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ABSTRACT

Antibodies must meet stringent developability criteria for successful commercial-
ization—a challenge for machine learning approaches given the limited available
data. Selecting candidates with biophysical properties similar to clinical-stage an-
tibodies offers an alternative to data-intensive approaches. However, such meth-
ods typically suffer from limited throughput due to structure-based calculations
and can eliminate promising candidates through overly strict filtering. By bench-
marking classical filtering methods against experimental datasets, with viscosity
as a proof-of-concept, we identify an informative set of biophysical definitions
relevant to charge and hydrophobicity. Using these as optimization objectives
for guided design, we introduce TherAbDesign, a sequence-based framework that
evaluates and optimizes antibodies for developability without requiring structure
prediction or physics-based computation. TherAbDesign proposes rational mod-
ifications to mimic the properties of successful therapeutic antibodies, which we
demonstrate can improve known developability liabilities like high viscosity with-
out explicitly modeling their mechanism of action.

1 INTRODUCTION

Antibodies are a powerful class of therapeutics due to their inherent specificity and efficacy. How-
ever, developing an antibody into a successful drug requires optimizing multiple “developability”
properties beyond binding affinity – including thermostability, aggregation, and viscosity (Carter
& Rajpal, 2022; Jain et al., 2017). These properties are crucial since they determine whether an
antibody can be reliably produced and delivered to patients. Currently, assessing these properties
requires substantial costs and experimental effort, making it impractical to evaluate them early in
development. This delay is problematic because addressing issues with one property can create
new problems with others, often leading to costly iterative optimization or project termination Frey
et al. (2025). Consequently, there is strong interest in computational methods that can predict these
properties early in development, enabling more efficient optimization of therapeutic candidates.

To enable earlier screening, computational metrics are often used to filter candidates with potential
risks by comparing their biophysical properties to those of clinical-stage antibodies (Raybould et al.,
2019; 2024; Park & Izadi, 2024). This approach draws inspiration from Lipinski’s rule of 5, a set of
guidelines that revolutionized small molecule drug development by identifying simple biophysical
properties that predict drug-like behavior (Lipinski, 2000). However, applying similar principles
to antibodies has proven challenging for two reasons. First, there is significant variability in how
computational metrics are defined and calculated. Current methods vary significantly in surface
definitions, structure preparation, and the incorporation of molecular dynamics (MD) simulations
(Appendix A.1). Second, filtering approaches that are too stringent may exclude viable candidates,
while those that are too permissive offer little practical value. This challenge is compounded by
the massive scale of antibody discovery campaigns, where evaluation of millions of candidates for
early-stage screening is computationally prohibitive.
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We address developability challenges with our method, TherAbDesign – a general sequence-based
framework that efficiently evaluates and optimizes antibodies for multiple biophysical properties
characteristic of clinical-stage antibodies. To determine an informative set of molecular descriptors,
we evaluate established developability filters on their ability to identify experimental liabilities. We
focus on viscosity – a property critical for drug delivery but challenging to measure early in devel-
opment (Appendix A.2). When used as a filter, TherAbDesign not only achieves results comparable
to structure-based methods but also efficiently screens large libraries without the need for physics-
based computation. When used for guided design, TherAbDesign makes targeted electrostatic and
hydrophobic modifications to a parental antibody without requiring domain expertise. We observe
that the sequences proposed by TherAbDesign overlap with known variants that reduce viscosity.
This approach represents a significant advance in computational antibody design by enabling simul-
taneous optimization of multiple developability properties early in the discovery process.

2 BACKGROUND

ML Approaches for Developability: It may appear that the most direct approach to identifying
liabilities would be to train predictive models for each property of interest. However, this strategy
faces significant challenges: (1) limited data availability hinders model generalization; (2) existing
datasets are often heterogeneous; and (3) diverse underlying mechanisms may prevent models from
learning consistent functional principles. Despite these limitations, a substantial body of literature
aims to predict function with specialized models, particularly viscosity due to its relatively greater
data availability (Sharma et al., 2014; Makowski et al., 2024; Li et al., 2025). To overcome data limi-
tations, many approaches incorporate biophysical descriptors as features. This is thought to improve
predictive power as antibody function is broadly governed by biophysical mechanisms, particularly
electrostatics and hydrophobicity (Esfandiary et al., 2015; Hoerschinger et al., 2023; Bashour et al.,
2024). However, specialized property prediction models still suffer from poor generalization.

Biophysics-based Risk Assessment: Comparing surface properties of candidate antibodies to those
of successful therapeutics provides a holistic characterization of developability (Lipinski, 2000;
Ahmed et al., 2021). Several computational tools implement this comparative approach, such as
Therapeutic Antibody Profiler (TAP) and MolDesk, which use clinical stage antibodies as a refer-
ence set to identify biophysical outlier thresholds (Raybould et al., 2019; Park & Izadi, 2024). While
these approaches both focus on electrostatic and hydrophobic properties of antibody surfaces, they
differ substantially in their precise definitions (see Appendix A.1 for details). TAP employs custom
definitions, whereas MolDesk applies thresholds derived from established biomolecular methods
such as APBS (Adaptive Poisson-Boltzmann Solver) and SAP (Spatial Aggregation Propensity)
(Voynov et al., 2009; Holst et al., 2000). It remains unclear how different descriptor definitions
generally affect the agreement between computational risk assessment and experimental outcomes
(Waibl et al., 2021; Licari et al., 2023).

