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Figure 1: Overview of our approach. We train a diffusion-based generative model on SE(3) scenes
generated by procedural models, then adapt it to downstream objectives via reinforcement learning-
based post training, conditional generation, or inference-time search. The resulting scenes are physi-
cally feasible and fully interactable. We demonstrate teleoperated interaction in a subset of generated
scenes using a mobile KUKA iiwa robot.

Abstract:

Training robots in simulation requires diverse 3D scenes that reflect the spe-
cific challenges of downstream tasks. However, scenes that satisfy strict task
requirements, such as high-clutter environments with plausible spatial arrange-
ment, are rare and costly to curate manually. Instead, we generate large-scale
scene data using procedural models that approximate realistic environments for
robotic manipulation, and adapt it to task-specific goals. We do this by training
a unified diffusion-based generative model that predicts which objects to place
from a fixed asset library, along with their SE(3) poses. This model serves as a
flexible scene prior that can be adapted using reinforcement learning-based post
training, conditional generation, or inference-time search, steering generation to-
ward downstream objectives even when they differ from the original data distri-
bution. Our method enables goal-directed scene synthesis that respects physi-
cal feasibility and scales across scene types. We introduce a novel MCTS-based
inference-time search strategy for diffusion models, enforce feasibility via projec-
tion and simulation, and release a dataset of over 44 million SE(3) scenes spanning
five diverse environments. Website with videos, code, data, and model weights:
https://steerable-scene-generation.github.io/
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1 Introduction

Robots increasingly rely on data-intensive learning methods, making simulation a promising strat-
egy for scalable training and evaluation [1, 2, 3, 4, 5]. As robotics shifts toward foundation models,
it is encouraging that the demand for large and diverse training datasets will only increase [6, 7, 8].
However, acquiring scenes that meaningfully challenge robot capabilities or reflect human teleoper-
ator preferences remains difficult, as such scenes are rare, expensive to curate, and task-specific. For
example, a robot may need to operate in highly cluttered environments or interact with specific ob-
ject categories. Instead of manually authoring such scenes, we propose training a unified generative
model on large-scale procedurally generated data and adapting it to downstream objectives using
reinforcement learning-based post training, conditional generation, and inference-time search.
Recent work has advanced automatic scene creation at both the object [9, 10] and scene level
[11, 12]. We focus on the latter, where the task is to select objects from a fixed library and place
them at continuous SE(3) poses. Classical approaches to scene synthesis rely on procedural mod-
eling, where object relationships are encoded as rule sets or grammars [13, 14, 15, 16, 17, 18, 19].
Recent works incorporate priors from large language models (LLMs) or vision-language models
(VLMs) [20, 21, 22, 23]. Others aim to extract 3D scenes directly from 2D images [24, 25, 26],
moving toward generating large-scale 3D datasets from internet-scale image corpora. A separate
line of work trains generative models that learn object relationships directly from scene data, with-
out relying on handcrafted rules or LLMs [11, 27, 28, 29, 30, 31]. These models typically operate in
SE(2), assuming floor-aligned layouts composed of large furniture items. We combine the strengths
of both directions by treating procedural and image-to-3D pipelines as data sources for training a
generative scene model. Rather than using these pipelines at inference time, we distill their output
into a flexible prior that can be adapted to downstream tasks. Our framework is agnostic to the (ob-
ject ID, SE(3) pose) data source and can be augmented with real-world scenes when available.
Prior generative models often represent scenes as floor-aligned SE(2) layouts and focus on static
furniture arrangements [27, 28, 29, 30, 31]. In contrast, we target cluttered SE(3) scenes composed
of small, manipulable objects relevant to robotic manipulation. Many such scenes require vertical
translation (e.g., placing an object on a shelf) and full 3D rotation (e.g., standing cutlery in a utensil
crock), which SE(2) cannot represent. These manipulation-ready settings demand physically feasi-
ble placements, including non-penetration and static equilibrium. PhyScene [11] encourages such
feasibility through classifier-based guidance, but may still produce invalid samples. In contrast, we
guarantee physical correctness via a nonlinear programming projection and simulation.

