which means that ∑
τ∈T

Prπ1,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ =
∑
τ∈T

Prπ2,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ .

For π1, π2 such that λ(π̄, π1) > 0 and λ(π̄, π2) = 0, we have that

∂F (π̄)

∂λ(π̄, π1)
≥ ∂F (π̄)

∂λ(π̄, π2)
,
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which implies ∑
τ∈T

Prπ1,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ ≥
∑
τ∈T

Prπ2,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ .

Therefore, maxπ∈Π

∑
τ∈T Prπ,P [τ ]ϕ

⊤
τ (Λ(π̄))

−1ϕτ is reached by any π such that λ(π̄, π) > 0. Assume this value is x.
That is,

λ(π̄, π)
∑
τ∈T

Prπ,P [τ ]ϕ
⊤
τ (Λ(π̄))

−1ϕτ = λ(π̄, π)x

for all π ∈ Π. Taking sum over π ∈ Π, we have that

x = Trace(Λ(π̄)(Λ(π̄))−1) = d = SAH. (18)

The proof is completed.

Lemma B.3 (Lemma 1 in (Zhang et al., 2022b)). Let d > 0 be an integer. Let X ⊂ (∆d)m. Then there exists a distribution
D over X , such that

max
x={xi}dm

i=1∈X

dm∑
i=1

xi

yi
= md,

where y = {yi}dmi=1 = Ex∼D[x].

Lemma B.4 (Bennet’s inequality). Let Z,Z1, ..., Zn be i.i.d. random variables with values in [0, 1] and let δ > 0. Define
VZ = E

[
(Z − EZ)2

]
. Then we have

P

[∣∣∣∣∣E [Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2VZ ln(2/δ)

n
+

ln(2/δ)

n

]
≤ δ.

Lemma B.5 (Theorem 4 in (Maurer & Pontil, 2009) ). Let Z,Z1, ..., Zn (n ≥ 2) be i.i.d. random variables with values in
[0, 1] and let δ > 0. Define Z̄ = 1

n

∑n
i=1 Zi and V̂n = 1

n

∑n
i=1(Zi − Z̄)2. Then we have

P

∣∣∣∣∣E [Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2V̂n ln(2/δ)

n− 1
+

7 ln(2/δ)

3(n− 1)

 ≤ δ.

Lemma B.6 (Lemma 10 in (Zhang et al., 2022a)). Let X1, X2, . . . be a sequence of random variables taking value in [0, l].
For any k ≥ 1, let Fk be the σ-algebra generated by (X1, X2, . . . , Xk), and define Yk := E[Xk | Fk−1]. Then for any
δ > 0, we have

P

[
∃n,

n∑
k=1

Xk ≥ 3

n∑
k=1

Yk + l log
1

δ

]
≤ δ

P

[
∃n,

n∑
k=1

Yk ≥ 3

n∑
k=1

Xk + l log
1

δ

]
≤ δ.

Lemma B.7. Fix d > 0. Let Λ ∈ Rd×d be a PSD matrix and x ∈ Rd be a vector such that x⊤Λ−1x ≤ 1. Then we have that

log(det(Λ + xx⊤))− log(det(Λ)) ≥ 2x⊤Λ−1x.

Proof. Direct computation gives that

log(det(Λ + xx⊤))− log(det(Λ)) = log(det(I+ x⊤Λ−1x⊤)) = log(1 + x⊤Λ−1x) ≥ 1

2
x⊤Λ−1x.

12
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Lemma B.8 (Proposition 1 in (Zhang et al., 2021)). Consider a sequence of independent PSD (positive semi-definite)
matrices X1, X2, . . . , Xn ∈ Rd×d such that Xk ≼ W for a fixed PSD matrix W and all 1 ≤ k ≤ n. For every δ > 0 and
ϵ ∈ (0, 1), it holds that

Pr

[
n∑

k=1

Xk ≼ 3

n∑
k=1

E[Xk] + 3 log(d/δ)W

]
≥ 1− δ; (19)

Pr

[
n∑

k=1

Xk ≽
1

3

n∑
k=1

E[Xk]− 3 log(d/δ)W

]
≥ 1− δ. (20)

Lemma B.9. Assume p is an (n, x)-approximation of p′ with respec to Π. It then holds that

1

n
Eπ,p[I[(sh, ah) = (s, a)]] ≤ Eπ,p′ [I[(sh, ah) = (s, a)]] ≤ nEπ,p[I[(sh, ah) = (s, a)]] + x (21)

for any π ∈ Π and (s, a, h).

