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ABSTRACT

Learning on text-attributed graphs has motivated the use of Large Language Models
(LLMs) for graph learning. However, most fusion strategies are applied uniformly across
all nodes and attain only small overall performance gains. We argue this result stems
from aggregate metrics that obscure when LLMs provide benefit, inhibiting actionable
signals for new strategies. In this work, we reframe LLM–GNN fusion around nodes
where GNNs typically falter. We first show that performance can significantly differ
between GNNs and LLMs, with each excelling on distinct structural patterns, such as
local homophily. To leverage this finding, we propose GLANCE (GNN with LLM
Assistance for Neighbor- and Context-aware Embeddings), a framework that invokes
an LLM to refine a GNN’s prediction. GLANCE employs a lightweight router that,
given inexpensive per-node signals, decides whether to query the LLM. Since the LLM
calls are non-differentiable, the router is trained with an advantage-based objective that
compares the utility of querying the LLM against relying solely on the GNN. Across
multiple benchmarks, GLANCE achieves the best performance balance across node
subgroups, achieving significant gains on heterophilous nodes (up to +5.8%) while
simultaneously achieving top overall performance (up to+1.1%). Our findings advocate
for adaptive, node-aware, GNN-LLM architectures, showing that selectively invoking
the LLM where it adds value enables scalable application of LLMs to large graphs.

1 INTRODUCTION

Text is rarely consumed in isolation: scientific papers cite related work (Ciotti et al., 2015; Mccallum et al.,
2000; Cohan et al., 2018), users browse descriptions of co-purchased e-commerce items (Jin et al., 2024;
McAuley & Yang, 2016; Ezeife & Karlapalepu, 2023), and social media posts reply to one another (Wu et al.,
2017; Yang & Leskovec, 2011). These interactions form text-attributed graphs (TAGs), where nodes rep-
resent text and edges capture relationships, enabling joint reasoning over content and structure (Yang et al.,
2015; Zhao et al., 2023). Historically, TAGs have been processed by feeding shallow text features, such as
TF–IDF or static word embeddings (Stephen et al., 2022; Mikolov et al., 2013), into Graph Neural Networks
(GNNs). Recently, the success of Large Language Models (LLMs) has motivated hybrid architectures that
leverage LLMs for graph learning, combining LLMs’ semantic reasoning with GNNs’ structural learning
(Chen et al., 2024a; Wang et al., 2025). However, the majority of hybrid systems typically apply a single fu-
sion strategy across all nodes in a graph, overlooking per-node variations in semantic quality and structural at-
tributes (Wu et al., 2024). This uniform application of LLMs across a graph can waste expensive LLM calls
on nodes already well modeled by the GNN, producing poor accuracy-efficiency tradeoffs (Liu et al., 2025).

A key weakness of uniform fusion is its failure to leverage the complementary strengths of GNNs and
LLMs. GNNs tend to perform well when neighbors exhibit homophily, where connected nodes share labels,
and high degree (McPherson et al.; Yan et al., 2022). Yet, these properties do not typically hold in real-world
TAGs (Ma et al., 2020; Loveland et al., 2024; Zhou et al., 2020). While advanced GNN designs have
attempted to address these concerns (Zhu et al., 2020; Abu-El-Haija et al., 2019; Veličković et al., 2018), re-
cent evidence shows they remain insufficient for handling these challenging structures (Loveland & Koutra,
2025; Mao et al., 2023; Du et al., 2022). On the other hand, LLMs exhibit strong generalization in low-shot
settings, making them well suited for the challenging nodes that degrade GNNs (Chen et al., 2024a; Peng
et al., 2024). However, leveraging LLMs for graphs often leads to the distortion of structural relationships
due to serializing the graph into text (Liu et al., 2023; Firooz et al., 2025; Wang et al., 2025). This limitation
is particularly detrimental for graphs governed by simpler structural signals where the LLM may add un-
necessary complexity and even degrade performance relative to GNNs (Liu et al., 2025; Wang et al., 2025).
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While incremental performance gains with high computational costs make LLMs seem ill-suited for graph
learning, we argue this stems not from inherent deficiencies, but how LLMs are used. Our hypothesis
is that gains in regions difficult for GNNs are offset by losses elsewhere. Thus, we reframe utilizing LLMs
only where GNNs struggle, focusing on structurally difficult nodes, whose errors are often masked in
aggregate metrics. This emphasis promotes equity across the graph, countering harmful GNN inductive
biases (Wang et al., 2022; Agarwal et al., 2021). This leads us to our core research question: How, and
for which nodes, should we leverage LLMs to complement and bolster GNNs?

To answer this question, we first identify signals that inform when GNNs vs. LLMs succeed. Since LLM
routing has only recently been studied, we systematically assess existing methods (Qiao et al., 2025; Jaiswal
et al., 2024; Chen et al., 2024b), finding highly variable performance, sometimes worse than random
routing. Through a node-level analysis on local homophily and relative degree, two properties known
to impact GNNs (Yan et al., 2022; Subramonian et al., 2024), we find GNNs excel in high-homophily,
well-connected regions, while LLMs dominate as homophily or degree decreases. Notably, local
homophily emerges as a strong predictor of model advantage, offering a principled prior for routing.

Motivated by this, we propose GLANCE (GNN with LLM Assistance for Neighbor- and Context-aware
Embeddings), a fusion strategy that preserves GNN efficiency on easy nodes while selectively leveraging
LLMs on hard ones. GLANCE first encodes nodes with a pre-trained GNN, then passes lightweight routing
features to a cost-aware policy that decides whether to query the LLM – figuratively “glancing” at the LLM
for additional context. For routed nodes, LLM embeddings are fused with GNN embeddings via a small re-
finer head. To train the non-differentiable router, we introduce an advantage-based strategy that rewards ben-
eficial queries to the LLM. We find that GLANCE is able to consistently outperform previous benchmarks,
producing more robust predictions across the spectrum of homophily levels. These results highlight the value
of node-aware fusion to enable GNN-LLM fusion on large, diverse TAGs. Our contributions are below:

• Current Limitations: Which Nodes to Route. We provide a systematic look at LLM routing and show
that current heuristics are brittle. By stratifying nodes by different properties, we reveal the complementary
performance of GNNs and LLMs over local homophily and identify for which nodes LLMs are beneficial.

• New GNN-LLM Method: How to Select Nodes. We introduce GLANCE, a cost-aware framework
that learns when to query the LLM, minimizing unnecessary LLM calls and preserving scalability.

• Comprehensive Empirical Analysis. Across four diverse TAG datasets, GLANCE consistently
outperforms state-of-the-art GNNs and GNN-LLM hybrids, yielding robust predictions across homophily
levels with gains of up to+5.8% on heterophilous pockets and overall performance gains of up to+1.1%.

2 RELATED WORK

We briefly discuss the most relevant work here, and provide more details in Appendix A.

Static GNN-LLM Fusion. Prior work largely follows two paradigms: LLMs-as-Enhancers and LLMs-as-
Predictors (Chen et al., 2024a; Li et al., 2024). Enhancer methods enrich node features with text embeddings
or external knowledge (Wu et al., 2024; He et al., 2024), while predictor methods replace the GNN with the
LLM, directly classifying serialized graph inputs (Wu et al., 2024; Wang et al., 2025). LLM-as-Predictor
methods can overcome GNN biases, but struggle with topology encoding and prompt length (Firooz et al.,
2025). Other fusion strategies draw from Mixture-of-Experts (MoE) (Cai et al., 2025; Wang et al., 2023),
but have not explored mixing GNNs and LLMs. Recent work has considered LLMs to route among GNNs
(Jiang & Luo, 2025), yet this still confines performance to GNN biases. In contrast, our approach adopts a
selective paradigm, invoking the LLM where it is expected to help, combining the strengths of both models.

Adaptive GNN-LLM Fusion. A challenge for LLM–GNN models is inference cost, especially when
LLMs are used in the forward pass for all nodes (Wu et al., 2024). While cost reduction via sampling or distil-
lation helps (Fang et al., 2023; Chen et al., 2024a), scalability remains limited by universal LLM calls. Only
a few recent works explore adaptive GNN-LLM fusion, where the LLM is invoked selectively. E-LLaGNN
routes nodes with fixed heuristics (e.g., degree, centrality) (Jaiswal et al., 2024), but requires manual tuning.
LOGIN uses GNN uncertainty to rewire difficult nodes (Qiao et al., 2025), though this can erase useful het-
erophilous links (Luan et al., 2021). LLM-GNN uses clustering density as a proxy for difficulty (Chen et al.,
2024b). Our approach differs by: (1) systematically identifying structural properties predictive of LLM
benefit, learning to route without preset thresholds; (2) preserving graph structure rather than editing it; and
(3) directly training a router under non-differentiable queries, rather than altering data to create influence.
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3 PRELIMINARIES

A TAG is defined as G=(V,E,T,Y ), where V is the set of n= |V| nodes, E ⊆V×V is the set of edges,
T = {tv}v∈V is the text associated with each node v, and Y = {yv}v∈V is the set of node labels. The
task is to learn a model ψ : (G,T)→Y that predicts node labels yv from both structure and text. Next
we outline the strategies to parameterize and learn ψ.

Graph Neural Networks. GNNs learn node representations by aggregating messages from neighbors.
At each layer ℓ, a node v is updated as:

h(ℓ)
v =UPDATE(ℓ)

(
h(ℓ−1)
v ,AGGREGATE(ℓ)

(
{h(ℓ−1)

u :u∈N (v)}
))
, ŷv=argmaxMLP(h(L)

v ).

where hv
(0)=xv (a feature vector derived from tv), N (v) denotes the neighbors of node v, and AGGRE-

GATE and UPDATE define the GNN’s operations. In practice, AGGREGATE is a permutation-invariant
function (e.g. sum or mean) and UPDATE is a multi-layer perceptron (MLP). AfterL layers, the prediction
is obtained using an MLP head. Despite their success, GNNs often struggle on certain structural patterns,
such as low degree and heterophily (Loveland et al., 2024; Mao et al., 2023; Yan et al., 2022). This has moti-
vated architectures with higher-order aggregation, residual connections, and adaptive message passing (Chen
et al., 2020; Zhu et al., 2020). We leverage GNNs that adopt these designs later in our experimental analysis.