Our contributions: We clarify the role of biophysical parameterizations by presenting a systematic
benchmark on descriptor definitions against clinically relevant viscosity measurements. By estab-
lishing a stronger connection between biophysical properties and experimental outcomes, we inform
physics-based data augmentation for ML approaches. This addresses limitations in generalization
typical of specialized property prediction models.

We introduce TherAbDesign, a novel physics-informed ML framework for holistic antibody de-
velopability assessment. While recent studies have applied sequence-based biophysical principles
to antibody design (Ismail et al., 2024), our work establishes clear connections between physics-
based principles, guided design, and clinically relevant developability outcomes. TherAbDesign
combines robust biophysical foundations with computational efficiency, making it suitable for both
high-throughput candidate filtering and guided optimization.

3 METHODS

3.1 DESCRIPTOR DEFINITIONS

Because physics-based biophysical descriptors can be sensitive to the input structure, we examine
how (1) structure preparation approaches, (2) surface definitions, and (3) MD ensemble averaging
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Figure 1: Analysis and optimization of antibody biophysical properties. (A) Workflow for bio-
physical descriptor benchmarking. (B) TherAbDesign architecture. Blue regions are pretrained on a
biophysical dataset prepared from pOAS. Orange regions illustrate diffusion-based guided sampling.

affect viscosity liability identification (Figure 1A and Appendix A.1). The same set of TAP and
MolDesk thresholds are applied across preparation methods, although we acknowledge that distri-
butions and resulting thresholds may vary under different structural preparation approaches.

3.2 THERABDESIGN MODEL DETAILS

Training Data: We source sequences from pOAS to construct a dataset for general antibody bio-
physical property prediction (Olsen et al., 2022). To subsample, we cluster with a 95% sequence
identity threshold with the Linclust algorithm (Steinegger & Söding, 2017). All Fab structures are
ESMFold outputs (Lin et al., 2023). To remove misfolded structures from the dataset, we com-
pute backbone RMSDs in PyMOL relative to a predicted herceptin Fab structure and exclude those
with RMSD exceeding 5Å (Schrödinger, LLC, 2015). We compute APBS and SAP descriptors of
raw, unprocessed ESMFold outputs as described above. Sequences are aligned with the AHo anti-
body residue numbering scheme and passed as inputs to our model (Honegger & Plückthun, 2001;
Dunbar & Deane, 2015). We ensure no overlap in sequences with respect to those in the viscosity
benchmark, and use a 80/20 split for training and testing (Figure 1B, Appendix A.3).

Regressor Parameterization and Regularization: We train a multi-task partial deep ensem-
ble with four ensemble components to predict APBS electrostatics and SAP hydrophobicity di-
rectly from Fv sequence inputs (Figure 1B). We enable property prediction through an exponen-
tial family parameterization of the regression model, using canonical parameters θ1 = µ/σ2 and
θ2 = −1/(2σ2) to disentangle mean and variance estimation. This parameterization better captures
uncertainty in biophysical predictions, compared to standard mean and log-variance outputs. We
also implement label smoothing, which interpolates between observed measurements and a prior
distribution with variance σ2

nom (Klarner et al., 2024). Biophysical property regressors are jointly
trained with a diffusion model to learn the distribution of residue-level embeddings, which enables
downstream design applications. See Appendices A.3.1, A.3.2, A.3.3 for details.

Guided Sequence Generation by Randomized Greedy Occlusion Search: We use the LaMBO-2
algorithm for multi-property optimization, which generates sequences via discrete diffusion with
categorical denoising (Gruver et al., 2023). Generation is directly guided by our sequence-based
APBS and SAP regressor, as designs are optimized towards the pareto front of therapeutic-like
biophysical properties via the multi-objective noisy expected hypervolume improvement (nEHVI)
acquisition function (Daulton et al., 2021). Notably, LaMBO-2 requires an explicit search routine
to identify which positions on the sequence to alter due to its encoder-only architecture. Here,
we modify LaMBO-2 by introducing randomized greedy occlusion search, which employs iterative
masking to efficiently search and evaluate sequence modifications (Figure 1B, Appendix A.3.4).

4 EXPERIMENTS

Here, we consider the relationship between in-silico descriptors and experimental liability identi-
fication across three viscosity datasets. Antibody viscosity is a clinically important property that
is difficult to measure, due to the high material requirements required for assessment. The Ab21
set consists of 21 FDA-approved antibodies (Lai et al., 2021b). The PDGF38 and GCGR datasets
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Figure 2: F1 scores of developability filters evaluated on viscosity datasets for (A) Amber and (B)
Red flags (higher is better). Averaging descriptor values over MD simulation frames (light) does
not typically improve filters compared to those directly computed from predicted structure (dark).
TherAbDesign filters result in similar F1 scores compared to equivalent structural methods.

represent local variants around individual parent molecules (Apgar et al., 2020; Rai et al., 2023).
Previous work demonstrates the electrostatic origin of the parent PDGF38 viscosity liability (Apgar
et al., 2020). The GCGR dataset include rational designs to target hydrophobicity (Dai et al., 2024).
Thresholds used represent the standard limits during manufacturing and drug delivery formulation,
respectively (Anselmo et al., 2019; Shire et al., 2004). Roughly half of the sequences across these
datasets exceed standard limits for viscosity (Appendix A.2).

