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Figure 1. DemoGen generates synthetic demonstrations for robotic manipulation. It promotes the spatial generalization ability of visuo-
motor policies and can facilitate one-shot imitation by adapting one human-collected demonstration into novel object configurations.

Abstract

Visuomotor policies have shown great promise in robotic001
manipulation but often require substantial human-collected002
data for effective performance. A key factor driving the high003
data demands is their limited spatial generalization capa-004
bility, which necessitates extensive data collection across005
different object configurations. In this work, we present De-006
moGen, a low-cost, fully synthetic approach for automatic007
demonstration generation. Using only one human-collected008
demonstration per task, DemoGen generates spatially aug-009
mented demonstrations by adapting the demonstrated ac-010
tion trajectory to novel object configurations. Visual ob-011
servations are synthesized by leveraging 3D point clouds012
as the modality and rearranging the subjects in the scene013
via 3D editing. Empirically, DemoGen significantly en-014
hances policy performance across a diverse range of real-015
world manipulation tasks, showing its applicability even in016
challenging scenarios involving deformable objects, dex-017

terous hand end-effectors, and bimanual platforms. Fur- 018
thermore, DemoGen can be extended to enable additional 019
out-of-distribution capabilities, including disturbance re- 020
sistance and obstacle avoidance. 021

1. Introduction 022

Visuomotor policy learning has demonstrated remarkable 023
competence for robotic manipulation tasks [4, 13, 50, 52], 024
yet it typically demands large volumes of human-collected 025
data. State-of-the-art approaches often require tens to hun- 026
dreds of demonstrations to achieve moderate success on 027
tasks such as spreading sauce on pizza [4] or making rollups 028
with a dexterous hand [50]. More intricate, long-horizon 029
tasks may necessitate thousands of demonstrations [53]. 030

One key factor contributing to the data-intensive na- 031
ture of these methods is their limited spatial generaliza- 032
tion [37, 39] ability. Our empirical study in Sec. A suggests 033
that visuomotor policies [4], even when coupled with pre- 034

1



SynData
#34

SynData
#34

SynData 2025 Submission #34. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

trained or 3D visual encoders [31, 35, 50], exhibit limited035
spatial capacity, typically confined to regions adjacent to036
the demonstrated object configurations. Such limitation ne-037
cessitates repeated data collection with repositioned objects038
until the demonstrated configurations sufficiently cover the039
full tabletop workspace. This creates a paradox: while the040
critical actions enabling dexterous manipulation are con-041
centrated in a small subset of contact-rich segments, a sub-042
stantial portion of human effort is spent teaching robots to043
approach objects in free space.044

In this work, we introduce DemoGen, a data generation045
system that can be seamlessly plugged into the policy learn-046
ing workflow in both simulated and physical worlds. Rec-047
ognizing the high cost of on-robot rollouts represents a ma-048
jor barrier to practical deployment, DemoGen adopts a fully049
synthetic pipeline that efficiently concretizes the generated050
plans into spatially augmented demonstrations.051

For action generation, DemoGen develops the Mimic-052
Gen strategy by incorporating techniques from Task and053
Motion Planning (TAMP) [2, 7, 28]. Specifically, we de-054
compose the source trajectory into motion segments moving055
in free space and skill segments involving on-object manip-056
ulation through contact. During generation, the skill seg-057
ments will be transformed as a whole according to the aug-058
mented object configuration, and the motion segments will059
be replanned via motion planning to connect the neighbor-060
ing skill segments after transformation.061

With the processed actions in hand, a core challenge is062
obtaining spatially augmented visual observations without063
relying on costly on-robot rollouts. DemoGen employs a064
straightforward strategy: it selects point clouds as the ob-065
servation modality and synthesizes the augmented visual066
observations through 3D editing. The key insight is that067
point clouds, which inherently live in the 3D space, can be068
easily manipulated to reflect the desired spatial augmenta-069
tions. Generating augmented point cloud observations is070
reduced to identifying clusters of points corresponding to071
the interested subjects and then applying the same spatial072
transformations used in the generated action plans.073

