

GLANCE FOR CONTEXT: LEARNING WHEN TO LEVERAGE LLMs FOR NODE-AWARE GNN-LLM FUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Learning on text-attributed graphs has motivated the use of Large Language Models (LLMs) for graph learning. However, most fusion strategies are applied uniformly across all nodes and attain only small overall performance gains. We argue this result stems from aggregate metrics that obscure *when LLMs provide benefit*, inhibiting actionable signals for new strategies. In this work, we reframe LLM–GNN fusion around nodes where GNNs typically falter. We first show that performance can significantly differ between GNNs and LLMs, with each excelling on distinct structural patterns, such as local homophily. To leverage this finding, we propose **GLANCE** (GNN with LLM Assistance for Neighbor- and Context-aware Embeddings), a framework that invokes an LLM to refine a GNN’s prediction. GLANCE employs a lightweight router that, given inexpensive per-node signals, decides whether to query the LLM. Since the LLM calls are non-differentiable, the router is trained with an advantage-based objective that compares the utility of querying the LLM against relying solely on the GNN. Across multiple benchmarks, GLANCE achieves the best performance balance across node subgroups, achieving significant gains on heterophilous nodes (up to +5.8%) while simultaneously achieving top overall performance (up to +1.1%). Our findings advocate for adaptive, node-aware, GNN-LLM architectures, showing that selectively invoking the LLM where it adds value enables scalable application of LLMs to large graphs.

1 INTRODUCTION

Text is rarely consumed in isolation: scientific papers cite related work (Ciotti et al., 2015; Mccallum et al., 2000; Cohan et al., 2018), users browse descriptions of co-purchased e-commerce items (Jin et al., 2024; McAuley & Yang, 2016; Ezeife & Karlapalepu, 2023), and social media posts reply to one another (Wu et al., 2017; Yang & Leskovec, 2011). These interactions form text-attributed graphs (TAGs), where nodes represent text and edges capture relationships, enabling joint reasoning over content and structure (Yang et al., 2015; Zhao et al., 2023). Historically, TAGs have been processed by feeding shallow text features, such as TF-IDF or static word embeddings (Stephen et al., 2022; Mikolov et al., 2013), into Graph Neural Networks (GNNs). Recently, the success of Large Language Models (LLMs) has motivated hybrid architectures that leverage LLMs for graph learning, combining LLMs’ semantic reasoning with GNNs’ structural learning (Chen et al., 2024a; Wang et al., 2025). However, the majority of hybrid systems typically apply a single fusion strategy across all nodes in a graph, overlooking per-node variations in semantic quality and structural attributes (Wu et al., 2024). This uniform application of LLMs across a graph can waste expensive LLM calls on nodes already well modeled by the GNN, producing poor accuracy-efficiency tradeoffs (Liu et al., 2025).

A key weakness of uniform fusion is its failure to leverage the complementary strengths of GNNs and LLMs. GNNs tend to perform well when neighbors exhibit homophily, where connected nodes share labels, and high degree (McPherson et al.; Yan et al., 2022). Yet, these properties do not typically hold in real-world TAGs (Ma et al., 2020; Loveland et al., 2024; Zhou et al., 2020). While advanced GNN designs have attempted to address these concerns (Zhu et al., 2020; Abu-El-Haija et al., 2019; Veličković et al., 2018), recent evidence shows they remain insufficient for handling these challenging structures (Loveland & Koutra, 2025; Mao et al., 2023; Du et al., 2022). On the other hand, LLMs exhibit strong generalization in low-shot settings, making them well suited for the challenging nodes that degrade GNNs (Chen et al., 2024a; Peng et al., 2024). However, leveraging LLMs for graphs often leads to the distortion of structural relationships due to serializing the graph into text (Liu et al., 2023; Firooz et al., 2025; Wang et al., 2025). This limitation is particularly detrimental for graphs governed by simpler structural signals where the LLM may add unnecessary complexity and even degrade performance relative to GNNs (Liu et al., 2025; Wang et al., 2025).

054 While incremental performance gains with high computational costs make LLMs seem ill-suited for graph
 055 learning, we argue this stems not from inherent deficiencies, but how LLMs are used. Our hypothesis
 056 is that gains in regions difficult for GNNs are offset by losses elsewhere. Thus, we reframe utilizing LLMs
 057 only where GNNs struggle, focusing on structurally difficult nodes, whose errors are often masked in
 058 aggregate metrics. This emphasis promotes equity across the graph, countering harmful GNN inductive
 059 biases (Wang et al., 2022; Agarwal et al., 2021). This leads us to our core research question: **How, and**
 060 **for which nodes, should we leverage LLMs to complement and bolster GNNs?**

061 To answer this question, we first identify signals that inform when GNNs vs. LLMs succeed. Since LLM
 062 routing has only recently been studied, we systematically assess existing methods (Qiao et al., 2025; Jaiswal
 063 et al., 2024; Chen et al., 2024b), finding highly variable performance, sometimes worse than random
 064 routing. Through a node-level analysis on local homophily and relative degree, two properties known
 065 to impact GNNs (Yan et al., 2022; Subramonian et al., 2024), we find GNNs excel in high-homophily,
 066 well-connected regions, while LLMs dominate as homophily or degree decreases. Notably, local
 067 homophily emerges as a strong predictor of model advantage, offering a principled prior for routing.

068 Motivated by this, we propose **GLANCE** (GNN with LLM Assistance for Neighbor- and Context-aware
 069 Embeddings), a fusion strategy that preserves GNN efficiency on easy nodes while selectively leveraging
 070 LLMs on hard ones. GLANCE first encodes nodes with a pre-trained GNN, then passes lightweight routing
 071 features to a cost-aware policy that decides whether to query the LLM – figuratively “glancing” at the LLM
 072 for additional context. For routed nodes, LLM embeddings are fused with GNN embeddings via a small re-
 073 finer head. To train the non-differentiable router, we introduce an advantage-based strategy that rewards ben-
 074 eficial queries to the LLM. We find that GLANCE is able to consistently outperform previous benchmarks,
 075 producing more robust predictions across the spectrum of homophily levels. These results highlight the value
 076 of node-aware fusion to enable GNN-LLM fusion on large, diverse TAGs. Our contributions are below:

- 077 • **Current Limitations: Which Nodes to Route.** We provide a systematic look at LLM routing and show
 078 that current heuristics are brittle. By stratifying nodes by different properties, we reveal the complementary
 079 performance of GNNs and LLMs over local homophily and identify for which nodes LLMs are beneficial.
- 080 • **New GNN-LLM Method: How to Select Nodes.** We introduce GLANCE, a cost-aware framework
 081 that learns when to query the LLM, minimizing unnecessary LLM calls and preserving scalability.
- 082 • **Comprehensive Empirical Analysis.** Across four diverse TAG datasets, GLANCE consistently
 083 outperforms state-of-the-art GNNs and GNN-LLM hybrids, yielding robust predictions across homophily
 084 levels with gains of up to +5.8% on heterophilous pockets and overall performance gains of up to +1.1%.

086 2 RELATED WORK

088 We briefly discuss the most relevant work here, and provide more details in Appendix A.

090 **Static GNN-LLM Fusion.** Prior work largely follows two paradigms: LLMs-as-Enhancers and LLMs-as-
 091 Predictors (Chen et al., 2024a; Li et al., 2024). Enhancer methods enrich node features with text embeddings
 092 or external knowledge (Wu et al., 2024; He et al., 2024), while predictor methods replace the GNN with the
 093 LLM, directly classifying serialized graph inputs (Wu et al., 2024; Wang et al., 2025). LLM-as-Predictor
 094 methods can overcome GNN biases, but struggle with topology encoding and prompt length (Firooz et al.,
 095 2025). Other fusion strategies draw from Mixture-of-Experts (MoE) (Cai et al., 2025; Wang et al., 2023),
 096 but have not explored mixing GNNs and LLMs. Recent work has considered LLMs to route among GNNs
 097 (Jiang & Luo, 2025), yet this still confines performance to GNN biases. In contrast, our approach adopts a
 098 selective paradigm, invoking the LLM where it is expected to help, combining the strengths of both models.

099 **Adaptive GNN-LLM Fusion.** A challenge for LLM-GNN models is inference cost, especially when
 100 LLMs are used in the forward pass for all nodes (Wu et al., 2024). While cost reduction via sampling or distil-
 101 lation helps (Fang et al., 2023; Chen et al., 2024a), scalability remains limited by universal LLM calls. Only
 102 a few recent works explore adaptive GNN-LLM fusion, where the LLM is invoked selectively. E-LLaGNN
 103 routes nodes with fixed heuristics (e.g., degree, centrality) (Jaiswal et al., 2024), but requires manual tuning.
 104 LOGIN uses GNN uncertainty to rewire difficult nodes (Qiao et al., 2025), though this can erase useful het-
 105 erophilous links (Luan et al., 2021). LLM-GNN uses clustering density as a proxy for difficulty (Chen et al.,
 106 2024b). Our approach differs by: (1) systematically identifying structural properties predictive of LLM
 107 benefit, learning to route without preset thresholds; (2) preserving graph structure rather than editing it; and
 108 (3) directly training a router under non-differentiable queries, rather than altering data to create influence.

108

3 PRELIMINARIES

110 A TAG is defined as $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{T}, \mathcal{Y})$, where \mathcal{V} is the set of $n = |\mathcal{V}|$ nodes, $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges,
 111 $\mathcal{T} = \{t_v\}_{v \in \mathcal{V}}$ is the text associated with each node v , and $\mathcal{Y} = \{y_v\}_{v \in \mathcal{V}}$ is the set of node labels. The
 112 task is to learn a model $\psi : (\mathcal{G}, \mathcal{T}) \rightarrow \mathcal{Y}$ that predicts node labels y_v from both structure and text. Next
 113 we outline the strategies to parameterize and learn ψ .

114 **Graph Neural Networks.** GNNs learn node representations by aggregating messages from neighbors.
 115 At each layer ℓ , a node v is updated as:

$$117 \quad \mathbf{h}_v^{(\ell)} = \text{UPDATE}^{(\ell)} \left(\mathbf{h}_v^{(\ell-1)}, \text{AGGREGATE}^{(\ell)} \left(\{\mathbf{h}_u^{(\ell-1)} : u \in \mathcal{N}(v)\} \right) \right), \quad \hat{y}_v = \text{argmax} \text{MLP}(\mathbf{h}_v^{(L)}).$$

119 where $\mathbf{h}_v^{(0)} = \mathbf{x}_v$ (a feature vector derived from t_v), $\mathcal{N}(v)$ denotes the neighbors of node v , and AGGREGATE
 120 and UPDATE define the GNN’s operations. In practice, AGGREGATE is a permutation-invariant
 121 function (e.g. sum or mean) and UPDATE is a multi-layer perceptron (MLP). After L layers, the prediction
 122 is obtained using an MLP head. Despite their success, GNNs often struggle on certain structural patterns,
 123 such as low degree and heterophily (Loveland et al., 2024; Mao et al., 2023; Yan et al., 2022). This has moti-
 124 vated architectures with higher-order aggregation, residual connections, and adaptive message passing (Chen
 125 et al., 2020; Zhu et al., 2020). We leverage GNNs that adopt these designs later in our experimental analysis.

126 **Large Language Models (LLMs).** Let $\text{LLM}(\cdot)$ denote a pre-trained language model. Given a node
 127 v with text t_v , and optionally neighbor attributes $\{t_u : u \in \mathcal{N}(v)\}$, the LLM can either (i) generate an
 128 embedding $\mathbf{z}_v = \text{LLM}_{\text{embed}}(p_v)$ from a prompt p_v , optionally including neighborhood context, or (ii)
 129 directly predict the label $\hat{y}_v = \text{LLM}_{\text{predict}}(p_v)$. Embedding LLMs allow the output \mathbf{z}_v to be easily combined
 130 with a GNN’s output or other downstream classifiers, but require a prediction head. In contrast, direct
 131 prediction avoids this head but risks hallucinated labels and often still needs fine-tuning. In this work,
 132 we adopt the embedding setting, which supports seamless integration with GNN representations.

134

4 WHICH NODES TO ROUTE: CURRENT LIMITATIONS & OPPORTUNITIES

137 We begin by examining *which nodes* should be routed, reviewing prior routing strategies and highlighting
 138 their limitations. Then, building on insights from the GNN literature, particularly the challenges with
 139 GNNs applied to low-degree nodes and heterophilous neighborhoods (Yan et al., 2022; Tang et al., 2020),
 140 we show that LLMs can complement GNNs under these conditions. Ultimately, we find that homophily
 141 emerges as a strong indicator for LLM benefit, offering a promising opportunity to improve graph learning.

142

4.1 LIMITATIONS OF CURRENT ROUTING STRATEGIES

144 Based on previous work, we analyze strategies to route nodes to an LLM. We consider node degree d_v
 145 (Jaiswal et al., 2024), clustering density (C-density) (Chen et al., 2024b), and uncertainty from dropout
 146 (Qiao et al., 2025). For each strategy, we route the top- $k\%$ of nodes to a fine-tuned LLM under three
 147 criteria: (i) low degree, (ii) low density, and (iii) high uncertainty.

149 **Experimental Setup.** We evaluate on Cora (McCallum et al., 2000), Pubmed (Sen et al., 2008a), and
 150 Arxiv23 (He et al., 2024) with processing details in Section D. We train two backbones, GCN and GCNII,
 151 using the dataset’s original features (denoted as “Std.”) and enhanced features generated via Qwen3-8B
 152 (denoted as “Enh.”). GCN serves as a traditional baseline, while GCNII introduces new designs to better
 153 handle over-smoothing and other challenging graph properties. Together, they provide a contrast between
 154 a simple message-passing framework and a stronger state-of-the-art backbone. For LLM-as-predictor,
 155 we fine-tune Qwen3-8B with an MLP head for node classification. LLM prompting and training for both
 156 LLM-as-Enhancer and LLM-as-Predictor are given in Section B. Training details and hyperparameters
 157 for the LLMs and GNNs are provided in Section C. For the routing strategies in Table 1, we freeze the
 158 GNN and LLMs and route using the metric.

