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1 Introduction1

Mechanistic models, used for modeling real-world processes in biology, chemistry and physics [14,2

2, 15], are in the form of a system of differential equations (DE). If correct values for the initial3

conditions and DE parameters are known, the DE can be used to interpolate between experimental4

datapoints, and predict the future state of a dynamical system. Many recent applications use NNs5

augmented with prior knowledge in order to learn underlying DE models1 from data [5, 13, 9, 12,6

10, 8]. However, acquiring sufficient data to fit these values accurately using NNs is difficult. A7

method that can function in low-data regimes by leveraging the known structure of the model is8

needed.9

Two prominent NN-based methods that learn DE models from data are physics-informed neural10

networks (PINN) [13], and universal differential equations (UDE) [12]. In UDE, each unknown11

component of the DE model is approximated by a NN, and a hard DE constraint is employed. That12

is, the best-fit DE is satisfied at all times during training. However, UDEs are not robust to noise,13

require a lot of data, and SINDy, as employed in [12] does not succeed in finding the true mechanistic14

model reliably. PINN assumes the form of the true DE and fits its parameters via a soft constraint15

(relaxing the requirement that NN should satisfy best-fit DE exactly), which is added to the NN16

loss function as the PINN loss. A drawback of PINNs is that the structure of the DE model must17

be determined in advance, and there is no way to learn its unknown components using the method.18

Additionally, as iterative optimization is computationally expensive, and PINN loss can fail on stiff19

DEs [17].20

Our approach bridges the limitations of both PINN (cannot be used when the structure of the DE21

is not fully known) [13] and UDE (not robust to noise and requires lots of data) [12]. To address22

this, we replace the hard constraint of the UDE with that of PINN loss, which allows the approach to23

learn both parameters and unknown components of the DE model from data. This approach is robust24

to noise and performs well in low-data regimes. Additionally, using the AI Feynman algorithm [16]25

yielded good results in identifying the underlying DE model.26

2 Method27

Suppose u⃗(x⃗, t) ∈ Rm for x⃗ ∈ Rd. Let N be a (potentially non-linear) differential operator (that28

is, N is a function not only of u⃗, x⃗, and t but also of any derivatives of u⃗ with respect to x⃗. Then29

consider time t in the domain [0, T ] ⊂ R along with a d dimensional, bounded spatial domain30

Ω ⊂ Rd where ∂Ω denotes the boundary of Ω. We then consider problems of the form31

d

dt
u⃗(x⃗, t) = N [u⃗](x⃗, t), t ∈ [0, T ], x⃗ ∈ Ω

1The (underlying or true) DE model of a process refers to the DEs that produced the experimental data.
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subject to initial and boundary conditions32

u⃗(x⃗, 0) = u⃗0(x⃗), x⃗ ∈ Ω, β[u⃗](x⃗, t) = 0, x⃗ ∈ ∂Ω, t ∈ [0, T ]

where β is a (potentially non-linear) differential operator containing derivatives with respect to x⃗.33

Further, suppose N [u⃗](x⃗, t) = NK [u⃗](x⃗, t) + F [u⃗](x⃗, t) where NK is some differential operator34

with known functional form and F represents some unknown, target differential operator. Similarly,35

suppose β = βK + B for some known βK and some unknown B. Finally, one can consider Ω = ∅,36

in which case the underlying differential law is governed by an ordinary differential equation (ODE).37

In this situation, there is no boundary condition and so no need for β (or, equivalently, β is the empty38

function).39

Suppose we have n data points D = {(tk, x⃗k, u⃗k)}n−1
k=0 where u⃗k = u⃗(tk, x⃗k) + ϵk where ϵk is40

some noise term (potentially ϵk = 0). We will use this measured data to fit the parameters of (up to)41

three neural networks. The first network, F (u⃗; θF ), will approximate the target differential operator42

F [u⃗]; the second network, U(x⃗, t; θU ), will approximate the value of u⃗(x, t); and the third network,43