We manifest the effectiveness of DemoGen by evaluat-074
ing the performance of visuomotor policies trained on De-075
moGen-generated datasets from only one human collected076
demonstration per task. To assess spatial generalization, we077
adhere to a rigorous evaluation protocol in which the ob-078
jects are placed across the entire tabletop workspace within079
the end-effectors’ reach. We conduct extensive real-world080
experiments, showing that DemoGen can be successfully081
deployed on both single-arm and bi-manual platforms, us-082
ing parallel-gripper and dexterous-hand end-effectors, from083
both third-person and egocentric observation viewpoints,084
and with a range of rigid-body and deformable/fluid objects.085
Meanwhile, the cost of generating one demonstration trajec-086
tory with DemoGen is merely 0.01 seconds of computation.087

Empirically, DemoGen significantly enhances policy per- 088
formance, generalizing to un-demonstrated configurations 089
and achieving an average of 74.6% across 8 real-world 090
tasks. Additionally, we demonstrate that simple extensions 091
under the DemoGen framework can further equip imitation 092
learning with acquired out-of-distribution generalization ca- 093
pabilities such as disturbance resistance and obstacle avoid- 094
ance. The code and datasets will be open-sourced. 095

2. Related Works 096

Visuomotor policy learning. Represented by Diffusion 097
Policy [4] and its extensions [21, 33, 42, 45, 50], visuomotor 098
policy learning refers to the imitation learning methods that 099
learn to predict actions directly from visual observations in 100
an end-to-end fashion [24]. The end-to-end learning objec- 101
tive is a two-edged sword. Its flexibility enables visuomotor 102
policies to learn dexterous skills from human demonstra- 103
tions, extending beyond rigid-body pick-and-place. How- 104
ever, the absence of structured skill primitives makes such 105
policies intrinsically data-intensive. The conflicts between 106
the huge data demands and the great expense of robotic data 107
collection have driven recent data-centric research, includ- 108
ing data collection systems [3, 6, 25], collaborative gather- 109
ing of large-scale datasets [22, 32], and empirical studies on 110
data scaling [26, 53]. Instead of scaling up via pure human 111
labor, DemoGen aims to show that synthetic data generation 112
can help save much of the human effort. 113
Data-efficient imitation learning. Attempting to develop 114
manipulation policies from only a handful of demonstra- 115
tions, data-efficient imitation learning methods often build 116
on the principles of Task and Motion Planning (TAMP), 117
while incorporating imitation learning to replace some com- 118
ponents in the TAMP pipeline. A common approach is to 119
learn the end-effector poses for picking and placing [14, 120
38, 46, 47, 51]. The whole trajectories are generated us- 121
ing motion planning toolkits [23] and then executed in an 122
open-loop manner [8, 9, 20, 40]. While these approaches 123
are effective for simpler, Markovian-style tasks [41], their 124
reliance on open-loop execution limits their application to 125
more dexterous tasks requiring closed-loop retrying and re- 126
planning. In contrast, DemoGen leverages TAMP for syn- 127
thetic data generation to train closed-loop policies, thus ef- 128
fectively combining the merits of both approaches. 129
Data generation for robotic manipulation. A branch of 130
recent works attempts to generate demonstrations by lever- 131
aging LLM for task decomposition and then using plan- 132
ning or reinforcement learning for subtask resolution [18, 133
43, 44]. An alternative line of research is exemplified by 134
MimicGen [29] and its extensions [15, 17, 19]. Unlike 135
generating demonstrations from the void, MimicGen adapts 136
some human-collected source demonstrations to novel ob- 137
ject configurations by synthesizing corresponding execution 138
plans. However, execution plans produced by the Mimic- 139
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Gen framework are not ready-to-use demonstrations in the140
form of observation-action pairs. To bridge this gap, the141
MimicGen family [15, 17, 19, 29] relies on costly on-robot142
rollouts, which poses significant challenges for the deploy-143
ment on physical robots. Building upon MimicGen and its144
extensions, DemoGen incorporates their strategies for gen-145
erating execution plans, but replaces the expensive on-robot146
rollouts with an efficient, fully synthetic generation process.147
This enables DemoGen to generate real-world demonstra-148
tions cost-effectively.149

3. DemoGen Methods150

3.1. Problem Formulation151

A visuomotor policy π : O 7→ A directly maps the visual152
observations o ∈ O to the predicted actions a ∈ A. To train153
such a policy, a dataset D of demonstrations must be pre-154
pared. We define a source demonstration Ds0 ⊆ D as a tra-155
jectory of paired observations and actions conditioned on an156
initial object configuration: Ds0 = (d0, d1, . . . , dL−1|s0),157
where each dt = (ot, at) represents an observation-action158
pair, s0 denotes the initial configuration, and L is the tra-159
jectory length. DemoGen is designed to augment a human-160
collected source demonstration by generating a new demon-161
stration conditioned on a different initial object configura-162
tion: D̂s′0