Proof. By (9) and (10), for any trajectory τ , we have that 1
nPrp[τ ] ≤ Prp′ [τ ′]. It then holds that

1

n
Eπ,p[I[(sh, ah) = (s, a)]] ≤ Eπ,p′ [I[(sh, ah) = (s, a)]].

On the other hand,

Eπ,p′ [I[(sh, ah) = (s, a)]]

≤ Eπ,p′ [I[(sh, ah) = (s, a)] ∩ I[(sh′ , ah′ , sh+1, h
′) ∈ K,∀1 ≤ h′ ≤ h]] + max

π∈Πdet

Prπ,p′ [KC]

≤ nEπ,p[I[(sh, ah) = (s, a)]] + x. (22)

Lemma B.10. Assume p is an (n, x)-approximation of p′. It then holds that

max
π∈Πdet

Prπ,p′ [Tbad] ≤ x,

where Tbad := {τ : Prp′ [τ ] ≥ nPrp[τ ]}.

Proof. Let τ = {sh, ah}Hh=1 be an element in Tbad. By definition, there exists h such that (sh, ah, h, sh+1) ∈ KC. As a
result, maxπ∈Πdet

Prπ,p′ [Tbad] ≤ maxπ∈Πdet
prπ,p′ [KC] ≤ x.

C. The Raw-Exploration Algorithm and Analysis
Lemma C.1. By running Raw-Exploration with input (Π, Ǩ, δ), with probability 1 − δ, the output p is an(
3, 11000S3AH4 log(SAH/δ)

Ǩ

)
-approximation of P with respect to Π.

Proof. Let Dh be the value of D after the h-th iteration. Let Ph = Confidence-Region(Dh) and P̄ be the final
value of P . Let Nh

h′(s, a, s′) be the count of (s, a, h′, s′) in Dh and Nh
h′(s, a) := min{

∑
s′ N

h
h′(s, a, s′), 1}. Let p̂hs,a,h′ =

Nh
h′ (s,a,s

′)

Nh
h′ (s,a)

be the empirical transition probability computed by Dh.

By Lemma B.4, with probability 1− δ/2,

∣∣p̂hs,a,h′,s′ − Ps,a,h,s′
∣∣ ≤√4Nh

h′(s, a, s′)ι

(Nh
h′(s, a))2

+
5ι

Nh′
h (s, a)

(23)

13
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Algorithm 6 Raw-Exploration(Π, Ǩ)

1: Input: policy set Π, length Ǩ ;
2: Initialize: Ǩ1 ← Ǩ

SAH , ι← log
(

2S2AH2

δ

)
, D ← ∅;

3: for h = 1, 2, . . . ,H do
4: P ← Confidence-Region(D);
5: for (s, a) ∈ S ×A do
6: {πs,a,h, ps,a,h} ← argmaxπ∈Π,p∈P Eπ,p [I[(sh, ah) = (s, a)]];
7: end for
8: for (s, a, h) ∈ S ×A× [H] do
9: Execute πs,a,h for Ǩ1 episodes, and collect the samples as Ds,a,h;

10: end for
11: D ← D ∪ (∪s,a,hDs,a,h);
12: end for
13: P ← Confidence-Region(D);
14: p← arbitrary element in P
15: return: p;

16: Function: Confidence-Region(D):
17: Nh(s, a, s

′)← count of (s, a, h, s′) in D, for all (s, a, s′);
18: Nh(s, a)← max{

∑
s′ Nh(s, a, s

′), 1} for all (s, a);
19: p̂s,a,h,s′ ← Nh(s,a,s

′)
Nh(s,a)

, ∀(s, a, h, s′);
20: W ← {(s, a, h, s′) : Nh(s, a, s

′) ≥ 200H2ι};
21: P̃s,a,h ←

{
p ∈ ∆S | |ps′ − p̂s,a,h,s′ | ≤

√
4Nh(s,a,s′)ι

N2
h(s,a)

+ 5ι
Nh(s,a)

,∀s′ ∈ S
}

, ∀(h, s, a);
22: Ps,a,h ← {clip(p,W) : p ∈ P̃s,a,h}, ∀(s, a, h);
23: Return: ⊗s,a,hPs,a,h.