Large Language Models (LLMs). Let LLM(·) denote a pre-trained language model. Given a node
v with text tv, and optionally neighbor attributes {tu : u∈N (v)}, the LLM can either (i) generate an
embedding zv = LLMembed(pv) from a prompt pv, optionally including neighborhood context, or (ii)
directly predict the label ŷv=LLMpredict(pv). Embedding LLMs allow the output zv to be easily combined
with a GNN’s output or other downstream classifiers, but require a prediction head. In contrast, direct
prediction avoids this head but risks hallucinated labels and often still needs fine-tuning. In this work,
we adopt the embedding setting, which supports seamless integration with GNN representations.

4 WHICH NODES TO ROUTE: CURRENT LIMITATIONS & OPPORTUNITIES

We begin by examining which nodes should be routed, reviewing prior routing strategies and highlighting
their limitations. Then, building on insights from the GNN literature, particularly the challenges with
GNNs applied to low-degree nodes and heterophilous neighborhoods (Yan et al., 2022; Tang et al., 2020),
we show that LLMs can complement GNNs under these conditions. Ultimately, we find that homophily
emerges as a strong indicator for LLM benefit, offering a promising opportunity to improve graph learning.

4.1 LIMITATIONS OF CURRENT ROUTING STRATEGIES

Based on previous work, we analyze strategies to route nodes to an LLM. We consider node degree dv
(Jaiswal et al., 2024), clustering density (C-density) (Chen et al., 2024b), and uncertainty from dropout
(Qiao et al., 2025). For each strategy, we route the top-k% of nodes to a fine-tuned LLM under three
criteria: (i) low degree, (ii) low density, and (iii) and high uncertainty.

Experimental Setup. We evaluate on Cora (Mccallum et al., 2000), Pubmed(Sen et al., 2008a), and
Arxiv23 (He et al., 2024) with processing details in Section D. We train two backbones, GCN and GCNII,
using the dataset’s original features (denoted as “Std.”) and enhanced features generated via Qwen3-8B
(denoted as “Enh.”). GCN serves as a traditional baseline, while GCNII introduces new designs to better
handle over-smoothing and other challenging graph properties. Together, they provide a contrast between
a simple message-passing framework and a stronger state-of-the-art backbone. For LLM-as-predictor,
we fine-tune Qwen3-8B with an MLP head for node classification. LLM prompting and training for both
LLM-as-Enhancer and LLM-as-Predictor are given in Section B. Training details and hyperparameters
for the LLMs and GNNs are provided in Section C. For the routing strategies in Table 1, we freeze the
GNN and LLMs and route using the metric.

We assess heuristics with a net correction score (NCS), capturing the benefit of routing. For a routed
set R, let WC be the nodes wrong under the GNN but became correct after routing to the LLM, and
CW be the set of nodes were correct but became wrong. We define NCS=(|WC|−|CW |)/|R| where
NCS=1 means the LLM fixes all routed nodes and −1 means the LLM harmed every routed node.
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Findings. Table 1 highlights the difficulty of identifying a single routing signal that generalizes across
datasets. On Pubmed and Arxiv23, uncertainty appears promising, achieving the best NCS in every setting.

Table 1: NCS for C-density, dv, and uncertainty, as compared to a
random router, higher is better. The number of routed nodes is in
parenthesis. The highest NCS score is bold for each setting.

Cora Pubmed Arxiv23

10% 15% 20% 10% 15% 20% 10% 15% 20%
Routing Strat. (68) (102) (136) (493) (740) (986) (489) (734) (978)

GCN
Enh.

Random -0.02 -0.06 -0.04 0.06 0.05 0.04 0.05 0.04 0.04
C-density -0.02 -0.03 -0.03 0.05 0.06 0.05 0.07 0.07 0.06
Degree -0.04 -0.01 -0.02 0.04 0.04 0.04 0.04 0.05 0.05

Uncertainty -0.09 -0.03 -0.01 0.20 0.18 0.17 0.15 0.13 0.13

GCNII
Enh.

Random 0.00 0.01 -0.01 0.01 0.01 0.01 -0.01 0.00 0.00
C-density 0.00 -0.03 -0.03 0.02 0.02 0.02 0.03 0.03 0.03
Degree -0.03 -0.03 -0.02 0.03 0.03 0.03 -0.03 -0.02 -0.01

Uncertainty -0.04 -0.02 -0.03 0.09 0.08 0.08 0.05 0.04 0.05

Yet on Cora, the same strategy consistently
produces negative NCS, often performing
worse than a random router. Other heuris-
tics such as degree and C-density similarly
fluctuate in effectiveness, with no strat-
egy performing robustly across all datasets.
Taken together, these results underscore
the limitations of static heuristics: while
they can succeed in isolated cases,
their performance is highly dataset-
dependent. This motivates the need for a
more principled and transferable routing
signal, rather than manually chosen rules.

4.2 STRUCTURAL OPPORTUNITIES FOR ROUTING

Given that heuristic quality can be dataset-dependent, we aim to find a routing signal that aligns with the
strengths of GNNs and LLMs. We first analyze metrics known to degrade GNN performance and then
utilize these to route, showing that homophily is a strong indicator for when LLMs improve performance.

4.2.1 ON THE COMPLEMENTARY CAPABILITIES OF LLMS AND GNNS

To characterize the unique benefits of LLMs and GNNs, we take the models from Table 1 and perform a
stratified analysis using relative degree d̄v and local homophily hv. When d̄v>1, v tends to have higher
degree than its neighbors, and lower degree otherwise. Low hv indicates v is heterophilous. Mathematically,

d̄v =
1

|N (v)|
∑

u∈N(v)

√
dv+1
du+1 , hv=

1
|N(v)|

∑
u∈N(v)1[yu=yv].

Both properties are known to influence GNNs (Yan et al., 2022; Subramonian et al., 2024), but have
received less attention for LLM-graph reasoning. We compare models across these properties.

Figure 1: Stratified Performance. Performance is given for homophily
(top) and relative degree (bottom), bars denote property distributions (right
y-axis). For GNNs, “Std.” refers to standard shallow features, while
“Enh.” refers to LLM-enhanced features. LLM refers to LLM-as-Predictor.
While LLM-enhanced GNNs can benefit heterophilous nodes and low
degree, LLM-as-Predictor offer further improvements on these subsets.

Findings. In Figure 1, we study
GNN and LLM performance for
groups of nodes stratified by ho-
mophily. Despite similar performance
in the high homophily regime, LLM
models tend to produce signifi-
cantly higher performance over het-
erophilous and low-degree nodes,
e.g., achieving upwards of a 20.4%
performance increase compared to
the next best model, GCNII with
LLM enhancement on Cora. Addi-
tional results given for Pubmed in Sec-
tion E.4 with similar trends. In Fig-
ure 5 (Section E.5), we further find
that homophily and degree can in-
terplay with one another, where per-
formance differences can reach up-
wards of 30.1% between subpopula-
tions stratified by both degree and lo-
cal homophily. With these findings,
we next study if homophily can be
useful for routing.
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Table 2: (Left) NCS for hv, ĥv, and d̄v routing, where higher is better. Homophily yields high NCS, with estimated
and true variants improving as k increases. (Right) Mean rank across routing strategies, lower is better. Bold is best out
of the label-free methods; we note that hv cannot be used during inference due to requiring access to labels.

Cora Pubmed Arxiv23

Strat. 10% 15% 20% 10% 15% 20% 10% 15% 20%

GCN Enh.
hv 0.24 0.11 0.05 0.29 0.30 0.26 0.15 0.14 0.15
ĥv -0.07 -0.04 -0.04 0.20 0.20 0.19 0.14 0.14 0.15
d̄v -0.07 -0.07 -0.06 0.05 0.04 0.04 0.03 0.05 0.03

GCNII Enh.
hv 0.09 0.03 0.00 0.10 0.11 0.09 0.04 0.05 0.06
ĥv -0.06 -0.03 -0.03 0.07 0.07 0.06 0.04 0.04 0.05
d̄v -0.06 -0.07 -0.05 0.03 0.02 0.02 -0.03 -0.01 -0.01

Avg.
Ranking

Label Free
For Inference

Random 4.50 ✓
C-density 4.14 ✓
Degree 4.33 ✓

Uncertainty 3.28 ✓
d̄v 5.94 ✓
ĥv 3.22 ✓

hv 1.03 ✗

4.2.2 ROUTING WITH LOCAL HOMOPHILY

Unlike degree, which can be derived directly from the graph structure, homophily depends on class labels
that are not accessible during training. This makes it challenging to directly exploit the performance
gains LLMs provide on heterophilous nodes (Figure 1). Motivated by prior work on classifying edges as
homophilous or heterophilous (Du et al., 2022; Wu et al., 2024), we extend this idea to estimate a node-level
homophily score. Concretely, we train an MLPQ to predict node labels, ŷv=argmaxQ(xv), and use these
predictions to compute an estimated local homophily, ĥv=

1
|N(v)|

∑
u∈N(v)1[ŷu= ŷv]. This proxy enables

us to leverage the benefits of homophily for routing without requiring ground-truth labels. We employ an
MLP to avoid the structural biases that GNNs impose during homophily estimation (Zhu et al., 2021).
Findings. Table 2 shows that homophily is a useful routing signal. First, we find that true local
homophily, hv, attains the highest NCS in most settings, establishing an upper bound for structure-aware
routing. More importantly, our label-free homophily estimate closely tracks hv and typically matches
or surpasses other static heuristics. The average rankings in Table 2 corroborates this finding, where hv
has the best mean rank for NCS score. Moreover, when hv is excluded from the ranking, our estimated
homophily achieves the best average rank. Overall, homophily reliably identifies nodes that benefit from
LLM assistance, and our label-free homophily proxy is a practical and effective prior for routing.

5 HOW TO ROUTE: ADAPTIVELY FUSING LLMS AND GNNS WITH GLANCE
To address the limitations of existing routing strategies, we propose GLANCE1, a framework that adaptively
fuses GNNs and LLMs. Rather than relying on handcrafted rules, GLANCE employs a lightweight router
trained to decide, on a per-node basis, whether to invoke the LLM. This design ensures that LLM calls
are used only when they provide improvement to justify their cost. At its core, GLANCE contains three
components: (i) frozen GNN and LLM encoders, (ii) a trainable router using cheap features for routing,
and (iii) a combiner that fuses structural and textual embeddings into final predictions.

5.1 COMPONENTS OF GLANCE

We now detail the components of GLANCE, as depicted in Figure 2. We first outline how nodes are chosen
for routing. Then, we specify how the LLM generates new embeddings for routed nodes. Finally, we
define the refinement process that merges the GNN and LLM information. As this is a non-differentiable
pipeline, we include details on how the router is trained to encourage effective usage of the LLM.