4.1 EFFECTIVENESS OF DESCRIPTORS IN IDENTIFYING EXPERIMENTAL LIABILITIES

We evaluate how different biophysical definitions affect the agreement between experimental liabil-
ities and developability risk proxies. To account for variance due to small sample sizes, we compute
metrics over 100 random subsamples of 80% of the viscosity dataset, reporting average values with
standard deviations (Figures 2, 5). Although TAP is the literature standard, we find that the pub-
lished thresholds have limited utility for filtering viscosity liabilities. F1 scores are zero for the red
risk flag across several structure preparation methods, due to high false negative rates (Figure 2, 5).
Conversely, APBS and SAP metrics from MolDesk provide valuable experimental signal.

We also find that averaging over MD simulation frames does not globally improve descriptor ef-
fectiveness in downstream applications. To further assess the relationships between descriptor def-
initions, MD simulations, and structure prediction methods, we compare rank correlations between
preparation methods (Figure 4). TAP parameters are particularly sensitive to structure preparation,
whereas APBS and SAP parameters are more robust (Appendix B.1).

4.2 SEQUENCE-BASED MODELING OF BIOPHYSICAL DESCRIPTORS

We train TherAbDesign on APBS and SAP definitions because they are less sensitive to structure
preparation (Figure 4) and enable better developability filters (Figure 2). Having observed minimal
impact of MD from our benchmark, we predict descriptors derived from a static ESMFold-predicted
Fab structures directly from a Fv sequence input.

TherAbDesign regressors generalize for antibody sequences, as spearman rank correlations between
the regression model outputs and physics-based descriptors are >0.8 on held-out pOAS sequences
(N=99,118) and the Ab21 global variant dataset (Table 1, Figure 6). Standard deviations are com-
puted over the four partial ensemble components. Correlations are weaker for local variant datasets
GCGR and PDGF38, but exceed 0.85 (shown in bold) for the biophysical properties associated with
known functional mechanisms (Table 1, Figure 6).

When employed as a filter with MolDesk thresholds, TherAbDesign enables comparable F1 metrics
to structure-based approaches (Figure 2). TherAbDesign also offers 3-5 orders of magnitude speed-
up relative to computationally intensive physics-based descriptors (Figure 8).

Table 1: Spearman correlation between TherAbDesign predictions and physics-based calculations.

Fv APBS neg Fv APBS pos Fv CAP Fv SAP BM Fv SAP WW
pOAS, IID 0.88 ± 0.03 0.90 ± 0.01 0.91 ± 0.03 0.84 ± 0.04 0.88 ± 0.02
Ab21 0.86 ± 0.03 0.83 ± 0.03 0.85 ± 0.03 0.89 ± 0.02 0.84 ± 0.07
GCGR 0.52 ± 0.18 0.52 ± 0.07 0.82 ± 0.01 0.86 ± 0.01 0.88 ± 0.01
PDGF38 0.86 ± 0.03 0.88 ± 0.02 0.63 ± 0.08 0.69 ± 0.07 0.50 ± 0.05
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Figure 3: TherAbDesign modifies residues associated with developability risk (boxed, shown as
sticks) on the parental molecule. Surfaces colored for GCGR and PDGF38 by (A) hydrophobicity
and (B) electrostatics, respectively, illustrate high-scoring red regions. Sequence logo plots illustrate
common design substitutions relative to the parental antibody sequence (x labels).

4.3 GUIDED DESIGN ON GCGR AND PDGF38 TOWARDS THERAPEUTIC SIMILARILITY

Using TherAbDesign, we demonstrate that optimizing antibodies towards therapeutic similarity
can address underlying liabilities in sequences containing hydrophobicity (GCGR) and electro-
static (PDGF38) risk flags (Table 7). Our model identified and modified relevant motifs in the
complementarity-determining regions (CDRs) by sampling from the learned distribution of se-
quences seen in pOAS (Figure 7). Likewise, biophysical property prediction with TherAbDesign
on these designs show strong correlation with computed SAP and APBS values (Table 8).

For GCGR, TherAbDesign primarily targets aromatic residues around hydrophobic patches in
CDRH3 (Figure 3A). 14 sequences overlap with experimental validation data, which consisted of
single point mutations from a parental antibody. Of these matches, 12 designs show reduced viscos-
ity compared to the parent sequence, with 9 falling below the liability threshold.

TherAbDesign demonstrates similar intuitive behavior for PDGF38 designs, targeting the elec-
tronegative patch in the Fv. Our designs introduces compensatory mutations that replace negative
and uncharged residues with positive ones, particularly in the “DD” motif of CDRH2 and CDRL2
(Figure 3B, 7D). While our designs did not overlap with the experimental benchmark dataset, this
was expected as the benchmark contained more extensive modifications, including framework mu-
tations that are less commonly observed in pOAS.

5 DISCUSSION

TherAbDesign enables scalable evaluation and rational optimization to improve therapeutic-like
qualities of antibody candidates. By bringing insights from structure-based developability filtering
into a sequence-based design strategy, we introduce a significant conceptual advance that is better
aligned with Lipinski’s philosophy. As Lipinski (2012) stated, “the rule of five was not intended
to be a metric to distinguish drugs from non-drugs; rather, the aim was to help improve the proba-
bility of success.” As such, our proof of concept demonstrates that optimizing for therapeutic-like
qualities allows rational modifications to a parental antibody without requiring explicit mechanistic
understanding of its properties. This holistic approach streamlines drug development by reducing
reliance on deep domain expertise or bespoke property prediction models.