B(u⃗; θB), will approximate the value of B[u⃗], the unknown target for the boundary condition. For all44

these networks we consider the architecture to be fully connected networks activated by the sigmoid45

function. To fit these networks, we consider another two sets of collocation points: these sets are46

XP = {(x⃗k, tk)}nP−1
k=0 from the interior of the domain and XB = {(x⃗k, tk)}nB−1

k=0 from the bound-47

ary of the domain. These sets correspond to locations in the space-time domain where we enforce48

that our network U satisfies the underlying differential equation and the boundary conditions.49

To calculate the gradients for fitting these networks, we consider the loss function50

L(θU , θB , θF ) = LM (θU ) + LB(θU , θB) + LP (θU , θF ).

The first component of the loss is the MSE loss. This loss is the difference in MSE between the51

measurement value of u⃗ ≈ u⃗k from the input data with the neural network approximation of u⃗ ≈52

U(x⃗k, tk), evaluated at the same space-time location. The second component of the loss is the53

boundary loss. This loss is the mean squared value of the approximated value of the boundary54

condition and is given by55

LB(θU , θB) =
1

nB

∑
(x⃗k,tk)∈XB

(βK [U ](x⃗k, tk; θU ) +B(U(x⃗k, tk; θU ); θB))
2.

The final component of the loss is the PINN loss. This loss is the mean squared error between the56

value Ut and the value NK [U ] + F (U).57

LP (θU , θF ) =
1

nP

∑
(x⃗k,tk)∈XP

(NK[U ](x⃗k, tk; θU ) + F (U(x⃗k, tk; θU ); θF )− Ut(x⃗k, tk; θU ))
2.

This loss function is quite similar to the loss function for PINNs given in [13], however here we58

insert two additional neural networks into the loss function corresponding to the unknown parts of59

the underlying dynamics in the boundary conditions and the differential equation. To compensate60

for these additional parameters, we extend the first component of the loss to include more than just61

initial data (but solution data as well). In this way, D could contain data from the initial condition,62

data from the boundary, or data from the interior of the domain.63

Practically, one way to select XP is to simply choose nP and use Latin hypercube sampling to64

select nP points in the domain. A similar construction works for selecting XB . In this way, we65

are sampling the domain in a space-filling manner. In practice, increasing n requires acquiring data66

from a (potentially noisy) experiment. However, increasing nP or nB only costs extra computing67

power, as the data in XP and XB are just the x⃗-t points. In this regard, increasing nP or nB is68

effectively “free” from a modeling point of view (within reason), and lends the method increased69

accuracy without the need to acquire more data. As can be seen in the Results section, typically70

n ≪ nP and n ≪ nB .71
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3 Results72

3.1 Lotka Volterra73

We begin our analysis by testing our method on the Lotka-Volterra (LV) model [3] of predator-prey74

interactions. The DE is formulated as follows:75

dx

dt
= αx− βxy

dy

dt
= −δy + γxy .

We take the known portion of the differential equation as NK[U ] = [αx,−δ y] for known parameters76

α and δ, and seek to learn F = [F1, F2] ≈ [−β x y, γ x y] from data only, without knowing the target77

form and without knowing β and γ. To generate the synthetic data, the ODE is solved with the same78

parameters as in [12], and Gaussian noise is added to xi and yi proportionally to their means. For79

details see Appendix A.80

First, we demonstrate our approach on noise-free data (Table 1) and data with ϵ = 5 × 10−3 noise81

(Table 2) for various values of n and nP . We want to show how the hard-to-acquire data (in D,82

of size n) can be augmented by taking more collocation points (XP of size nP ) which require83

no experiments/measurements and comes at only the cost of increased computing power. We see84

that, in contrast to a standard PINN approach, we need to provide more data than just the initial85

condition. However, even with very sparse measurement data we can acquire a good discovery by86

only increasing the number of collocation points. The additional benefit gained from increasing the87

collocation points is best realized when there is already ample enough experimental data for the88

algorithm to leverage.89

n
nP 102 103 104

1 2× 101 2× 101 2× 101

5 9× 10−4 1× 10−3 9× 10−4

10 2× 10−4 4× 10−5 5× 10−6

Table 1: Noise Free Data

n
nP 102 103 104

1 2× 101 2× 101 2× 101

5 6× 10−2 4× 10−3 5× 10−3

10 1× 10−3 6× 10−4 8× 10−4

Table 2: Noisy (ϵ = 5× 10−3) Data

Table 3: Tables demonstrating the MSE between F and the true hidden target after training for
various values of n and nP .