159 We assess heuristics with a **net correction score** (NCS), capturing the benefit of routing. For a routed
 160 set R , let WC be the nodes *wrong* under the GNN but became *correct* after routing to the LLM, and
 161 CW be the set of nodes were *correct* but became *wrong*. We define $\text{NCS} = (|WC| - |CW|)/|R|$ where
 162 $\text{NCS} = 1$ means the LLM fixes all routed nodes and -1 means the LLM harmed every routed node.

162 **Findings.** Table 1 highlights the difficulty of identifying a single routing signal that generalizes across
 163 datasets. On Pubmed and Arxiv23, uncertainty appears promising, achieving the best NCS in every setting.
 164 Yet on Cora, the same strategy consistently
 165 produces negative NCS, often performing
 166 worse than a random router. Other heuristics
 167 such as degree and C-density similarly
 168 fluctuate in effectiveness, with no strat-
 169 egy performing robustly across all datasets.
 170 Taken together, these results underscore
 171 the **limitations of static heuristics**: while
 172 they can succeed in isolated cases,
 173 **their performance is highly dataset-
 174 dependent**. This motivates the need for a
 175 more principled and transferable routing
 176 signal, rather than manually chosen rules.
 177

4.2 STRUCTURAL OPPORTUNITIES FOR ROUTING

180 Given that heuristic quality can be dataset-dependent, we aim to find a routing signal that aligns with the
 181 strengths of GNNs and LLMs. We first analyze metrics known to degrade GNN performance and then
 182 utilize these to route, showing that homophily is a strong indicator for when LLMs improve performance.
 183

4.2.1 ON THE COMPLEMENTARY CAPABILITIES OF LLMs AND GNNs

186 To characterize the unique benefits of LLMs and GNNs, we take the models from Table 1 and perform a
 187 stratified analysis using *relative degree* \bar{d}_v and *local homophily* h_v . When $\bar{d}_v > 1$, v tends to have higher
 188 degree than its neighbors, and lower degree otherwise. Low h_v indicates v is heterophilous. Mathematically,

$$189 \bar{d}_v = \frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} \sqrt{\frac{d_v+1}{d_u+1}}, \quad h_v = \frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} \mathbf{1}[y_u = y_v].$$

192 Both properties are known to influence GNNs (Yan et al., 2022; Subramonian et al., 2024), but have
 193 received less attention for LLM-graph reasoning. We compare models across these properties.
 194

195 **Findings.** In Figure 1, we study
 196 GNN and LLM performance for
 197 groups of nodes stratified by ho-
 198 mophily. Despite similar performance
 199 in the high homophily regime, **LLM**
 200 **models tend to produce signifi-**
 201 **cantly higher performance over het-**
 202 **erophilous and low-degree nodes**,
 203 e.g., achieving upwards of a 20.4%
 204 performance increase compared to
 205 the next best model, GCNII with
 206 LLM enhancement on Cora. Addi-
 207 tional results given for Pubmed in Sec-
 208 tion E.4 with similar trends. In Fig-
 209 ure 5 (Section E.5), we further find
 210 that homophily and degree can in-
 211 terplay with one another, where per-
 212 formance differences can reach up-
 213 wards of 30.1% between subpopula-
 214 tions stratified by both degree and lo-
 215 cal homophily. With these findings,
 216 we next study if homophily can be
 217 useful for routing.

Table 1: NCS for C-density, d_v , and uncertainty, as compared to a random router, higher is better. The number of routed nodes is in parenthesis. The highest NCS score is **bold** for each setting.

	Routing Strat.	Cora			Pubmed			Arxiv23		
		10%	15%	20%	10%	15%	20%	10%	15%	20%
		(68)	(102)	(136)	(493)	(740)	(986)	(489)	(734)	(978)
GCN	Random	-0.02	-0.06	-0.04	0.06	0.05	0.04	0.05	0.04	0.04
	C-density	-0.02	-0.03	-0.03	0.05	0.06	0.05	0.07	0.07	0.06
	Degree	-0.04	-0.01	-0.02	0.04	0.04	0.04	0.04	0.05	0.05
	Uncertainty	-0.09	-0.03	-0.01	0.20	0.18	0.17	0.15	0.13	0.13
GCNII	Random	0.00	0.01	-0.01	0.01	0.01	0.01	-0.01	0.00	0.00
	C-density	0.00	-0.03	-0.03	0.02	0.02	0.02	0.03	0.03	0.03
	Degree	-0.03	-0.03	-0.02	0.03	0.03	0.03	-0.03	-0.02	-0.01
	Uncertainty	-0.04	-0.02	-0.03	0.09	0.08	0.08	0.05	0.04	0.05

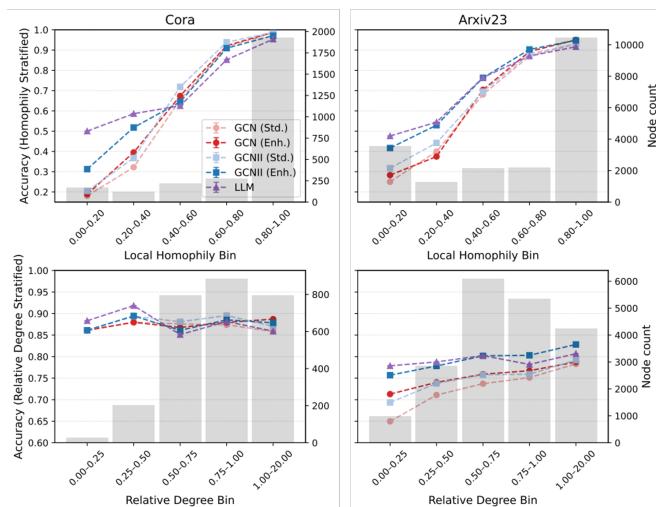


Figure 1: Stratified Performance. Performance is given for homophily (top) and relative degree (bottom), bars denote property distributions (right y-axis). For GNNs, “Std.” refers to standard shallow features, while “Enh.” refers to LLM-enhanced features. LLM refers to LLM-as-Predictor. While LLM-enhanced GNNs can benefit heterophilous nodes and low degree, LLM-as-Predictor offer further improvements on these subsets.

216 **Table 2:** (Left) NCS for h_v , \hat{h}_v , and \bar{d}_v routing, where higher is better. Homophily yields high NCS, with estimated
 217 and true variants improving as k increases. (Right) Mean rank across routing strategies, lower is better. **Bold** is best out
 218 of the label-free methods; we note that h_v cannot be used during inference due to requiring access to labels.

	Strat.	Cora			Pubmed			Arxiv23			Avg. Ranking	Label Free For Inference
		10%	15%	20%	10%	15%	20%	10%	15%	20%		
GCN Enh.	h_v	0.24	0.11	0.05	0.29	0.30	0.26	0.15	0.14	0.15	4.50	✓
	\hat{h}_v	-0.07	-0.04	-0.04	0.20	0.20	0.19	0.14	0.14	0.15		
	\bar{d}_v	-0.07	-0.07	-0.06	0.05	0.04	0.04	0.03	0.05	0.03		
GCNII Enh.	h_v	0.09	0.03	0.00	0.10	0.11	0.09	0.04	0.05	0.06	5.94	✓
	\hat{h}_v	-0.06	-0.03	-0.03	0.07	0.07	0.06	0.04	0.04	0.05		
	\bar{d}_v	-0.06	-0.07	-0.05	0.03	0.02	0.02	-0.03	-0.01	-0.01		
	h_v										1.03	✗

227 4.2.2 ROUTING WITH LOCAL HOMOPHILY

228 Unlike degree, which can be derived directly from the graph structure, homophily depends on class labels
 229 that are not accessible during training. This makes it challenging to directly exploit the performance
 230 gains LLMs provide on heterophilous nodes (Figure 1). Motivated by prior work on classifying edges as
 231 homophilous or heterophilous (Du et al., 2022; Wu et al., 2024), we extend this idea to estimate a node-level
 232 homophily score. Concretely, we train an MLP Q to predict node labels, $\hat{y}_v = \text{argmax} Q(\mathbf{x}_v)$, and use these
 233 predictions to compute an estimated local homophily, $\hat{h}_v = \frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} \mathbf{1}[\hat{y}_u = \hat{y}_v]$. This proxy enables
 234 us to leverage the benefits of homophily for routing without requiring ground-truth labels. **We employ an**
 235 **MLP to avoid the structural biases that GNNs impose during homophily estimation (Zhu et al., 2021).**

236 **Findings.** Table 2 shows that **homophily is a useful routing signal**. First, we find that true local
 237 homophily, h_v , attains the highest NCS in most settings, establishing an upper bound for structure-aware
 238 routing. More importantly, our *label-free* homophily estimate closely tracks h_v and typically matches
 239 or surpasses other static heuristics. The average rankings in Table 2 corroborates this finding, where h_v
 240 has the best mean rank for NCS score. Moreover, when h_v is excluded from the ranking, our estimated
 241 homophily achieves the best average rank. Overall, homophily reliably identifies nodes that benefit from
 242 LLM assistance, and our label-free homophily proxy is a practical and effective prior for routing.
 243

244 5 HOW TO ROUTE: ADAPTIVELY FUSING LLMs AND GNNs WITH GLANCE

245 To address the limitations of existing routing strategies, we propose **GLANCE**¹, a framework that adaptively
 246 fuses GNNs and LLMs. Rather than relying on handcrafted rules, GLANCE employs a lightweight router
 247 trained to decide, on a per-node basis, whether to invoke the LLM. This design ensures that LLM calls
 248 are used only when they provide improvement to justify their cost. At its core, GLANCE contains three
 249 components: (i) frozen GNN and LLM encoders, (ii) a trainable router using cheap features for routing,
 250 and (iii) a combiner that fuses structural and textual embeddings into final predictions.
 251

252 5.1 COMPONENTS OF GLANCE

253 We now detail the components of GLANCE, as depicted in Figure 2. We first outline how nodes are chosen
 254 for routing. Then, we specify how the LLM generates new embeddings for routed nodes. Finally, we
 255 define the refinement process that merges the GNN and LLM information. As this is a non-differentiable
 256 pipeline, we include details on how the router is trained to encourage effective usage of the LLM.
 257

258 5.1.1 STEP 1: GENERATING AND PROCESSING ROUTING FEATURES.

259 **Routing Features.** We begin by using a pre-trained GNN F to produce embedding $\mathbf{z}_G(v)$ from the
 260 k -hop neighborhood of v . This embedding acts as the first signal to ensure the router can leverage the
 261 structural information of the neighborhood. We also use the GNN to derive uncertainty estimations on the
 262 node, following a dropout strategy (Qiao et al., 2025). This uncertainty acts as a proxy signal for difficulty,
 263 allowing the router to take advantage of the relationships found in Table 1. Building on the opportunity to
 264 leverage homophily, we utilize Q to attain a local homophily estimate. However, to increase expressivity,
 265 we compute the probability distribution over the classes, $\mathbf{p}_{Q,v}$, and estimate a soft local homophily as:
 266

$$\hat{h}_v = \mathbf{p}_{Q,v} \cdot \left(\frac{1}{|\mathcal{N}_1(v)|} \sum_{u \in \mathcal{N}_1(v)} \mathbf{p}_{Q,u} \right). \quad (1)$$

267 ¹Implementation provided at <https://anonymous.4open.science/r/GLANCE-457A/README.md>

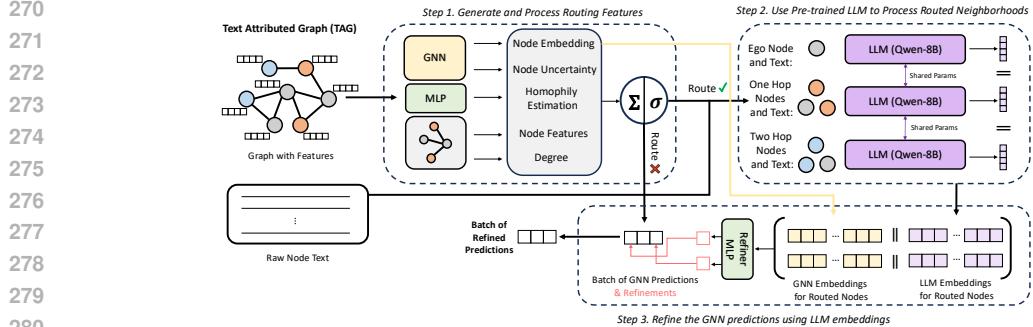


Figure 2: GLANCE Overview. Step 1: GLANCE generates routing features to derive a decision. Step 2: A routed node’s text is fed into the LLM to generate embeddings. Step 3: A routed node’s GNN & LLM embeddings are used to refine predictions. For nodes not routed, the GNN prediction is used. Only the router and refiner MLP are trained.

This soft estimate provides the router with a measure of neighborhood alignment. While Table 2 shows that \hat{h}_v cannot definitively route on its own, we utilize this signal as a prior to bias the router toward heterophilous nodes, which we expect to be refined during training. While uncertainty was originally motivated to capture heterophily Qiao et al. (2025), we find this correlation to be weak (seen in Table 9), and use both metrics given they provide different, yet informative signals. Finally, we include the original features and degree, enabling the routing of nodes with noisy features or insufficient neighborhood context.

Node Router. We define a router π that takes as input the routing features above, denoted as a vector \mathbf{f}_v , and outputs a probability of routing $a_v \in [0,1]$, for a node v , as $a_v = \pi(\mathbf{f}_v) = \sigma(\mathbf{w}^\top \mathbf{f}_v)$, where larger values of a_v indicate that the LLM should be queried for node v , while low values of a_v indicates that the GNN prediction is sufficient for node v . Rather than applying an absolute threshold, GLANCE uses a top- k strategy: for each mini-batch, the k nodes with the highest a_v scores are routed to the LLM. This ensures a fixed query budget per batch and avoids the need to globally calibrate the router’s probabilities.

