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Abstract

We present four new datasets for viticultural and vinicul-
tural visual understanding: iVineyard, iCellar, iGrapevine,
and VinePathology. We designed, gathered data for, cleaned,
and provided numerical and natural language annotations for
these datasets in collaboration with domain experts with the
aim of (1) accelerating AI adoption in the realms of viticul-
ture and oenology; (2) improving data efficiency and inter-
pretability with data collection, task formulation, and anno-
tation processes informed by domain expertise; (3) bench-
marking the performance of representation learning algo-
rithms on a suite of challenging downstream viti- and vini-
cultural tasks that go beyond standard species classification.
We provide analyses of qualitative and quantitative results
of downstream tasks including fine-grained visual categoriza-
tion, fine-grained image retrieval, image geo-localization, and
object discovery, thus shedding light on the strengths and
weaknesses of feature representations across a diverse set of
tasks that are of scientific importance to viticulturists and oe-
nologists.

Fine-grained image classification as a sub-field of computer
vision has enjoyed tremendous growth in the past decade,
from the proliferation of datasets of various domains, to
methodological advancement that enables greater general-
izability and flexibility. Large-scale fine-grained classifica-
tion datasets of dogs, cars, birds, natural species, etc. have
been created from media repositories and become standard
experimental resources for computer vision researchers to
benchmark the progress of classification models over time.
While it might appear impressive to enable the computers to
identify particular cultivar of grape variety or plant pathol-
ogy present in an image, recent studies have reminded us of
the fact that when working with domain experts or scientists,
correct identification of species is not terribly impressive or
informative since most likely it’s something they already
know of, and such AI classification algorithms could help
speed up their work at best. What experts are more inter-
ested in are downstream tasks. There are far more questions
that domain experts would like to ask of these large media
repositories in addition to “What species is in this photo?”
For instance, given an natural image of a grapevine, besides
“what grape variety is in this photo?”, a viticulturist may be

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more interested in knowing, “How old is this grapevine?”
or “Is this vine under water stress?” Similarly, an oenologist
may want to know, “Is this grape cluster ready for harvest?
What is the likely sugar level in this cluster?” Domain ex-
perts can certainly answer these questions themselves for a
few images. The problem lies in scalability when it come to
the ever-growing repositories in face of the limited time and
attention of domain experts.

Therefore, we designed four fine-grained image analysis
datasets with an overarching ontology and natural language
explanations for viticulture and viniculture/oenology in col-
laboration with domain experts with the aim of benchmark-
ing the performance of representation learning algorithms on
multi-task learning of a suite of challenging tasks of practi-
cal relevance that go beyond standard fine-grained species
classification.

Viticulture and viniculture, intertwined with the $417.85
billion wine industry, represent one of the most ancient and
fundamental agricultural product at a global scale. Vines and
wines (the final product) constitute a fascinating part of hu-
man history, touching on various other disciplines such as
geology, geography, chemistry, biology, economics, politics,
etc. They allure mere mortals with fragrance and exuber-
ance, inspire the imagination of artists and poets, and attract
the powerful and wealthy with esteemed prestige and exclu-
sivity. They also stage a diverse set of interesting challenges
from a computer vision perspective: long-tailed data distri-
bution with various zero-shot or low-shot opportunities, oc-
clusions, multi-view and multi-scale inter-class variations,
etc.

To summarize our main contributions and provide a brief
preview of results:
• We introduce diverse and interpretable benchmarks for

viticultural and vinicultural visual understanding in-
formed by domain experts. It includes four curated fine-
grained datasets covering various aspects of viticulture
and viniculture. These datasets were annotated with an
overarching ontology and natural language explanations
that embody domain knowledge.

• We motivate and introduce a unique set of visual un-
derstanding tasks and provide baseline experiments with
qualitative ad quantitative results including fine-grained
visual categorization, fine-grained image retrieval, image
geo-localization, and object discovery.



Figure 1: Photo-mosaic collages of three fine-grained datasets (from top to bottom, left to right): VinePathology, iGrapevine,
iVineyard, iCellar.

