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Abstract
The scaling law for large language models
(LLMs) depicts that the path towards machine
intelligence necessitates training at large scale.
Thus, companies continuously build large-scale
GPU clusters, and launch training jobs that span
over thousands of computing nodes. However,
LLM pre-training presents unique challenges due
to its complex communication patterns, where
GPUs exchange data in sparse yet high-volume
bursts within specific groups. Inefficient resource
scheduling exacerbates bandwidth contention,
leading to suboptimal training performance. This
paper presents Arnold, a scheduling system sum-
marizing our experience to effectively align LLM
communication patterns with data center topol-
ogy at scale. An in-depth characteristic study is
performed to identify the impact of physical net-
work topology to LLM pre-training jobs, and a
scheduling algorithm is developed to effectively
align communication patterns with the physical
network topology in modern data centers. In pro-
duction training, our scheduling system improves
the end-to-end performance by 10.6% when train-
ing with more than 9600 GPUs, a significant im-
provement for our training pipeline.

1. Introduction
Pre-training large language models (LLMs) at scale is a
highly resource-intensive process that requires vast com-
putational infrastructure. The performance of LLM train-
ing is fundamentally dependent on three factors: dataset
size, computational power, and model parameters (Kaplan
et al., 2020). To meet these demands, companies continu-
ally enhance their computing infrastructure by incorporat-
ing cutting-edge GPUs and redesigning network architec-
tures (imbue team; Qian et al., 2024; Wang et al., 2024).
However, LLM pre-training presents unique challenges that
distinguish it from conventional deep learning tasks — in
this paper, we explore how to develop an efficient resource
scheduling mechanism to support the LLM training work-
flow to accommodate the resource-intensive and complex

Figure 1: Communication characteristics of LLMs training.

communication patterns in modern data centers.

Existing cluster schedulers (e.g., (Weng et al., 2022; 2023;
Xiao et al., 2018; 2020; Choudhury et al., 2024; Cao et al.,
2024)) fail to integrate network topology-aware scheduling
specific to LLM workloads. The primary limitation is their
lack of awareness of the high-volume, yet sparsely active
distributed communication patterns inherent in LLM train-
ing. For example, Figure 1 (a) indicates that 30% - 50%
of the time is spent on communication during production
LLM training, but studies (Wang et al., 2024) show that
more than 99% of the GPU pairs do not exhibit direct traffic,
with data exchange occurring exclusively within specific
communication groups, as shown in Figure 1 (b). Mean-
while, modern GPU clusters use multi-tier, fat-tree network
topologies (Al-Fares et al., 2008) (Figure 3), and inefficient
job placement leads to significant bandwidth loss and com-
munication overhead. Current schedulers are not designed
to optimize network-aware placement at the scale required
by LLM pre-training jobs (LPJs).

To enable effective scheduling of LPJs in data centers, we
identify two key challenges that limit the effectiveness of
existing cluster schedulers.

• Misalignment of communication patterns with data
center topology. Schedulers optimize GPU locality
through bin-packing but lack awareness of LPJ communi-
cation structures. As shown in Figure 2, even if the sched-
uler packs an 4-node (32 GPUs) LPJ inside 2 leaf switches,
the communication groups may still not be aligned, be-
cause both DP and PP groups engage cross-spine-switch
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Figure 2: Alignment of communication groups and data center topology.

communication that has a longer distance. This misalign-
ment stems from the scheduler’s lack of awareness of the
LPJ’s communication structure at scheduling time, limit-
ing its ability to allocate GPU resources according to the
job’s communication patterns.

• Unaddressed trade-offs across communication dimen-
sions. Figure 2 shows two potential alignments of the
LPJ, with one prioritizing DP communication and the
other prioritizing PP. This presents a fundamental trade-
off between the two, because DP and PP are orthogonal
parallelism strategies widely used in LLM training. Each
GPU participates in both a DP and an PP group, making it
impossible to perfectly align both communication patterns
simultaneously.

To address the challenges, we present Arnold, a system
that co-designs training frameworks and cluster scheduling,
effectively aligning LPJs with modern data center network
topology. To optimize training performance, we performed
an in-depth characterization study to investigate the impact
of physical network topology on LLM training. Based on
the observation, we devise a scheduling algorithm to reduce
the maximum weighted spread of communication groups for
LPJs. We also develop a resource management policy that
manages job queues to reserve nodes for imminent LPJs.

Through trace-based experiments, we show the effectiveness
of our scheduling algorithm by benchmarking against other
SOTA algorithms. We also perform a production run with
9600+ GPUs and show our proposed system improves the
end-to-end training performance by 10.6%.