In practice, the distribution of available training data often does not reflect downstream objectives,
such as maximizing robot performance or aligning with human preferences. While diffusion mod-
els are typically trained to maximize likelihood under the training distribution, this is insufficient
when the data does not cover task-relevant domains. We study three complementary strategies for
steering a pretrained scene model toward downstream goals. First, we adopt reinforcement learning-
based post training, which has been applied in NLP and vision to optimize for user preferences
[32, 33, 34, 35], but remains unexplored for scene generation. Second, we explore conditional gen-
eration, widely used in SE(2) scene models, in the SE(3) setting. Third, we introduce an inference-
time Monte Carlo Tree Search (MCTS) procedure over partial scenes. Together, these tools enable
goal-directed scene generation beyond the support of the original training distribution.

We evaluate our generative model pipeline on five scene types ranging from tabletop to room-scale
environments, compare against SE(2)-based baselines extended to SE(3), and show that the gen-
erated scenes can be used directly for robot data generation. We demonstrate post training and
inference-time search using physical feasibility and high-clutter objectives relevant to robotics [36].
Summary of contributions. Our main contribution is showing that a scene generative model trained
on broad procedural data can be steered toward task-specific objectives, such as increasing clutter.
Specifically: (1) we demonstrate how this can be achieved through reinforcement learning-based
post training, conditional generation, and a novel MCTS-based inference-time search strategy for
diffusion models; (2) we release our code, data, and model weights; and (3) we present a dataset
comprising over 44 million unique SE(3) scenes spanning five distinct scene types, each featuring
numerous small, movable objects. Individual scenes include up to 125 objects, supporting diverse



and complex interaction scenarios relevant to robotic tasks, and providing a valuable benchmark for
future work on SE(3) scene generation.

2 SE(3) Scene Generation and Steering

We learn a generative model over scenes, where each object is selected from a known library and
placed at a continuous SE(3) pose. Our method begins with data from a procedural generator (Sec-
tion 2.1), trains a diffusion model (Section 2.2), and applies post processing to ensure physical
feasibility (Section 2.3). To steer the pretrained model toward downstream goals, we explore rein-
forcement learning post training, conditional generation, and inference-time search (Section 2.4).

2.1 Data Generation

We train on procedurally generated scenes, but our method is agnostic to the scene generator and
supports any source that outputs (object, pose) tuples. This includes future procedural pipelines as
well as real-world scene data. While large-scale real-world SE(3) datasets remain scarce, building
them from internet-scale image or video corpora is a promising direction [24, 25, 26]. In this work,
we use a single procedural model [16] to generate training data. Distilling that data into a generative
model yields a compact, unified, and differentiable scene prior that enables post training, conditional
generation, and inference-time search—capabilities not easily supported by procedural systems. We
provide additional data generation details in the appendix.

2.2 SE(3) Scene Diffusion

Scene Representation. We represent a scene as an unordered object set X = {o; | i €
{1,...,N}}, where N is an upper bound on the number of objects [30]. Each object o; con-
sists of an SE(3) pose, parameterized by a translation p € R3 and a rotation, represented as
a 9D vector R € RY. While this rotation representation is used during training and diffusion,
we project it onto SO(3) at sample time as in [37]. Each object also includes a one-hot vector
c € {v e {0,1}° | 3, v; = 1}, indexing a specific object asset from a fixed library S of C assets.
Following [30], we include an empty object in S to support variable-sized scenes. Our generative
model learns distributions over such object sets X'.

Training Objective. We adopt the mixed discrete-continuous diffusion framework from [31].
Specifically, we apply continuous diffusion [38] to p and R and discrete diffusion [39] to c, condi-
tioning each on the other during generation.

Model Architecture. Since we represent scenes as object sets X, the denoising model f should
be object-order equivariant [30]: for any permutation o(-), it should satisfy f(o(X)) = o(f(X))
[40]. Standard Transformers satisfy this property when positional encodings are omitted [41]. We
adopt the Flux architecture [42], using its image branch without positional encodings to preserve
equivariance. Flux offers efficient training and strong performance across domains such as images
and music [42, 43]. For mixed diffusion, we add input/output MLP projections following [31].