= (d̂0, d̂1, . . . , d̂L−1|s′0).163

Specifically, assuming the task involves the sequential164
manipulation of K objects {O1, O2, . . . , OK}, the initial165
object configuration s0 is defined as the set of initial poses166
of these objects: s0 = {TO1

0 ,TO2
0 , . . . ,TOK

0 }, where TO
t167

denotes the SE(3) transformation from the world frame168
to an object O at time step t. The action at consists of169
the robot arm and robot hand commands, represented as170
at = (aarmt , ahandt ), where aarmt ≜ AEE

t is the target SE(3)171
end-effector pose in the world frame, and ahandt can either172
be a binary signal for a parallel gripper’s open/close action173
or a higher-dimensional vector for controlling the joints of a174
dexterous hand. The observation ot includes both the point175
cloud data and the proprioceptive feedback from the robot:176
ot = (opcdt , oarmt , ohandt ), where oarmt and ohandt reflect the177
current state of the end-effector, with the same dimension-178
ality as the corresponding actions.179

3.2. Pre-processing Source Demonstration180

Segmented point cloud observations. To improve the181
practical applicability in real-world scenarios, we utilize182
a single-view RGBD camera for point cloud acquisition.183
The raw point cloud observations are first preprocessed by184
cropping the redundant points from the background and ta-185
ble surface. We assume the retained points are associated186
with either the manipulated object(s) or the robot’s end-187
effector. A clustering operation [11] is then applied to filter188
out the outlier points in noisy real-world observations. Sub-189
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Figure 2. Pre-processing the source demonstration. The point
cloud observations are processed by cropping, clustering, and
down-sampling. The source action trajectory is parsed into mo-
tion and skill segments by referring to the object semantic masks.

sequently, the point cloud is downsampled to a fixed number 190
of points (e.g., 512 or 1024) using farthest point sampling to 191
facilitate policy learning [34]. For the first frame of the tra- 192
jectory, we employ Grounded SAM [36] to obtain the seg- 193
mentation masks for the manipulated objects from the RGB 194
image. These masks are then applied to the pixel-aligned 195
depth image and projected onto the 3D point cloud. 196
Parsing the source trajectory. Following previous 197
work [15, 29], we assume that the execution trajectory can 198
be parsed into a sequence of object-centric segments. Since 199
the robot must initially approach the object in free space 200
before engaging in on-object manipulation through contact, 201
each object-centric segment can be further subdivided into 202
two stages: motion and skill. For example, the trajectory 203
in Fig. 2 is divided into four stages: 1) move to the flower, 204
2) pick up the flower, 3) transfer the flower to the vase, 4) 205
insert the flower into the vase. 206

We can easily identify the skill segments associated with 207
a given object by checking whether the distance between 208
the geometric center of the object’s point cloud and the 209
robot’s end-effector falls within a predefined threshold, il- 210
lustrated by the spheres in Fig. 2. The intermediate tra- 211
jectories between two skill segments are classified as mo- 212
tion segments. Formally, we represent an interval of time 213
stamps as: τ = (tstart, tstart + 1, . . . , tend − 1, tend) ⊆ 214
(0, 1, . . . , L − 1), which can be used as an index sequence 215
for the extraction of the corresponding segments from a se- 216
quence of demonstrations, actions, or observations. For in- 217
stance, d[τ ] = (dtstart , dtstart+1, . . . , dtend−1, dtend) repre- 218
sents the extracted subset of source demonstration indexed 219
by τ . Using this notation, we parse the source demon- 220
stration into alternating motion and skill segments accord- 221
ing to the index sequence (τm

1 , τ s
1 , . . . , τ

m
K , τ s

K): Ds0 = 222
(d[τm

1 ], d[τ s
1 ], . . . , d[τ

m
K ], d[τ s

K ]|s0). 223
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Figure 3. Illustrations for action generation. (L) Actions in
the motion stage are planned to connect the neighboring skill seg-
ments. (R) Actions in the skill stage are transformed uniformly.