24: Function: clip(p,W)
25: p′s,a,h,s′ ← ps,a,h,s′ ,∀(h, s, a, s) ∈ W;
26: p′s,a,h,s′ ← 0,∀(s, a, h, s′) /∈ W;
27: p′s,a,h,z ←

∑
s′:(s,a,h,s′)/∈W ps,a,h,s′ ,∀(h, s, a) ∈ [H]× S ×A;

28: p′z,a,h ← 1z,∀(h, a) ∈ [H]×A;
29: Return: p.

holds for all (s, a, h′, s′) and h ∈ [H]. We proceeds the analysis conditioned on (23). Let Nh(s, a, s
′) denote the count of

(s, a, h, s′) in Dh,s,a and Nh(s, a) = max{
∑

s′ Nh(s, a, s
′), 1}. Define

Kh := {(s, a, s′) : Nh(s, a, s
′) ≥ 200H2ι}

where ι = log
(

2S2AH2

δ

)
.

By (23), for any (s, a, s′) ∈ Kh and any h′ ≥ h, we have that

∣∣∣p̂h′

s,a,h,s′ − Ps,a,h,s′

∣∣∣ ≤ p̂h
′

s,a,h,s′ ·

(√
1

50H2
+

1

40H2

)
,

which implies that ∣∣∣p̂h′

s,a,h,s′ − Ps,a,h,s′

∣∣∣ ≤ 1

6H
Ps,a,h,s′ . (24)

Moreover, by definition of Ph, using similar arguments, we have

|ps,a,h,s′ − Ps,a,h,s′ | ≤
1

3H
Ps,a,h,s′ (25)

14
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for any (s, a, h, s′) ∈ Kh and p ∈ Ph.

We set K = ∪hKh and verify the three conditions in Definition 5.1. The first condition (9) holds by (25), and the second
condition (10) holds because ps,a,h,s′ = 0 for any p ∈ P and (s, a, s′) ∈ KC

h . As for the third condition (11), we analyze as
below.

Fix h ∈ [H]. By (24) and definition of {πs,a,h+1, ps,a,h+1}, we have that

Eπs,a,h+1,P [I[(sh+1, ah+1) = (s, a)]]

≥
(
1− 1

3H

)H

Eπs,a,h+1,ps,a,h+1 [I[(sh+1, ah+1) = (s, a)]]]

≥ 1

3
Eπs,a,h+1,ps,a,h+1 [I[(sh+1, ah+1) = (s, a)]]]

≥ 1

3
max
π∈Π

Eπ,ps,a,h+1 [I[(sh+1, ah+1) = (s, a)]]]

≥ 1

9
max
π∈Π

Eπ,P [I[(sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h] · I[(sh+1, ah+1) = (s, a)]] . (26)

Here (26) holds because for any trajectory τ = {sh′ , ah′}hh′=1 such that (sh′ , ah′ , sh′+1) ∈ Kh′ , Prπ,p[τ ] ≥ 1
3Prπ,P [τ ] for

any p ∈ Ph and any π ∈ Π. Consequently,

Eπs,a,h+1,P [I[(sh+1, ah+1, sh+2) = (s, a, s′)]]

≥ 1

9
max
π,P

max
π∈Π

Eπ,P [I[(sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h] · I[(sh+1, ah+1, sh+2) = (s, a, s′)]] . (27)

On the other side, by Lemma B.6, with probability 1− δ
2S2AH2 , it holds that

Nh+1(s, a, s
′)

≥ 1

3
Ǩ1Eπs,a,h+1,P [I[(sh+1, ah+1, sh+2) = (s, a, s′)]]− log

(
2S2AH2

δ

)
≥ 1

27
Ǩ1 max

π∈Π
Eπ,P [I[(sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h] · I[(sh+1, ah+1) = (s, a)]]− log

(
2S2AH2

δ

)
,

which implies that

max
π∈Π

Eπ,P [I[(sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h] · I[(sh+1, ah+1) = (s, a)]] ≤ 5427H2ι

Ǩ1

(28)

for (s, a, s′) ∈ KC
h+1

Taking sum over all (s, a, s′) ∈ KC
h+1, we learn that

max
π∈Π

Eπ,P

[
I[(s, a, s′) ∈ KC

h+1] · I [sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h]
]
≤ 5427S2AH2ι

Ǩ1

. (29)

Taking sum over h ∈ [H], we learn that

max
π

Prπ,P [∪hKC
h ]

≤
H∑

h=1

max
π∈Π

Eπ,P

[
I[(s, a, s′) ∈ KC

h+1] · I [sh′ , ah′ , sh′+1) ∈ Kh, ∀1 ≤ h′ ≤ h]
]

≤ 5427S2AH3ι

Ǩ1

.