2.3 Physical Feasibility Post Processing

Even when trained on feasible data, generative models may produce SE(3) scenes that violate phys-
ical constraints, such as non-penetration or static equilibrium. These issues often arise from small
numerical errors, e.g., due to mixed precision or slight misalignments. To enforce physical fea-
sibility, we first resolve inter-object collisions by projecting continuous object translations to the
nearest collision-free configuration while keeping orientations fixed to help preserve static equilib-
rium (see the appendix for details). We then simulate the scene in Drake [44], allowing unstable
objects to settle under gravity. While projection removes penetrations, simulation corrects unstable
configurations by adjusting full object poses, ensuring scenes are physically plausible and ready for
downstream use. We apply simulation only after projection, as deep penetrations can cause large
contact forces under rigid-body models, leading to explosive behavior.
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Figure 2: Our MCTS inference-time search. The root node is fully masked (blue), and child nodes
represent partially inpainted scenes (blue-green). The rollout node is highlighted with a red halo.

2.4 Steering Scene Generative Models Toward Downstream Objectives

A key capability of scene generative models is their potential for steering generation toward down-
stream goals, even beyond the training distribution. We explore three complementary strategies:
reinforcement learning-based post training (Section 2.4.1), conditional generation (Section 2.4.2),
and inference-time search (Section 2.4.3). The appendix contains additional details and a compari-
son of different steering methods.

2.4.1 Post Training with Reinforcement Learning

Distilling scene datasets into a differentiable model enables reinforcement learning (RL)—based post
training. We adopt DDPO [34] to fine-tune a continuous DDPM-based scene model [38] using task-
specific rewards and apply the regularization from [35] to stabilize training. We use object count
(clutter) as a downstream reward to test whether RL-based post training can adapt the model beyond
the training distribution. To enable compatibility with existing fine-tuning methods, we use a fully
continuous diffusion model, representing object categories and poses as continuous variables as in
[30]. Our aim is not to propose a new RL algorithm but to demonstrate the feasibility and utility of
post training for scene models.

2.4.2 Conditional Generation

Learned generative models support flexible conditioning, unlike most procedural systems [16, 17,
18]. Our models can be conditioned on language, partial scenes, or other modalities. We explore
two strategies: (1) conditional training and (2) test-time inpainting using an unconditional model.
Text-conditioned generation. We encode prompts using BERT [45] and inject the resulting em-
beddings into the conditional branch of our Flux-based architecture. To enable a single model to
support both conditional and unconditional generation, we randomly mask the conditioning infor-
mation during training. This allows us to apply classifier-free guidance (CFG) [46] at inference time
by interpolating between the conditional and unconditional outputs. Our prompts are procedurally
generated and can describe object counts, object identities, or spatial relationships between objects.
Scene completion and re-arrangement. We perform inpainting directly in the structured scene
representation. Given a binary inpainting mask indicating which parts of the scene to synthesize, we
generate missing content while clamping the rest to their fixed values during the reverse diffusion
process [47]. For example, we can rearrange scenes by regenerating the continuous poses while
keeping the object categories fixed. For scene completion, we synthesize both categories and poses
for empty objects. This enables consistent, plausible generation from partial inputs.

2.4.3 Inference-Time Search via MCTS

Generative scene models can be steered toward downstream objectives at inference time. We demon-
strate this via a Monte Carlo Tree Search (MCTS) procedure that incrementally constructs a scene
through conditional inpainting. At each step, an inpainting mask identifies which objects to regen-
erate, such as unstable ones or empty slots, and a reward function evaluates the resulting scene.
As a running example, we consider the objective of maximizing the number of physically feasible
objects, i.e., objects that are non-penetrating and in static equilibrium. Each node in the MCTS tree
represents a partially completed scene and a corresponding inpainting mask.



"A scene with a floor, four tables,
four shelves, 16 chairs, three cans,
a nintendo game, a bread slice, two
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Figure 3: Text-conditioned scene generation. A model trained on the Restaurant (High-Clutter)
dataset is queried with the shown text prompt. The generated scene matches both the large-scale
layout and fine-grained object details.