5.1.1 STEP 1: GENERATING AND PROCESSING ROUTING FEATURES.
Routing Features. We begin by using a pre-trained GNN F to produce embedding zG(v) from the
k-hop neighborhood of v. This embedding acts as the first signal to ensure the router can leverage the
structural information of the neighborhood. We also use the GNN to derive uncertainty estimations on the
node, following a dropout strategy (Qiao et al., 2025). This uncertainty acts as a proxy signal for difficulty,
allowing the router to take advantage of the relationships found in Table 1. Building on the opportunity to
leverage homophily, we utilizeQ to attain a local homophily estimate. However, to increase expressivity,
we compute the probability distribution over the classes, pQ,v, and estimate a soft local homophily as:

ĥv=pQ,v ·(
1

|N1(v)|
∑

u∈N1(v)

pQ,u). (1)

1Implementation provided at https://anonymous.4open.science/r/GLANCE-457A/README.md

5

https://anonymous.4open.science/r/GLANCE-457A/README.md


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

GNN

Step 1. Generate and Process Routing Features

MLP
Homophily 
Estimation

Node Embedding

Node Uncertainty

Node Features

Degree

Σ 𝝈

Batch of GNN Predictions 
& Refinements

Batch of
Refined 

Predictions

Text Attributed Graph (TAG)

Graph with Features

Raw Node Text

…

Step 2. Use Pre-trained LLM to Process Routed Neighborhoods

Ego Node
and Text:

One Hop 
Nodes 

and Text:

Two Hop 
Nodes 

and Text:

Route ✓

Route 
  

LLM (Qwen-8B)

LLM (Qwen-8B)

LLM (Qwen-8B)

Shared Params

Shared Params

∥
∥

Step 3. Refine the GNN predictions using LLM embeddings

…

…

…

…

∥
∥

GNN Embeddings 
for Routed Nodes

LLM Embeddings 
for Routed Nodes

Refiner 
M

LP

Figure 2: GLANCE Overview. Step 1: GLANCE generates routing features to derive a decision. Step 2: A routed
node’s text is fed into the LLM to generate embeddings. Step 3: A routed node’s GNN & LLM embeddings are used
to refine predictions. For nodes not routed, the GNN prediction is used. Only the router and refiner MLP are trained.

This soft estimate provides the router with a measure of neighborhood alignment. While Table 2 shows
that ĥv cannot definitively route on its own, we utilize this signal as a prior to bias the router toward
heterophilous nodes, which we expect to be refined during training. While uncertainty was originally
motivated to capture heterophily Qiao et al. (2025), we find this correlation to be weak (seen in Table 9),
and use both metrics given they provide different, yet informative signals. Finally, we include the original
features and degree, enabling the routing of nodes with noisy features or insufficient neighborhood context.

Node Router. We define a router π that takes as input the routing features above, denoted as a vector fv,
and outputs a probability of routing av∈ [0,1], for a node v, as av=π(fv)=σ(w⊤fv), where larger values
of av indicate that the LLM should be queried for node v, while low values of av indicates that the GNN
prediction is sufficient for node v. Rather than applying an absolute threshold, GLANCE uses a top-k
strategy: for each mini-batch, the k nodes with the highest av scores are routed to the LLM. This ensures a
fixed query budget per batch and avoids the need to globally calibrate the router’s probabilities.

5.1.2 STEP 2: PRE-TRAINED LLM TO PROCESS ROUTED NEIGHBORHOODS

For the top-k routed node setR, the pre-trained LLM encoder L is invoked to generate textual embeddings
from serialized neighborhood prompts ψ(Nk(v))∀v∈R, examples prompts are given in Section B. Rather
than producing a single embedding as is done in previous work (Wang et al., 2025), we generate summaries
at multiple structural levels: (1) the ego text tv, (2) the ego text with a sampled subset of 1-hop neighbors
{tv∪tu :u∈N1(v)}, (3) the ego text with a sampled subset of 2-hop neighbors {tv∪tu :u∈N2(v)}. Each
level is serialized into a separate prompt and encoded into embeddings zL,0(v),zL,1(v),zL,2(v), which are
then concatenated to form the final LLM representation:

zL(v)=[zL,0(v)∥zL,1(v)∥zL,2(v)].

This multi-level encoding preserves both ego and neighbor information, while ensuring the prompt length
remains manageable. Additionally, this design aligns with the higher-order aggregation typically seen in
advanced GNN architectures (Zhu et al., 2020; Yan et al., 2022).

5.1.3 STEP 3: REFINE THE GNN PREDICTIONS USING LLM EMBEDDINGS.

For nodes not routed, we retain their original GNN predictions by feeding the GNN-based node embeddings
into the original MLP head used during GNN training. For nodes that are routed, we want to utilize both
the GNN and LLM embeddings to capture structure and contextual information. Thus, we define a refiner
MLP C that integrates the GNN and LLM embedding as:

pC,v=softmax(C([zG(v)∥zL(v)])),
where pC,v is the probability distribution over the classes for a node v. This modular design is agnostic to
a specific GNN or LLM backbone, enabling flexibility depending on the dataset or computational budget.

5.2 TRAINING OBJECTIVES

Because routing decisions are discrete and require prompt construction, routing weights cannot be directly
learned via backpropagation. Below, we detail how we translate the routing signal into weight updates.
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Counterfactual Comparison and Rewards. When routing to the LLM, we measure the value of
invoking it by computing a counterfactual prediction using the GNN and measuring the difference in losses
produced by the two computations. Specifically, with zG(v) and the GNN’s pre-trained prediction headH:

pH,v=softmax(H(zG(v))), ℓ(GNN)
v =−

∑|Y |
k=11[yv=k]logpH,v,k, ℓ

(LLM)
v =−

∑|Y |
k=11[yv=k]logpC,v,k,

where ℓ(LLM)
v is the loss when routing with the LLM, and ℓ(GNN)

v is the counterfactual loss from the
GNN. Note, the counterfactual is only computed when nodes are routed to the LLM during training, i.e.
we do not compute an LLM-based counterfactual for nodes not routed. We then quantify the benefit of
routing (or not routing) to the LLM through the rewards:

rv=

{
ℓ
(GNN)
v −ℓ

(LLM)
v −β, if av in top-k (LLM queried),

−ℓ
(GNN)
v , if av not in top-k (LLM not queried).

The first term captures the decrease in loss provided by querying the LLM and the cost of invoking the
LLM (hyperparameter β ≥ 0). Larger β imposes stricter penalties, discouraging the use of the LLM
where it doesn’t provide benefit. A positive rv with LLM routing indicates that calling the LLM reduced
prediction loss enough to offset its cost. When the LLM is not used, the reward is based on the GNN loss.

Training Objective. The router is optimized with a policy gradient-inspired loss, treating routing as a
contextual bandit problem and encouraging alignment with counterfactual advantage:

ℓ(route)v =−rvlogπ(fv)−λHHent[π(fv)].

While this objective is inspired by REINFORCE (Sutton et al., 1999), we employ deterministic top-k
selection during training to ensure stable use of the limited LLM query budget. The final objective jointly
trains C and π through:

ℓ(pred)
v =1[av∈ top-k]ℓ(LLM)

v +
(
1−1[av∈ top-k]

)
ℓ(GNN)
v , L=

1

|B|
∑
v∈B

ℓ(pred)v +λrouterℓ
(route)
v .

We use ℓ(pred)v to denote the loss coming from either the LLM or GNN computation. Then, the first term of
L optimizes predictive performance, while the second enforces cost-aware routing. For efficiency, both the
GNN F and the LLM L are kept frozen during training, leaving only C and π as trainable components.

6 EMPIRICAL ANALYSIS

We now empirically study GLANCE, demonstrating how selectively using LLMs can improve performance.
We first analyze GLANCE’s performance, showing that it achieves significantly more balanced performance
compared to the baselines. Then, we provide a series of supplemental analyses to understand what
GLANCE learns during training. Finally, we extend GLANCE to larger TAGs to demonstrate its scalability.

6.1 EXPERIMENTAL SETUP

Datasets. We first evaluate across Cora (Mccallum et al., 2000), Pubmed (Sen et al., 2008b), Arxiv23 (He
et al., 2024), studying overall and stratified performance, as well as performing numerous ablations. Then,
to demonstrate GLANCE’s scalability, we perform evaluation on two large-scale datasets, Arxiv-Year (Lim
et al., 2021) and OGB-Products (Hu et al., 2020), with details provided in Section D. For each dataset, we
follow the same training set up as outlined in the Section 4.1.

Baselines & Training. We compare GLANCE to a series of state-of-the-art baselines for scalable LLM-
GNN fusion. We start by considering standard GNN backbones, including GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), and GCNII (Chen et al., 2020). We study their performance over
three settings, original features, LLM-enhanced features, and LOGIN-filtered graphs. As GLANCE’s core
design is to bolster challenging heterophilous nodes, we also include high-performing heterophilous GNNs,
including FAGCN, GGCN, and GBK-GNN. To embue them with LLM knowledge, we utilize LLM-
enhanced features. We do not apply LOGIN on these models as they are designed to utilize heterophily,
whereas LOGIN’s design intends to remove it. Across all baselines, we use identical data splits, training
protocols, and text encoders. Training details and hyperparameters are provided in Section C. Unless
otherwise stated, we route the top 12 nodes per batch of 32 nodes for GLANCE for reported metrics. For
OGB-Product, we evaluate against the top 3 model combinations found in our initial study.
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Table 3: Per-bin accuracy for homophily levels. Training Strategies: O for Original features, E for Enhanced features,
and L for LOGIN. Bold denotes best method. GLANCE achieves the strongest and most balanced performance across
local homophily levels, as evidenced by its lowest average rank across datasets and homophily bins (rightmost column).