5.1.2 STEP 2: PRE-TRAINED LLM TO PROCESS ROUTED NEIGHBORHOODS

For the top- k routed node set R , the pre-trained LLM encoder L is invoked to generate textual embeddings from serialized neighborhood prompts $\psi(\mathcal{N}_k(v)) \forall v \in R$, examples prompts are given in Section B. Rather than producing a single embedding as is done in previous work (Wang et al., 2025), we generate summaries at multiple structural levels: (1) the ego text t_v , (2) the ego text with a sampled subset of 1-hop neighbors $\{t_v \cup t_u : u \in \mathcal{N}_1(v)\}$, (3) the ego text with a sampled subset of 2-hop neighbors $\{t_v \cup t_u : u \in \mathcal{N}_2(v)\}$. Each level is serialized into a separate prompt and encoded into embeddings $\mathbf{z}_{L,0}(v), \mathbf{z}_{L,1}(v), \mathbf{z}_{L,2}(v)$, which are then concatenated to form the final LLM representation:

$$\mathbf{z}_L(v) = [\mathbf{z}_{L,0}(v) \parallel \mathbf{z}_{L,1}(v) \parallel \mathbf{z}_{L,2}(v)].$$

This multi-level encoding preserves both ego and neighbor information, while ensuring the prompt length remains manageable. Additionally, this design aligns with the higher-order aggregation typically seen in advanced GNN architectures (Zhu et al., 2020; Yan et al., 2022).

5.1.3 STEP 3: REFINE THE GNN PREDICTIONS USING LLM EMBEDDINGS.

For nodes not routed, we retain their original GNN predictions by feeding the GNN-based node embeddings into the original MLP head used during GNN training. For nodes that are routed, we want to utilize both the GNN and LLM embeddings to capture structure and contextual information. Thus, we define a refiner MLP C that integrates the GNN and LLM embedding as:

$$\mathbf{p}_{C,v} = \text{softmax}(C([\mathbf{z}_G(v) \parallel \mathbf{z}_L(v)])),$$

where $\mathbf{p}_{C,v}$ is the probability distribution over the classes for a node v . This modular design is agnostic to a specific GNN or LLM backbone, enabling flexibility depending on the dataset or computational budget.

5.2 TRAINING OBJECTIVES

Because routing decisions are discrete and require prompt construction, routing weights cannot be directly learned via backpropagation. Below, we detail how we translate the routing signal into weight updates.

324 **Counterfactual Comparison and Rewards.** When routing to the LLM, we measure the value of
 325 invoking it by computing a counterfactual prediction using the GNN and measuring the difference in losses
 326 produced by the two computations. Specifically, with $\mathbf{z}_G(v)$ and the GNN’s pre-trained prediction head H :
 327

$$328 \quad \mathbf{p}_{H,v} = \text{softmax}(H(\mathbf{z}_G(v))), \quad \ell_v^{(GNN)} = -\sum_{k=1}^{|Y|} \mathbf{1}[y_v = k] \log \mathbf{p}_{H,v,k}, \quad \ell_v^{(LLM)} = -\sum_{k=1}^{|Y|} \mathbf{1}[y_v = k] \log \mathbf{p}_{C,v,k},$$

330 where $\ell_v^{(LLM)}$ is the loss when routing with the LLM, and $\ell_v^{(GNN)}$ is the counterfactual loss from the
 331 GNN. Note, the counterfactual is only computed when nodes are routed to the LLM during training, i.e.
 332 we do not compute an LLM-based counterfactual for nodes not routed. We then quantify the benefit of
 333 routing (or not routing) to the LLM through the rewards:
 334

$$335 \quad r_v = \begin{cases} \ell_v^{(GNN)} - \ell_v^{(LLM)} - \beta, & \text{if } a_v \text{ in top-}k \text{ (LLM queried),} \\ -\ell_v^{(GNN)}, & \text{if } a_v \text{ not in top-}k \text{ (LLM not queried).} \end{cases}$$

337 The first term captures the decrease in loss provided by querying the LLM and the cost of invoking the
 338 LLM (hyperparameter $\beta \geq 0$). Larger β imposes stricter penalties, discouraging the use of the LLM
 339 where it doesn’t provide benefit. A positive r_v with LLM routing indicates that calling the LLM reduced
 340 prediction loss enough to offset its cost. When the LLM is not used, the reward is based on the GNN loss.
 341

342 **Training Objective.** The router is optimized with a policy gradient-inspired loss, treating routing as a
 343 contextual bandit problem and encouraging alignment with counterfactual advantage:
 344

$$\ell_v^{(route)} = -r_v \log \pi(\mathbf{f}_v) - \lambda_{\mathcal{H}} \mathcal{H}_{ent}[\pi(\mathbf{f}_v)].$$

345 While this objective is inspired by REINFORCE (Sutton et al., 1999), we employ deterministic top- k
 346 selection during training to ensure stable use of the limited LLM query budget. The final objective jointly
 347 trains C and π through:
 348

$$349 \quad \ell_v^{(pred)} = \mathbf{1}[a_v \in \text{top-}k] \ell_v^{(LLM)} + (1 - \mathbf{1}[a_v \in \text{top-}k]) \ell_v^{(GNN)}, \quad \mathcal{L} = \frac{1}{|\mathcal{B}|} \sum_{v \in \mathcal{B}} \ell_v^{(pred)} + \lambda_{\text{router}} \ell_v^{(route)}.$$

350 We use $\ell_v^{(pred)}$ to denote the loss coming from either the LLM or GNN computation. Then, the first term of
 351 \mathcal{L} optimizes predictive performance, while the second enforces cost-aware routing. For efficiency, both the
 352 GNN F and the LLM L are kept frozen during training, leaving only C and π as trainable components.
 353

354 6 EMPIRICAL ANALYSIS

357 We now empirically study GLANCE, demonstrating how selectively using LLMs can improve performance.
 358 We first analyze GLANCE’s performance, showing that it achieves significantly more balanced performance
 359 compared to the baselines. Then, we provide a series of supplemental analyses to understand what
 360 GLANCE learns during training. Finally, we extend GLANCE to larger TAGs to demonstrate its scalability.
 361

362 6.1 EXPERIMENTAL SETUP

363 **Datasets.** We first evaluate across Cora (Mccallum et al., 2000), Pubmed (Sen et al., 2008b), Arxiv23 (He
 364 et al., 2024), studying overall and stratified performance, as well as performing numerous ablations. Then,
 365 to demonstrate GLANCE’s scalability, we perform evaluation on two large-scale datasets, Arxiv-Year (Lim
 366 et al., 2021) and OGB-Products (Hu et al., 2020), with details provided in Section D. For each dataset, we
 367 follow the same training set up as outlined in the Section 4.1.

368 **Baselines & Training.** We compare GLANCE to a series of state-of-the-art baselines for scalable LLM-
 369 GNN fusion. We start by considering standard GNN backbones, including GCN (Kipf & Welling, 2017),
 370 GraphSAGE (Hamilton et al., 2017), and GCNII (Chen et al., 2020). We study their performance over
 371 three settings, original features, LLM-enhanced features, and LOGIN-filtered graphs. As GLANCE’s core
 372 design is to bolster challenging heterophilous nodes, we also include high-performing heterophilous GNNs,
 373 including FAGCN, GGCN, and GBK-GNN. To imbue them with LLM knowledge, we utilize LLM-
 374 enhanced features. We do not apply LOGIN on these models as they are designed to utilize heterophily,
 375 whereas LOGIN’s design intends to remove it. Across all baselines, we use identical data splits, training
 376 protocols, and text encoders. Training details and hyperparameters are provided in Section C. Unless
 377 otherwise stated, we route the top 12 nodes per batch of 32 nodes for GLANCE for reported metrics. For
 OGB-Product, we evaluate against the top 3 model combinations found in our initial study.

378
379
380
Table 3: Per-bin accuracy for homophily levels. Training Strategies: **O** for Original features, **E** for Enhanced features,
381 and L for LOGIN. **Bold** denotes best method. GLANCE achieves the strongest and most balanced performance across
382 local homophily levels, as evidenced by its lowest average rank across datasets and homophily bins (rightmost column).

Strat.	Cora				Pubmed				Arxiv23				Avg rank
	0.00–0.25	0.25–0.50	0.50–0.75	0.75–1.00	0.00–0.25	0.25–0.50	0.50–0.75	0.75–1.00	0.00–0.25	0.25–0.50	0.50–0.75	0.75–1.00	
GCN	O 18.7±6.7	38.6±3.6	77.1±3.9	98.5±1.2	48.2±4.2	50.0±1.5	83.1±1.1	97.2±0.1	25.1±0.4	47.1±2.0	77.0±5.6	93.0±2.9	10.3
	E 17.9±6.9	49.6±6.7	78.5±3.3	98.7±0.3	55.9±3.7	51.8±3.8	84.9±0.8	97.9±0.1	27.8±3.0	46.4±2.0	79.1±4.4	95.1±2.1	7.9
	L 17.6±4.3	44.7±2.0	78.9±3.4	97.8±0.3	47.0±0.7	45.5±4.1	83.1±1.6	98.1±0.2	24.9±0.5	37.6±1.0	64.6±1.1	83.2±0.1	10.2
SAGE	O 21.1±2.9	45.2±3.3	76.2±4.8	97.9±0.5	58.4±2.7	66.1±1.4	85.3±0.6	96.6±0.2	32.6±0.3	53.3±0.4	80.5±0.7	93.9±0.4	8.6
	E 30.6±6.9	48.6±6.1	75.4±3.2	96.1±0.6	69.5±2.0	70.5±3.5	89.2±0.5	97.4±0.1	36.3±0.4	56.1±0.4	81.2±0.7	93.8±0.3	6.6
	L 26.8±2.6	43.6±5.0	75.4±3.8	97.8±0.4	67.1±1.3	69.6±1.8	88.5±0.9	97.6±0.4	37.0±2.7	51.6±3.1	76.0±1.1	89.8±1.0	8.1
GCNII	O 20.0±7.3	41.7±3.7	83.1±2.0	98.9±0.3	54.3±4.9	54.5±6.1	85.8±0.3	97.0±0.1	31.9±1.1	49.8±3.1	78.5±4.4	92.9±2.2	8.9
	E 32.0±7.9	53.5±3.5	77.6±1.5	97.1±0.9	69.7±2.1	68.1±4.6	88.9±0.7	97.4±0.4	41.6±1.2	58.0±2.7	83.2±1.9	94.8±0.7	4.7
	L 33.4±1.9	50.8±2.4	77.8±4.1	96.6±1.0	71.0±1.5	68.7±2.1	88.6±1.1	97.1±0.2	46.6±0.6	62.0±0.7	81.2±0.9	92.5±0.9	5.5
FAGCN	E 27.1±7.2	50.9±4.8	83.2±4.4	98.9±0.5	69.7±2.2	65.3±3.2	88.5±1.2	97.1±0.4	37.8±2.5	56.4±2.7	82.9±1.1	94.6±1.0	5.2
GGCN	E 27.7±8.4	50.9±9.5	71.4±1.8	95.8±0.9	68.8±1.6	66.0±2.8	89.4±0.5	97.7±0.1	42.3±0.5	62.1±0.4	85.0±2.0	95.3±0.3	5.4
GBKGN	E 28.6±4.8	51.0±2.1	74.4±2.8	96.7±0.8	67.5±1.9	67.9±4.3	87.9±1.7	97.9±0.0	38.7±0.9	58.8±1.2	83.8±1.2	94.3±0.1	5.8
GLANCE	39.2±2.0	58.3±1.7	78.5±0.5	97.7±0.1	75.2±2.7	66.4±1.2	89.5±0.2	97.9±0.0	45.7±0.9	62.5±0.1	85.3±0.5	95.2±0.4	2.5

6.2 CAN GLANCE ACHIEVE THE BENEFITS OF LLMs AND GNNs IN ONE MODEL?

396
397 As shown in Figure 1, selectively using the LLM on challenging
398 nodes can enhance GNN performance. To evaluate GLANCE’s
399 capabilities, we report both overall accuracy (Table 4) and stratified
400 results (Table 3). GLANCE achieves the best performance on
401 Pubmed (93.3%, a +1.1% gain over next best) and Arxiv23 (82.0%,
402 a +0.8% gain), while ranking second on Cora (88.7%). GLANCE
403 also consistently outperforms LLM-enhanced and LOGIN baselines,
404 often by several percent, and surpasses GNNs designed for heterophily.
405 From a stratified perspective, the largest improvements
406 emerge on heterophilous nodes, where GLANCE delivers +5.8% on
407 Cora and +4.2% on Pubmed. Importantly, when averaging across
408 bins, **GLANCE achieves the strongest overall balance with an**
409 **average rank of 2.5, compared to 4.7 for the next best.** Together,
410 these findings demonstrate that GLANCE’s advantage-driven routing
411 reliably leverages the LLM where it is most beneficial while pre-
412 serving the strengths of the GNN. **We further confirm this finding in**
413 **Section F.2 where we break down performance by routed and non-routed node subsets, demonstrating a**
414 **significant improvement on routed nodes via GLANCE.**

6.3 ROUTER: LEARNED PROPERTIES AND ROBUSTNESS

416
417 **Properties of Routed Nodes.** In Figure 3, we analyze the local homophily of routed nodes, splitting them into benefited (GNN wrong,
418 LLM right) and non-benefited sets. Across datasets, we observe substantial
419 mass at low homophily, showing that GLANCE preferentially routes
420 heterophilous nodes. Crucially, the benefit distribution is skewed
421 toward low homophily, indicating that routed heterophilous nodes deliver
422 gains. This supports our hypothesis that **heterophily captures**
423 **where GNNs struggle and LLM assistance is most valuable**, and
424 shows that these nodes drive GLANCE’s improvement. Notably, the
425 median value that benefits is not identical across datasets, e.g., on
426 Arxiv23 the largest gains occur around $h \approx 0.5$. Thus, **a single homophily threshold that routes heterophilous nodes would be ineffective for maximizing performance**, and additional context is needed.

427
428 **Sensitivity to K .** In Figure 6 (Section F.1), we examine performance
429 under varying routing budgets. For a batch size of 32, we evaluate
430 $K \in \{8, 12, 16\}$. We find that increasing K tends to lead to steady gains
431 on heterophilous nodes, while leaving performance on the homophilous

Table 4: Accuracy across 3 runs. **Bold** denotes best, underline is second.