Ultimately, the efficacy of TherAbDesign relies on how well its in silico descriptors correlate with
experimental outcomes. Our work highlights a critical challenge in the field: the underlying mech-
anisms of antibody developability properties remain incompletely understood and lack universal
consensus (Jain et al., 2017; Waibl et al., 2022). This challenge is further exacerbated when com-
putational methods are benchmarked against low-fidelity experimental surrogates rather than di-
rect measurements of clinically relevant properties. To address this gap, we recommend expanded
mechanistic investigations that better connect computational descriptors with experimental obser-
vations. For instance, while our investigation found limited utility in all-atom molecular dynamics
with current parameterizations, alternative approaches such as mesoscale simulations with differ-
ent parameterization strategies may provide valuable insights (Lai et al., 2021a; Prass et al., 2023).
By continuing to refine TherAbDesign with more robust biophysical descriptors, we can continue
developing approaches to significantly accelerate therapeutic development pipelines.
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Nathan C Frey, Isidro Hötzel, Samuel D Stanton, Ryan Kelly, Robert G Alberstein, Emily
Makowski, Karolis Martinkus, Daniel Berenberg, Jack Bevers III, Tyler Bryson, et al. Lab-in-
the-loop therapeutic antibody design with deep learning. bioRxiv, pp. 2025–02, 2025.

Roger B Grosse, Chris J Maddison, and Russ R Salakhutdinov. Annealing between distributions by
averaging moments. Advances in Neural Information Processing Systems, 26, 2013.

Nate Gruver, Samuel Stanton, Nathan Frey, Tim G. J. Rudner, Isidro Hotzel, Julien Lafrance-
Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew G. Wilson. Protein Design with Guided
Discrete Diffusion. Advances in Neural Information Processing Systems, 36:12489–12517,
December 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/hash/29591f355702c3f4436991335784b503-Abstract-Conference.
html.

Valentin J. Hoerschinger, Franz Waibl, Nancy D. Pomarici, Johannes R. Loeffler, Charlotte M.
Deane, Guy Georges, Hubert Kettenberger, Monica L. Fernández-Quintero, and Klaus R. Liedl.
PEP-Patch: Electrostatics in Protein–Protein Recognition, Specificity, and Antibody Developa-
bility. J. Chem. Inf. Model., 63(22):6964–6971, November 2023. ISSN 1549-9596. doi:
10.1021/acs.jcim.3c01490. URL https://doi.org/10.1021/acs.jcim.3c01490.
Publisher: American Chemical Society.

M Holst, N Baker, and F Wang. Adaptive multilevel finite element solution of the
poisson-boltzmann equation. Journal of Computational Chemistry, 379, October
2000. doi: 10.1002/1096-987X(20001130)21:15⟨1319::AID-JCC1⟩3.0.CO;2-8. URL
https://onlinelibrary.wiley.com/doi/full/10.1002/1096-987X%
2820001130%2921%3A15%3C1319%3A%3AAID-JCC1%3E3.0.CO%3B2-8?casa_
token=GV9yH5l0PWgAAAAA%3ACm3Gxzvh08FtZk2SFmAE-pWB4M3FztJijaS9h_
M43Wh_geMifcnZ4wlxfWxvZ0vX0jV-7CqYAqtjdwU.

A. Honegger and A. Plückthun. Yet another numbering scheme for immunoglobulin variable do-
mains: an automatic modeling and analysis tool. J Mol Biol, 309(3):657–670, June 2001. ISSN
0022-2836. doi: 10.1006/jmbi.2001.4662.

Aya Abdelsalam Ismail, Tuomas Oikarinen, Amy Wang, Julius Adebayo, Samuel Stanton, Taylor
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A EXTENDED METHODS

A.1 FULL DESCRIPTION OF BIOPHYSICAL PROPERTIES

A.1.1 EXTENDED METHODS: STRUCTURE PREPARATION AND MOLECULAR DYNAMICS

AbodyBuilder2 (AB2) and ESMFold were used to generate antibody Fv structures (Abanades et al.,
2023; Lin et al., 2023). By default, AB2 predicted structures are refined under AMBER force
fields using OpenMM. ESMFold was used to generate antibody structures in Fab format, using the
Herceptin constant domain sequence. To run MD, we preprocessed structures with tleap. PDB2PQR
was used with the AMBER force field FF14SB to assign partial atomic charges. Ionization states
were determined using PROPKA at pH 5.5. The system was solvated in an octahedral box of TIP3P
water molecules, with a minimum distance of 12 Å between the protein surface and the box edge.
Hydrogen partitioning was applied to solute atoms to enable larger time steps of 4 fs. The system
was equilibrated for 4 ns and the full production run was performed for 200 ns (Figure 1A).

A.1.2 THERAPEUTIC ANTIBODY PROFILER (TAP)

TAP comprises of custom metrics focused on the surface exposed residues computed over the
complementarity-determining regions (CDRs). Thresholds were determined from 754 post-phase-I
clinical stage therapeutics. Cutoffs for amber and red risk flags were obtained from the 5% to 10%
percentiles.

Table 2: Summary of metrics in TAP

Term Description
CDR length Loop length has a strong impact on binding affinity.
CDR PSH Patches of surface hydrophobicity, using the Kyte and Doolittle scale.
CDR PPC Patches of positive charge.
CDR PNC Patches of negative charge.
FvSCP Fv charge symmetry parameter, product of net VH and VL charges

Table 3: TAP risk flag thresholds

Category Amber Flag Red Flag
PSH, CDR 95.82 ≤ PSH ≤ 110.88 PSH < 95.82

168.61 ≤ PSH ≤ 204.59 PSH > 204.59
PPC, CDR 1.34 ≤ PPC ≤ 4.20 PPC > 4.20
PNC, CDR 2.02 ≤ PNC ≤ 4.43 PNC > 4.43

SFvCSP -35.70 ≤ SFvCSP ≤ -6.04 SFVCSP < -35.70

A.1.3 MOLDESK

Park & Izadi (2024) include metrics from APBS and SAP to establish MolDesk thresholds. APBS
computes electrostatics over a continuous electrostatic potential (EP), where potential values from
a discretized cubic grid are assigned to the mesh vertices. However, MolDesk includes several
definitions of SAP hydrophobicity.