2. Design
Data center topology. Figure 3 gives an overview of our
HPC cluster, which is similar to other modern data centers.
More than 2000 nodes are interconnected by three layers
of switches, forming a CLOS-like topology (Clos, 1953).
The leaf switch is denoted as s0, which interconnects nodes
within the same rack. Then, several s0 switches link to a
spine switch (s1), forming a minipod of nodes. Finally, s1
switches link to core switches, enabling communication be-
tween minipods. The switches in each layer have 32 ports
both for uplinks and downlinks. The greatest number of
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Figure 3: Data center topology.

hops occurs when the nodes of two different minipods com-
municate with each other. The compute nodes are equipped
with 8 H800 GPUs, each of which is connected to an Infini-
Band (NVIDIA, a) NIC. GPUs within a node are connected
by high-bandwidth links such as NVLink (NVIDIA, b) with
a bandwidth of 400Gbps, while inter-node communication
is achieved via the InfiniBand network.

Characterization. We proportionally down-scaled a pro-
duction model and ran the workload with 96 GPUs, span-
ning 2 minipods, to further understand the impact of network
topology on LLM training.
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Figure 4: Comparison of three different placement strategies
for two types of LLMs.

Figure 4 shows the throughput of the LPJ under the three
different placement strategies. The throughput becomes sta-
ble after 200 steps except for a slight fluctuation around the
550th step due to garbage collection. PP-aligned placement
consistently outperforms the other two, demonstrating that
prioritizing PP group communication leads to improved per-
formance. The average improvement for the dense model
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and the MoE model is 2.3% and 1.8% respectively. For the
dense model, we also observe that the PP communication
dominates the communication overhead, since prioritizing
the placement of DP groups leads to no speedup. For the
MoE model, reducing the spread of both the DP and PP
groups contributes to performance gains, with the optimiza-
tions of the PP group providing more improvements.

Figure 5 shows that if we scale the model size by adding
more layers, the performance improvement continues to
increase. We attribute this to communication being the
primary performance bottleneck, with larger models further
amplifying communication volume. Thus, more pronounced
benefits are obtained as the model size increases.

We further examine the sensitivity of training performance
to intra-minipod network topology by varying node place-
ment within a single minipod. For a dense 24B parameter
model, the maximum observed performance variation is
0.3%, and the impact is negligible for other models. Since
the communication overhead of a group is typically domi-
nated by the slowest link, and LPJ communication groups
frequently span multiple minipods, we conclude that train-
ing performance is insensitive to intra-minipod topology.
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Figure 5: Performance improvement by scaling model sizes
under the optimized alignment.

We repeated the characterization experiment in another GPU
cluster, and found that the best placement can be subjected
to model sizes and GPU types. Since LPJs are typically
scheduled in advance and deployed for a long duration,
it is essential to perform a characterization beforehand to
identify communication bottlenecks within the group. This
enables the optimization of placement strategies accordingly
and balances the trade-off.

Workload representation. Given a user-specified number
of GPUs and degree of hybrid parallelism of an LPJ, job
scheduling systems enqueue the job and perform resource
scheduling to find the best placement in our GPU cluster.
Arnold represents an LPJ by a communication matrix, where
a row represents a PP group and a column represents a DP
group. Formally, given a job specification including the total
number of GPUs, the degree of PP, TP, and Arnold computes
the size of the communication matrix using Equation 1.

DP = #GPUs/TP/PP

#row = DP/(8/TP )

#col = PP

(1)

Scheduling algorithm. We identify that communication
groups are homogeneous and synchronous for LPJs because
nodes are gang-scheduled and must synchronize their gra-
dients at the end of a training step. As a result, each PP
group always starts approximately at the same time and per-
forms the same amount of computation and communication.
Similarly, DP groups perform gradient synchronization at
the same time. The characteristics allow us to simplify the
scheduling objective function by coarsening a scheduling
unit as a communication group. We derive the following
scheduling algorithm:

MIN [α
∑
j

(yj) + βT ] (2)

s.t. ∀i :
∑
j

sij ≤ T (Max Spread) (3)

∀j :
∑
i

pij ≤ cjyj (Capacity Const.) (4)

∀i :
∑
j

pij = 1 (Allocation Const.) (5)

∀i, j :pij ≤ sij (Minipod Selection) (6)
∀j :yj ∈ {0, 1} (7)

∀i, j :sij ∈ {0, 1}, pij ∈ [0, 1] (8)

Where yj indicates whether the j-th minipod is used and cj
is the normalized capacity of the minipod, updated dynami-
cally based on the number of available nodes. sij denotes
whether the i-th communication group is allocated to mini-
pod j, pij denotes the percentage of the i-th communication
group allocated to minipod j. T is an introduced auxiliary
variable that allows us to minimize the maximum spread
of communication groups. The weight parameters α and β
represent the affinity that controls the trade-off between DP
and PP groups, and α+β = 1. Overall, minimizing T effec-
tively consolidates communication groups into the smallest
possible number of minipods, while

∑
j(yj) controls the

spread of the other communication group.