	Cora	Pubmed	Arxiv23
GCN	O 87.1±1.9	88.1±0.6	74.2±2.5
	E 87.9±1.3	89.9±0.6	76.2±1.2
	L 86.8±0.4	88.6±0.2	65.7±0.0
SAGE	O 86.9±1.0	89.7±0.4	77.2±0.2
	E 86.4±1.1	92.2±0.4	78.1±0.1
	L 86.4±0.3	<u>91.8±0.1</u>	74.7±1.5
GCNII	O 88.4±0.8	89.1±0.6	75.9±2.1
	E 87.7±1.3	92.1±0.2	80.2±0.7
	L 86.8±0.7	91.9±0.1	79.7±0.5
FAGCN	E 89.4±0.5	91.8±0.2	79.2±1.3
GGCN	E 85.4±0.9	92.2±0.2	<u>81.2±0.5</u>
GBK-GNN	E 86.6±1.0	<u>92.1±0.3</u>	79.5±0.4
GLANCE	<u>88.7±0.4</u>	93.3±0.4	82.0±0.1

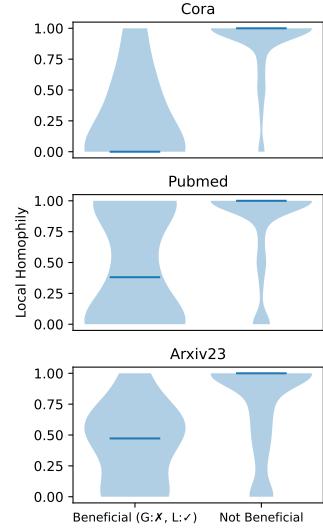


Figure 3: **Homophily for routed nodes**, split by benefit. Blue lines denote median.

432 **Table 5:** Per-bin accuracy for homophily levels and overall performance on larger datasets. We compare GLANCE to
 433 the next 3 best ranking models from Table 3, all using enhanced features. OOM for GGCN discussed in Section C.1.
 434 **Bold** denotes best. We find the heterophilous benefits carry to large-scale datasets with higher overall performance.

	Arxiv-Year					OGB-Product					
	0.00–0.25	0.25–0.50	0.50–0.75	0.75–1.00	Overall	0.00–0.25	0.25–0.50	0.50–0.75	0.75–1.00	Overall	
GCNII	E	42.7±0.0	51.1±0.0	54.5±0.0	72.4±0.1	49.6±0.1	29.0±0.1	43.9±0.3	69.3±0.0	91.9±0.1	81.8±0.1
FAGCN	E	36.0±0.9	45.0±0.5	52.7±0.2	72.0±0.5	44.3±0.5	29.8±1.8	42.3±1.3	64.7±1.1	88.3±1.4	78.6±0.9
GGCN	E	36.8±0.5	46.3±0.6	51.6±1.4	69.3±1.2	44.6±0.1	OOM	OOM	OOM	OOM	OOM
GLANCE		43.1±0.1	51.3±0.1	54.2±0.0	72.1±0.1	49.8±0.1	32.1±0.1	44.3±0.1	68.2±0.1	91.6±0.1	81.6±0.2

441 nodes mostly unchanged. On Pubmed and Arxiv23, accuracy on $h_v < 0.25$ improves by +3.4% for
 442 $K = 8 \rightarrow 12$, and by another +3.0% for $K = 12 \rightarrow 16$. On Cora, performance initially dips for $K = 8 \rightarrow 12$,
 443 but then significantly improves by +12.3% when increasing to $K = 16$. For $h_v > 0.75$, GLANCE’s
 444 accuracy changes by only –0.06% on average across datasets, underscoring GLANCE’s stability in this
 445 regime. **Importantly, we also observe that routing too many nodes can harm accuracy** (as seen in Table 10
 446 for full-batch routing), as easy nodes well modeled by the GNN can become misclassified when the LLM
 447 is unnecessarily used. Together, these findings demonstrate that **GLANCE routes efficiently, mitigating**
 448 **both the performance degradation and computational overhead of indiscriminate LLM usage.**

449 **Routing Feature Ablation.** To assess the value of the routing features, we disable each of the features one
 450 at a time and train new GLANCE models, measuring $\text{Acc}_{\text{abl}} - \text{Acc}_{\text{full}}$ (Figures in Section F.3). Averaged
 451 over all features, accuracy drops on each dataset, with changes of –0.38% on Cora, –1.07% on PubMed,
 452 and –0.65% on Arxiv23. More importantly, when ablating the homophily feature, we find significant drops
 453 when $h_v < 0.5$, with Cora, Pubmed, and Arxiv23 reducing by –6.5%, –2.0%, and –6.3%, respectively.
 454 We also observe subtle losses when $h_v > 0.5$ as the homophily signal is removed, where Cora drops by
 455 –0.34%, Pubmed drops by –0.15%, and Arxiv23 drops by –0.03%. These drops indicate that homophily
 456 helps the router avoid misrouting the easier nodes. Together, these ablations show that **GLANCE achieves**
 457 **peak performance when all features are available**, with the largest gains on the heterophilous nodes.

458 6.4 LARGE-SCALE LEARNING WITH GLANCE

460 **Setup.** GLANCE’s selective utilization of the LLM enables the processing of large TAGs by only
 461 applying the LLM to nodes that benefit. **Now that we have demonstrated the effectiveness of GLANCE,**
 462 **we study the scalability by applying GLANCE to two large benchmark datasets, Arxiv-Year** (Lim et al.,
 463 2021) and OGB-Products (Hu et al., 2020). Details for these datasets can be found in Section D. Notably,
 464 Arxiv-Year and OGB-Products are orders of magnitude larger than the datasets typically studied in previous
 465 work on GNN-LLM fusion (Qiao et al., 2025; Wu et al., 2024; Wang et al., 2025). Furthermore, to motivate
 466 GLANCE’s scalability, we show in Figure 9 that the routing and refinement components of GLANCE
 467 provides very little overhead, enabling it to handle larger datasets when querying less nodes with the LLM.

468 **Results.** In Table 5, we provide per-bin and overall accuracy for the top 3 average rank models from
 469 Table 3 and compare them to GLANCE. Given these datasets are significantly larger than the previous
 470 datasets, we utilize a query rate of $\sim 1.6\%$ ($K = 1$ with batch size 64). We find that GLANCE is competitive
 471 and can outperform the best baselines, such as on Arxiv-Year, while also bolstering the most heterophilous
 472 bins, gaining up to +3.1% in performance for OGB-Product. These results demonstrate that selective
 473 LLM queries, even at lower rates, can improve performance and supplement GNNs where they struggle.
 474 **Moreover, as Arxiv-Year is highly heterophilous, the improvements show that GLANCE can benefit both**
 475 **homophilous and heterophilous graphs.** Given the results seen above with regards to K , we also expect
 476 this performance can become even better with a larger compute budget. Moreover, for applications that
 477 necessitate better performance on heterophilous pockets of nodes, GLANCE is able to offer key benefits,
 478 regardless of dataset size, that are otherwise inaccessible with standard GNN architectures.

479 7 CONCLUSION

480 In this work we focused on how LLMs can be selectively utilized to bolster GNNs, an understudied area in
 481 the LLM-GNN literature. Through a detailed analysis of structural properties, we showed that homophily
 482 provides a reliable signal for routing, capturing where GNNs tend to fail and LLMs excel. To operationalize
 483 this finding, we proposed GLANCE, a cost-aware fusion strategy that routes nodes learns when to call
 484 the LLM on difficult nodes. Empirical results across multiple benchmarks demonstrate that GLANCE
 485 achieves well-balanced performance while selectively invoking the LLM only when useful. Our findings
 486 argue for structure-aware routing as a foundation for future work on efficient GNN-LLM integration.

486 REFERENCES
487

- 488 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina
489 Lerman, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolution architectures
490 via sparsified neighborhood mixing. In *International Conference on Machine Learning (ICML)*, 2019.
- 491 Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. Towards a unified framework for fair and
492 stable graph representation learning, 2021. URL <https://arxiv.org/abs/2102.13186>.
- 493
- 494 Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on mixture of
495 experts in large language models. *IEEE Transactions on Knowledge and Data Engineering*, pp. 1–20,
496 2025. ISSN 2326-3865. doi: 10.1109/tkde.2025.3554028. URL <http://dx.doi.org/10.1109/TKDE.2025.3554028>.
- 497
- 498 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional
499 networks. In *International Conference on Machine Learning*, 2020.
- 500
- 501 Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
502 Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models (llms) in
503 learning on graphs, 2024a. URL <https://arxiv.org/abs/2307.03393>.
- 504
- 505 Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang
506 Tang. Label-free node classification on graphs with large language models (llms), 2024b. URL
507 <https://arxiv.org/abs/2310.04668>.
- 508
- 509 Valerio Ciotti, Moreno Bonaventura, Vincenzo Nicosia, Pietro Panzarasa, and Vito Latora. Homophily and
510 missing links in citation networks. *EPJ Data Science*, 5, 11 2015.
- 511
- 512 Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
513 Goharian. A discourse-aware attention model for abstractive summarization of long documents. In
514 Marilyn Walker, Heng Ji, and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North
515 American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pp. 615–621, New Orleans, Louisiana, June 2018. Association for Computational
516 Linguistics. doi: 10.18653/v1/N18-2097. URL <https://aclanthology.org/N18-2097/>.
- 517
- 518 Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. Gbk-gnn:
519 Gated bi-kernel graph neural networks for modeling both homophily and heterophily. In *Proceedings of
the ACM Web Conference 2022*, pp. 1550–1558, 2022.
- 520
- 521 Christie I. Ezeife and Hemni Karlapalepu. A survey of sequential pattern based e-commerce recom-
522 mendation systems. *Algorithms*, 16(10), 2023. ISSN 1999-4893. doi: 10.3390/a16100467. URL
523 <https://www.mdpi.com/1999-4893/16/10/467>.
- 524
- 525 Taoran Fang, Yunchao Mercer Zhang, Yang Yang, Chunping Wang, and Lei CHEN. Universal prompt
526 tuning for graph neural networks. In *Thirty-seventh Conference on Neural Information Processing
Systems*, 2023. URL <https://openreview.net/forum?id=0LmWBhIYLi>.
- 527
- 528 Hamed Firooz, Maziar Sanjabi, Wenlong Jiang, and Xiaoling Zhai. Lost-in-distance: Impact of contextual
529 proximity on llm performance in graph tasks, 2025. URL <https://arxiv.org/abs/2410.01985>.
- 530
- 531 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
532 *Advances in Neural Information Processing Systems*, 2017.
- 533
- 534 Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Harnessing
535 explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation learning, 2024.
536 URL <https://arxiv.org/abs/2305.19523>.
- 537
- 538 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
539 Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs. In *Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS '20*, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

- 540 Ajay Jaiswal, Nurendra Choudhary, Ravinarayana Adkathimar, Muthu P. Alagappan, Gaurush Hiranandani,
 541 Ying Ding, Zhangyang Wang, Edward W Huang, and Karthik Subbian. All against some: Efficient
 542 integration of large language models for message passing in graph neural networks, 2024. URL
 543 <https://arxiv.org/abs/2407.14996>.
- 544 Dapeng Jiang and Xiao Luo. Marrying LLMs with dynamic forecasting: A graph mixture-of-expert
 545 perspective. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Compu-
 546 tational Linguistics: NAACL 2025*, pp. 396–410, Albuquerque, New Mexico, April 2025. Association
 547 for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.24.
 548 URL <https://aclanthology.org/2025.findings-naacl.24/>.
- 549 Wei Jin, Haitao Mao, Zheng Li, Haoming Jiang, Chen Luo, Hongzhi Wen, Haoyu Han, Hanqing Lu,
 550 Zhengyang Wang, Ruirui Li, et al. Amazon-m2: A multilingual multi-locale shopping session dataset
 551 for recommendation and text generation. *Advances in Neural Information Processing Systems*, 36, 2024.
- 552 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
 553 *International Conference on Learning Representations*, 2017.
- 554 Yuhang Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and Jeffrey Xu Yu. A
 555 survey of graph meets large language model: Progress and future directions, 2024. URL <https://arxiv.org/abs/2311.12399>.
- 556 Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and Ser Nam
 557 Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods.
 558 In *NeurIPS*, volume 34. Curran Associates, Inc., 2021.
- 559 Jiacheng Lin, Kun Qian, Haoyu Han, Nurendra Choudhary, Tianxin Wei, Zhongruo Wang, Sahika
 560 Genc, Edward W Huang, Sheng Wang, Karthik Subbian, Danai Koutra, and Jimeng Sun. Gt2vec:
 561 Large language models as multi-modal encoders for text and graph-structured data, 2025. URL
 562 <https://arxiv.org/abs/2410.11235>.
- 563 Jiajin Liu, Dongzhe Fan, Jiacheng Shen, Chuanhao Ji, Daochen Zha, and Qiaoyu Tan. Graph-mllm:
 564 Harnessing multimodal large language models for multimodal graph learning, 2025. URL <https://arxiv.org/abs/2506.10282>.
- 565 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 566 Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL <https://arxiv.org/abs/2307.03172>.
- 567 Donald Loveland and Danai Koutra. Unveiling the impact of local homophily on gnn fairness: In-depth
 568 analysis and new benchmarks. *SDM*, 2025.
- 569 Donald Loveland, Jiong Zhu, Mark Heimann, Benjamin Fish, Michael T Schaub, and Danai Koutra. On
 570 performance discrepancies across local homophily levels in graph neural networks. In *LoG*, volume 231.
 571 PMLR, 27–30 Nov 2024.
- 572 Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang,
 573 and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node classification?,
 574 2021. URL <https://arxiv.org/abs/2109.05641>.
- 575 Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on graph neural
 576 networks. *Advances in neural information processing systems*, 2020.
- 577 Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
 578 Demystifying structural disparity in graph neural networks: Can one size fit all? In *NeurIPS*, volume 36,
 579 2023.
- 580 Julian McAuley and Alex Yang. Addressing complex and subjective product-related queries with customer
 581 reviews. In *Proceedings of the 25th International Conference on World Wide Web*, WWW '16, pp.
 582 625–635, Republic and Canton of Geneva, CHE, 2016. International World Wide Web Conferences
 583 Steering Committee. ISBN 9781450341431. doi: 10.1145/2872427.2883044. URL <https://doi.org/10.1145/2872427.2883044>.