Hydrophobicity considers the context of the aqueous environment of a protein, and as such, the in-
teraction with water can be defined in many ways. SAP is computed by weighting an atom’s solvent
accessible area with respect to the residue’s hydrophobicity scale. Some studies have benchmarked
hydrophobicity scales with hydrophobic interaction chromatography (HIC), which is typically em-
ployed as a proxy assay of developability (Waibl et al., 2022).

Risk regions were calculated from 1D kernel density estimation (KDE) distributions of each de-
scriptors for a dataset of 500 post-phase-I clinical-stage therapeutics from TheraSAbDab. Cutoffs
for amber and red risk flags were obtained from the 5% to 10% percentiles of clinical stage antibod-
ies.
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Table 4: Summary of selected hydrophobicity scales, reproduced from Waibl et al. (2022)

Term Principle
Black-Mould Rekker coefficients, standard SAP definition
Eisenberg Consensus of five scales
Kyte-Doolittle Consensus of ∆G (water–vapor) and surface accessibility
Wimley-White ∆G (water–lipid bilayer)

Table 5: Summary of metrics in Moldesk

Metric Description
Fv SAP BM Spatial aggregation propensity with Black-Mould scale
Fv SAP WW Spatial aggregation propensity with Whimley-White scale
Fv APBS pos Summed positive electrostatic potential over the Fv
Fv APBS neg Summed negative electrostatic potential over the Fv
Fv CAP Charge asymmetry

Table 6: MolDesk risk flag thresholds

Metric Amber Flag Red Flag
Fv SAP BM x ≥ 106.6 x ≥ 116.52
Fv SAP WW x ≥ 68.9 x ≥ 76.51
Fv APBS pos x ≥ 220.17 x ≥ 230.05
Fv APBS neg x ≤ −136.58 x ≤ −143.09

Fv CAP x ≤ −5 x ≤ −8

A.2 DESCRIPTION OF EXPERIMENTAL VISCOSITY DATASETS

Excessive viscosity limits the injectable dosage of a drug and may require patients to receive treat-
ments at an infusion center. We focus on three public datasets containing experimental viscosities
of IgG1 antibodies at high concentration. The Ab21 set consists of 21 FDA-approved antibodies,
measured at a concentration of 150 mg/ml in 20mM histidine-HCl pH 6.0 buffer (Lai et al., 2021b).
Molecules in this set are distinct, differing by at minimum 20 mutations in their variable domains.
The PDGF38 and GCGR datasets represent local variants around individual parent molecules. The
PDGF38 set contains 38 antibodies within 9 edits of an anti-PDGF parent, measured at 150 mg/ml
in 20mM histidine-sucrose pH 5.8 buffer (Apgar et al., 2020; Rai et al., 2023). Previous work elu-
cidated the electrostatic origin of the extreme parent viscosity liability, 440 cP at 150 mg/ml. The
GCGR set contains 37 variants within 2 edits of an anti-GCGR parent, measured at 180 mg/ml
in 20mM histidine-acetate pH 5.5 buffer ((Dai et al., 2024)). For these variants, high viscosity is
believed to derive from extreme aromaticity in the CDRs.

All original measurements were obtained by cone-and-plate rheometry at 25C. Given that viscosity
is highly concentration dependent, we assigned a higher liability threshold for the dataset measured
at 180 mg/ml (30 cP) than those measured at 150 mg/ml (20 cP). These thresholds represent the
standard limits for ultrafiltration/diafiltration operation during manufacturing (Shire et al., 2004)
and formulation for subcutaneous delivery (Anselmo et al., 2019), respectively.

A.3 MODEL DETAILS

Protein Domain Knowledge: Our models are trained on AHo-aligned heavy and light variable
domains of IgG antibodies (Honegger & Plückthun, 2001; Dunbar & Deane, 2015). AHo-alignment
encodes a strong structural prior mapping certain sequence positions to known structural elements
such as complementarity defining regions (CDRs). We disable corruption and sampling of all cys-
teines in input and output sequences since cysteines (C) play an essential role in determining the
overall fold of a protein through the formation of disulfide bridges. We also prevent the model from
sampling additional methionines (M) and tryptophans (W) in output sequences since those amino
acids are associated with increased risk of oxidation (Sharma et al., 2014).
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A.3.1 EXPONENTIAL FAMILY PARAMETERIZATION OF UNIVARIATE GAUSSIAN
REGRESSION

We found that when estimating measurement noise along with the mean parameter that the standard
deep learning regression parameterization, where the model outputs the mean and log-variance,
leads to suboptimal training dynamics and underfitting. We find that exploiting the exponential
family canonical parameterization effectively disentangles the gradients of the mean parameter and
the variance parameter, leading to much better mean fits while preserving our desire to estimate
measurement noise.

To see why this is the case, consider the univariate Gaussian distribution with mean µ and variance
σ2. The standard parameterization of the negative log-likelihood for regression is:

Lstd(µ, σ
2; y) =

1

2
log(2πσ2) +

(y − µ)2

2σ2
(1)

The gradients of this loss with respect to the parameters are:
∂Lstd

∂µ
= −y − µ

σ2
(2)

∂Lstd

∂σ2
=

1

2σ2
− (y − µ)2

2σ4
(3)

Note that the gradient for µ is scaled by 1/σ2, creating an undesirable coupling between the param-
eters during optimization. More specifically, the model can easily improve the NLL by inflating the
variance term, which in turn diminishes the magnitude of the mean parameter gradient and decreases
mean fit quality.