The objective function can be solved using off-the-shelf
mixed-integer programming (MIP) solvers efficiently for
online scheduling (Bolusani et al., 2024). After solving the
MIP, we assign continuous rank indices to nodes belonging
to the same minipod to reduce cross-switch communication
within each communication group.
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Figure 6: Simulation expriments.

3. Experiments
We evaluate Arnold using both simulation and real-cluster
experiments. To benchmark scheduling algorithms cost-
effectively, we develop a simulator, as direct evaluation
on production clusters is prohibitively expensive. After
identifying the highest-performing scheduling algorithm
through simulation, we deploy it on our production cluster
to validate its effectiveness under real workloads.

Simulation experiment. We use the sum of the maximum
spread of DP and PP group as the metric. We compare the
scheduling algorithm with the following baselines.

1. Best-fit (Panigrahy et al., 2011) assigns the nodes to the
minipod with the least remaining resources.

2. Random-fit (Weng et al., 2023) assigns nodes to
minipods randomly such that the assignment is balanced.

3. GPU-packing (Weng et al., 2022; Xiao et al., 2018) packs
multiple jobs to the same GPU. We modify the algorithm
to pack multi-GPU jobs to a minipod to satisfy the net-
work topology semantics.

4. Topo-aware (Amaral et al., 2017) recursively bi-
partitions the physical graph and maps the job graph
to the sub-graphs (Hierarchical Static Mapping Dual Re-
cursive Bi-partitioning (Ercal et al., 1988)). The graph
bi-partitioning is implemented by the Fiduccia Matthey-
ses algorithm (Fiduccia & Mattheyses, 1982).

Table 1: Benchmark setting. Network topology {x}, {y}
represent {x} minipod and {y} nodes in total, and the num-
bers in job configurations are the degree of DP, TP, PP. The
scheduling unit is the PP group.

Settings Network Topology Job Configs
(i) 3, 18 12, 4, 2
(ii) 5, 438 24, 4, 8
(iii) 11, 1019 46, 8, 8

We use 3 settings in the benchmark as listed in Table 1,
where the network topology is taken from a subset of our
GPU cluster, and the job configurations are representative
for small, medium, large jobs respectively. We also vary the
value of α to investigate different degree of affinity.
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Figure 7: Cluster experiments

Figure 6 compares the performance of different algorithms.
Our algorithm consistently outperforms other baselines and
up to 1.67x compared to the best baseline. On average, it
leads to 1.2x reduction of the weighted sum of the maximum
spread for communication groups. In the simple topology
(setting (i)), our algorithm achieves the same score as best-
fit, gpu-pack and topo-aware, because the network topology
and job configurations are relatively simple, so there is no
room to improve the placement. For medium and large jobs,
our algorithm is better than the other baselines due to the
large search space of possible placement.

Cluster experiment. To evaluate Arnold in real-world
environments, we run experiments in our GPU cluster. The
specific information such as the number of GPUs and the
model size, is hidden due to business concerns. One of
our LLMs is a MoE variant and was trained previously
with more than 9600 GPUs (1200+ nodes). We first run
the experiment by scheduling the job with 208 GPUs, and
validate the speedup achieved by Arnold. We then run the
pre-training at full scale. We compare Arnold with an SOTA
production system for LLMs, MegaScale (Jiang et al., 2024),
which takes a full-stack solution to optimize LLMs training
and scale to O(10, 000) GPUs.

Figure 7 illustrates the average throughput of the two sys-
tems. Arnold achieves an average speedup of 5.7% and
10.6% respectively. We observe that Arnold reduces the
maximum spread for the DP group and the PP group by
3x and 2x in the medium-scale experiment, while for the
full-scale experiment, the reduction is 1.5x and 1.3x. This
is because it is more likely to spread nodes across minipods
in the cluster for medium-scale experiment if not planned
carefully. However, for the full-scale experiment, the re-
quested GPUs take up more than 50% of the total number
of GPUs in the cluster, so the space of scheduling is shrunk.

4. Conclusion
In this work, we present Arnold, a scheduling system that
summarizes our experience in effectively scheduling LPJs at
scale. We show the effectiveness both in simulation-based
and real-world GPU clusters.
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