- 594 Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the construction of
 595 internet portals with machine learning. *Information Retrieval*, 3(2), 11 2000.
 596
- 597 Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
 598 networks. *Annual review of sociology*.
 599
- 600 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
 601 in vector space, 2013. URL <https://arxiv.org/abs/1301.3781>.
 602
- 603 Jingyu Peng, Qi Liu, Linan Yue, Zaixi Zhang, Kai Zhang, and Yunhao Sha. Towards few-shot self-
 604 explaining graph neural networks, 2024. URL <https://arxiv.org/abs/2408.07340>.
 605
- 606 Yiran Qiao, Xiang Ao, Yang Liu, Jiarong Xu, Xiaoqian Sun, and Qing He. Login: A large language model
 607 consulted graph neural network training framework. In *Proceedings of the Eighteenth ACM International
 608 Conference on Web Search and Data Mining*, WSDM '25, pp. 232–241, New York, NY, USA, 2025.
 609 Association for Computing Machinery. ISBN 9798400713293. doi: 10.1145/3701551.3703488. URL
 610 <https://doi.org/10.1145/3701551.3703488>.
 611
- 612 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 613 Collective classification in network data. *AI Magazine*, 29(3):93, Sep. 2008a. doi: 10.1609/aimag.
 614 v29i3.2157. URL <https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157>.
 615
- 616 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 617 Collective classification in network data. *AI Magazine*, 29(3):93, Sep. 2008b. doi: 10.1609/aimag.
 618 v29i3.2157. URL <https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157>.
 619
- 620 Akuma Stephen, Tyosar Lubem, and Isaac Adom. Comparing bag of words and tf-idf with different
 621 models for hate speech detection from live tweets. *International Journal of Information Technology*, 14,
 622 09 2022. doi: 10.1007/s41870-022-01096-4.
 623
- 624 Arjun Subramonian, Jian Kang, and Yizhou Sun. Theoretical and empirical insights into the origins of
 625 degree bias in graph neural networks. In *The Thirty-eighth Annual Conference on Neural Information
 626 Processing Systems*, 2024. URL <https://openreview.net/forum?id=1mAaewThcz>.
 627
- 628 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
 629 methods for reinforcement learning with function approximation. In S. Solla, T. Leen, and
 630 K. Müller (eds.), *Advances in Neural Information Processing Systems*, volume 12. MIT Press,
 631 1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.
 632
- 633 Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu C. Aggarwal, Prasenjit Mitra,
 634 and Suhang Wang. Investigating and mitigating degree-related biases in graph convolutional networks.
 635 *Proceedings of the 29th ACM International Conference on Information and Knowledge Management*,
 636 2020.
 637
- 638 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
 639 Graph attention networks. In *International Conference on Learning Representations*, 2018.
 640
- 641 Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana Kompella,
 642 and Zhangyang "Atlas" Wang. Graph mixture of experts: Learning on large-scale graphs with explicit
 643 diversity modeling. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
 644 (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 50825–50837. Curran
 645 Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/9f4064d145bad5e361206c3303bda7b8-Paper-Conference.pdf.
 646
- 647 Yu Wang, Yuying Zhao, Yushun Dong, Huiyuan Chen, Jundong Li, and Tyler Derr. Improving fairness
 648 in graph neural networks via mitigating sensitive attribute leakage. In *Proceedings of the 28th ACM
 649 SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '22, pp. 1938–1948. ACM,
 650 August 2022. doi: 10.1145/3534678.3539404. URL <http://dx.doi.org/10.1145/3534678.3539404>.
 651

- 648 Yuxiang Wang, Xinnan Dai, Wenqi Fan, and Yao Ma. Exploring graph tasks with pure llms: A comprehensive
 649 benchmark and investigation, 2025. URL <https://arxiv.org/abs/2502.18771>.
- 650
- 651 Bo Wu, Wen-Huang Cheng, Yongdong Zhang, Qiushi Huang, Jintao Li, and Tao Mei. Sequential prediction
 652 of social media popularity with deep temporal context networks. *arXiv preprint arXiv:1712.04443*,
 653 2017.
- 654 Yuxia Wu, Shujie Li, Yuan Fang, and Chuan Shi. Exploring the potential of large language models for
 655 heterophilic graphs. *arXiv preprint arXiv:2408.14134*, 2024.
- 656
- 657 Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the same coin:
 658 Heterophily and oversmoothing in graph convolutional neural networks. In *2022 IEEE International
 659 Conference on Data Mining (ICDM)*, pp. 1287–1292, 2022.
- 660 Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. Network representation
 661 learning with rich text information. In *IJCAI*, pp. 2111–2117, 2015.
- 662
- 663 Jaewon Yang and Jure Leskovec. Patterns of temporal variation in online media. In *Proceedings of the
 664 Fourth ACM International Conference on Web Search and Data Mining*, WSDM '11, pp. 177–186,
 665 New York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450304931. doi:
 666 10.1145/1935826.1935863. URL <https://doi.org/10.1145/1935826.1935863>.
- 667 Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning on
 668 large-scale text-attributed graphs via variational inference, 2023. URL <https://arxiv.org/abs/2210.14709>.
- 669
- 670 Bin Zhou, Xiangyi Meng, and H. Eugene Stanley. Power-law distribution of degree–degree distance:
 671 A better representation of the scale-free property of complex networks. *Proceedings of the National
 672 Academy of Sciences*, 117(26):14812–14818, 2020. doi: 10.1073/pnas.1918901117. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1918901117>.
- 673
- 674 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
 675 homophily in graph neural networks: Current limitations and effective designs. In *NeurIPS*, volume 33.
 676 Curran Associates, Inc., 2020.
- 677
- 678 Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai Koutra.
 679 Graph neural networks with heterophily. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 680 2021.
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 A DETAILED RELATED WORK
703

704 **Static GNN-LLM Fusion.** Recent work has focused on two main paradigms for graph learning with
705 LLMs: *LLMs-as-Enhancers* and *LLMs-as-Predictors* (Chen et al., 2024a; Li et al., 2024). For LLM-as-
706 Enhancers, LLMs generate enriched node features, ranging from simple text embeddings (Wu et al., 2024)
707 to additional external knowledge (He et al., 2024; Chen et al., 2024a), effectively performing automated
708 feature engineering to bolster GNN performance. For LLM-as-Predictors, the LLM replaces the GNN as
709 the final classifier, processing serialized graph structure and text as prompts (Wu et al., 2024; Wang et al.,
710 2025). Some variants retain a GNN encoder (Lin et al., 2025), but the LLM still produces the prediction.
711 While both paradigms benefit from the reasoning of LLMs, they also suffer from distinct limitations.
712 Enhancer methods are limited by their static, frozen features while also inheriting the inductive biases of
713 the GNN, retaining the challenges seen with certain structural properties (e.g., heterophily). In contrast,
714 LLM-as-Predictor methods can overcome the GNN inductive biases, but may also struggle to encode
715 topology efficiently given prompt length limits and serialization mismatches (Firooz et al., 2025; Wang
716 et al., 2025). Another common approach to fusing models together is through Mixture of Experts (MoE)
717 which ensemble a set of models, each with expert knowledge. While prominent in LLM design (Cai et al.,
718 2025) and graph MoE Wang et al. (2023), this strategy has yet to be applied to a mixture of LLMs and
719 GNNs. Relatedly, LLMs have been shown capable to route to different GNNs (Jiang & Luo, 2025), yet,
720 this still limits the pipeline to the inductive biases of the GNNs. Our approach adopts a hybrid paradigm
721 that selectively invokes the LLM, using expert knowledge from both models, only when it is expected to
722 help performance.

723 **Adaptive GNN-LLM Fusion.** A challenge for LLM-GNN models is high inference cost, especially
724 when LLMs are used during training. While the static methods above are scalable by treating the LLM as a
725 pre-processor, many methods consider using the LLM within their forward pass, calling the LLM across
726 training and inference (Wu et al., 2024). While attempts to reduce LLM cost via neighborhood sampling
727 or small language model distillation show promise (Fang et al., 2023; Chen et al., 2024a), the bottleneck
728 remains where the LLM must be applied to all nodes. Only a few recent works explore adaptive GNN-LLM
729 fusion, where the LLM is invoked selectively rather than universally. E-LLaGNN is one of the first in this
730 space, selecting nodes for LLM augmentation using fixed heuristics based on graph properties such as
731 degree, centrality, or text length (Jaiswal et al., 2024). While effective in some settings, these handcrafted
732 rules require manual tuning and can vary in effectiveness across datasets. LOGIN (Qiao et al., 2025)
733 introduces a more automated approach, using GNN uncertainty to identify challenging nodes to rewire
734 and simplify message passing. However, this rewiring can disrupt structurally informative but challenging
735 patterns, such as heterophilous links, which can be beneficial in real-world graphs (Luan et al., 2021).
736 LLM-GNN is a label-free approach that leverages a similar principle as LOGIN, but uses clustering density
737 as a proxy of difficulty as opposed to uncertainty (Chen et al., 2024b). Our approach differs from these
738 methods in three key ways. First, while different metrics have been proposed to route, our systematic study
739 identifies specific structural characteristics that benefit from LLM processing. Additionally, GLANCE
740 does not require prespecified thresholds on these properties, instead learning how to utilize them to route.
741 Second, instead of editing the underlying data to favor GNNs, we preserve its characteristics and invoke
742 the LLM where the GNN struggles. Third, while LOGIN and LLM-GNN address non-differentiability by
743 editing the underlying data to provide signal from the LLM, we retain the true graph signal and directly
744 train the routing policy.

745 B LARGE LANGUAGE MODEL PROMPTING
746

747 In this section, we detail how we generate enhanced features for the base GNN models. Additionally, we
748 provide prompts used to generate LLM embeddings within GLANCE. For both settings, we focus on the
749 Qwen3 family of models, specifically using the Qwen3-Embed-8B model to generate embeddings.

750
751 B.1 LLM-AS-ENHANCER PROMPTS
752

753 We generate node-level text embeddings using Qwen3-Embed-8B by directly processing the node text
754 (e.g., title and abstract for Cora). We use a max prompt length of 1024. Following the model’s official
755 configuration, we use last-token pooling and then apply ℓ_2 normalization. Concretely, for a batch of
tokenized sequences with hidden states $H \in \mathbb{R}^{B \times L \times d}$ and (unpadded) last-token indices ℓ_i , the sentence

embedding for node i is

$$\tilde{z}_i = H_{i,\ell_i} \in \mathbb{R}^{4096}, \quad z_i = \frac{\tilde{z}_i}{\|\tilde{z}_i\|_2}.$$

We keep Qwen’s `include_prompt` behavior enabled, which prepends a short instruction prompt internally before the text. The resulting z_i is used as an enhanced feature in place of the shallow features outlined above.

B.2 LOGIN PROMPTS

Following the format introduced in LOGIN, we construct prompts for each node by including the text of the ego node, a template that describes the graph and the instructions for the LLM, and the ground-truth labels and GNN predicted labels for nodes in the one-hop and two-hop neighborhood of the ego node.

LOGIN Example for Cora:

NODE 0: <ego-node text>

Given a citation graph

- NODE-IDX: <node_id>,
- NODE-LIST: [List of all node_id in two-hop neighborhood],
- ONE-HOP-NEIGHBORS: [List of node_id of one-hop neighbors],
- TWO-HOP-NEIGHBORS: [List of node_id of two-hop neighbors]
- NODE-LABELS: [List of ground truth labels]
- GNN-PREDICTED-NODE-LABEL: <GNN-predicted ego node label>

where node 0 is the target paper
and you see the true labels under 'node_label'.

Question: Which category does this paper belong to?
Choose exactly one from [list of class labels].

Return JSON

```
{ {classification result: <choice>,
  explanation: <your reasoning>} }
</END>
```

B.3 LLM-AS-PREDICTOR AND GLANCE PROMPTS

When using the LLM as predictor, we construct prompts for different hops of the neighborhood (ego-only, ego+1-hop, ego+2-hop) and encode them with Qwen3-Embed-8B. Doing this enables the LLM to retain per-hop information, a key design found in heterophilous graph learning, while also helping keep prompt lengths manageable. **We utilize the same parameterizations as the LLM-as-Enhancer setting for each of these embeddings, but use a prompt length of 512 for the ego node, and 4096 for the one- and two-hop embeddings.** Each prompt is formatted in a instruction–query layout compatible with Qwen3 embedding prompts and utilizes last-token pooling of the sequence.

The overall strategy in prompt design was to provide the classes and serialized neighborhood structure for a node. We do not over-engineer the prompt design, however, this can be one area for further opportunity in graph learning with LLMs. Additionally, providing additional context on a per-dataset basis (e.g. highlighting the domain of the dataset), could provide additional value.

Ego-Only Example:

Instruct: Predict the node's category from the provided context.
Possible categories: [list of class labels].
Query:
EGO:
<ego-node text>
Category?
</END>

810 **Ego+1 Hop Example:**

```

812 Instruct: Predict the node's category from the provided context.
813 Possible categories: [list of class labels].
814 Query:
815 EGO:
816 <ego-node text>
817 HOP1:
818 - <1 hop neighbor 1 text>
819 - <1 hop neighbor 2 text>
820 ...
821 Category?
822 </END>

```

823 **Ego+2 Hop Example:**

```

824 Instruct: Predict the node's category from the provided context.
825 Possible categories: [list of class labels].
826 Query:
827 EGO:
828 <ego-node text>
829 HOP2:
830 - <2 hop neighbor 1 text>
831 - <2 hop neighbor 2 text>
832 ...
833 Category?
834 </END>

```

835 As the degree of the datasets can be large, we use a neighbor sampling strategy during prompt construction
 836 to further maintain manageable prompt sizes. Specifically, we limit the size of each neighborhood to be
 837 up to 5 neighbors per node. Thus, the ego-only text contains one node, the ego + 1-hop can contain up to
 838 6 nodes (1 + 5 neighbors), and the ego + 2-hop can contain up to 26 nodes (1 + 5*5). We use a prompt
 839 length of 1024 for the ego-node, and 4096 for the ego + 1-hop and ego + 2-hop. On a per-node basis, text
 840 is capped to a fixed character budget (2000 characters). We process the embeddings using ℓ_2 normalization
 841 before concatenation.