Instead, we can use the exponential family parameterization with canonical parameters θ1 = µ/σ2

and θ2 = −1/(2σ2). We ensure strict negativity of θ2 via a softplus transform (β = 0.5). The
negative log-likelihood becomes:

Lexp(θ1, θ2; y) = −(θ1y + θ2y
2)−

(
− θ21
4θ2

− 1

2
log(−2θ2)

)
− 1

2
log(2π) (4)

where the second term is the log-partition function. The gradients are:
∂Lexp

∂θ1
= −(y − Eθ[Y ]) (5)

∂Lexp

∂θ2
= −(y2 − Eθ[Y

2]) (6)

where Eθ[Y ] = −θ1/(2θ2) and Eθ[Y
2] = Varθ[Y ] + Eθ[Y ]2 = −1/(2θ2) + Eθ[Y ]2. This parame-

terization decouples the gradients, as they now depend only on the difference between observed and
expected sufficient statistics. The mean and variance can be recovered as transformed model outputs
as follows: µ = −θ1/(2θ2) and σ2 = −1/(2θ2).

A.3.2 GENERALIZING LABEL SMOOTHING TO CONTINUOUS LABELS

For a univariate Gaussian distribution, we perform label smoothing by averaging sufficient statistics
rather than directly interpolating distributions. Let y ∼ N (µ, σ2) be the original label distribution
and z ∼ N (0, σ2

nom) be the prior with nominal variance σ2
nom.1 The smoothed distribution is defined

by its first two moments:

E[ysmooth] = (1− αt)µ+ αt · 0, (7)

E[y2smooth] = (1− αt)(σ
2 + µ2) + αtσ

2
nom, (8)

where αt is the random diffusion corruption fraction sampled at train time. The variance of the
smoothed distribution includes a cross-term from the difference in means:

Var[ysmooth] = E[y2smooth]− (E[ysmooth])
2, (9)

= (1− αt)σ
2 + αtσ

2
nom + αt(1− αt)µ

2. (10)

1We assume y has been mean-subtracted and normalized to unit variance during data preprocessing.
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This formulation ensures proper uncertainty propagation when interpolating between distributions,
unlike geometric averaging of parameters (Grosse et al., 2013). We found that label-smoothing in-
troduced two desirable effects on the model. First, it greatly stabilized multi-task regressor training.
Without smoothed labels, weight updates from one task can create large residuals on other tasks,
making the regression loss surface highly unstable. Second, we found that training the regressors on
noised inputs with smoothed labels heavily regularized the model towards smooth solutions, which
is very desirable for exploration and generalization (Klarner et al., 2024).

A.3.3 IMPLEMENTATION

Model Architecture: We implement our model in the cortex framework, an open-source pack-
age for modular deep learning model composition in PyTorch.2 Our model is a multi-task partial
deep ensemble built on top of a transformer encoder pretrained through a masked language model
(MLM) loss (Frey et al., 2024). On top of this encoder we added 4 discriminative convolutional
encoders (one for each partial ensemble component) with two residual blocks, convolutional fil-
ter width 9, 256 channel dimensions, and layernorm normalization. The representations of each
discriminative encoder feed 7 linear regression heads, each modeling a different variant of the bio-
physical descriptors discussed in this paper, specifically

• Fv SAP EI, not used in MolDesk filters (Table 6)
• Fv SAP KD, not used in MolDesk filters (Table 6)
• Fv SAP WW
• Fv SAP BM
• Fv CAP
• Fv APBS neg
• Fv APBS pos

Training dataset: Our sequence-based model was trained on SAP and APBS values derived from
pOAS sequences clustered at 95% sequence identity. Sequences were prepended to a Herceptin
constant domain sequence, which were subsequentally folded with ESMFold. Malformed structures
were identified by structure alignment with a reference herceptin structure predicted with ESMFold,
and filtered with a 5Å all-atom RMSD cutoff which removed 0.1% of the labeled data.

Our training dataset is comprised of 892,061 unique Fvs sequences.

Training hyperparameters: Our training procedure followed the multi-task partial deep ensem-
ble training procedure described in (Gruver et al., 2023). In brief, at each gradient step we sample
a task head, then sample a minibatch of data from the corresponding dataset and compute the loss
and gradients on the corresponding subgraph of the network. Since the task datasets are all different
sizes, we dispense with the notion of epochs and instead directly parameterize training in terms of
total number of gradient updates. We note that this style of training seems to respond well to higher
than typical optimizer momentem hyperparameter values.