St
ra

t. Cora Pubmed Arxiv23 Avg
rank

0.00–0.25 0.25–0.50 0.50–0.75 0.75–1.00 0.00–0.25 0.25–0.50 0.50–0.75 0.75–1.00 0.00–0.25 0.25–0.50 0.50–0.75 0.75–1.00

GCN
O 18.7±6.7 38.6±3.6 77.1±3.9 98.5±1.2 48.2±4.2 50.0±1.5 83.1±1.1 97.2±0.1 25.1±0.4 47.1±2.0 77.0±5.6 93.0±2.9 10.3
E 17.9±6.9 49.6±6.7 78.5±3.3 98.7±0.3 55.9±3.7 51.8±3.8 84.9±0.8 97.9±0.1 27.8±3.0 46.4±2.0 79.1±4.4 95.1±2.1 7.9
L 17.6±4.3 44.7±2.0 78.9±3.4 97.8±0.3 47.0±0.7 45.5±4.1 83.1±1.6 98.1±0.2 24.9±0.5 37.6±1.0 64.6±1.1 83.2±0.1 10.2

SAGE
O 21.1±2.9 45.2±3.3 76.2±4.8 97.9±0.5 58.4±2.7 66.1±1.4 85.3±0.6 96.6±0.2 32.6±0.3 53.3±0.4 80.5±0.7 93.9±0.4 8.6
E 30.6±6.9 48.6±6.1 75.4±3.2 96.1±0.6 69.5±2.0 70.5±3.5 89.2±0.5 97.4±0.1 36.3±0.4 56.1±0.4 81.2±0.7 93.8±0.3 6.6
L 26.8±2.6 43.6±5.0 75.4±3.8 97.8±0.4 67.1±1.3 69.6±1.8 88.5±0.9 97.6±0.4 37.0±2.7 51.6±3.1 76.0±1.1 89.8±1.0 8.1

GCNII
O 20.0±7.5 41.7±3.7 83.1±2.0 98.9±0.3 54.3±4.9 54.5±6.1 85.8±0.3 97.0±0.1 31.9±1.1 49.8±3.1 78.5±4.4 92.9±2.2 8.9
E 32.0±7.9 53.5±3.5 77.6±1.5 97.1±0.9 69.7±2.1 68.1±4.6 88.9±0.9 97.4±0.4 41.6±1.2 58.0±2.7 83.2±1.9 94.8±0.7 4.7
L 33.4±1.9 50.8±2.4 77.8±4.1 96.6±1.0 71.0±1.5 68.7±2.1 88.6±1.1 97.1±0.2 46.6±0.6 62.0±0.7 81.2±0.9 92.5±0.9 5.5

FAGCN E 27.1±7.2 50.9±4.8 83.2±4.4 98.9±0.5 69.7±2.2 65.3±3.2 88.5±1.2 97.1±0.4 37.8±2.5 56.4±2.7 82.9±1.1 94.6±1.0 5.2
GGCN E 27.7±8.4 50.9±9.5 71.4±1.8 95.8±0.9 68.8±1.6 66.0±2.8 89.4±0.5 97.7±0.1 42.3±0.5 62.1±0.4 85.0±2.0 95.3±0.3 5.4
GBKGNN E 28.6±4.8 51.0±2.1 74.4±2.8 96.7±0.8 67.5±1.9 67.9±4.3 87.9±1.7 97.9±0.0 38.7±0.9 58.8±1.2 83.8±1.2 94.3±0.1 5.8

GLANCE 39.2±2.0 58.3±1.7 78.5±0.5 97.7±0.1 75.2±2.7 66.4±1.2 89.5±0.2 97.9±0.0 45.7±0.9 62.5±0.1 85.3±0.5 95.2±0.4 2.5

6.2 CAN GLANCE ACHIEVE THE BENEFITS OF LLMS AND GNNS IN ONE MODEL?

Table 4: Accuracy across 3 runs. Bold
denotes best, underline is second.

Cora Pubmed Arxiv23

GCN
O 87.1±1.9 88.1±0.6 74.2±2.5
E 87.9±1.3 89.9±0.6 76.2±1.2
L 86.8±0.4 88.6±0.2 65.7±0.0

SAGE
O 86.9±1.0 89.7±0.4 77.2±0.2
E 86.4±1.1 92.2±0.4 78.1±0.1
L 86.4±0.3 91.8±0.1 74.7±1.5

GCNII
O 88.4±0.8 89.1±0.6 75.9±2.1
E 87.7±1.3 92.1±0.2 80.2±0.7
L 86.8±0.7 91.9±0.1 79.7±0.5

FAGCN E 89.4±0.5 91.8±0.2 79.2±1.3
GGCN E 85.4±0.9 92.2±0.2 81.2±0.5
GBK-GNN E 86.6±1.0 92.1±0.3 79.5±0.4

GLANCE 88.7±0.4 93.3±0.4 82.0±0.1

As shown in Figure 1, selectively using the LLM on challenging
nodes can enhance GNN performance. To evaluate GLANCE’s
capabilities, we report both overall accuracy (Table 4) and strati-
fied results (Table 3). GLANCE achieves the best performance on
Pubmed (93.3%, a +1.1% gain over next best) and Arxiv23 (82.0%,
a +0.8% gain), while ranking second on Cora (88.7%). GLANCE
also consistently outperforms LLM-enhanced and LOGIN baselines,
often by several percent, and surpasses GNNs designed for het-
erophily. From a stratified perspective, the largest improvements
emerge on heterophilous nodes, where GLANCE delivers +5.8% on
Cora and +4.2% on Pubmed. Importantly, when averaging across
bins, GLANCE achieves the strongest overall balance with an
average rank of 2.5, compared to 4.7 for the next best. Together,
these findings demonstrate that GLANCE’s advantage-driven routing
reliably leverages the LLM where it is most beneficial while pre-
serving the strengths of the GNN. We further confirm this finding in
Section F.2 where we break down performance by routed and non-routed node subsets, demonstrating a
significant improvement on routed nodes via GLANCE.

6.3 ROUTER: LEARNED PROPERTIES AND ROBUSTNESS

0.00

0.25

0.50

0.75

1.00
Cora

0.00

0.25

0.50

0.75

1.00

Lo
ca

l H
om

op
hi

ly

Pubmed

Beneficial (G: , L: ) Not Beneficial
0.00

0.25

0.50

0.75

1.00
Arxiv23

Figure 3: Homophily for routed
nodes, split by benefit. Blue lines
denote median.

Properties of Routed Nodes. In Figure 3, we analyze the local ho-
mophily of routed nodes, splitting them into benefited (GNN wrong,
LLM right) and non-benefited sets. Across datasets, we observe sub-
stantial mass at low homophily, showing that GLANCE preferentially
routes heterophilous nodes. Crucially, the benefit distribution is skewed
toward low homophily, indicating that routed heterophilous nodes de-
liver gains. This supports our hypothesis that heterophily captures
where GNNs struggle and LLM assistance is most valuable, and
shows that these nodes drive GLANCE’s improvement. Notably, the
median value that benefits is not identical across datasets, e.g., on
Arxiv23 the largest gains occur around h≈ 0.5. Thus, a single ho-
mophily threshold that routes heterophilous nodes would be ineffec-
tive for maximizing performance, and additional context is needed.

Sensitivity toK. In Figure 6 (Section F.1), we examine performance
under varying routing budgets. For a batch size of 32, we evaluate
K∈{8,12,16}. We find that increasingK tends to lead to steady gains
on heterophilous nodes, while leaving performance on the homophilous
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Table 5: Per-bin accuracy for homophily levels and overall performance on larger datasets. We compare GLANCE to
the next 3 best ranking models from Table 3, all using enhanced features. OOM for GGCN discussed in Section C.1.
Bold denotes best. We find the heterophilous benefits carry to large-scale datasets with higher overall performance.

Arxiv-Year OGB-Product

0.00–0.25 0.25–0.50 0.50–0.75 0.75–1.00 Overall 0.00–0.25 0.25–0.50 0.50–0.75 0.75–1.00 Overall

GCNII E 42.7±0.0 51.1±0.0 54.5±0.0 72.4±0.1 49.6±0.1 29.0±0.1 43.9±0.3 69.3±0.0 91.9±0.1 81.8±0.1
FAGCN E 36.0±0.9 45.0±0.5 52.7±0.2 72.0±0.5 44.3±0.5 29.8±1.8 42.3±1.3 64.7±1.1 88.3±1.4 78.6±0.9
GGCN E 36.8±0.5 46.3±0.6 51.6±1.4 69.3±1.2 44.6±0.1 OOM OOM OOM OOM OOM

GLANCE 43.1±0.1 51.3±0.1 54.2±0.0 72.1±0.1 49.8±0.1 32.1±0.1 44.3±0.1 68.2±0.1 91.6±0.1 81.6±0.2

nodes mostly unchanged. On Pubmed and Arxiv23, accuracy on hv < 0.25 improves by +3.4% for
K=8→12, and by another +3.0% forK=12→16. On Cora, performance initially dips forK=8→12,
but then significantly improves by +12.3% when increasing to K = 16. For hv > 0.75, GLANCE’s
accuracy changes by only −0.06% on average across datasets, underscoring GLANCE’s stability in this
regime. Importantly, we also observe that routing too many nodes can harm accuracy (as seen in Table 10
for full-batch routing), as easy nodes well modeled by the GNN can become misclassified when the LLM
is unnecessarily used. Together, these findings demonstrate that GLANCE routes efficiently, mitigating
both the performance degradation and computational overhead of indiscriminate LLM usage.
Routing Feature Ablation. To assess the value of the routing features, we disable each of the features one
at a time and train new GLANCE models, measuring Accabl−Accfull (Figures in Section F.3). Averaged
over all features, accuracy drops on each dataset, with changes of −0.38% on Cora, −1.07% on PubMed,
and−0.65% on Arxiv23. More importantly, when ablating the homophily feature, we find significant drops
when hv<0.5, with Cora, Pubmed, and Arxiv23 reducing by −6.5%, −2.0%, and −6.3%, respectively.
We also observe subtle losses when hv>0.5 as the homophily signal is removed, where Cora drops by
−0.34%, Pubmed drops by −0.15%, and Arxiv23 drops by −0.03%. These drops indicate that homophily
helps the router avoid misrouting the easier nodes. Together, these ablations show that GLANCE achieves
peak performance when all features are available, with the largest gains on the heterophilous nodes.