Therefore (11) holds with x = 5427S2AH3ι
Ǩ1

. The proof is completed by noting Ǩ1 = Ǩ
SAH .
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D. Missing Algorithms and Proofs
D.1. Proof of Lemma 5.2

Proof. By Lemma C.1, with probability 1− δ
4(L+1) , P̂2 is an (3, 11000S3AH3 log(4SAH(L+1)/δ)

K̄2
)-approximation of P with

respect to Π1. By noting that

K̄2 ≥ 96000S
9
2A

3
2H

15
2 K

1
2 log

(
SAHK

δ

)
and

σ0 ≥
11000S3AH3 log(4SAH(L+ 1)/δ)

K̄2
,

we conclude that P̂2 is an (3, σ0)-approximation of P with respect to Π1, and thus is an (3, σ0)-approximation of P with
respect to Πℓ for any ℓ ≥ 1.

Let b1 :=
11000S3AH4 log( 4SAH

δ )
K̄1

. By Lemma C.1, with probability 1− δ
4 P̂1 is an (3, b1)-approximation of P with respect

to Πdet. By Lemma 5.3, with probability 1− δ
4 , we learn that

max
π∈Πdet

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣

≤ H
√

log(SAH) log(16/δ)

b1 + 325

√
SAH log(K) log(8SAH/δ)

K̄1


≤ 1000 log2

(
SAHK

δ

)
·
(
SAH2

K
1
4

+ 4SAH2b1

)
. (30)

By Lemma 5.4 with parameters as:

Π = Πdet;

x = b1 =
11000S3AH4 log

(
4SAH

δ

)
K̄1

;

y = H;

z := 1000 log2
(
SAHK

δ

)
·
(
SAH2

K
1
4

+
S4AH6

K
1
2

)

b = 30

√
2S2AH2 log

(
32SAH

δ

)
K̄1

+
360S2AH3 log

(
32SAH

δ

)
K̄1

+
44000S3AH4 log

(
32S2AH2

δ

)
K̄1

;

ϵ = ϵ0 = 90000 log3
(
SAHK

δ

)(
SAH2

K
1
4

+
S4AH6

K
1
2

)
≥ 2(b+ z) (31)

we have that: with probability 1− δ
4 , it holds that (1) π∗ ∈ Π1; (2) Wπ(R,P ) ≥W ∗(R,P )− 2ϵ for any π ∈ Π1.

The proof is finished.

D.2. Proof of Lemma 5.3

Proof. Let d = SAH . Fix π ∈ Π. By definition, we have that∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≤∑

τ∈T
Prπ,P [τ ] · |ϕ⊤

τ (R̂−R)|.

16
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By Lemma D.2, with probability 1− δ/2, it holds that R ∈ R, which implies that∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≤∑

τ∈T
Prπ,P [τ ] · |ϕ⊤

τ (R̂−R)|

≤
∑
τ∈T

Prπ,P [τ ] ·min{8
√

H2 log(SAH) log(4/δ)ϕ⊤
τ Λ̂

−1ϕτ , H}

≤ H
√
log(SAH) log(4/δ)

∑
τ∈T

Prπ,P [τ ] min

{
8

√
ϕ⊤
τ Λ̂

−1ϕτ , 1

}
(32)

By Lemma D.3, with probability 1− δ/2, Λ̂ ≽ 3Λ̃. Consequently, we have that∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≤ H

√
log(SAH) log(4/δ)

∑
τ∈T

Prπ,P [τ ] min

{
5

√
ϕ⊤
τ Λ̃

−1ϕτ , 1

}

≤ H
√
log(SAH) log(4/δ) ·

(
x+ 3

∑
τ∈T

Prπ,p[τ ] min

{
5

√
ϕ⊤
τ Λ̃

−1ϕτ , 1

})
(33)

≤ H
√
log(SAH) log(4/δ) ·

x+ 15

√∑
τ∈T

Prπ,p[τ ] min
{
ϕ⊤
τ Λ̃

−1ϕτ , 1
} (34)

≤ H
√
log(SAH) log(4/δ) ·

x+ 325

√
SAH log(Ǩ) log(2d/δ)

Ǩ

 . (35)

Here (33) holds by Lemma B.10, (34) is by Cauchy’s inequality, and (35) is by Lemma D.1.