• Optimizer: Adam with η0 = 5× 10−4, β1 = 0.99, and β2 = 0.999

• Batch size: 128

• Warmup: Linear over first 10% of steps, then cosine annealing to η∞ = 1× 10−6

• Total gradient update steps: 50K

• Diffusion noise: categorical masking

• Diffusion noise schedule: cosine

• Nominal measurement noise σ2
nom: 6.25× 10−2

• Weight decay: 0.0

2https://github.com/prescient-design/cortex

13

https://github.com/prescient-design/cortex


Published at the GEM workshop, ICLR 2025

A.3.4 LAMBO-2 COORDINATE SELECTION BY RANDOMIZED GREEDY OCCLUSION
SEARCH

LaMBO-2 is built on an encoder-only denoising architecture, which grants precise custom control
over the number of edits and edit locations at test-time, with a corresponding burden on the pro-
gram to choose the right combination of edit positions for masking. Gruver et al. (2023) originally
proposed input gradients normalized via softmax for coordinate selection, but this approach has in-
herent limitations for discrete optimization problems. Let f : VL → R be a neural scoring function
and ∇xf(x) its gradient with respect to inputs. The gradient provides a local linear approximation
of f , but for discrete perturbations such as masking or mutation, the change in x often exceeds the
radius of convergence of the first-order Taylor expansion. Although computing occlusion impact via
finite differences sj = f(x′

j)− f(x) is more computationally intensive than gradient computation,
it directly measures the effect of discrete modifications. The challenge then becomes exploring all
possible combinations of k edit positions. Pure greedy selection may fail to discover important po-
sition interactions, while exhaustive search is computationally intractable. We propose randomized
greedy occlusion search to identify high-impact edit position combinations via iterative masking
to balance search efficiency with exploration of position combinations, noting that the theoretical
question of whether this coordinate selection problem exhibits submodularity remains open.

Informally, given a sequence length L and target number of edits k our high-level procedure is as
follows:

1. For each unselected position j ∈ {1, . . . , L}, evaluate f on the sequence with position j
masked.

2. For the positions with highest and second-highest impact scores:

• Select highest scoring with probability 1− p2.
• Select second highest with probability p2.

3. Keep selected position masked and repeat steps 1-2 until k positions are chosen.

The occlusion score sj has a natural interpretation in terms of the model’s learned empirical distribu-
tion. When position j is masked, f(x′

j) represents the expected value under the empirical marginal
distribution of tokens at that position, conditioned on the surrounding context. Thus, sj > 0 in-
dicates that the empirical marginal expectation exceeds the value conditioned on the current token,
providing direct evidence that position j may be suboptimal (without loss of generality, assume we
want to maximize f ). The magnitude of sj quantifies the empirical potential for improvement, while
maintaining the masks from previous iterations captures higher-order interactions between positions.

Note on Relation to Prior Work: Denoising position selection by scoring partially occluded
examples is a technique used by denoising generative models since at least the introduction of
MaskGIT (Chang et al., 2022), however MaskGIT does not use iterative search to find combina-
tions of masks. More study is needed to determine the marginal value of iterative search compared
to naive top-k ranking by element-wise occlusion. Our randomization technique is inspired by Top-
Two Thompson Sampling (TTTS) (Russo, 2016). We find that setting p2 = 0.5 works well for rela-
tively small values of k, however larger values may be needed to achieve sufficient sample-diversity
for larger edit budgets.

Sampling hyperparameters: We sampled designs with a sweep over different hyperparameter
parameter values. Hyperparameters that were set to more than one value are denoted as sets, and
each run was an element of the full Cartesian product (i.e. grid enumeration)

• Diffusion steps: T = 2

• Corruption schedule: Inverse square root αt = 1/(1 + t)0.5

• Activation value gradient updates per diffusion step: {1, 2}
• Guidance regularization λ: {0.0, 0.01}
• Edit Budget per diffusion step: B0 = 2, Bt = ⌈αt ×B0⌉
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Note on Notation Discrepancy with Gruver et al. (2023): Gruver et al. (2023) defines λ as
follows:

L(h′) = −vθ(h
′) + λKL[pθ(w|h′)||pθ(w|h)], (11)

where h denotes the model activations before the linear token head. We rescale λ to a convex
combination,

L(h′) = −(1− λ)vθ(h
′) + λKL[pθ(w|h′)||pθ(w|h)], (12)

which means we only need to search over λ ∈ [0, 1] to smoothly interpolate between no value
guidance (λ = 1) and no value regularization (λ = 0).
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B EXTENDED RESULTS

B.1 EXTENDED RESULTS: IMPACT OF STRUCTURE PREPARATION AND DYNAMICS ON
DESCRIPTORS

A B

Figure 4: Pair-wise Spearman rank correlation between com-
puted A. TAP and B. MolDesk descriptors by structure prepa-
ration method. Green regions represent surface hydrophobicity
(CDR PSH and Fv SAP WW), and orange regions describe pos-
itive patches (CDR PPC and Fv APBS pos).

To compare the sensitivity of de-
scriptors on the folding models,
we compare surface property de-
scriptors computed on structures
folded with ABB2 and ESM-
Fold. Given that the liability
thresholds in TAP and MolD-
esk differ in whether they were
computed over the Fv or the
Fab, we include this as analysis
in our descriptor sensitivity as-
sessment. Some reports indicate
that a static model may not be
adequate for modeling certain
surface properties (Waibl et al.
(2021); Park & Izadi (2024);
Licari et al. (2023)). There-
fore, we also compare descrip-
tors computed from raw, unpro-
cessed structures directly from the folding model against an ensemble mean computed over 200 ns
simulations to investigate the effect of MD.

We find that TAP parameters are especially sensitive to structure preparation, which is consistent
with published findings (Raybould et al., 2019; Licari et al., 2023). While related studies claim that
the primary effect of MD ultimately serves as a correction factor to folding models, we show that it
does not compensate for the variability inherent to the surface parameterization. These results are
noteworthy, given that the residue-level definitions were originally proposed due to concerns that
atomic-resolution descriptors would be too sensitive to use (Raybould et al., 2019). Namely, TAP
defines a binary label for each residue for whether the relative accessible solvent exposure of a side
chain exceeds 7.5%.