842 When originally fine-tuning the LLM (such as the results in Figure 1, we apply a 2-layer MLP to map the
 843 concatenated embeddings to the label space for each model. Then, when incorporating the pre-trained
 844 LLM into GLANCE, we remove the MLP head and use the concatenated embeddings directly with the
 845 refiner MLP.

846 **C MODEL TRAINING AND HYPERPARAMETERS**

849 We describe here the training protocols for the base GNNs, the LLM-as-Predictor baseline, and our
 850 proposed GLANCE model. Across all models, we tune the learning rate from {0.01,0.001,0.0001} and
 851 the weight decay from {0.001,0.0001,0.00001}. We apply gradient clipping at $\|g\|_2 \leq 1.0$ for all gradients
 852 g . Unless Training is performed on a single NVIDIA A40 GPU using the AdamW optimizer, with dataset
 853 splits of 50/25/25 for train/validation/test. For OGB-Product, we cap the train set to 50,000 nodes for
 854 GLANCE, but retain the same test set with the GNN models.

855 **C.1 GNN (AND MLP) TRAINING**

857 For the GNN backbones, we use implementations integrated into PyTorch Geometric when available.
 858 Otherwise, for GBK-GNN² and GGCN³ we use their official implementatins. For all GNNs, we use
 859 a hidden dimension of 64 and a batch size of 128. We search over network depths of {2,3} layers.
 860 Training is run for up to 1000 epochs, with early stopping applied if the validation accuracy does not
 861 improve for 30 consecutive epochs. Each model includes a one-layer MLP projection head, which both

²<https://github.com/Xzh0u/GBK-GNN>

³https://github.com/Yujun-Yan/Heterophily_and_oversmoothing

864 produces the final predictions and allows the learned GNN embeddings to be reused within GLANCE.
 865 For heterophilous architectures such as FAGCN, GGCN, and GBK-GNN, we adopt the hyperparameter
 866 settings recommended in their official repositories. For the MLP local homophily estimator, we follow a
 867 similar strategy as the GNNs, **using a depth of 2 and hidden dimension of 64. Both the GNN and MLP**
 868 **additionally use ReLU activations and a dropout of 0.2.** For OGB-Products, we limit to 20 epochs with a
 869 patience of 5, and limit the neighbor sampling rate to 30 nodes per neighbor. Additionally, we highlight that
 870 the official implementation of GGCN runs out of memory for OGB-Product due to requiring access to the
 871 full graph upon initialization. Even with sparse tensors, this is found to be impossible for the OGB-Product
 872 dataset.

873 C.2 LOGIN TRAINING

875 For LOGIN, we use GNN backbones with setups described in the previous section. We then estimate the
 876 uncertainty of nodes by doing five forward passes with random dropout at a 0.3 dropout rate. We take the
 877 top k nodes with k defined by:

$$878 k = \min(1000, n(1 - h_v))$$

879 to query the LLM, where n is the number of nodes and $1 - h_v$ is the *heterophily* ratio. While LOGIN
 880 originally utilizes the heterophily ratio to query nodes, we find this to be too large for Arxiv23 and causes
 881 large training times. Thus, the 1000 node cap allows us to utilize LOGIN for Arxiv23. We use a pretrained
 882 Vicuna-7B to generate the predictions and explanations. Depending on whether the LLM predict labels
 883 match the ground-truth labels, we either append the explanation to the original node text or prune edges
 884 in the node's one-hop neighborhood as implemented in LOGIN. We use a similarity threshold of 0.15
 885 for pruning the edges of nodes whose LLM prediction does not match the ground-truth label. Finally, a
 886 pretrained E5-Large model is used to encode the new set of node text that includes the original text and
 887 LLM explanations.

888 C.3 LLM TRAINING

889 For the LLM baseline, we fine-tune Qwen3-Embed-8B to serve as an LLM-as-Predictor. To reduce
 890 both memory and compute, we employ parameter-efficient adaptation via Low-Rank Adaptation (LoRA),
 891 inserting adapters into the attention projection layers with a rank of 16 and scaling factor $\alpha=32$. We also
 892 enable FlashAttention-2 and use bfloat16 precision. During training, only LoRA parameters are updated
 893 while the base model remains frozen.

894 We use a batch size of 1 with gradient accumulation over 8 steps, yielding an effective batch size of 8.
 895 Training proceeds for a maximum of 10 epochs with early stopping applied if validation accuracy fails to
 896 improve for 2 epochs. Since training on all available nodes is infeasible, we cap the training set at 3,000
 897 randomly sampled nodes. As with the GNNs, we include a one-layer MLP head to project embeddings
 898 into the label space.

901 C.4 GLANCE TRAINING

902 When training GLANCE, we first independently train a GNN, LLM, and shallow MLP via the training
 903 processes explained in Section C.1 and Section C.3. Specifically, each backbone model is trained to
 904 optimize the node classification task and is then frozen to ensure its modeling capabilities are maintained
 905 within GLANCE. Thus, when training GLANCE, only the *router* and the *refiner* models that fuse the two
 906 pathways are updated. The router is implemented as a logistic regression model to predict the likelihood of
 907 routing, while the refiner is a 2-layer MLP following the same configuration as the MLP local homophily
 908 estimator. Routing decisions are made by selecting the top- K nodes per batch according to the router's
 909 predicted scores. To gradually reduce reliance on the LLM during training, we decay the routing budget
 910 across epochs $t=1, 2, \dots$ using an exponential schedule:

$$912 K_t = \text{round}(K_{\text{end}} + (K_{\text{start}} - K_{\text{end}})r^{t-1}),$$

913 where K_{start} equals the batch size, K_{end} is the ending routing budget for the last epoch, and r is the decay
 914 factor. We set $K_{\text{end}}=K_{\text{start}}/4$ and $r=0.5$ during our experiments, requiring significantly less LLM calls
 915 across training.

916 We train with mixed-precision using bfloat16, and since no gradients are propagated through the LLM, the
 917 memory footprint is greatly reduced, allowing us to use a batch size of 32. For the different datasets, we

918 set K_{start} equal to the batch size. As in the LLM baseline, we cap the training set at 3,000 nodes. Early
 919 stopping is applied with a patience of 2 epochs. We additionally tune the LLM query cost $\beta \in \{0.1, 0.2, 0.3\}$,
 920 and set the router weight $\lambda_{\text{router}} = 1.0$ and entropy regularization weight $\lambda_{\text{ent}} = 0.01$ by default.
 921

922 D DATASET DETAILS 923

924 To characterize the limitations of current heuristics to route, as well as evaluate GLANCE, we utilize
 925 three widely studied TAG benchmarks: Cora (Mccallum et al., 2000), Pubmed (Sen et al., 2008a), and
 926 Arxiv23 (He et al., 2024). Then, for our study on scalability, we utilize **Arxiv-Year** (Lim et al., 2021)
 927 and OGB-Products Hu et al. (2020), representing a multiple order of magnitude increase in dataset size
 928 compared to typically studied TAGs. These datasets also differ significantly in homophily levels, allowing
 929 us to probe routing decisions under diverse conditions.
 930

- 931 • **Cora.** Cora is a citation network consisting of machine learning papers. Papers share an
 932 edge if they share a citation. The data is from <https://github.com/myflashbarry/LLM-benchmarking> (Wang et al., 2025). The canonical feature vector for each paper is
 933 a bag-of-words feature vector. The nodes are categorized into 7 different AI subfields. Cora
 934 possesses the highest global homophily level out of the datasets ($h \approx 0.81$).
 935
- 936 • **Pubmed.** Pubmed is a larger citation graph on biomedical articles, where papers share an
 937 edge if they share a citation. The data is from <https://github.com/myflashbarry/LLM-benchmarking>. Each article is represented by a TF-IDF word vector, with labels
 938 corresponding to 3 different disease types. Similar to Cora, Pubmed exhibits high global
 939 homophily ($h \approx 0.80$), but also possesses a larger pocket of heterophilous nodes (see Figure 1).
 940
- 941 • **Arxiv23.** Arxiv23 is a recently curated citation subgraph of arXiv covering computer science
 942 papers published after 2023, surpassing the knowledge cutoff of flagship models like ChatGPT-
 943 3.5. The data is from https://github.com/XiaoxinHe/tape_arxiv_2023. We
 944 find that the original proposed Arxiv23 dataset has a large number of isolated nodes, which can
 945 confound the evaluation metrics given over half of the nodes do not possess a graph structure. Thus,
 946 we subset Arxiv23 to only include the largest connected component. Each article is represented
 947 by a Word2vec embedding, with each class corresponding to a computer science subfield. Unlike
 948 Cora and Pubmed, Arxiv23 displays a wider array of homophilous and heterophilous edges, with
 949 ($h \approx 0.67$), making it a challenging benchmark for neighborhood-averaging GNNs.
 950
- 951 • **Arxiv-Year.** Arxiv-Year is a heterophilous variant of OGB-Arxiv, using the publication year as the
 952 label. The data is from <https://ogb.stanford.edu>, but with the labels created via quantile
 953 ranges (see https://github.com/CUAI/Non-Homophily-Large-Scale/blob/master/data_utils.py, producing 5 labels. The dataset is roughly an order of
 954 magnitude larger compared to the three previous datasets. For this dataset, we only use enhanced
 955 features from the raw text. Arxiv-year is highly heterophilous ($h \approx 0.22$).
 956
- 957 • **OGB-Products** OGB-Products is a large-scale e-commerce TAG provided from the OGB
 958 <https://ogb.stanford.edu>. The task is to predict the category of e-commerce items,
 959 where items share a link if co-purchased. The dataset is roughly two orders of magnitude larger
 960 than the TAGs seen in previous literature, with 47 classes. We only use enhanced features for this
 961 dataset. OGB-Products is homophilous ($h \approx 0.81$).
 962

963 The explicit number of features, classes, and other key metrics are summarized in the table below. Notably,
 964 the datasets we study contain a wide variety of sizes, densities, and homophily levels.
 965

966 **Table 6:** Summary statistics of the datasets used in our experiments.
 967

968 Dataset	969 #Nodes	970 #Edges	971 Original Feature Dim	972 #Classes	973 Global h
Cora	2,708	5,278	1433	7	0.81
Pubmed	19,717	44,324	500	3	0.80
Arxiv23	19,550	55,350	300	40	0.67
Arxiv-Year	169,343	1,166,243	-	5	0.22
OGB-Products	2,449,029	61,859,140	-	47	0.81

972 **Table 7:** NCS for difficulty-, d_v -, and uncertainty-based routing is compared against a random baseline which randomly
 973 routes nodes to the LLM. Higher NCS is better.

	<i>Routing Strat.</i>	Cora			Pubmed			Arxiv23		
		10%	15%	20%	10%	15%	20%	10%	15%	20%
GCN	Random	-0.029	-0.01	-0.029	0.049	0.062	0.062	0.145	0.083	0.092
	C-density	-0.044	-0.069	-0.074	0.065	0.07	0.065	0.096	0.091	0.092
	Degree (d_v)	-0.029	-0.02	-0.037	0.059	0.059	0.064	0.084	0.094	0.105
	Uncertainty	-0.147	-0.088	-0.044	0.183	0.15	0.141	0.139	0.144	0.14
GCNII	Random	-0.044	-0.069	-0.029	0.041	0.028	0.053	0.078	0.038	0.058
	C-density	-0.015	-0.049	-0.044	0.041	0.045	0.045	0.08	0.079	0.077
	Degree (d_v)	-0.029	-0.02	-0.029	0.059	0.055	0.053	0.063	0.068	0.078
	Uncertainty	-0.147	-0.088	-0.051	0.132	0.107	0.117	0.117	0.134	0.127

988 **Table 8:** NCS for estimated and true homophily routing strategies with different routing top- k percentages. Higher
 989 NCS is better. Homophily is shown to produce high NCS values, with both the estimated and true variants producing
 990 larger NCS values as k increases.

	<i>Routing Strat.</i>	Cora			Pubmed			Arxiv23		
		10%	15%	20%	10%	15%	20%	10%	15%	20%
GCN	h_v	0.265	0.118	0.081	0.314	0.299	0.266	0.217	0.217	0.212
	\hat{h}_v	-0.059	-0.078	-0.074	0.215	0.199	0.193	0.196	0.192	0.187
	\bar{d}_v	-0.059	-0.069	-0.051	0.055	0.041	0.038	0.02	0.059	0.057
GCNII	h_v	0.235	0.098	0.066	0.213	0.2	0.168	0.176	0.159	0.15
	\hat{h}_v	-0.074	-0.069	-0.074	0.154	0.131	0.123	0.137	0.114	0.122
	\bar{d}_v	0.0	-0.039	-0.037	0.045	0.026	0.022	0.033	0.064	0.056

1004 E ROUTING FOR GCN AND GCNII

1005 In addition to our enhanced results provided in the main section of the paper, we include supplemental
 1006 results with routing on the base GCN and GCNII architectures with their original features.

1011 E.1 ROUTING WITH PRIOR METHODS

1012 Similar to the results seen on the enhanced model variants, we see that in Table 7, across Cora, Pubmed, and
 1013 Arxiv23, uncertainty-based routing consistently delivers the strongest NCS among the heuristic baselines
 1014 for both backbones, with degree and C-density lagging behind (often near or below the random baseline on
 1015 Cora). This result confirms our original finding that, when routing into an LLM, predictive uncertainty is
 1016 the most reliable heuristic from the prior methods, while the other signals alone can even harm performance.

1019 E.2 HOMOPHILY-BASED ROUTING (ESTIMATED VS. TRUE)

1020 We begin by evaluating the effectiveness of the true local homophily, h_v . We can see in Table 8, similar
 1021 to the main text, h_v achieves the highest NCS across models and datasets. However, when we move to
 1022 estimated homophily \hat{h}_v , we can see that it follows a similar relative trend. Relative degree \bar{d}_v maintains its
 1023 relatively weaker performance. These findings further confirm that homophily is a powerful routing signal,
 1024 with \hat{h}_v conferring robust gains.