3.3. TAMP-based Action Generation224

The generation process begins by selecting a target ini-225

tial configuration s′0 = {TO1
′

0 ,TO2
′

0 , ...,TOK
′

0 }. We226
can compute the spatial transformation under the homo-227
geneous matrix representation by: ∆s0 = {(TO1

0 )−1 ·228

TO1
′

0 , . . . , (TOK
0 )−1 · TOK

′

0 }. Recall that the actions con-229
sist of both robot arm and robot hand commands. The robot230
hand commands define the interactive actions on the object,231
e.g., holding the flower or rolling up the dough. Since they232
are invariant of the spatial transformation, ahandt should233
remain unchanged regardless of the object configuration:234
âhandt = ahandt , ∀ t, so, s

′
0.235

In contrast, the robot arm commands should be spa-236
tially equivariant to the object movements in order to ad-237
just the trajectory according to the altered configuration.238
Specifically, for the motion and skill segments involv-239
ing the k-th object, we adapt the robot arm commands240
AEE[τm

k ],AEE[τ s
k] following a TAMP-based procedure il-241

lustrated in Fig. 3.242
For the skill segments with dexterous on-object be-243

haviors, the spatial relations between end-effectors and244
objects must remain relatively static. Thus, the entire245
skill segments are transformed following the correspond-246

ing objects: ÂEE[τ s
k] = AEE[τ s

k] · (T
Ok
0 )−1 · TOk

′

0 . For247
the motion segments moving in free space, the goal of248
the generated actions is to chain the adjacent skill seg-249
ments. Therefore, we plan the robot arm commands250
in the motion stage via motion planning: ÂEE[τm

k ] =251

MotionPlan(ÂEE[τ s
k−1][−1], ÂEE[τ s

k][0]), where the252
starting pose for motion planning is taken from the last253
frame of the previous skill segment, and the ending pose is254
from the first frame of the current skill segment. For simple255
uncluttered workspaces, linear interpolation suffices. For256
complex environments requiring obstacle avoidance, an off-257
the-shelf motion planning method [23] is employed.258

3.4. Fully Synthetic Observation Generation259

Adapting proprioceptive states. The observations consist260
of point cloud data and proprioceptive states. Since the pro-261
prioceptive states share the same semantics with the actions,262

they should undergo the same transformation: ôhandt = 263
ohandt , ∀ t, so, s

′
0; ôarmt = oarmt · (AEE

t )−1 · ÂEE
t . 264

Synthesizing point cloud observations. To synthesize the 265
spatially augmented point clouds for the robot and objects, 266
we employ a simple segment-and-transform strategy. Apart 267
from the target transformations, the only required informa- 268
tion for synthesis is the segmentation masks for the K ob- 269
jects on the first frame of the source demonstration, ob- 270
tained in Sec. 3.2. 271

For each object, we define 3 stages. In the to-do stage, 272
the object is static and unaffected by the robot, and its point 273
cloud is transformed according to the initial object configu- 274

ration (TOk
0 )−1 · TOk

′

0 . In the doing stage, the object is in 275
contact with the robot, and its point cloud is merged with 276
the end-effector’s point cloud. In the done stage, the ob- 277
ject remains in its final state. These stages are easily identi- 278
fied by referencing the trajectory-level motion and skill seg- 279
ments. For the robot’s end-effector, its point cloud under- 280
goes the same transformation as indicated by the proprio- 281
ceptive states (AEE

t )−1 · ÂEE
t . Given the assumption of a 282

cropped workspace, the point clouds for the robot and the 283
objects in the doing stage can be separated by subtracting 284
the object point clouds in the to-do and done stages from 285
the scene point cloud. A concrete example of this process 286
is shown in Fig. 20. More examples of the synthetic trajec- 287
tories in real-world experiments can be found in Fig. 21. 288