6.4 LARGE-SCALE LEARNING WITH GLANCE

Setup. GLANCE’s selective utilization of the LLM enables the processing of large TAGs by only
applying the LLM to nodes that benefit. Now that we have demonstrated the effectiveness of GLANCE,
we study the scalability by applying GLANCE to two large benchmark datasets, Arxiv-Year (Lim et al.,
2021) and OGB-Products (Hu et al., 2020). Details for these datasets can be found in Section D. Notably,
Arxiv-Year and OGB-Products are orders of magnitude larger than the datasets typically studied in previous
work on GNN-LLM fusion (Qiao et al., 2025; Wu et al., 2024; Wang et al., 2025). Furthermore, to motivate
GLANCE’s scalability, we show in Figure 9 that the routing and refinement components of GLANCE
provides very little overhead, enabling it to handle larger datasets when querying less nodes with the LLM.
Results. In Table 5, we provide per-bin and overall accuracy for the top 3 average rank models from
Table 3 and compare them to GLANCE. Given these datasets are significantly larger than the previous
datasets, we utilize a query rate of∼1.6% (K=1with batch size 64). We find that GLANCE is competitive
and can outperform the best baselines, such as on Arxiv-Year, while also bolstering the most heterophilous
bins, gaining up to +3.1% in performance for OGB-Product. These results demonstrate that selective
LLM queries, even at lower rates, can improve performance and supplement GNNs where they struggle.
Moreover, as Arxiv-Year is highly heterophilous, the improvements show that GLANCE can benefit both
homophilous and heterophilous graphs. Given the results seen above with regards toK, we also expect
this performance can become even better with a larger compute budget. Moreover, for applications that
necessitate better performance on heterophilous pockets of nodes, GLANCE is able to offer key benefits,
regardless of dataset size, that are otherwise inaccessible with standard GNN architectures.

7 CONCLUSION

In this work we focused on how LLMs can be selectively utilized to bolster GNNs, an understudied area in
the LLM-GNN literature. Through a detailed analysis of structural properties, we showed that homophily
provides a reliable signal for routing, capturing where GNNs tend to fail and LLMs excel. To operationalize
this finding, we proposed GLANCE, a cost-aware fusion strategy that routes nodes learns when to call
the LLM on difficult nodes. Empirical results across multiple benchmarks demonstrate that GLANCE
achieves well-balanced performance while selectively invoking the LLM only when useful. Our findings
argue for structure-aware routing as a foundation for future work on efficient GNN–LLM integration.
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A DETAILED RELATED WORK

Static GNN-LLM Fusion. Recent work has focused on two main paradigms for graph learning with
LLMs: LLMs-as-Enhancers and LLMs-as-Predictors (Chen et al., 2024a; Li et al., 2024). For LLM-as-
Enhancers, LLMs generate enriched node features, ranging from simple text embeddings (Wu et al., 2024)
to additional external knowledge (He et al., 2024; Chen et al., 2024a), effectively performing automated
feature engineering to bolster GNN performance. For LLM-as-Predictors, the LLM replaces the GNN as
the final classifier, processing serialized graph structure and text as prompts (Wu et al., 2024; Wang et al.,
2025). Some variants retain a GNN encoder (Lin et al., 2025), but the LLM still produces the prediction.
While both paradigms benefit from the reasoning of LLMs, they also suffer from distinct limitations.
Enhancer methods are limited by their static, frozen features while also inheriting the inductive biases of
the GNN, retaining the challenges seen with certain structural properties (e.g., heterophily). In contrast,
LLM-as-Predictor methods can overcome the GNN inductive biases, but may also struggle to encode
topology efficiently given prompt length limits and serialization mismatches (Firooz et al., 2025; Wang
et al., 2025). Another common approach to fusing models together is through Mixture of Experts (MoE)
which ensemble a set of models, each with expert knowledge. While prominent in LLM design (Cai et al.,
2025) and graph MoE Wang et al. (2023), this strategy has yet to be applied to a mixture of LLMs and
GNNs. Relatedly, LLMs have been shown capable to route to different GNNs (Jiang & Luo, 2025), yet,
this still limits the pipeline to the inductive biases of the GNNs. Our approach adopts a hybrid paradigm
that selectively invokes the LLM, using expert knowledge from both models, only when it is expected to
help performance.

Adaptive GNN-LLM Fusion. A challenge for LLM-GNN models is high inference cost, especially
when LLMs are used during training. While the static methods above are scalable by treating the LLM as a
pre-processer, many methods consider using the LLM within their forward pass, calling the LLM across
training and inference (Wu et al., 2024). While attempts to reduce LLM cost via neighborhood sampling
or small language model distillation show promise (Fang et al., 2023; Chen et al., 2024a), the bottleneck
remains where the LLM must be applied to all nodes. Only a few recent works explore adaptive GNN-LLM
fusion, where the LLM is invoked selectively rather than universally. E-LLaGNN is one of the first in this
space, selecting nodes for LLM augmentation using fixed heuristics based on graph properties such as
degree, centrality, or text length (Jaiswal et al., 2024). While effective in some settings, these handcrafted
rules require manual tuning and can vary in effectiveness across datasets. LOGIN (Qiao et al., 2025)
introduces a more automated approach, using GNN uncertainty to identify challenging nodes to rewire
and simplify message passing. However, this rewiring can disrupt structurally informative but challenging
patterns, such as heterophilous links, which can be beneficial in real-world graphs (Luan et al., 2021).
LLM-GNN is a label-free approach that leverages a similar principle as LOGIN, but uses clustering density
as a proxy of difficulty as opposed to uncertainty (Chen et al., 2024b). Our approach differs from these
methods in three key ways. First, while different metrics have been proposed to route, our systematic study
identifies specific structural characteristics that benefit from LLM processing. Additionally, GLANCE
does not require prespecified thresholds on these properties, instead learning how to utilize them to route.
Second, instead of editing the underlying data to favor GNNs, we preserve its characteristics and invoke
the LLM where the GNN struggles. Third, while LOGIN and LLM-GNN address non-differentiability by
editing the underlying data to provide signal from the LLM, we retain the true graph signal and directly
train the routing policy.

B LARGE LANGUAGE MODEL PROMPTING

In this section, we detail how we generate enhanced features for the base GNN models. Additionally, we
provide prompts used to generate LLM embeddings within GLANCE. For both settings, we focus on the
Qwen3 family of models, specifically using the Qwen3-Embed-8B model to generate embeddings.

B.1 LLM-AS-ENHANCER PROMPTS

We generate node-level text embeddings using Qwen3-Embed-8B by directly processing the node text
(e.g., title and abstract for Cora). We use a max prompt length of 1024. Following the model’s official
configuration, we use last-token pooling and then apply ℓ2 normalization. Concretely, for a batch of
tokenized sequences with hidden statesH∈RB×L×d and (unpadded) last-token indices ℓi, the sentence
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embedding for node i is

z̃i =Hi,ℓi ∈R4096, zi =
z̃i

∥z̃i∥2
.

We keep Qwen’s include prompt behavior enabled, which prepends a short instruction prompt internally
before the text. The resulting zi is used as an enhanced feature in place of the shallow features outlined
above.

B.2 LOGIN PROMPTS

Following the format introduced in LOGIN, we construct prompts for each node by including the text of
the ego node, a template that describes the graph and the instructions for the LLM, and the ground-truth
labels and GNN predicted labels for nodes in the one-hop and two-hop neighborhood of the ego node.

LOGIN Example for Cora:

NODE 0: <ego-node text>

Given a citation graph
NODE-IDX: <node_id>,
NODE-LIST: [List of all node_id in two-hop neighborhood],
ONE-HOP-NEIGHBORS: [List of node_id of one-hop neighbors],
TWO-HOP-NEIGHBORS: [List of node_id of two-hop neighbors]
NODE-LABELS: [List of ground truth labels]
GNN-PREDICTED-NODE-LABEL: <GNN-predicted ego node label>

where node 0 is the target paper
and you see the true labels under ‘node_label‘.

Question: Which category does this paper belong to?
Choose exactly one from [list of class labels].

Return JSON
{{classification result: <choice>,
explanation: <your reasoning>}}

</END>

B.3 LLM-AS-PREDICTOR AND GLANCE PROMPTS

When using the LLM as predictor, we construct prompts for different hops of the neighborhood (ego-only,
ego+1-hop, ego+2-hop) and encode them with Qwen3-Embed-8B. Doing this enables the LLM to retain
per-hop information, a key design found in heterophilous graph learning, while also helping keep prompt
lengths manageable. We utilize the same parameterizations as the LLM-as-Enhancer setting for each of
these embeddings, but use a prompt length of 512 for the ego node, and 4096 for the one- and two-hop
embeddings. Each prompt is formatted in a instruction–query layout compatible with Qwen3 embedding
prompts and utilizes last-token pooling of the sequence.

The overall strategy in prompt design was to provide the classes and serialized neighborhood structure for a
node. We do not over-engineer the prompt design, however, this can be one area for further opportunity
in graph learning with LLMs. Additionally, providing additional context on a per-dataset basis (e.g.
highlighting the domain of the dataset), could provide additional value.

Ego-Only Example:

Instruct: Predict the node’s category from the provided context.
Possible categories: [list of class labels].
Query:
EGO:
<ego-node text>
Category?
</END>
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Ego+1 Hop Example:

Instruct: Predict the node’s category from the provided context.
Possible categories: [list of class labels].
Query:
EGO:
<ego-node text>
HOP1:
- <1 hop neighbor 1 text>
- <1 hop neighbor 2 text>
...
Category?
</END>

Ego+2 Hop Example:

Instruct: Predict the node’s category from the provided context.
Possible categories: [list of class labels].
Query:
EGO:
<ego-node text>
HOP2:
- <2 hop neighbor 1 text>
- <2 hop neighbor 2 text>
...
Category?
</END>

As the degree of the datasets can be large, we use a neighbor sampling strategy during prompt construction
to further maintain manageable prompt sizes. Specifically, we limit the size of each neighborhood to be
up to 5 neighbors per node. Thus, the ego-only text contains one node, the ego + 1-hop can contain up to
6 nodes (1 + 5 neighbors), and the ego + 2-hop can contain up to 26 nodes (1 + 5*5). We use a prompt
length of 1024 for the ego-node, and 4096 for the ego + 1-hop and ego + 2-hop. On a per-node basis, text
is capped to a fixed character budget (2000 characters). We process the embeddings using ℓ2 normalization
before concatenation.

When originally fine-tuning the LLM (such as the results in Figure 1, we apply a 2-layer MLP to map the
concatenated embeddings to the label space for each model. Then, when incorporating the pre-trained
LLM into GLANCE, we remove the MLP head and use the concatenated embeddings directly with the
refiner MLP.

C MODEL TRAINING AND HYPERPARAMETERS

We describe here the training protocols for the base GNNs, the LLM-as-Predictor baseline, and our
proposed GLANCE model. Across all models, we tune the learning rate from {0.01,0.001,0.0001} and
the weight decay from {0.001,0.0001,0.00001}. We apply gradient clipping at ∥g∥2≤1.0 for all gradients
g. Unless Training is performed on a single NVIDIA A40 GPU using the AdamW optimizer, with dataset
splits of 50/25/25 for train/validation/test. For OGB-Product, we cap the train set to 50,000 nodes for
GLANCE, but retain the same test set with the GNN models.