1026

1027

1028

1029

1030

1031

1032

1033

1034

E.3 CORRELATION BETWEEN HOMOPHILY AND UNCERTAINTY

1035

Table 9 shows a moderate correlation (inverse) between model uncertainty and local homophily across all datasets. Intuitively, as homophily decreases (i.e., more label conflict in neighborhoods), uncertainty increases. This empirically links the two most effective routing cues where regions of low homophily tend to be high-uncertainty. However, this correlation is relatively weak, thus we hypothesize including both metrics can provide complimentary information, i.e. the signals are not providing redundant information.

1036

1037

1038

1039

1040

1041

1042

E.4 STRATIFIED ANALYSIS ON PUBMED

1043

In Figure 4, we observe consistent trends with those reported on Cora and Arxiv23. Specifically, while performance across models converges in the high homophily regime, **LLM models deliver pronounced gains in the low-homophily and low-degree settings**, outperforming strong GNN backbones by substantial margins. For example, LLM-based predictions exceed the next best GNN-enhanced variant by as much as 10.4% on heterophilous nodes ($h_v < 0.20$). These findings further confirm that the advantage of LLM augmentation is not dataset-specific, but generalizes across datasets, highlighting homophily as a reliable signal for routing.

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

E.5 HOMOPHILY AND DEGREE INTERPLAY

1057

While homophily and degree display diverging trends between LLM and GNN training, highlighting their complementary strengths, it is also known that their interplay can further inform GNN behavior. In Figure 5, we stratify across both properties for each model and dataset, further demonstrating increased divergence in performance differences. For instance, while Pubmed attains a 10% difference when looking at homophily in isolation, this difference can go as high as 30% under the same setting (e.g., for GCNII (enhanced) on Cora, low homophily and low degree can experience a significant improvement as compared to high homophily and high degree).

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

F ADDITIONAL ABLATION AND SENSITIVITY ANALYSES

1071

In this section, we present supplemental analyses introduced in Section 6.3. We begin by examining the sensitivity of GLANCE to the parameter K , which controls the number of nodes routed to the LLM at test time. This analysis reveals how performance changes as the budget for LLM queries is adjusted, offering insight into the trade-off between predictive accuracy and computational cost. Understanding this trade-off is particularly important in practice, as practitioners may wish to tune K to align with real-world latency or cost constraints. Then, we ablate the routing features used by GLANCE to determine which signals are most critical for effective routing. By systematically removing each feature, we isolate their individual contributions to routing accuracy and downstream performance. Together, these supplemental analyses deepen our understanding of GLANCE’s behavior, confirming both its robustness to different query budgets and its reliance on principled routing features that target GNN failure regimes.

1072

1073

1074

1075

1076

1077

1078

1079

Table 9: Correlation between model uncertainty and (true) homophily.

Dataset	Corr(uncertainty, \hat{h}_v)	Corr(uncertainty, h_v)
Cora	-0.468	-0.334
Pubmed	-0.383	-0.331
Arxiv23	-0.407	-0.381

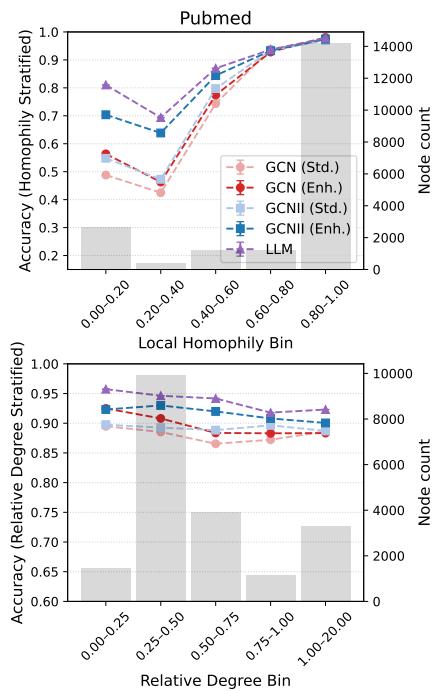


Figure 4: Stratified Performance. Performance is given for local homophily (top) and relative degree (bottom); bars denote property distributions (right y-axis).

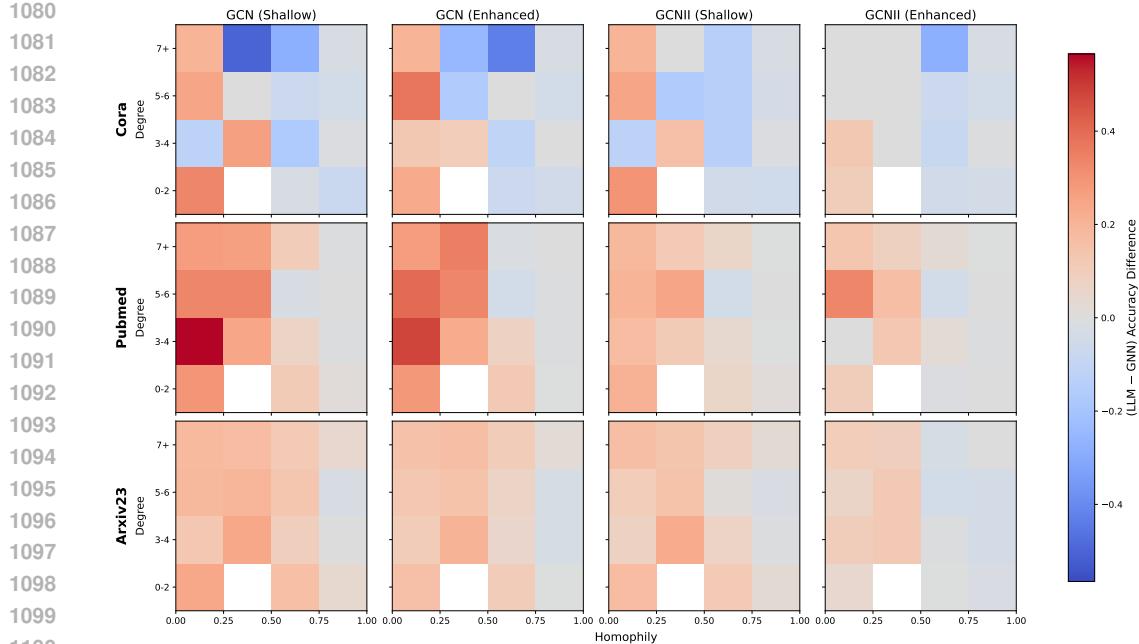


Figure 5: Stratified Performance Based on Homophily and Degree. Darker red denotes instances where the LLM performs best, and darker blue denotes instances where the GNN performs best. Across methods, we see further deviation in performance as compared to the individual metrics

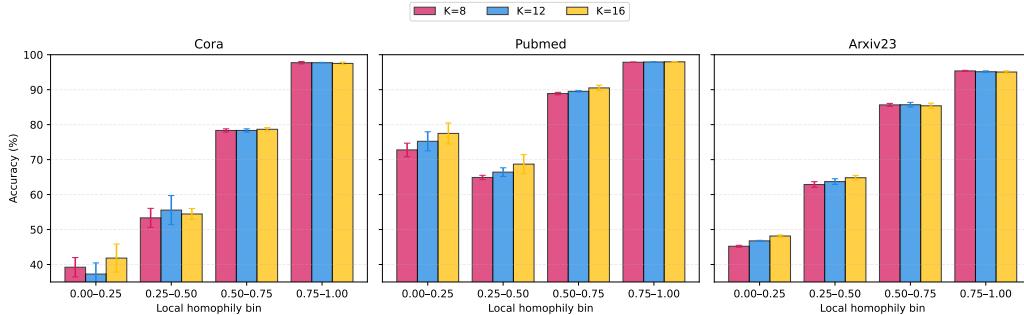


Figure 6: Stratified Performance for Different K at Test-Time. We use a batch size of 32 when testing GLANCE, and use different routing budgets depending on K . We find that performance tends to increase for heterophilous groups of nodes as we increase K , demonstrating GLANCE’s ability to take advantage of larger routing budgets.

F.1 PERCENT CHANGE DURING ROUTING

As introduced in Section 6.3, we analyze the effect of varying the routing budget $K \in \{8, 12, 16\}$ on GLANCE’s performance. Figure 6 reports stratified results across different levels of local homophily, allowing us to assess how additional LLM queries impact different subpopulations of nodes. We observe that increasing K generally improves performance on heterophilous and low-homophily nodes, where the GNN struggles most. Importantly, with $K = 16$, GLANCE consistently achieves the highest overall performance across routing strategies, demonstrating that allocating a larger query budget enables the framework to more effectively target the nodes where LLM assistance is most beneficial. This highlights a practical trade-off where larger K increases computational cost but can yield substantial accuracy improvements, particularly in challenging structural regimes.

Full Routing. To further illustrate the value of selective routing, we evaluate the setting where every node in a batch is routed to the LLM (denoted as $K = 32$ for a batch size of 32), allowing the LLM to influence all predictions. As shown in Table 10, full routing is not necessarily beneficial, reinforcing the need for GLANCE’s selective strategy. Specifically, while a higher routing budget improves performance on the most challenging nodes (those in the lowest homophily bins) we also observe a decline in accuracy on high homophily nodes. Consequently, both Cora and Arxiv23 see reduced overall accuracy despite the

1134 **Table 10: Stratified and Overall Performance for Standard Routing ($K=12$) and Full Routing ($K=32$).** Δ
 1135 denotes the difference from $K=12$ to $K=32$. Green indicates improvement, red indicates a decrease. While full
 1136 routing can improve heterophilous nodes further, this can come at the cost of performance on homophilous nodes.

Dataset	0.00–0.25	0.25–0.50	0.50–0.75	0.75–1.00	Overall
Cora	K = 12	39.2 \pm 2.0	58.3 \pm 1.7	78.5 \pm 0.5	97.7 \pm 0.1
	K = 32	49.2 \pm 2.4	68.9 \pm 3.2	76.9 \pm 2.1	96.9 \pm 0.8
	Δ	+10.0	+10.6	-1.6	-0.8
PubMed	K = 12	75.2 \pm 2.7	66.4 \pm 1.2	89.5 \pm 0.2	97.9 \pm 0.0
	K = 32	82.4 \pm 0.7	79.2 \pm 3.3	91.1 \pm 0.9	98.0 \pm 0.09
	Δ	+7.2	+12.8	+1.6	+0.1
Arxiv23	K = 12	45.7 \pm 0.9	62.5 \pm 0.1	85.3 \pm 0.5	95.2 \pm 0.4
	K = 32	49.7 \pm 1.84	65.8 \pm 1.2	82.5 \pm 1.6	94.0 \pm 0.2
	Δ	+4.0	+3.3	-2.8	-1.2

1148 **Table 11: Routed vs. Non-Routed Accuracy Breakdown for GLANCE.** We use $K=12$ with a batch size of 32.
 1149 The accuracy on nodes routed to the LLM by GLANCE, denoted \mathcal{R} , is compared with the accuracy on non-routed
 1150 nodes, denoted \mathcal{R}' . Δ_{glance} captures the performance gap between these subsets. We compare this to a baseline
 1151 where we use GCNII, the backbone GNN, to make predictions for \mathcal{R} , removing the LLM. Δ_{genii} captures the
 1152 performance gap between \mathcal{R}' and \mathcal{R} under the GCNII backbone, measuring the difficulty of the routed set. The final
 1153 row demonstrates how routing to an LLM via GLANCE improves the performance of \mathcal{R} as compared to the GCNII
 1154 backbone. In both settings, \mathcal{R}' and \mathcal{R} are the same sets of nodes. The large positive improvements demonstrate that
 1155 GLANCE effectively routes difficult nodes that attain improved predictive performance under an LLM.

Model	Metric	Cora	Pubmed	Arxiv23
GLANCE	Non-Routed \mathcal{R}' Accuracy	89.4 \pm 1.2	93.6 \pm 0.6	83.9 \pm 0.7
	Routed \mathcal{R} to LLM Accuracy	86.8 \pm 0.9	92.3 \pm 0.5	77.0 \pm 0.8
	Δ_{glance} = LLM Routed – Non-Routed	-2.6	-1.3	-6.9
GCNII	Routed \mathcal{R} to GCNII Accuracy	81.9 \pm 1.6	85.9 \pm 0.9	72.5 \pm 2.4
	Δ_{genii} = GCNII Routed – Non-Routed	-7.5	-7.7	-11.4
Improvement from routing to LLM (via GLANCE) vs. GCNII		+4.9	+6.4	+4.5

1166 substantially higher query cost. This trend highlights an important trade-off: although LLMs can correct
 1167 difficult nodes, indiscriminately routing all nodes dilutes accuracy where the GNN already performs well
 1168 and significantly increases computational cost. In contrast, GLANCE’s selective routing (e.g., $K=12$)
 1169 delivers substantial gains on heterophilous nodes while preserving strong performance on high homophily
 1170 regions, all with far fewer LLM calls. We also note that while Pubmed does not exhibit as pronounced
 1171 of a drop, this result is expected as Pubmed’s node text has been shown to be highly informative, even
 1172 enabling LLMs to predict node labels accurately in zero-shot settings (Chen et al., 2024a). However,
 1173 despite this capability, the performance gap between $K=12$ and $K=32$ remains extremely small in the
 1174 highest-homophily bin, indicating that the significant increase in computation offers minimal benefit.

F.2 GRANULAR ANALYSIS ON ROUTING PERFORMANCE

1177 In this section, we provide a deeper analysis on the performance differences between routed and non-routed
 1178 nodes. Moreover, we offer additional studies to characterize performance under a random router.