The proof is finished.

Lemma D.1. Let Λ̃ be the final value of Λ in Algorithm 4. It then holds that

max
π∈Π

∑
τ∈T

Prπ,p[τ ] min{ϕ⊤
τ Λ̃

−1ϕτ , 1} ≤
432SAH log(Ǩ) log(2d/δ)

Ǩ
(36)

Proof. Let Ǩ1 = Ǩ
54 log(2d/δ) . Let Λt be the value of Λ before the t-th iteration. For any policy π ∈ Π, we have that

∑
τ∈T

Prπ,p[τ ] ·min{ϕ⊤
τ Λ̃

−1ϕτ , 1} ≤
1

Ǩ1

Ǩ1∑
t=1

∑
τ∈T

Prπ,p[τ ] ·min{ϕ⊤
τ (Λ

t)−1ϕτ , 1}

≤ 1

Ǩ1

Ǩ1∑
t=1

∑
τ∈T

Prπt,p[τ ] ·min{ϕ⊤
τ (Λ

t)−1ϕτ , 1}

≤ 1

Ǩ1

· 4 log

(
det(Λ̃)

λSAH

)
(37)

≤ 432SAH log(Ǩ) log(2d/δ)

Ǩ
.

Here (37) is derived as following. Let zt,τ = ϕτ · 1√
max{ϕ⊤

τ (Λt)−1ϕτ ,1}
. Then we have that Λt+1 = Λt +∑

τ∈T Prπt,p[τ ]zt,τz
⊤
t,τ . Because zt,τz

⊤
t,τ ≼ Λt, it holds that

∑
τ∈T Prπt,p[τ ]zt,τz

⊤
t,τ ≼ Λt. Let ≺ be an order over

all possible trajectories and Λ(τ) = Λt +
∑

τ ′≺τ Prπt,p[τ
′]zt,τ ′z⊤t,τ ′) ≼ 2Λt.

17
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As a result, we have that

log

(
det(Λt+1)

det(Λt)

)
=
∑
τ∈T

(
log(det(Λ(τ) + Prπt,p[τ ]zt,τz

⊤
t,τ )− log(det(Λ(τ))

)
≥ 1

2

∑
τ∈T

Prπt,p[τ ]z
⊤
t,τ (Λ(τ))

−1zt,τ (38)

≥ 1

4

∑
τ∈T

Prπt,p[τ ]z
⊤
t,τ (Λ

t)−1zt,τ . (39)

Here (38) is by Lemma B.7.

Lemma D.2. With probability 1− δ/2, R ∈ R.

Proof. Let λ′ = 18λ log(2d/δ). It is easy to see R ∈ [0, 1]SAH . It suffices to verify that

|ϕ⊤
τ R− ϕ⊤

τ R̄| ≤ 8

√
H2 log(SAH) log(2/δ)ϕ⊤

τ Λ̂
−1ϕτ , ∀τ.

Let τ t = {(sth, ath)}Hh=1. Let ζt := Yt −
∑H

h=1 Rh(s
t
h, a

t
h). Noting that Y t =

∑H
h=1 rh(s

t
h, a

t
h) where each rh(s

t
h, a

t
h) are

drawn according to Rh(s
t
h, a

t
h) independently, we have that E[exp(zζt)] ≤ exp(Hz2/2) for any z ≥ 0. For fixed τ , we

note that

∣∣ϕ⊤
τ R̄− ϕ⊤

τ R
∣∣ =

∣∣∣∣∣∣ϕ⊤
τ Λ̂

−1
Ǩ∑
t=1

ϕτtζt − λ′ϕ⊤
τ Λ̂

−1R

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ϕ⊤
τ Λ

−1
Ǩ∑
t=1

ϕτtζt

∣∣∣∣∣∣+ λ′H∥ϕτ Λ̂
−1∥2

≤

∣∣∣∣∣∣ϕ⊤
τ Λ

−1
Ǩ∑
t=1

ϕτtζt

∣∣∣∣∣∣+H

√
λ′ϕ⊤

τ Λ̂
−1ϕτ (40)

≤ 2

∣∣∣∣∣∣ϕ⊤
τ Λ

−1
Ǩ∑
t=1

ϕτtζt

∣∣∣∣∣∣ . (41)

Here (40) holds by the fact that Λ̂− λ′I is PSD and (41) is by the fact that 18λ log(2d/δ)H2 ≤ 1.