C.1 GNN (AND MLP) TRAINING

For the GNN backbones, we use implementations integrated into PyTorch Geometric when available.
Otherwise, for GBK-GNN 2 and GGCN3 we use their official implementatins. For all GNNs, we use
a hidden dimension of 64 and a batch size of 128. We search over network depths of {2,3} layers.
Training is run for up to 1000 epochs, with early stopping applied if the validation accuracy does not
improve for 30 consecutive epochs. Each model includes a one-layer MLP projection head, which both

2https://github.com/Xzh0u/GBK-GNN
3https://github.com/Yujun-Yan/Heterophily_and_oversmoothing
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produces the final predictions and allows the learned GNN embeddings to be reused within GLANCE.
For heterophilous architectures such as FAGCN, GGCN, and GBK-GNN, we adopt the hyperparameter
settings recommended in their official repositories. For the MLP local homophily estimator, we follow a
similar strategy as the GNNs, using a depth of 2 and hidden dimension of 64. Both the GNN and MLP
additionally use ReLU activations and a dropout of 0.2. For OGB-Products, we limit to 20 epochs with a
patience of 5, and limit the neighbor sampling rate to 30 nodes per neighbor. Additionally, we highlight that
the official implementation of GGCN runs out of memory for OGB-Product due to requiring access to the
full graph upon initialization. Even with sparse tensors, this is found to be impossible for the OGB-Product
dataset.

C.2 LOGIN TRAINING

For LOGIN, we use GNN backbones with setups described in the previous section. We then estimate the
uncertainty of nodes by doing five forward passes with random dropout at a 0.3 dropout rate. We take the
top k nodes with k defined by:

k=min(1000,n(1−hv))
to query the LLM, where n is the number of nodes and 1−hv is the heterophily ratio. While LOGIN
originally utilizes the heterophily ratio to query nodes, we find this to be too large for Arxiv23 and causes
large training times. Thus, the 1000 node cap allows us to utilize LOGIN for Arxiv23. We use a pretrained
Vicuna-7B to generate the predictions and explanations. Depending on whether the LLM predict labels
match the ground-truth labels, we either append the explanation to the original node text or prune edges
in the node’s one-hop neighborhood as implemented in LOGIN. We use a similarity threshold of 0.15
for pruning the edges of nodes whose LLM prediction does not match the ground-truth label. Finally, a
pretrained E5-Large model is used to encode the new set of node text that includes the original text and
LLM explanations.

C.3 LLM TRAINING

For the LLM baseline, we fine-tune Qwen3-Embed-8B to serve as an LLM-as-Predictor. To reduce
both memory and compute, we employ parameter-efficient adaptation via Low-Rank Adaptation (LoRA),
inserting adapters into the attention projection layers with a rank of 16 and scaling factor α=32. We also
enable FlashAttention-2 and use bfloat16 precision. During training, only LoRA parameters are updated
while the base model remains frozen.

We use a batch size of 1 with gradient accumulation over 8 steps, yielding an effective batch size of 8.
Training proceeds for a maximum of 10 epochs with early stopping applied if validation accuracy fails to
improve for 2 epochs. Since training on all available nodes is infeasible, we cap the training set at 3,000
randomly sampled nodes. As with the GNNs, we include a one-layer MLP head to project embeddings
into the label space.

C.4 GLANCE TRAINING

When training GLANCE, we first independently train a GNN, LLM, and shallow MLP via the training
processes explained in Section C.1 and Section C.3. Specifically, each backbone model is trained to
optimize the node classification task and is then frozen to ensure its modeling capabilities are maintained
within GLANCE. Thus, when training GLANCE, only the router and the refiner models that fuse the two
pathways are updated. The router is implemented as a logistic regression model to predict the likelihood of
routing, while the refiner is a 2-layer MLP following the same configuration as the MLP local homophily
estimator. Routing decisions are made by selecting the top-K nodes per batch according to the router’s
predicted scores. To gradually reduce reliance on the LLM during training, we decay the routing budget
across epochs t=1,2,... using an exponential schedule:

Kt=round
(
Kend+

(
Kstart−Kend

)
rt−1

)
,

whereKstart equals the batch size,Kend is the ending routing budget for the last epoch, and r is the decay
factor. We setKend=Kstart/4 and r=0.5 during our experiments, requiring significantly less LLM calls
across training.

We train with mixed-precision using bfloat16, and since no gradients are propagated through the LLM, the
memory footprint is greatly reduced, allowing us to use a batch size of 32. For the different datasets, we
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set Kstart equal to the batch size. As in the LLM baseline, we cap the training set at 3,000 nodes. Early
stopping is applied with a patience of 2 epochs. We additionally tune the LLM query cost β∈{0.1,0.2,0.3},
and set the router weight λrouter=1.0 and entropy regularization weight λent=0.01 by default.

D DATASET DETAILS

To characterize the limitations of current heuristics to route, as well as evaluate GLANCE, we utilize
three widely studied TAG benchmarks: Cora (Mccallum et al., 2000), Pubmed (Sen et al., 2008a), and
Arxiv23 (He et al., 2024). Then, for our study on scalability, we utilize Arxiv-Year (Lim et al., 2021)
and OGB-Products Hu et al. (2020), representing a multiple order of magnitude increase in dataset size
compared to typically studied TAGs. These datasets also differ significantly in homophily levels, allowing
us to probe routing decisions under diverse conditions.

• Cora. Cora is a citation network consisting of machine learning papers. Papers share an
edge if they share a citation. The data is from https://github.com/myflashbarry/
LLM-benchmarking (Wang et al., 2025). The canonical feature vector for each paper is
a bag-of-words feature vector. The nodes are categorized into 7 different AI subfields. Cora
possesses the highest global homophily level out of the datasets (h≈0.81).

• Pubmed. Pubmed is a larger citation graph on biomedical articles, where papers share an
edge if they share a citation. The data is from https://github.com/myflashbarry/
LLM-benchmarking. Each article is represented by a TF–IDF word vector, with labels
corresponding to 3 different disease types. Similar to Cora, Pubmed exhibits high global
homophily (h≈0.80), but also posseses a larger pocket of heterophilous nodes (see Figure 1).

• Arxiv23. Arxiv23 is a recently curated citation subgraph of arXiv covering computer science
papers published after 2023, surpassing the knowledge cutoff of flagship models like ChatGPT-
3.5. The data is from https://github.com/XiaoxinHe/tape_arxiv_2023. We
find that the original proposed Arxiv23 dataset has a large number of isolated nodes, which can
confound the evaluation metrics given over half of the nodes do not possess a graph structure. Thus,
we subset Arxiv23 to only include the largest connected component. Each article is represented
by a Word2vec embedding, with each class corresponding to a computer science subfield. Unlike
Cora and Pubmed, Arxiv23 displays a wider array of homophilous and heterophilous edges, with
(h≈0.67), making it a challenging benchmark for neighborhood-averaging GNNs.

• Arxiv-Year. Arxiv-Year is a heterophilous variant of OGB-Arxiv, using the publication year as the
label. The data is from https://ogb.stanford.edu, but with the labels created via quan-
tile ranges (see https://github.com/CUAI/Non-Homophily-Large-Scale/
blob/master/data_utils.py, producing 5 labels. The dataset is roughly an order of
magnitude larger compared to the three previous datasets. For this dataset, we only use enhanced
features from the raw text. Arxiv-year is highly heterophilous (h≈0.22).

• OGB-Products OGB-Products is a large-scale e-commerce TAG provided from the OGB
https://ogb.stanford.edu. The task is to predict the category of e-commerce items,
where items share a link if co-purchased. The dataset is roughly two orders of magnitude larger
than the TAGs seen in previous literature, with 47 classes. We only use enhanced features for this
dataset. OGB-Products is homophilous (h≈0.81)

The explicit number of features, classes, and other key metrics are summarized in the table below. Notably,
the datasets we study contain a wide variety of sizes, densities, and homophily levels.

Table 6: Summary statistics of the datasets used in our experiments.

Dataset #Nodes #Edges Original Feature Dim #Classes Global h

Cora 2,708 5,278 1433 7 0.81
Pubmed 19,717 44,324 500 3 0.80
Arxiv23 19,550 55,350 300 40 0.67
Arxiv-Year 169,343 1,166,243 - 5 0.22
OGB-Products 2,449,029 61,859,140 - 47 0.81
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Table 7: NCS for difficulty-, dv-, and uncertainty-based routing is compared against a random baseline which randomly
routes nodes to the LLM. Higher NCS is better.

Cora Pubmed Arxiv23

10% 15% 20% 10% 15% 20% 10% 15% 20%
Routing Strat. (68) (102) (136) (493) (740) (986) (489) (734) (978)

GCN

Random -0.029 -0.01 -0.029 0.049 0.062 0.062 0.145 0.083 0.092
C-density -0.044 -0.069 -0.074 0.065 0.07 0.065 0.096 0.091 0.092

Degree (dv) -0.029 -0.02 -0.037 0.059 0.059 0.064 0.084 0.094 0.105
Uncertainty -0.147 -0.088 -0.044 0.183 0.15 0.141 0.139 0.144 0.14

GCNII

Random -0.044 -0.069 -0.029 0.041 0.028 0.053 0.078 0.038 0.058
C-density -0.015 -0.049 -0.044 0.041 0.045 0.045 0.08 0.079 0.077

Degree (dv) -0.029 -0.02 -0.029 0.059 0.055 0.053 0.063 0.068 0.078
Uncertainty -0.147 -0.088 -0.051 0.132 0.107 0.117 0.117 0.134 0.127

Table 8: NCS for estimated and true homophily routing strategies with different routing top-k percentages. Higher
NCS is better. Homophily is shown to produce high NCS values, with both the estimated and true variants producing
larger NCS values as k increases.