The search proceeds through the standard MCTS phases [48] (shown in Figure 2):
(a) Selection. We traverse the tree from root to leaf, selecting at each step the child with the high-

est UCT [49] value: UCT(j) = 7; +c- 4/ 21””"—5’“‘“), where 7; is the average reward of child j,

j
TNparent (7) and n; are the visit counts of parent and child, and c is an exploration constant.
(b) Expansion. At a leaf, we sample B completions, where B is the branching factor, by inpainting
the masked objects with different noise initializations. Each resulting scene is evaluated to identify
remaining invalid or incomplete objects, producing a new inpainting mask (e.g., flagging newly un-
stable or empty objects). These (scene, mask) pairs form new child nodes.
(c) Rollout. One of the new children is selected randomly and scored using a task-specific reward,
in our example, the number of physically feasible objects. Since each node corresponds to a com-
plete scene (when discarding masked objects), rollout in our setting reduces to directly reading the
reward, rather than “rolling out* to a terminal state.
(d) Backpropagation. The reward is propagated up the tree, updating average reward estimates and
visit counts along the way.

We run the search for a fixed number of iterations or until a scene with no masked objects is found.
If no such fully valid scene is produced, we return the best partial scene encountered, discarding any
objects that remain masked.

Controlling the Objective. Our framework adapts to diverse downstream goals through two mod-
ular components: the mask generator, which determines which objects to inpaint, and the reward
function, which evaluates scene quality. These components can be defined independently. For ex-
ample, one might mask all physically invalid or empty objects, but optimize for a more targeted,
yet aligned reward, such as the number of edible objects or the degree of prompt alignment. This
decoupling enables flexible and modular search strategies across various downstream objectives.
Connection to Prior Work. When the branching factor B = oo, our method reduces to Random
Search from Ma et al. [50], repeatedly sampling new scenes without building on previous ones.

3 Experimental Evaluation

3.1 Evaluation Setup

Metrics. We evaluate generative quality using image-based metrics adapted to SE(3) scenes. Fol-
lowing prior work on SE(2) scenes [27, 28, 30, 31], we compute Fréchet Inception Distance (FID)
and classifier accuracy (CA, in %) based on semantic renderings. A CA near 50% indicates realistic
generation, while a CA near 100% indicates clear separability. We render each scene from a manu-
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Figure 4: RL post training with an object count reward. We post-train a model originally trained
on the Living Room Shelf dataset. Left: Sample before post training. Middle: Sample after post
training. Right: Reward curve. The red line marks the maximum number of objects seen during
pre-training (23). Before post training, we increase the maximum number of objects allowed by the
scene representation by 20 to enable higher object counts. The green line indicates the checkpoint
used for sampling (step 7000), chosen to avoid overoptimization.

ally defined informative viewpoint specific to the scene type. We also report KL divergence between
object category distributions, prompt-following accuracy (APF) for count and object-type prompts,
and median total penetration (MTP) to assess physical feasibility. MTP is computed before applying
our post processing. Full metric definitions are provided in the appendix.

Baselines. We compare our proposed approach against two state-of-the-art diffusion-based scene
synthesis methods: (1) DiffuScene [30], which uses a 1D U-Net with a continuous DDPM objective,
and (2) MiDiffusion [31], a Transformer-based model that employs a mixed discrete-continuous dif-
fusion objective. We apply minimal modifications to both implementations to support our scene
representation X. For MiDiffusion, we replace floor plan conditioning with text conditioning. All
models, including ours, use the same BERT text encoder [45].

Datasets. As described in Section 2.1, we generate our training data using the procedural scene
generation framework from [16]. We reuse the Dimsum Table scene type from [16] and define four
additional scene types: Breakfast Table, Living Room Shelf, Pantry Shelf, and Restaurant. Restau-
rant is a room-level composition that integrates Dimsum Table and Living Room Shelf scenes along
with additional objects. For greater diversity, we split the Breakfast Table and Restaurant scenes
into low- and high-clutter variants, reflecting the procedural generation parameters used. In total,
we sample more than 44 million SE(3) scenes across all scene types, significantly surpassing the
scale of prior SE(2) scene datasets, such as 3D-FRONT [51], which contains 18,968 scenes. The
appendix provides the full set of quantitative and qualitative results across all datasets.

3.2 Unconditional Generation

Table 1: Unconditional generation results on the Restaurant (High-Clutter) and Living Room Shelf
datasets. * indicates that we adjusted the methods for compatibility with our scene representation.