Related Work
Fine-grained visual categorization (FGVC) flourished as a
sub-field of computer vision in the last decade with a di-
verse range of FGVC datasets covering domains such as
dogs (Khosla et al. 2011), birds (Wah et al. 2011; Berg et al.
2014), flowers (Nilsback and Zisserman 2008), cars (Yang
et al. 2015), food (Kaur et al. 2019), retail products (Wei
et al. 2019), fashion (Zou et al. 2019; Jia et al. 2019), ap-
ples (Thapa et al. 2020), castles (Anderson et al. 2021), nat-
ural species (Van Horn et al. 2021), and artworks (Zhang
et al. 2019; Conde and Turgutlu 2021), among others. Dis-
tinct from most existing FGVC datasets, our sets of viti-
cultural and vinicultural tasks take on a wide range of
tasks going beyond species classification for broader appli-
cations grounded in real-world use cases, informed by do-
main experts. More importantly, we included with natural
language explanations for justification of resulting annota-
tions, to boost data and labeling efficiency exemplified in
ALICE (Liang, Zou, and Yu 2020).

Grapevines are essentially agricultural products, and to
improve agriculture is to improve the food supply chain that
impacts each and every living being in the world. Despite the
tremendous potential impact AI could unlock in this realm,
AI for agriculture has been one of the topics with the least
amount of research work, according to a recent survey of
AI for Social Good (Shi, Wang, and Fang 2020). Reasons
cited for such relative literature sparsity include lack of es-
tablished data collection pipelines or frameworks in agricul-
ture, difficulty in data collection processes, etc., which exac-
erbated agricultural data mining and direct application of AI
techniques. Existing studies largely revolve around growing
activities (such as crop disease diagnosis (Quinn, Leyton-

Brown, and Mwebaze 2011), yield prediction (You et al.
2017), and crop planning (Von Lücken and Brunelli 2008)),
environmental factors (such as drought prediction (Kersting
et al. 2012)), and agricultural markets (such as price fore-
casting (Ma et al. 2019) and market design (Newman et al.
2018)).

For two out of the four viti- and vini-cultural datasets, the
tasks directly associated with them could be framed as image
geolocalization problems. Image retrieval-based methods
for geolocalization have been explored extensively where a
query image is matched to the most similar reference im-
ages in a large image database. Various low-level image fea-
tures such as BOW (Schindler, Brown, and Szeliski 2007;
Gronat et al. 2013), color or texton histograms (Hays and
Efros 2008; Kalogerakis et al. 2009; Hays and Efros 2015),
descriptors like SIFT, SURF (Hakeem et al. 2006; Zamir and
Shah 2010; Gronat et al. 2013; Arandjelović and Zisserman
2014), point and line features (Ramalingam, Bouaziz, and
Sturm 2011; Li, Morariu, and Davis 2014), building patterns
(Torii et al. 2013), keypoints (Chen et al. 2011), GIST (Za-
mir and Shah 2014; Zemene et al. 2018), etc., have been
exploited to perform matching, so were feature and geomet-
ric correspondence (Li, Snavely, and Huttenlocher 2010;
Bansal and Daniilidis 2014; Gopalan 2015; Zemene et al.
2018), representation learning (Gopalan 2015; Zemene
et al. 2018; Liu, Li, and Dai 2019), segmentation (Rama-
lingam et al. 2010; Baatz et al. 2012), discriminative learn-
ing (Cao and Snavely 2013), feature voting (Liu et al. 2020),
feature reweighting (Kim, Dunn, and Frahm 2017), pose
estimation (Ramalingam, Bouaziz, and Sturm 2011), etc.
Classification-based image geolocalization provides a more
memory and disk efficient alternative to retrieval-based so-



lutions, by treating the task as a classification problem that
divides the map into multiple discrete classes. Gronat et al.
(2013) leverages geotags to train classifiers per location.
Hongsuck Seo et al. (2018) extends (Weyand, Kostrikov, and
Philbin 2016) by enhancing the resolution of geoclasses into
which convolutional neural networks classify with combi-
natorial partitioning. We provide baseline results based on
SOTA methods with respect to image retrieval, geolocaliza-
tion, and object discovery.

Datasets
Table 1 summarizes the four datasets we collected in terms
of the number of images and classes, and Figure 1 show-
cases some photo-mosaic collages (e.g., an image of a vine-
yard/cellar/vine made up by making a collage of various
vineyard/cellar/vine images) based on these datasets. The
datasets will be released online1.

Dataset Class # Classes Images
iCellar Winery cellars 773 108,157
iVineyard Vineyards 327 41,166
iGrapevine Grapevines 153 13,550

VinePathology
Vine diseases,
pests, weeds,
other hazards

42 5,894

Table 1: Datasets for fine-grained viti- and vini-cultural vi-
sual understanding.