F.2.1 PERFORMANCE IMPROVEMENTS FROM LLM ROUTING

1182 To better characterize how GLANCE allocates LLM queries, we decompose its accuracy into two parts: per-
 1183 formance on the routed nodes \mathcal{R} and on the non-routed nodes \mathcal{R}' . Using the same routed node set \mathcal{R} , we
 1184 also evaluate their accuracy when predictions are made solely by the GCNII backbone. This comparison
 1185 enables us to compute the explicit performance gap on \mathcal{R} between routing to the LLM via GLANCE
 1186 and relying only on GCNII. Through these results, it is possible to attain direct evidence for (a) whether
 1187 GLANCE successfully identifies the difficult nodes, and (b) whether invoking the LLM improves their
 1188 prediction accuracy. The results are shown in Table 11.

1188 **Table 12: Comparison of Standard vs. Random Routing for GLANCE.** Random routing selects nodes randomly
 1189 from each batch for LLM refinement, while Standard uses the router learned within GLANCE. The Δ accuracy rows
 1190 report the difference in accuracy for each method across overall, routed, and non-routed accuracy. Positive Δ s (green)
 1191 indicate improvement with learned routing over random routing. Across all node subsets, GLANCE’s learned router
 1192 achieves higher performance.

Routing Strategy	Metric	Cora	Pubmed	Arxiv23
Random	Overall Acc	86.4 ± 1.1	91.4 ± 0.8	80.3 ± 0.9
	Routed \mathcal{R} Accuracy	83.3 ± 2.3	91.9 ± 1.7	74.8 ± 0.9
	Non-routed \mathcal{R}' Accuracy	87.5 ± 0.2	91.2 ± 0.3	82.1 ± 0.8
Standard (as used in GLANCE)	Overall Acc	88.7 ± 0.4	93.3 ± 0.4	82.0 ± 0.1
	Routed \mathcal{R} Accuracy	86.8 ± 0.9	92.3 ± 0.5	77.0 ± 0.8
	Non-routed \mathcal{R}' Accuracy	89.4 ± 1.2	93.6 ± 0.6	83.9 ± 0.7
Δ Accuracy (Standard – Random)	Overall	+2.3	+1.9	+1.7
	Routed \mathcal{R}	+3.5	+0.4	+2.2
	Non-routed \mathcal{R}'	+1.9	+2.4	+1.8

1204
 1205
 1206 **Findings.** We compare the accuracies of the routed nodes \mathcal{R} , i.e., those selected by GLANCE’s router,
 1207 from predictions made using the GCNII backbone and the LLM. Across all datasets, invoking the LLM
 1208 yields substantially higher accuracy. In particular, GLANCE improves performance on \mathcal{R} by +4.9% (Cora),
 1209 +6.4% (PubMed), and +4.5% (Arxiv23), showing a significant reduction in accuracy gap between \mathcal{R} and
 1210 \mathcal{R}' . We also highlight that, under GCNII alone, routed nodes exhibit a large accuracy drop relative to \mathcal{R}'
 1211 (up to –11.4%), indicating that GLANCE is correctly identifying difficult node subset. If the router was
 1212 not correctly identifying difficult nodes, the performance of routed nodes \mathcal{R} and non-routed nodes \mathcal{R}'
 1213 would be comparable. Together, these findings demonstrate that GLANCE’s routing policy is effective at
 1214 choosing nodes that are not only challenging, but also benefit from invocation of the LLM.
 1215

F.2.2 RANDOM ROUTING PERFORMANCE

1218 To contextualize the routing improvements further, we evaluate a random routing baseline that, for the
 1219 same query budget ($K=12$), selects nodes at random while keeping all other components of GLANCE
 1220 unchanged. This experiment serves as a natural lower bound on routing quality and serves as another
 1221 indicator to whether GLANCE is able to identify difficult nodes. We measure the difference in overall,
 1222 routed, and non-routed performance between the standard and random routing schemes in Table 12 where
 1223 more positive is better. We perform 3 runs per experiment and report standard deviations.

1224 **Findings.** We first compare GLANCE’s learned router (denoted Standard) with a random router. When
 1225 utilizing a random router, we find that performance degrades across all metrics and datasets, with the
 1226 overall accuracy dropping by up –2.3 points. More importantly, we find that the accuracy for \mathcal{R} under
 1227 random routing is consistently poorer as compared to the learned router, showing that randomly selected
 1228 nodes tend to not benefit as much from LLM refinement. Additionally, non-routed accuracy also decreases
 1229 under random routing, indicating that the random policy can mistakenly route nodes that the base GNN
 1230 would classify correctly, but the LLM would be less effective on. Together, these results reinforce that
 1231 GLANCE’s lightweight routing reliably identifies semantically and structurally challenging nodes, yielding
 1232 performance gains on the regions where GNNs can fail.

F.3 ROUTING FEATURE SENSITIVITY

1234 While each routing feature is motivated either by prior work or our analysis in Section 4.1, we quantify their
 1235 contribution through an ablation study. For each dataset, we retrain GLANCE while removing each feature
 1236 in turn and measure the resulting change in accuracy. Figure 7 reports the performance drop relative to the
 1237 full model, showing that overall accuracy consistently declines when any feature is removed. Notably, the
 1238 impact varies across datasets where no single feature dominates universally, underscoring that different
 1239 structural signals matter in different settings. This trend is further evident in Figure 8, where, within
 1240 stratified bins, removing a single feature produces substantial degradations in performance.
 1241

1242 **Table 13:** Per-bin accuracy across homophily levels for GLANCE trained with different β strength. Larger β
1243 requires routed nodes to have more substantial impact. Increasing β tends to systematically increase performance on
1244 heterophilous nodes while retaining high homophilous node performance.

		Cora					Pubmed					Arxiv23				
		β	0.00–0.25	0.25–0.50	0.50–0.75	0.75–1.00	0.00–0.25	0.25–0.50	0.50–0.75	0.75–1.00	0.00–0.25	0.25–0.50	0.50–0.75	0.75–1.00		
GLANCE	0.0	38.1	57.1	77.8	97.4	71.7	68.0	89.9	97.6	42.5	60.3	87.0	95.1			
	0.1	39.2	58.3	78.5	97.7	74.0	69.5	89.4	97.8	45.3	62.5	86.2	94.9			
	0.2	39.8	57.1	78.8	97.4	74.5	66.4	88.9	97.9	45.4	62.2	85.4	95.0			
	0.3	43.1	57.1	77.8	97.4	75.2	66.4	89.5	97.9	45.7	62.5	85.3	95.2			

F.4 DIFFERENT COST PENALTIES

In this section, we provide an additional sensitivity analysis on β , GLANCE’s penalty term. Increasing β , the margin a routed node must surpass for the LLM to be selected, systematically re-allocates LLM usage toward the hardest, most heterophilous nodes. As shown in Table 13, raising β improves accuracy in the lowest-homophily bin across Cora (from 38.1 \rightarrow 43.1), Pubmed (from 71.7 \rightarrow 75.2), and Arxiv23 (from 42.5 \rightarrow 45.7), while leaving the most homophilous bin effectively unchanged and producing only small drops in the intermediate bins. In practice, the router spends fewer calls on marginal gains in the intermediary homophily levels where signal is weaker and concentrates budget where the GNN can be most improved upon. This behavior makes β a simple, yet effective, knob to trade-off homophilous and heterophilous nodes. When leveraging GLANCE, we recommend tuning β on validation metrics in the range (0.1-0.3) to determine the most effective value.

G SCALING GLANCE TO LARGER DATASETS

Having evaluated GLANCE’s performance on small- to medium-scale TAG benchmarks, we now turn to scalability. A concern with LLM–GNN fusion is whether additional components introduced by a method introduce significant overheads, especially when moving to much larger datasets. To address this, we first break down the runtime of GLANCE into its major components: (i) GNN computation, (ii) LLM computation, and (iii) GLANCE-specific modules, namely the router, feature generation, and refinement stages. As shown in Figure 9, the results reveal a clear trend where the LLM dominates the overall runtime, the GLANCE-specific components are extremely lightweight, constituting only a negligible fraction of total cost. Both routing and refinement involve simple feed-forward operations over low-dimensional features, while feature generation is largely pre-computed within the pipeline. This finding has two key implications. First, it validates our design choice to offload expensive reasoning exclusively to the LLM, while keeping routing and refinement efficient. Second, it demonstrates that scaling GLANCE to larger graphs is primarily limited by the LLM’s cost, rather than by the fusion mechanism itself. We therefore use this as motivation to apply GLANCE to the substantially larger dataset OGB-Product seen in Table 5, showcasing its ability to scale while retaining efficiency and accuracy.

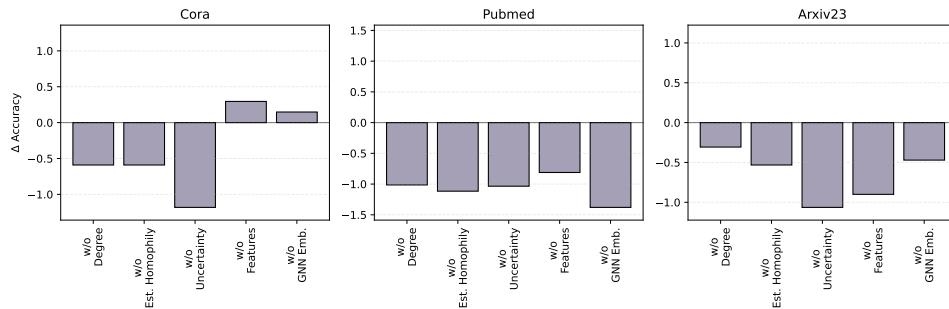


Figure 7: Ablation Study Over Routing Features - Overall Performance. Each plot denotes the performance changes, relative to full GLANCE performance, when training without one of the routing features. Performance typically decays across datasets and features, highlighting the benefit of each feature for GLANCE’s robust performance.

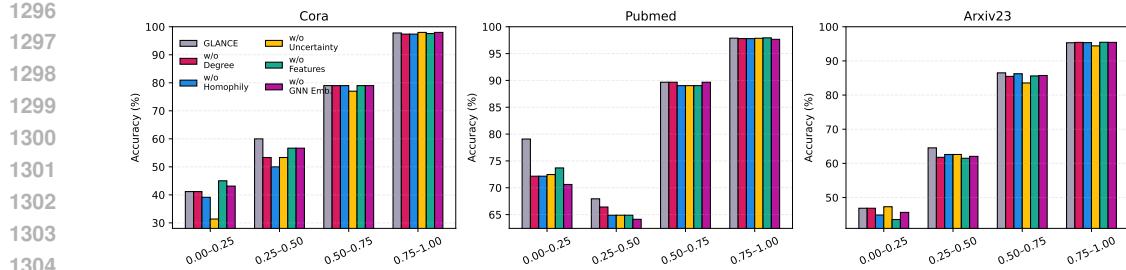


Figure 8: Ablation Study Over Routing Features - Stratified Performance. Each set of bars denotes the stratified performance of GLANCE when training without one of the routing features. The gray bar denotes full GLANCE training. We find that the largest performance drops occur in the heterophilous regions, highlighting that GLANCE is specifically targeting these difficult nodes.

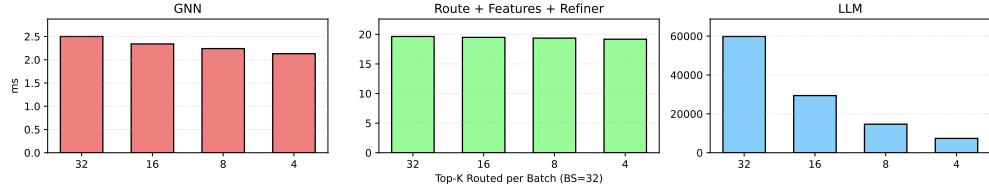


Figure 9: Runtime breakdown of GLANCE. LLM computation dominates overall runtime, while GLANCE-specific modules add only negligible overhead, confirming the framework’s scalability to larger datasets.

Computational Cost. We analyze the computational complexity of GLANCE by isolating the costs of its three key components: (1) the routing features, (2) the router, and (3) the refiner. As GLANCE operates on top of frozen GNN and LLM encoders and is agnostic to their internal architectures, we do not define a specific GNN or LLM cost. Instead, we focus on the GLANCE-specific elements. For each component, we denote the cost of a forward and backward pass, when applicable, by T^{fwd} and T^{bwd} , respectively.

Notation. Let B denote the batch size, k the routing budget per batch, p the dimensionality of the routing feature vector, c the number of classes for a dataset, and d_{\max} the maximum degree of any node in the batch. We also define the following per-node costs:

- C_{GNN} : cost of applying the frozen GNN encoder to one node,
- C_{LLM} : cost of an LLM forward pass for one routed node,
- C_Q : cost of applying the homophily MLP to one node,
- C_{ref} : cost of applying the refiner MLP to one routed node.

Building Routing Features (Per Batch). Routing features consist of: (1) GNN embeddings, (2) GNN uncertainty, (3) degree information, (4) original node features, and (5) homophily estimates. Using the above per-node costs, this results in the per-batch cost:

$$T_{\text{feat}}^{\text{fwd}} = O(BC_{\text{GNN}}) + O(BRC_{\text{GNN}}) + O(B) + O(B) + O(B(C_Q + d_{\max}c)),$$

where R is the number of stochastic GNN passes used for uncertainty.

Router. The router applies a linear transformation to the features and selects the top- k nodes to route:

$$T_{\text{router}}^{\text{fwd}} = O(Bp) + O(B\log B), \quad T_{\text{router}}^{\text{bwd}} = O(Bp).$$

Selective LLM Queries. GLANCE queries the LLM for the k routed nodes (with no backward pass):

$$T_{\text{LLM}}^{\text{fwd}} = O(kC_{\text{LLM}}).$$

1350

Refiner MLP. For each routed node, GLANCE applies the refiner MLP:

1351

1352

1353

1354

1355

Overall Per-Batch Complexity. Combining all components yields:

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

Interpretation. GLANCE’s complexity is comprised of two core terms: (1) the full batch processing that creates routing features leveraging the GNN, and (2) the LLM and refiner computation applied only to the k routed nodes. Given C_{LLM} far exceeds the other terms (as shown in Figure 9), one can scale up the GNN, router, or refiner without incurring large relative increases in runtime. Moreover, because training uses a policy-gradient-style optimization procedure, the cost differential between training and inference is small as the backward pass is only on the cheaper components of the pipeline.

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403