Meanwhile, correlations for APBS and SAP descriptor calculations from MolDesk are substantially
less sensitive to structure preparation with rank correlations between 0.7 and 0.9.

B.2 FALSE CLASSIFICATION RATES OF DEVELOPABILITY FILTERS EVALUATED ON
VISCOSITY DATASETS

The F1 scores in Figure 2 is calculated as the harmonic mean of precision and recall. To better
understand the factors contributing to these F1 score values, we discuss the false positive rates
(FPR) and false negative rates (FNR). A high FPR can lead to the unnecessary exclusion of viable
candidates, while high FNR implies more problematic candidates will be experimentally validated.

We find that MolDesk thresholds are effective for identifying experimental liabilities but may be
overly restrictive due to its low FNR but high FPR. In contrast, TAP metrics lead to a low FNR
and high FNR. A high FNR might still theoretically streamline experimental throughput, if espe-
cially unproductive candidates are filtered. However, we find that TAP metrics computed with a
Fv structure input had an FNR of 1, suggesting equivalent outcomes if a filter were not considered.
When TherAbDesign is used for filter applications, we observe a much lower FPR but a higher FNR
than compared to MolDesk. We note that a low-pass developability filter can be advantageous by
including more potentially viable candidates, while excluding the riskiest molecules.

We note that the cutoff values employed in these filters can be somewhat arbitrary, as thresholds
may shift depending on the clinical reference set used. Different structure preparation methods may
result in a shift in risk flag thresholds. For example, TAP metrics used in this study were derived
from a reference set of Fv structures predicted from ABB2. However, preparation of the Fab could
alter the positioning of the side chains in the CDRs and lead to different filtering outcomes.
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Figure 5: False rates of developability filters evaluated on viscosity datasets (lower is better). Ther-
AbDesign filters result in lower FPR (A, C) but higher FNR (B, D) compared to MolDesk metrics.
Error bars represent standard deviation of metrics computed over 100 random subsamples of 80%
of the dataset.

B.3 THERABDESIGN REGRESSION PERFORMANCE

TherAbDesign predictions tend to underestimate metrics compared to structure-based methods,
which explains improved FPR when evaluated as a filter on the benchmark datasets (Figure 5).
Spearman correlations are shown where predicted values from TherAbDesign are averaged over the
four ensemble values, and compared against APBS and SAP values computed over a ESMFold Fab
structure.

B.3.1 APBS AND SAP VALUES FOR PDGF38 AND GCGR DESIGN TASKS

Reported metric values for MolDesk are computed over a static Fab structure predicted with ESM-
Fold. Developbility risk with sequence-based TherAbDesign agrees with that of structure-based
approaches. Notably, APBS and SAP values predicted for the parental PDGF38 and GCGR raises a
risk flag for electronegativity and hydrophobicity, respectively.

Table 7: Average predicted metrics for parental PDGF38 and GCGR from TherAbDesign agree with
structural approaches

Fv APBS neg Fv APBS pos Fv CAP Fv SAP BM Fv SAP WW
GCGR, MolDesk -110.39 167.06 0 169.11 118.58
GCGR, TherAbDesign -108.5 180.03 0.84 121.63 76.94
PDGF38, MolDesk -172.64 78.58 -4 115.64 60.86
PDGF38, TherAbDesign -146.69 121.72 -3.99 96.92 43.12

Table 8: Correlation between average predicted and APBS/SAP computed values of TherAbDesign
generated sequences

Fv APBS neg Fv APBS pos Fv CAP Fv SAP BM Fv SAP WW
GCGR 0.71 ± 0.05 0.75 ± 0.05 0.80 ± 0.08 0.71 ± 0.04 0.81 ± 0.02
PDGF38 0.87 ± 0.03 0.87 ± 0.01 0.78 ± 0.02 0.73 ± 0.06 0.50 ± 0.08
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Figure 6: Correlation plots between TherAbDesign regressor outputs and physics-based biophysical
properties computed over ESMFold Fab structures. (A) pOAS test set. (B) Ab21 benchmark set.
(C) GCGR variants. (C) PDGF38 variants.
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Figure 7: Sequence logo plots indicate design substitutions relative to the parental antibody sequence
(x labels). CDR regions are indicated in bold font.
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B.3.2 COMPUTATIONAL EFFICIENCY

Table 9: Computational performance comparison across different platforms for an individual sam-
ple. Standard deviations are computed over 100 independent runs.

Computation Processor MolDesk TAP TherAbDesign
ESMFold structure prediction NVIDIA A100 8.75 ± 0.71 s 8.75 ± 0.71 s None
Electrostatics Xeon 9242 178.14 ± 13.15 s 0.18 ± 0.05 s None
Hydrophobicity Xeon 9242 27.01 ± 1.99 s 0.12 ± 0.02 s None
Sequence alignment - 0.45 ± 0.05 s 0.45 ± 0.05 s 0.45 ± 0.05 s
Model inference NVIDIA A100 None None 0.49 ± 0.20 s
Total 214.35 ± 15.9 s 9.81 ± 0.83 s 0.94 ± 0.25 s

TherAbDesign evaluates biophysical criteria more efficiently than physics-based methods, which
involve structure prediction and computation of electrostatic and hydrophobicity over the surface
of the folded antibody. Comparisons shown here for physics-based methods consider run times for
evaluations over a static structure.
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Figure 8: Runtimes for biophysical evaluation by method. TherAbDesign enables a 3-4 fold speed-
up compared to MolDesk, and 2-3 speed-up compared to TAP.
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