Cora Pubmed Arxiv23

10% 15% 20% 10% 15% 20% 10% 15% 20%
Routing Strat. (68) (102) (136) (493) (740) (986) (489) (734) (978)

GCN
hv 0.265 0.118 0.081 0.314 0.299 0.266 0.217 0.217 0.212
ĥv -0.059 -0.078 -0.074 0.215 0.199 0.193 0.196 0.192 0.187
d̄v -0.059 -0.069 -0.051 0.055 0.041 0.038 0.02 0.059 0.057

GCNII
hv 0.235 0.098 0.066 0.213 0.2 0.168 0.176 0.159 0.15
ĥv -0.074 -0.069 -0.074 0.154 0.131 0.123 0.137 0.114 0.122
d̄v 0.0 -0.039 -0.037 0.045 0.026 0.022 0.033 0.064 0.056

E ROUTING FOR GCN AND GCNII

In addition to our enhanced results provided in the main section of the paper, we include supplemental
results with routing on the base GCN and GCNII architectures with their original features.

E.1 ROUTING WITH PRIOR METHODS

Similar to the results seen on the enhanced model variants, we see that in Table 7, across Cora, Pubmed, and
Arxiv23, uncertainty-based routing consistently delivers the strongest NCS among the heuristic baselines
for both backbones, with degree and C-density lagging behind (often near or below the random baseline on
Cora). This result confirms our original finding that, when routing into an LLM, predictive uncertainty is
the most reliable heuristic from the prior methods, while the other signals alone can even harm performance.

E.2 HOMOPHILY-BASED ROUTING (ESTIMATED VS. TRUE)

We begin by evaluating the effectiveness of the true local homophily, hv. We can see in Table 8, similar
to the main text, hv achieves the highest NCS across models and datasets. However, when we move to
estimated homophily ĥv, we can see that it follows a similar relative trend. Relative degree d̄v maintains its
relatively weaker performance. These findings further confirm that homophily is a powerful routing signal,
with ĥv conferring robust gains.
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Table 9: Correlation between model uncertainty and (true) homophily.

Dataset Corr(uncertainty, ĥv) Corr(uncertainty, hv)

Cora -0.468 -0.334
Pubmed -0.383 -0.331
Arxiv23 -0.407 -0.381

E.3 CORRELATION BETWEEN HOMOPHILY AND UNCERTAINTY

Table 9 shows a moderate correlation (inverse) between model uncertainty and local homophily across
all datasets. Intuitively, as homophily decreases (i.e., more label conflict in neighborhoods), uncertainty
increases. This empirically links the two most effective routing cues where regions of low homophily tend
to be high-uncertainty. However, this correlation is relatively weak, thus we hypothesize including both
metrics can provide complimentary information, i.e. the signals are not providing redundant information.

E.4 STRATIFIED ANALYSIS ON PUBMED
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Figure 4: Stratified Performance. Performance is
given for local homophily (top) and relative degree
(bottom); bars denote property distributions (right
y-axis).

In Figure 4, we observe consistent trends with those re-
ported on Cora and Arxiv23. Specifically, while perfor-
mance across models converges in the high homophily
regime, LLM models deliver pronounced gains in the
low-homophily and low-degree settings, outperforming
strong GNN backbones by substantial margins. For exam-
ple, LLM-based predictions exceed the next best GNN-
enhanced variant by as much as 10.4% on heterophilous
nodes (hv<0.20). These findings further confirm that the
advantage of LLM augmentation is not dataset-specific,
but generalizes across datasets, highlighting homophily as
a reliable signal for routing.

E.5 HOMOPHILY AND DEGREE INTERPLAY

While homophily and degree display diverging trends be-
tween LLM and GNN training, highlighting their compli-
mentary strengths, it also known that their interplay can
further inform GNN behavior. In Figure 5, we stratify
across both properties for each model and dataset, fur-
ther demonstrating increased divergence in performance
differences. For instance, while Pubmed attains a 10%
difference when looking at homophily in isolation, this
difference can go as high as 3̃0% under the same setting
(e.g., for GCNII (enhanced) on Cora, low homophily and
low degree can experience a significant improvement as
compared to high homophily and high degree).

F ADDITIONAL ABLATION AND SENSITIVITY ANALYSES

In this section, we present supplemental analyses introduced in Section 6.3. We begin by examining the
sensitivity of GLANCE to the parameter K, which controls the number of nodes routed to the LLM at
test time. This analysis reveals how performance changes as the budget for LLM queries is adjusted,
offering insight into the trade-off between predictive accuracy and computational cost. Understanding this
trade-off is particularly important in practice, as practitioners may wish to tuneK to align with real-world
latency or cost constraints. Then, we ablate the routing features used by GLANCE to determine which
signals are most critical for effective routing. By systematically removing each feature, we isolate their
individual contributions to routing accuracy and downstream performance. Together, these supplemental
analyses deepen our understanding of GLANCE’s behavior, confirming both its robustness to different
query budgets and its reliance on principled routing features that target GNN failure regimes.
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Figure 5: Stratified Performance Based on Homophily and Degree. Darker red denotes instances where the LLM
performs best, and darker blue denotes instances where the GNN performs best. Across methods, we see further
deviation in performance as compared to the individual metrics
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Figure 6: Stratified Performance for Different K at Test-Time. We use a batch size of 32 when testing GLANCE,
and use different routing budgets depending on K. We find that performance tends to increase for heterophilous groups
of nodes as we increase K, demonstrating GLANCE’s ability to take advantage of larger routing budgets.

F.1 PERCENT CHANGE DURING ROUTING

As introduced in Section 6.3, we analyze the effect of varying the routing budget K ∈ {8,12,16} on
GLANCE’s performance. Figure 6 reports stratified results across different levels of local homophily,
allowing us to assess how additional LLM queries impact different subpopulations of nodes. We observe
that increasing K generally improves performance on heterophilous and low-homophily nodes, where
the GNN struggles most. Importantly, withK=16, GLANCE consistently achieves the highest overall
performance across routing strategies, demonstrating that allocating a larger query budget enables the
framework to more effectively target the nodes where LLM assistance is most beneficial. This highlights
a practical trade-off where larger K increases computational cost but can yield substantial accuracy
improvements, particularly in challenging structural regimes.

Full Routing. To further illustrate the value of selective routing, we evaluate the setting where every node
in a batch is routed to the LLM (denoted asK=32 for a batch size of 32), allowing the LLM to influence
all predictions. As shown in Table 10, full routing is not necessarily beneficial, reinforcing the need for
GLANCE’s selective strategy. Specifically, while a higher routing budget improves performance on the
most challenging nodes (those in the lowest homophily bins) we also observe a decline in accuracy on
high homophily nodes. Consequently, both Cora and Arxiv23 see reduced overall accuracy despite the
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Table 10: Stratified and Overall Performance for Standard Routing (K=12) and Full Routing (K=32). ∆
denotes the difference from K=12 to K=32. Green indicates improvement, red indicates a decrease. While full
routing can improve heterophilous nodes further, this can come at the cost of performance on homophilous nodes.

Dataset 0.00–0.25 0.25–0.50 0.50–0.75 0.75–1.00 Overall

Cora
K = 12 39.2±2.0 58.3±1.7 78.5±0.5 97.7±0.1 88.7±0.4
K = 32 49.2±2.4 68.9±3.2 76.9±2.1 96.9±0.8 88.3±1.7
∆ +10.0 +10.6 –1.6 –0.8 –0.4

PubMed
K = 12 75.2±2.7 66.4±1.2 89.5±0.2 97.9±0.0 93.3±0.4
K = 32 82.4±0.7 79.2±3.3 91.1±0.9 98.0±0.09 94.1±0.2
∆ +7.2 +12.8 +1.6 +0.1 +0.8

Arxiv23
K = 12 45.7±0.9 62.5±0.1 85.3±0.5 95.2±0.4 82.0±0.1
K = 32 49.7±1.84 65.8±1.2 82.5±1.6 94.0±0.2 81.6±0.4
∆ +4.0 +3.3 –2.8 –1.2 –0.4

Table 11: Routed vs. Non-Routed Accuracy Breakdown for GLANCE. We use K=12 with a batch size of 32.
The accuracy on nodes routed to the LLM by GLANCE, denoted R, is compared with the accuracy on non-routed
nodes, denoted R′. ∆glance captures the performance gap between these subsets. We compare this to a baseline
where we use GCNII, the backbone GNN, to make predictions for R, removing the LLM. ∆gcnii captures the
performance gap between R′ and R under the GCNII backbone, measuring the difficulty of the routed set. The final
row demonstrates how routing to an LLM via GLANCE improves the performance of R as compared to the GCNII
backbone. In both settings, R′ and R are the same sets of nodes. The large positive improvements demonstrate that
GLANCE effectively routes difficult nodes that attain improved predictive performance under an LLM.

Model Metric Cora Pubmed Arxiv23

GLANCE
Non-Routed R′ Accuracy 89.4±1.2 93.6±0.6 83.9±0.7
Routed R to LLM Accuracy 86.8±0.9 92.3±0.5 77.0±0.8
∆glance = LLM Routed – Non-Routed –2.6 –1.3 –6.9

GCNII Routed R to GCNII Accuracy 81.9±1.6 85.9±0.9 72.5±2.4
∆gcnii = GCNII Routed – Non-Routed –7.5 –7.7 –11.4

Improvement from routing to LLM (via GLANCE) vs. GCNII +4.9 +6.4 +4.5

substantially higher query cost. This trend highlights an important trade-off: although LLMs can correct
difficult nodes, indiscriminately routing all nodes dilutes accuracy where the GNN already performs well
and significantly increases computational cost. In contrast, GLANCE’s selective routing (e.g., K=12)
delivers substantial gains on heterophilous nodes while preserving strong performance on high homophily
regions, all with far fewer LLM calls. We also note that while Pubmed does not exhibit as pronounced
of a drop, this result is expected as Pubmed’s node text has been shown to be highly informative, even
enabling LLMs to predict node labels accurately in zero-shot settings (Chen et al., 2024a). However,
despite this capability, the performance gap betweenK=12 andK=32 remains extremely small in the
highest-homophily bin, indicating that the significant increase in computation offers minimal benefit.

F.2 GRANULAR ANALYSIS ON ROUTING PERFORMANCE

In this section, we provide a deeper analysis on the performance differences between routed and non-routed
nodes. Moreover, we offer additional studies to characterize performance under a random router.

F.2.1 PERFORMANCE IMPROVEMENTS FROM LLM ROUTING

To better characterize how GLANCE allocates LLM queries, we decompose its accuracy into two parts: per-
formance on the routed nodes R and on the non-routed nodes R′. Using the same routed node set R, we
also evaluate their accuracy when predictions are made solely by the GCNII backbone. This comparison
enables us to compute the explicit performance gap on R between routing to the LLM via GLANCE
and relying only on GCNII. Through these results, it is possible to attain direct evidence for (a) whether
GLANCE successfully identifies the difficult nodes, and (b) whether invoking the LLM improves their
prediction accuracy. The results are shown in Table 11.
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Table 12: Comparison of Standard vs. Random Routing for GLANCE. Random routing selects nodes randomly
from each batch for LLM refinement, while Standard uses the router learned within GLANCE. The ∆ accuracy rows
report the difference in accuracy for each method across overall, routed, and non-routed accuracy. Positive ∆s (green)
indicate improvement with learned routing over random routing. Across all node subsets, GLANCE’s learned router
achieves higher performance.