Note that {ζt}Ǩt=1 does not change the distribution of {ϕτt}Tt=1. Therefore, it holds that

Pr

∣∣∣∣∣∣ϕ⊤
τ Λ

−1
Ǩ∑
t=1

ϕτtζt

∣∣∣∣∣∣ ≥ x ·
√

ϕ⊤
τ Λ̂

−1ϕτ

 ≤ 2 exp

(
− x2

2H

)
. (42)

With a union bound of all possible choices of τ , we learn that, with probability 1− δ, for any τ , it holds that∣∣ϕ⊤
τ R̄− ϕ⊤

τ R
∣∣ ≤ 8

√
H2 log(SAH) log(4/δ)ϕ⊤

τ Λ̂
−1ϕτ .

The proof is completed.

Lemma D.3. With probability 1− δ/2, it holds that

Λ̂ ≽ 3Λ̃.
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Proof. Let Λt ≼ Λ̃ be the value of Λ before the t-th round in line 4. Let zt = ϕτt

√
1

max{ϕ⊤
τt Λ̃

−1ϕτt ,1}
. It is then easy to

verify that Λ̃ ≽ ztz
⊤
t . By Lemma B.10, we have Prp[τ ] ≤ 3Prp′ [τ ] for any τ . By noting that

Λ̃ =

Ǩ1∑
t=1

Eπt,p

[∑
τ∈T

Prπt,pϕτϕ
⊤
τ ·

1

max{ϕ⊤
τ (Λ

t)−1ϕτ , 1}

]

≼
Ǩ1∑
t=1

Eπt,p

[∑
τ∈T

Prπt,pϕτϕ
⊤
τ ·

1

max{ϕ⊤
τ Λ̃

−1ϕτ , 1}

]

= Ǩ1Eπ̄,p

[∑
τ∈T

Prπ̄,pϕτϕ
⊤
τ ·

1

max{ϕ⊤
τ Λ̃

−1ϕτ , 1}

]
,

we have

18 log(2d/δ)λI+ Eπt,P

 Ǩ∑
t=1

ztz
⊤
t


≽ 18 log(2d/δ)λI+

1

3
Eπ̄,p

 Ǩ∑
t=1

ϕτtϕ⊤
τt ·

1

max{ϕ⊤
τtΛ̃−1ϕτt , 1}


≽ 18 log(2d/δ)Λ̃. (43)

By Lemma B.8, with probability 1− δ/2,

Ǩ∑
t=1

ztz
⊤
t ≽

1

3
E

 Ǩ∑
t=1

ztz
⊤
t

− 3 log(2d/δ)Λ̃ ≽ 3 log(2d/δ)Λ̃− 18λ log(2d/δ)I,

which means that

Λ̂ ≽ 18λ log(2d/δ)I+

Ǩ∑
t=1

ztz
⊤
t ≽ 3Λ̃.

The proof is completed.

D.3. Proof of Lemma 5.5

Let R̂ be the reward function in line 3 Algorithm 3. By Lemma 5.3, with probability 1− δ/2,

max
π∈Π

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≤ b1 := H

√
log(SAH) log(8/δ) ·

x̃+ 325

√
SAH log(Ǩ) log(4SAH

δ )

Ǩ

 .

As a result, for any π ∈ Π,

Wπ(R̂, P )−W ∗(R̂, P ) ≥Wπ(R,P )−W ∗(R,P )− 2max
π∈Π

∣∣∣Wπ(R̂, P )−Wπ(R,P )
∣∣∣ ≥ ỹ + 2b1. (44)

Let x = x1, y = ỹ + 2b1, z = b1. Let b = 30

√
SAH2(H+Sy) log( 16SAH

δ )
Ǩ

+
360S2AH3 log( 16SAH

δ )
Ǩ

+ 4SAH2x̃.