Tasks
Each of the four datasets — iCellar, iVineyard, iGrapevine,
and VinePathology — centers around one central task
in vein of species classification, for which we obtained
groundtruth labels. For instance, the basic task of iCellar
is fine-grained classification of winery cellars around the
globe, whereas that of iVineyard is multi-class vineyard
classification. Besides respective central tasks, each dataset
is also associated with a series of tasks which are identified
as possible rationales of the category of the basic task, being
of greater interest to domain experts. For instance, in order
to correctly identify which vineyard is depicted in an image
from iVineyard dataset, visual clues with respect to the type
of landscape, trellising system, vineyard quality, soil type,
etc. could help inform the identity of the vineyard in ques-
tion. We summarize in bullet points below for each datasets
the correspondingly proposed tasks informed by domain ex-
perts. For example, given an image of a grapevine in terms of
leaves or clusters, besides training a fine-grained visual clas-
sification algorithm to recognize the grape variety, viticul-
turists are more interested in automatic assessment of vine
age, vine health, potential pathology, level of vine stress, and
other environmental information that could be derived from
the grapevine image. We include the number of classes in
the parentheses following each task.

• iCellar — Winery/cellar identification (773):

1https://github.com/ai-somm/viti-vini-culture.

– Vessel classification (19): barrel age and type: Bar-
rique, Pièce, Fuder, Stück, Puncheon, Hogshead, Ton-
neau, Botte; concrete egg, cement vats, stainless steel
tanks, etc.;

– Scale of production prediction (3): small, medium,
large.

• iVineyard — vineyard identification (327):
– Vineyard quality classification (4): none, village level,

premier cru, grand cru;
– Macro-, meso-, and micro-climate classification (9);
– Trellising and training system classification (26) :Go-

belet, Vertical Shoot Positioning, Geneva Double Cur-
tain, Lyre, etc.;

– Landscape classification (15): steep slope, plateau,
flatland, mountain floor, riverbank, fluvial fan, lake-
side, etc.;

– Context identification (8): conditions such as drought,
rain, hail, snow, etc.;

– Soil identification (21): limestone, shale, slate, gravel,
granite, schist, clay, chalk, clay, loam, sandstone, etc.

– Soil condition classification (4): water stress, nutrient
deficiency, irrigated, dry farm, etc.

• iGrapevine — grape variety identification (153):
– ripeness identification (4): phenolic ripeness and phys-

iological ripeness prediction.
• VinePathology (42):

– Disease identification (24): bacterial, viral, fungal, etc.
– Pest identification (14): leafroller, phylloxera, nema-

tode, lanternfly, etc.
– Weed identification (4).

Data Collection, Preprocessing, and
Annotation

We collected our datasets by gathering images from ma-
jor search engines and social media by varying fine-grained
search queries with query expansion. Due to the noisy na-
ture of resulting images, we trained an image classifier to
filter out unwanted images. By analyzing the composition
of images of the initial crawl, we identified 9 major cate-
gories of images: images of vineyards/cellars/vines/grapes
in a natural scene, images of wine bottles, images of wine
labels, marketing images, graphs, images of people, maps,
tasting events, winemaking processes. We trained a ResNet-
50 (He et al. 2016) based multi-label image type classifier to
distinguish between these classes with 3,000 images cleaned
for each class. With a resulting F1 at 0.95 (precision at 0.97,
recall at 0.92), we applied the classifier to our initial noisy
dataset to filter out images of bottles, labels, people, maps,
tasting events, winemaking processes, graphs, and stock im-
ages. After further deduplicating efforts with tools including
digikam, findimagedupes, geeqie, fdupes, the remaining im-
ages add up to what Table 1 shows.

For each image in four datasets, groundtruth labels for re-
spective central task were obtained by way of the data col-
lection and cleaning process. Labels of auxiliary tasks such

https://github.com/ai-somm/viti-vini-culture


(a) Canary Islands (b) Finger Lakes (c) Gevrey-Chambertin (d) Santorini

Figure 2: Distinctive visual patches of vineyards in Canary Islands, Finger Lakes, Gevrey-Chambertin, and Santorini.

as vessel classification or trellising classification were pro-
vided by domain experts when applicable in the following
way: we applied the respective classifier trained for the as-
sociated central task to all images in the dataset and iden-
tified hard examples with cross high entropy levels to elicit
natural language explanations from domain experts. For in-
stance, for an image of a vineyard in Lodi (in central Califor-
nia) misclassified as a vineyard in Yecla (in central Spain),
a domain expert wrote: “The Zinfandel vines with signs of
leafrolls are indicative of Lodi rather than Yecla, despite
both being known for gnarly old vines on barren flatlands.
Lodi is more humid, at lower elevation, with sandier soils
than Yecla.” In total, we collected natural language expla-
nations for 10, 635 images, which were parsed to result in
35, 150 labels for auxiliary tasks.