Next, we compare our method’s performance to the UDE method. We test the two methods on90

noiseless sparse data (Fig 1a), and on noisy data (Fig 1b). The error is computed with respect to the91

true interaction. At minimal noise level the UDE approach and PINN approach perform similarly,92

and for the densest data UDE slightly outperforms PINNs. Although increasing either noise or93

sparsity degrades the performance of both methods, the PINN method consistently attains a lower94

MSE compared to the UDE method as noise or sparsity increases.95

Finally, AI Feynman symbolic regression2 is run on the neural network output from both our ap-96

proach and the UDE approach. In all cases, the NNs approximating F were given the training data97

as input. Then each NN’s output was subsequently given to AI Feynman to find the best functional98

form. This data is presented in Table 4. In cases of both sparse and noisy data, AI Feynman correctly99

recovers the hidden interaction terms more often for our method than it does for the UDE method.100

If a formula is recovered for both methods, the one recovered for the PINN method is almost always101

more accurate.102

The terms γ x y and −β x y in the LV equations correspond to the predator’s uptake function in the103

ecology model. This represents the predators’ feeding habits as a function of prey population and104

its resulting effect on both the prey population and the predator’s population. The actual form of105

these functions can take various forms in predator-prey models (see, for instance, [6, 4]). While we106

2An algorithm which searches for the mathematical model that best fits a dataset, balancing model fit and
simplicity
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spacing noise level F1 (UDE) F1 (PINN) F2 (UDE) F2 (PINN)
0.1 0 -0.901 (2.8e-7) – 0.802 (1.1e-6) 0.797 (2.5e-6)
0.2 0 – – 0.797 (3.4e-6) 0.799 (3.8e-7)
0.3 0 – -0.897 (4e-6) – 0.798 (1.9e-6)
0.4 0 – -0.888 (8.2e-5) – 0.797 (5.2e-6)
0.5 0 – -0.889 (8.9e-5) 0.760 (1e-3) –
0.6 0 -0.892 (4e-3) -0.890 (1e-5) – 0.800 (1e-32)
0.1 8e-3 -9.25 (1.8e-3) -0.906 (1e-5) – 0.798 (3e-5)
0.1 1e-2 – -0.911 (3.45e-5) 0.791 (2.3e-5) 0.777 (1.5e-4)
0.1 3e-2 – -0.960 (1e-3) – 0.777 (1.5e-4)
0.1 5e-2 – – – 0.740 (1.1e-3)
0.1 8e-2 – – – –
0.1 1e-1 – – 0.887 (2e-3) –

Table 4: Coefficients (with MSE) recovered by AI Feynman from the approximations F1 and F2,
comparing over datasets (rows) and method of finding F1 and F2 (columns). True coefficients are
-0.9 for F1 and 0.8 for F2. A dash indicates AI Feynman did not recover the functional form Cxy.
The best performance is in bold.

initially modelled this as two unknown, decoupled functions F1 and F2 and learned them indepen-107

dently, we could also have modeled them by a single function with an additional learned parameter108

as a scaling factor. That is, we could take F1 = −ϕF2 and then only explicitly learn F2 and a109

single parameter ϕ. This results in regressions that are near identical to the ones presented above,110

but showcases an important modelling methodology that our method is amenable to and, for more111

complicated models than LV, may be necessary in order to achieve a high-quality regression.112