Routing Strategy Metric Cora Pubmed Arxiv23

Random
Overall Acc 86.4±1.1 91.4±0.8 80.3±0.9
Routed R Accuracy 83.3±2.3 91.9±1.7 74.8±0.9
Non-routed R′ Accuracy 87.5±0.2 91.2±0.3 82.1±0.8

Standard (as used in GLANCE)
Overall Acc 88.7±0.4 93.3±0.4 82.0±0.1
Routed R Accuracy 86.8±0.9 92.3±0.5 77.0±0.8
Non-routed R′ Accuracy 89.4±1.2 93.6±0.6 83.9±0.7

Overall +2.3 +1.9 +1.7
Routed R +3.5 +0.4 +2.2∆ Accuracy (Standard – Random)
Non-routed R′ +1.9 +2.4 +1.8

Findings. We compare the accuracies of the routed nodes R, i.e., those selected by GLANCE’s router,
from predictions made using the GCNII backbone and the LLM. Across all datasets, invoking the LLM
yields substantially higher accuracy. In particular, GLANCE improves performance on R by +4.9% (Cora),
+6.4% (PubMed), and +4.5% (Arxiv23), showing a significant reduction in accuracy gap between R and
R′. We also highlight that, under GCNII alone, routed nodes exhibit a large accuracy drop relative to R′

(up to –11.4%), indicating that GLANCE is correctly identifying difficult node subset. If the router was
not correctly identifying difficult nodes, the performance of routed nodes R and non-routed nodes R′

would be comparable. Together, these findings demonstrate that GLANCE’s routing policy is effective at
choosing nodes that are not only challenging, but also benefit from invocation of the LLM.

F.2.2 RANDOM ROUTING PERFORMANCE

To contextualize the routing improvements further, we evaluate a random routing baseline that, for the
same query budget (K=12), selects nodes at random while keeping all other components of GLANCE
unchanged. This experiment serves as a natural lower bound on routing quality and serves as another
indicator to whether GLANCE is able to identify difficult nodes. We measure the difference in overall,
routed, and non-routed performance between the standard and random routing schemes in Table 12 where
more positive is better. We perform 3 runs per experiment and report standard deviations.

Findings. We first compare GLANCE’s learned router (denoted Standard) with a random router. When
utilizing a random router, we find that performance degrades across all metrics and datasets, with the
overall accuracy dropping by up –2.3 points. More importantly, we find that the accuracy for R under
random routing is consistently poorer as compared to the learned router, showing that randomly selected
nodes tend to not benefit as much from LLM refinement. Additionally, non-routed accuracy also decreases
under random routing, indicating that the random policy can mistakenly route nodes that the base GNN
would classify correctly, but the LLM would be less effective on. Together, these results reinforce that
GLANCE’s lightweight routing reliably identifies semantically and structurally challenging nodes, yielding
performance gains on the regions where GNNs can fail.

F.3 ROUTING FEATURE SENSITIVITY

While each routing feature is motivated either by prior work or our analysis in Section 4.1, we quantify their
contribution through an ablation study. For each dataset, we retrain GLANCE while removing each feature
in turn and measure the resulting change in accuracy. Figure 7 reports the performance drop relative to the
full model, showing that overall accuracy consistently declines when any feature is removed. Notably, the
impact varies across datasets where no single feature dominates universally, underscoring that different
structural signals matter in different settings. This trend is further evident in Figure 8, where, within
stratified bins, removing a single feature produces substantial degradations in performance.
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Table 13: Per-bin accuracy across homophily levels for GLANCE trained with different β strength. Larger β
requires routed nodes to have more substantial impact. Increasing β tends to systematically increase performance on
heterophilous nodes while retaining high homophilous node performance.

Cora Pubmed Arxiv23

β 0.00–0.25 0.25–0.50 0.50–0.75 0.75–1.00 0.00–0.25 0.25–0.50 0.50–0.75 0.75–1.00 0.00–0.25 0.25–0.50 0.50–0.75 0.75–1.00

GLANCE

0.0 38.1 57.1 77.8 97.4 71.7 68.0 89.9 97.6 42.5 60.3 87.0 95.1
0.1 39.2 58.3 78.5 97.7 74.0 69.5 89.4 97.8 45.3 62.5 86.2 94.9
0.2 39.8 57.1 78.8 97.4 74.5 66.4 88.9 97.9 45.4 62.2 85.4 95.0
0.3 43.1 57.1 77.8 97.4 75.2 66.4 89.5 97.9 45.7 62.5 85.3 95.2

F.4 DIFFERENT COST PENALTIES

In this section, we provide an additional sensitivity analysis on β, GLANCE’s penalty term. Increasing
β, the margin a routed node must surpass for the LLM to be selected, systematically re-allocates LLM
usage toward the hardest, most heterophilous nodes. As shown in Table 13, raising β improves accuracy
in the lowest-homophily bin across Cora (from 38.1→43.1), Pubmed (from 71.7→75.2), and Arxiv23
(from 42.5→45.7), while leaving the most homophilous bin effectively unchanged and producing only
small drops in the intermediate bins. In practice, the router spends fewer calls on marginal gains in the
intermediary homophily levels where signal is weaker and concentrates budget where the GNN can be
most improved upon.This behavior makes β a simple, yet effective, knob to trade-off homophilous and
heterophilous nodes. When leveraging GLANCE, we recommend tuning β on validation metrics in the
range (0.1-0.3) to determine the most effective value.

G SCALING GLANCE TO LARGER DATASETS

Having evaluated GLANCE’s performance on small- to medium-scale TAG benchmarks, we now turn to
scalability. A concern with LLM–GNN fusion is whether additional components introduced by a method
introduce significant overheads, especially when moving to much larger datasets. To address this, we
first break down the runtime of GLANCE into its major components: (i) GNN computation, (ii) LLM
computation, and (iii) GLANCE-specific modules, namely the router, feature generation, and refinement
stages. As shown in Figure 9, the results reveal a clear trend where the LLM dominates the overall runtime,
the GLANCE-specific components are extremely lightweight, constituting only a negligible fraction of
total cost. Both routing and refinement involve simple feed-forward operations over low-dimensional
features, while feature generation is largely pre-computed within the pipeline. This finding has two key
implications. First, it validates our design choice to offload expensive reasoning exclusively to the LLM,
while keeping routing and refinement efficient. Second, it demonstrates that scaling GLANCE to larger
graphs is primarily limited by the LLM’s cost, rather than by the fusion mechanism itself. We therefore
use this as motivation to apply GLANCE to the substantially larger dataset OGB-Product seen in Table 5,
showcasing its ability to scale while retaining efficiency and accuracy.
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Figure 7: Ablation Study Over Routing Features - Overall Performance. Each plot denotes the performance
changes, relative to full GLANCE performance, when training without one of the routing features. Performance
typically decays across datasets and features, highlighting the benefit of each feature for GLANCE’s robust performance.
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Figure 8: Ablation Study Over Routing Features - Stratified Performance. Each set of bars denotes the stratified
performance of GLANCE when training without one of the routing features. The gray bar denotes full GLANCE
training. We find that the largest performance drops occur in the heterophilous regions, highlighting that GLANCE is
specifically targeting these difficult nodes.
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Figure 9: Runtime breakdown of GLANCE. LLM computation dominates overall runtime, while GLANCE-specific
modules add only negligible overhead, confirming the framework’s scalability to larger datasets.

Computational Cost. We analyze the computational complexity of GLANCE by isolating the costs of its
three key components: (1) the routing features, (2) the router, and (3) the refiner. As GLANCE operates on
top of frozen GNN and LLM encoders and is agnostic to their internal architectures, we do not define a
specific GNN or LLM cost. Instead, we focus on the GLANCE-specific elements. For each component,
we denote the cost of a forward and backward pass, when applicable, by T fwd and T bwd, respectively.

Notation. LetB denote the batch size, k the routing budget per batch, p the dimensionality of the routing
feature vector, c the number of classes for a dataset, and dmax the maximum degree of any node in the
batch. We also define the following per-node costs:

• CGNN: cost of applying the frozen GNN encoder to one node,

• CLLM: cost of an LLM forward pass for one routed node,

• CQ: cost of applying the homophily MLP to one node,

• Cref: cost of applying the refiner MLP to one routed node.

Building Routing Features (Per Batch). Routing features consist of: (1) GNN embeddings, (2) GNN
uncertainty, (3) degree information, (4) original node features, and (5) homophily estimates. Using the
above per-node costs, this results in the per-batch cost:

T fwd
feat =O

(
BCGNN

)
+O

(
BRCGNN

)
+O(B)+O(B)+O

(
B(CQ+dmaxc)

)
,

whereR is the number of stochastic GNN passes used for uncertainty.

Router. The router applies a linear transformation to the features and selects the top-k nodes to route:

T fwd
router=O(Bp)+O(BlogB), T bwd

router=O(Bp).

Selective LLM Queries. GLANCE queries the LLM for the k routed nodes (with no backward pass):

T fwd
LLM=O(kCLLM).
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Refiner MLP. For each routed node, GLANCE applies the refiner MLP:

T fwd
refiner=O(kCref), T bwd

refiner=O(kCref).

Overall Per-Batch Complexity. Combining all components yields:

T batch
GLANCE=O

(
B
(
(1+R)CGNN+CQ+dmaxc+p+logB

)︸ ︷︷ ︸
GNN & Routing Feature

+k
(
CLLM+Cref

)︸ ︷︷ ︸
LLM and Refiner

)

Interpretation. GLANCE’s complexity is comprised of two core terms: (1) the full batch processing that
creates routing features leveraging the GNN, and (2) the LLM and refiner computation applied only to the
k routed nodes. GivenCLLM far exceeds the other terms (as shown in Figure 9), one can scale up the GNN,
router, or refiner without incurring large relative increases in runtime. Moreover, because training uses a
policy-gradient-style optimization procedure, the cost differential between training and inference is small
as the backward pass is only on the cheaper components of the pipeline.
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