Baseline experiments
We run experiments to provide baseline performances on
three visual understanding tasks using at least one of the
datasets proposed here. We train ResNet-50 (He et al. 2016)
for two related classification tasks and one task related to
clustering: (1) vineyard/cellar/grapevine/pathology recogni-
tion, 773-/327-/153-/42-class classification respectively; (2)
vineyard/cellar geolocalization as 18-class country classifi-
cation; and (3) vineyard object discovery where the goal is to
surface distinctive patches that uniquely identify each vine-
yard. We also train models for image retrieval where given
a query image, the goal is to provide a ranking of images in
terms of visual similarity. In all of our experiments we use
a 80/10/10 train/val/test split, ResNet-50 (He et al. 2016) as
the backbone pretrained on ImageNet, Dropout rate at 0.1-
0.5, learning rate at 0-10−3 with a loglinear warm up during
initial 5-10 epochs and at 10−5-10−3.

Results
We tabulate the quantitative results in Table 2 for recognition
tasks (mean top-K accuracy) and retrieval tasks.

Qualitative results of object discovery are visualized
in Figure 2. Interestingly, mountain skylines, bush vines,
craters, and dark volcanic ash of Canary Islands separate it-
self apart from Santorini that also boosts volcanic soil but
reflects differently vine training system — short stone walls

around bush vines (“kouloura”) and the iconic white houses
in the distance. Finger Lakes region, on the other hand,
showcases lusher and upright vines with presence of wa-
ter bodies, whereas Gevrey-Chambertin is recognized by an-
cient stone walls (“clos”), narrowly-winding country roads,
and unique local architecture.

Task/ACC Top-1 Top-5 Task Top-1 Top-5
Vineyard 41.5 53.6 V-Country 62.2 73.1
Cellar 28.7 39.2 C-Country 38.6 42.3
Grapevine 34.6 44.2 V-Retrieval 11.2 19.4
Pathology 62.7 79.3 C-Retrieval 6.7 12.8

Table 2: Top-1 and Top-5 accuracies (ACC) for vine-
yard/cellar/grapevine/pathology classification, vineyard/cel-
lar country prediction, and vineyard/cellar retrieval. V-/C-
refers to vineyard-/cellar-.

Conclusion and Future Research
We present a diverse set of images for viti- and vini-cultural
visual understanding with interpretable explanations. We
present baseline experimental results of fine-grained im-
age classification, image retrieval, and object discovery. The
diversity and interpretability of these datasets could un-
lock a variety of further explorations. For instance, multi-
task and multimodal active learning methods could potential
boost training efficient while keeping annotation costs low,
especially when domain experts are involved. Due to the
long-tailed distribution of such fine-grained datasets, few-
shot, zero-shot, and generalized zero-shot learning meth-
ods based on meta learning could accelerate learning new
tasks, an important and practical factor for when new tasks
or domains surface as the scientific fields such as viticul-
ture evolve. Lastly, even though image features produced by
standard supervised methods still largely outperform those
produced by self-supervised approaches, there exists evi-
dences (Van Horn et al. 2021) that for particular tasks such
as scene classification, self-supervised learning showcases
promising potential. Therefore, future works benchmark-
ing self-supervised learning on these viti- and vini-cultural
datasets might prove fruitful.
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Baatz, G.; Saurer, O.; Köser, K.; and Pollefeys, M. 2012.
Large scale visual geo-localization of images in mountain-
ous terrain. In European conference on computer vision,
517–530. Springer.
Bansal, M.; and Daniilidis, K. 2014. Geometric urban geo-
localization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 3978–3985.
Berg, T.; Liu, J.; Woo Lee, S.; Alexander, M. L.; Jacobs,
D. W.; and Belhumeur, P. N. 2014. Birdsnap: Large-scale
fine-grained visual categorization of birds. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2011–2018.
Cao, S.; and Snavely, N. 2013. Graph-based discrimina-
tive learning for location recognition. In Proceedings of the
ieee conference on computer vision and pattern recognition,
700–707.
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