By Lemma 5.4 and the assumption that κ ≥ 2(b+ z) = 2(b+ b1), it then holds that π∗ ∈ Πnext and

Wπ(R,P ) ≥W ∗(R,P )− 2κ

for any π ∈ Πnext
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D.4. Proof of Lemma 5.4

Additional notations. We use {vπh(s)} ({v∗h(s)}) to denote the (optimal) value function under the policy π, transition P
and reward u. With a slight abuse of notation, we define dπ̄P (s, a, h) = Eπ̄,P [I[(sh, ah) = (s, a)]]. For two vector x, y with
the same dimension, we write the inner product x⊤y as xy for simplicity. Let p ∈ ∆S be a probability distribution over [S]
and v ∈ RS , we define the variance function as V(p, v) = pv2 − (pv)2. Define c(s, a, h) = Eπ̄,p [I[(sh, ah) = (s, a)]] for
all (s, a, h).

Because p is an (3, x)−approximation of P with respect to Π, by Lemma B.9 we have that

1

3
c(s, a, h) ≤ dπ̄P (s, a, h) ≤ 3c(s, a, h) + x. (45)

Let L := {(s, a, h) : c(s, a, h) ≥ max{x, 36 log(8SAH/δ)

Ǩ
}}. By (45), dπ̄P (s, a, h) ≤ 4x for (s, a, h) /∈ L. By noting that

p̂sh,ah,h is independent of v∗h+1, using Bernstein’s inequality, with probability 1− δ/8,

∣∣(p̂s,a,h − Ps,a,h)v
∗
h+1

∣∣ ≤ 2

√
V(Ps,a,h, v∗h+1) log(8SAH/δ)

Nh(s, a)
+

H log(8SAh/δ)

Nh(s, a)
, ∀(s, a, h); (46)

|p̂s,a,h,s′ − Ps,a,h,s′ | ≤ 2

√
Ps,a,h,s′ log(8SAH/δ)

Nh(s, a)
+

H log(8SAH/δ)

Nh(s, a)
, ∀(s, a, h, s′). (47)

We continue the analysis conditioned on (46) and (47). Fix π ∈ Π. Using policy difference lemma, and noting that
dπP (s, a, h) ≤ 4x for (s, a, h) /∈ L, we have that

∣∣∣Wπ(R̂, p̂)−Wπ(R̂, P )
∣∣∣ = ∣∣∣∣∣Eπ,P

[
H∑

h=1

(p̂sh,ah,h − Psh,ah,h)v
π
h+1

]∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

(s,a,h)∈L

dπ̄P (s, a, h)(p̂s,a,h − Ps,a,h)v
π
h+1

∣∣∣∣∣∣+ 4SAH2

(
x+

36 log(8SAH/δ)

T

)
. (48)

Let F = 4SAH2
(
x+ 36 log(8SAH/δ)

Ǩ

)
. By definition of E1, we further have that,∣∣∣Wπ(R̂, p̂)−Wπ(R̂, P )

∣∣∣ (49)

≤

∣∣∣∣∣∣
∑

(s,a,h)∈L

dπP (s, a, h)(p̂s,a,h − Ps,a,h)v
∗
h+1

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

(s,a,h)∈L

dπP (s, a, h)(p̂s,a,h − Ps,a,h)(v
π
h+1 − v∗h+1)

∣∣∣∣∣∣+ F

≤

∣∣∣∣∣∣
∑

(s,a,h)∈L

dπP (s, a, h)

2

√
V(Ps,a,h, v∗h+1) log

(
8SAH

δ

)
Nh(s, a)

+
H log

(
8SAH

δ

)
Nh(s, a)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(s,a,h)∈L

dπP (s, a, h)

2

√
SV(Ps,a,h, v∗h+1 − vπh+1) log

(
8SAH

δ

)
Nh(s, a)

+
SH log

(
8SAH

δ

)
Nh(s, a)

∣∣∣∣∣∣+ F

≤ 2

√√√√√log

(
8SAH

δ

) ∑
(s,a,h)∈L

dπP (s, a, h)

Nh(s, a)

 ·
√√√√E

[
H∑

h=1

(
V(Psh,ah,h, v

∗
h+1) + SV(Psh,ah,h, v

∗
h+1 − vπh+1)

)]

+ 2SH log

(
8SAH

δ

) ∑
(s,a,h)∈L

dπP (s, a, h)

Nh(s, a)

+ F. (50)