Method Restaurant (High-Clutter Variant) Living Room Shelf

CA(50it, %) | KL (x10%)| FID| MTP(m)] CA100it, %)} KL (x10%] FID]| MTP (cm)]
DiffuScene* [30] 84.81 +6.49 0.55 1.39 18.11 71.73 £0.99 4.67 2.18 0.05
MiDiffusion* [31]  78.63 £9.79 1.01 1.34 8.80 64.13 +1.87 2.51 2.09 0.03
Ours 70.74 + 8.05 0.87 1.31 6.31 52.84 + 1.26 2.13 2.09 0.02

We report unconditional generation results for the Restaurant (High-Clutter) and Living Room Shelf
datasets in Table 1; additional results, including samples from a single model jointly trained across
all datasets, are provided in the appendix. Rather than training separate unconditional models, we
use our text-conditioned models by providing empty conditioning inputs at sampling time. Our
model achieves strong FID and significantly lower MTP compared to baselines, indicating that it
produces scenes that are both visually realistic and physically plausible. Classifier accuracy (CA)



Figure 5: Scene rearrangement example. A scene from the Restaurant (Low-Clutter) dataset is
rearranged via inpainting by a model trained on the same dataset. Red, green, and blue ellipses
highlight corresponding objects. Notably, cutlery is moved from the utensil crock to the table,
requiring full SO(3) rotation modeling.

"A scene with an avocado, a

. stacking ring, five apples, two
. cans, and some other objects."

"A scene with an avocado, a board 3
game, and some other objects."”

Figure 6: Interpolation between Living Room and Pantry Shelf Scenes. We train a joint model
on both datasets with a 50/50 batch mix. By prompting for objects unique to each dataset (red =
Living Room Shelf, blue = Pantry Shelf), we guide the model to generate interpolated scenes.

closer to 50% further supports that our samples are harder to distinguish from dataset scenes. While
we do not always achieve the lowest KL divergence, all methods obtain very low KL values on our
datasets. Since KL is near saturation, the differences are minor, and this metric is less informative
in our setting; therefore, we report it primarily for completeness, following prior work.

3.3 Post Training with Reinforcement Learning

We apply reinforcement learning (RL) post training to a model trained on the Living Room Shelf
dataset, using an object count reward. Figure 4 shows the reward curve and sample scenes before
and after post training. We choose a checkpoint before overoptimization occurs to maintain scene
quality. Additional results are provided in the appendix. RL-based post training successfully adapts
the pretrained model to generate scenes with object counts substantially exceeding those observed
during pretraining. By expanding the maximum object capacity in the scene representation before
post training, we enable the model to extrapolate beyond its original range without requiring re-
training from scratch. This demonstrates that post training can effectively shift and reshape scene
distributions toward task-specific goals.

3.4 Conditional Generation

Table 2: Conditional generation results on the Breakfast Table (High-Clutter) and Pantry Shelf
datasets. * indicates that we adjusted the methods for compatibility with our scene representation.

Method Breakfast Table (High-Clutter Variant) Pantry Shelf

CA (50it, %) |, KL (x10%)| FID| APF{ CA(50it, %)} KL(x10%)] FID] APF{
DiffuScene* [30] 82.38 £3.82 0.96 1.87 0.76 84.65+2.23 0.91 1.93 0.88
MiDiffusion* [31]  82.22+3.11 0.58 1.93 0.60 87.24 £ 1.80 0.64 1.89  0.72
Ours 68.44 + 4.67 0.30 1.84 086 82.78 + 3.44 0.66 1.88  0.98
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Figure 7: Inference-time MCTS. We apply MCTS at inference time to generate a Dimsum scene
that maximizes the number of physically feasible objects. Left: Initial sample and final result after
search. Red, green, and blue ellipses highlight corresponding objects. Note how the search com-
pletes the steamer stacks. Right: Reward curve. Inpainting the fully masked scene (equivalent to
unconditional sampling) yields 21 feasible objects in the best of B = 3 samples. MCTS reaches the
maximum possible 34 objects after 313 iterations, with reward rising quickly, then plateauing.