3.2 Viscous Burger’s Equation113

Finally, our method is easily applied to PDEs (as in the original PINN implementation). Here114

we present the discovery of both the solution to the PDE where the underlying hidden dynamics115

of the operator were partially hidden. This reconstruction used only noisy (ϵ = 5 × 10−3) data116

obtained from two time points (the initial condition, t = 0, and a later time at t = 0.5). While this117

method can be used to discover the form of the boundary condition as well, here we assume that the118

homogeneous Dirichlet boundary conditions are known. The PDE in question is119

∂u

∂t
= −u

∂u

∂x
+ ν

∂2u

∂x2
, ν =

1

1000π
, u(x, 0) = − sin(π x)

Here we took NK = ν uxx and let the algorithm learn the hidden term −uux. To do this, we gave120

the F network u, ux, and ut as inputs. This represents an inductive prior where we are assuming that121

the hidden term depends on first order and lower derivatives of the solution. In our approach, such122

a prior is necessary (that is, the algorithm cannot learn what order of derivatives to include or not123

include, it can merely choose which inputs presented to it to utilize). For collocation data we used124

nP = 104 and nB = 102 points sampled from the appropriate parts of the domain [−1, 1] × [0, 1]125

via Latin hypercube sampling. The PDE solution was reconstructed with MSE of 3× 10−4 and the126

hidden term was discovered with MSE of 2× 10−2. The resulting solution is visualized in Figure 4.127

4 Conclusion128

In conclusion, our approach is able to recover, with a great degree of accuracy, the symbolic, func-129

tional form of hidden terms within a differential operator using very sparse measurements of noisy130

data by utilizing a modification of PINNs. This approach is robust to both noise and sparsity of the131

noisy measurement data by increasing the number of collocation points (an operation that doesn’t132

require any additional experimentation, just stronger compute capacities). This approach can be133

applied to discovering the functional form of an unknown ordinary differential equation (ODE) as134

well as both the functional form of a partial differential operator in a partial differential equation135

(PDE) and unknown terms in the boundary condition of a PDE. Although PINNs have been noted136

to perform sub-optimally on stiff equations without modification [7, 11], we have noted promising137

results in this direction. More investigation is needed, however.138
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A Appendix186

(a) Sparse data (b) Noisy data

Figure 1: Mean squared error (MSE) of the recovery of the true interaction, comparison between
UDE and PINN method. The spacing parameter determines how much time passes between data-
points, but the overall time interval [0, 3] remains the same.

To generate the synthetic data for the LV equations, α, β, γ, δ were fixed at (1.3, 0.9, 0.8, 1.8) re-187

spectively, with initial conditions at (x0, y0) = (0.44249296, 4.6280594) just as in [12]. The time188

interval was chosen as [0, 3] and stayed the same throughout every LV experiment. An ODE solver189

was used to generate data satisfying the LV equations. This yields a set of points {ti, xi, yi}. Then,190

Gaussian noise (sampled from the standard normal distribution) is added to each xi and yi. Given a191

particular noise level ϵ, the Gaussian noise added to the data follows:192

(xi)noise = xi + ϵ · x̄ ·N(0, 1)

(yi)noise = yi + ϵ · ȳ ·N(0, 1)

where x̄ denotes the mean of xi over all i, and similarly for y. Similarly, to generate the synthetic193

data for the Burgers’ equation parameters were fixed and a solution was generated using FEniCS [1].194

We then discretized the FEniCS solution to a grid of 256 equispaced x-points and 100 equispaced195

t-points in the domain. This data was then perturbed to add noise at the level of ϵ = 5 × 10−3 as196

described above.197

Figures 2 and 3 show the surrogate solution and hidden terms as recovered by the UDE and PINN198

methods. The noise level of the noisy data was set at 1e-1, and for the noiseless sparse data, there199

were 5 points each 0.6 apart. It is clear that the PINN approach is quite robust to noise, but performs200

well in low-data regimes. The UDE approach performs reasonably on sparse data, but is not robust201

to noise.202
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(a) Noisy data (b) Sparse data

Figure 2: UDE method performance

(a) Noisy data (b) Sparse data

Figure 3: PINN performance
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Figure 4: The reconstructed solution of Burgers’ equation. The two vertical dashed white lines
indicate the noisy experimental data that were sampled for the algorithm.
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