We then bound the terms in (50) separately.
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The doubling count term. By definition of L, we have that

∑
(s,a,h)∈L

dπP (s, a, h)

Nh(s, a)
≤ 4

∑
s,a,h

dπp (s, a, h)

Nh(s, a)
. (51)

By Lemma B.6, we further have that, with probability 1− δ
8 , it holds that

Nh(s, a) ≥
1

9
Ǩc(s, a, h)− log(8SAH/δ). (52)

for any (s, a, h). Conditioned on this event, we have that

∑
(s,a,h)∈L

dπP (s, a, h)

Nh(s, a)
≤ 108

Ǩ

∑
s,a,h

dπp (s, a, h)

c(s, a, h)
≤ 108SAH

Ǩ
. (53)

In the last inequality, we use the fact that

max
π∗∈Π

∑
s,a,h

dπ
∗

p (s, a, h)

c(s, a, h)
= SAH, (54)

which is a direct result following Lemma B.3.

The variance terms. Direct computation gives that

Eπ,P

[
H∑

h=1

V(Psh,ah,h, v
∗
h+1)

]
= Eπ,P

[
H∑

h=1

(
(v∗h+1(sh+1))

2 − (Psh,ah,hv
∗
h+1)

2
)]

≤ Eπ,P

[
H∑

h=1

(
(v∗h(sh))

2 − (Psh,ah,hv
∗
h+1)

2
)]

≤ 2HEπ,P

[
H∑

h=1

(
v∗h(sh)− Psh,ah,hv

∗
h+1

)]

= 2HEπ,P

[
H∑

h=1

(
v∗h(sh)− v∗h+1(sh+1)

)]
≤ 2H2 (55)
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and

Eπ,P

[
H∑

h=1

V(Psh,ah,h, v
∗
h+1) + SV(Psh,ah,h, v

∗
h+1 − vπh+1)

]

= Eπ,P

[
H∑

h=1

(
(v∗h+1(sh+1)− vπh+1(sh+1))

2 − (Psh,ah,h(v
∗
h+1 − vπh+1))

2
)]

≤ Eπ,P

[
H∑

h=1

(
(v∗h(sh)− vπh(sh))

2 − (Psh,ah,h(v
∗
h+1 − vπh+1))

2
)]

≤ HEπ,P

[
H∑

h=1

∣∣(v∗h(sh)− Psh,ah,hv
∗
h+1)− (vπh(sh)− Psh,ah,hv

π
h+1)

∣∣]

= 2HEπ,P

[
H∑

h=1

∣∣∣(v∗h(sh)− Psh,ah,hv
∗
h+1)− R̂h(sh, ah)

∣∣∣]

= 2HEπ,P

[
H∑

h=1

(
v∗h(sh)− uh(sh, ah)− Psh,ah,hv

∗
h+1

)]
(56)

2H(W ∗(u, P )−Wπ(u, P ))

≤ 2Hy. (57)

Here (56) holds by the fact that v∗h(sh) ≥ uh(sh, ah) + Psh,ah,hv
∗
h+1.

Putting together. By (50), (53) (55) and (57), we have that

|Wπ(u, p̂)−Wπ(u, P )| ≤ 30

√
SAH2(H + Sy) log

(
8SAH

δ

)
Ǩ

+
360S2AH3 log

(
8SAH

δ

)
Ǩ

+ 4SAH2x = b. (58)

Now we verify that π∗ ∈ Πnext.

It suffices to show that

Wπ∗
(u, p̂) ≥ max

π′∈Π
Wπ′

(u, p̂)− ϵ. (59)

By the assumptions and (58), we have that

Wπ∗
(u, p̂) ≥Wπ∗

(u, P )− b ≥Wπ∗
(R,P )− b− z

Wπ(µ, p̂) ≤Wπ(u, P ) + b ≤Wπ(R,P ) + b+ z ≤Wπ∗
(R,P ) + b+ z.

Noting that ϵ ≥ 2(b+ z), we conclude that π∗ ∈ Πnext. On the other hand, for any π ∈ Πnext, we have that

Wπ(R,P ) ≥Wπ(u, p̂)− (b+ z) ≥Wπ∗
(u, p̂)− 2(b+ z) ≥Wπ∗

(R,P )− 3(b+ z) ≥Wπ∗
(R,P )− 2ϵ.

The proof is finished.
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