We report quantitative results for text-conditioned generation on the Breakfast Table (High-Clutter)
and Pantry Shelf datasets in Table 2. Figure 3 shows examples of text-conditioned generation, and
Figure 5 illustrates scene rearrangement via partial inpainting. Additional results, including scene
completion, are provided in the appendix. Our model outperforms baselines in CA, FID, and APF,
indicating stronger prompt adherence and overall generation quality. Qualitative examples further
show that our model captures both large-scale layouts and fine-grained object details.

Cotraining across scene types. We also investigate whether cotraining on the Living Room Shelf
and Pantry Shelf datasets enables interpolation. During training, we use equal batch mixing ratios
across sub-datasets. As shown in Figure 6, prompting the model with mixed object descriptions from
both environments leads to interpolated scenes that combine elements of each dataset, demonstrating
that the model captures a meaningful joint distribution.

3.5 Inference-Time Search

Figure 7 shows how MCTS optimizes the number of physically feasible objects in a Dimsum scene
with a branching factor B = 3. The training set had a mean of 17.1 objects and a maximum of
34; MCTS reaches this maximum, demonstrating that inference-time search can push scene com-
plexity well beyond typical training-time levels. Scene distributions encode local structure, for
example, steamers often appear in vertical stacks. Our results show that the model captures such
patterns: MCTS incrementally builds realistic, physically feasible stacks by exploiting inductive
biases learned during pretraining, without requiring retraining.

4 Conclusion

We presented a diffusion-based framework for SE(3) scene generation that distills large-scale pro-
cedural data into a flexible, physically grounded prior. Our model predicts object categories from a
fixed asset library and continuous poses, and supports adaptation via RL-based post training, condi-
tional generation, and inference-time search. Experiments across five scene types show that the pre-
trained model enables strong unconditional and conditional generation, that post training improves
targeted metrics such as clutter, and that MCTS search can optimize task rewards without retraining.
To qualitatively validate simulation readiness, we imported generated scenes into the Drake simula-
tor and successfully teleoperated a mobile KUKA iiwa robot to perform pick-and-place interactions
without requiring manual scene corrections (see Figure 1 and supplementary videos). Together,
these results demonstrate that a single model can flexibly adapt scene distributions without hand-
crafted tuning or retraining. Our work highlights a scalable approach to robotic scene generation:
pretraining on broad data sources, then steering toward task-specific goals.



5 Limitations

While our method demonstrates the feasibility and benefits of steering scene generative models to-
ward downstream objectives, several limitations remain. First, although procedural data provides
scalable supervision, it may not fully capture the complexity and variability of real-world environ-
ments. Incorporating real-world SE(3) datasets, potentially extracted from internet-scale image or
video corpora, remains an important direction for enhancing realism. Second, we adopt fully con-
tinuous diffusion models to enable reinforcement learning-based post training, rather than our full
mixed discrete-continuous models. We leave applying post training to mixed discrete-continuous
settings as future work. Additionally, we observe that when post training pushes object count
close to the maximum allowed by the scene representation, overoptimization can occur: samples
exhibit many objects but no longer resemble the original data distribution. While expanding the
maximum object capacity helps, fully continuous models still struggle to maintain quality when
handling many additional object tokens, limiting the effectiveness of this strategy. Third, our ob-
ject representation uses a fixed asset library with one-hot encodings, reflecting a practical design
choice aligned with robotics workflows, which often depend on pre-validated simulation assets to
ensure high-quality geometry and physical properties for realistic simulations. While this limits
generalization to novel geometries without retraining, it enables precise control over the asset set,
and our steering methods remain compatible with alternative object representations. Fourth, while
our object library currently consists of rigid bodies, it naturally extends to articulated objects (e.g.,
drawers, cabinets) without requiring changes to the method. We leave the exploration of articulated
scenes for future work. Fifth, our adaptation strategies—post training, conditional generation, and
inference-time search—are proof-of-concept demonstrations. Future work could explore more so-
phisticated reward functions, conditioning schemes, and search objectives tailored to specific robot
tasks. Finally, while we demonstrate simulation-readiness via teleoperation, scaling to large-scale
autonomous robot training across generated scenes is an important direction for future work.
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