4. Experiments in the Simulator 289

Policy. Both in the simulator and real world, we select 290
DP3 [50] as the visuomotor policy, which predicts actions 291
by consuming point cloud and proprioception observations. 292
For a fair comparison, we fix the total training steps counted 293
by observation-action pairs, resulting in an equal training 294
cost regardless of the dataset size. The training details are 295
listed in Appendix B.1. 296
Tasks. We design 8 tasks adapted from the MetaWorld [48] 297
benchmark, illustrated in Fig. 4. To strengthen the signifi- 298
cance of spatial generalization, these tasks are modified to 299
have enlarged randomization ranges in Appendix D.1. 300
Generation and evaluation. We write scripted policies for 301
these tasks and prepare only 1 source demonstration per task 302
for demonstration generation. We also produce 10 and 25 303
source demonstrations per task using the scripted policy as 304
a reference for human-collected datasets. Based on the one 305
source demonstration, we leverage DemoGen to generate 306
100 spatially augmented demonstrations for the tasks con- 307
taining the spatial randomization of one object. Since the 308
tasks concerning two objects have a more diverse range of 309
object configurations, 200 demonstrations are generated. 310
Results analysis. The evaluation results for the simulated 311
tasks are presented in Tab. 1. DemoGen significantly en- 312
hances the policy performance compared with the source 313
demonstration baseline. The policies trained on DemoGen- 314
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Pick-Cube Button-Small Drawer-Close Faucet-Open Handle-Press Box-Lid Stack-Cube Assembly

Figure 4. Tasks for simulated evaluation on spatial generalization. Purple and sky-blue rectangles mark the workspaces for demonstra-
tion generation and evaluation, respectively.

Table 1. Simulated evaluation of DemoGen for spatial generalization. We report the maximum/averaged success rates over 3 seeds.

Pick-Cube Button-Small Drawer-Close Faucet-Open Handle-Press Box-Lid Stack-Cube Assembly Averaged

1 Source 0/0 4/4 55/50 39/23 17/16 11/11 0/0 0/0 16/13
DemoGen 76/73 92/84 100/100 95/92 100/100 100/95 79/77 86/83 91/88

10 Source 29/29 54/52 100/100 90/89 100/99 94/89 44/38 47/45 70/68
25 Source 82/74 90/84 100/100 100/100 100/100 100/100 95/93 83/79 94/91

generated datasets also outperform those trained on 10315
source demonstrations and get close to 25 source demon-316
strations. This indicates DemoGen has the potential to317
maintain the policy performance with over 20× reduced318
human effort for data collection. Additionally, we found319
a visual mismatch problem between the synthetic and real-320
captured observations, which poses a limitation for the ef-321
fectiveness of DemoGen. Illustrations and the empirical322
consequence of this problem are provided in Appendix C.323

5. Experiments in the Real World324

5.1. Spatial Generalization (Single-Arm Platforms)325

Tasks. On the Franka Panda single-arm platform, we design326
3 tasks using the original Panda gripper and 4 tasks using an327
Allegro dexterous hand as the end-effector. A task summary328
is provided in Tab. 2. The motion and skill trajectories of329
these tasks are visualized in Fig. 6 and the task descriptions330
are provided in Appendix D.2. For all tasks, a single Intel331
Realsense L515 camera is adopted to capture point cloud332
observations, as depicted in Fig. 5(a).333

Evaluation protocol. To evaluate spatial generalization,334
we define a large planar evaluation workspace, the size335
of which corresponds to the maximum reach of the robot336
arm. Illustrated in Fig. 5(b), We uniformly sample 12 points337
within this irregularly-shaped workspace as the coordinates338
for potential object configurations, with a 15cm spacing be-339
tween the neighbors. To determine the actual evaluated340
configurations, we perform manual trials using kinematic341
teaching to confirm the feasibility of each configuration.342

Generation strategy. As in the simulated environments,343
we collect only one source demonstration for each task.344
However, real-world point cloud observations are often345
noisy, with issues such as flickering holes in the point clouds346
or projective smearing around object outlines. The imita-347
tion learning policy can overfit these irregularities if only348

Table 2. Real-world tasks for spatial generalization evaluation.
ActD: action dimension. #Obj: number of manipulated objects.
#Eval: number of evaluated configurations. #GDemo: number of
generated demonstrations.

Task Platform ActD #Obj #Eval #GDemo

Spatula-Egg Gripper 6 1 10 270
Flower-Vase Gripper 7 2 4×4 432
Mug-Rack Gripper 7 2 4×4 432
Dex-Cube Dex. Hand 22 1 10 270
Dex-Rollup Dex. Hand 22 1 12 324
Dex-Drill Dex. Hand 22 2 3×3 243
Dex-Coffee Dex. Hand 22 2 3×3 243
Fruit-Basket Bimanual 14 2 4×6 72

one demonstration is provided. To mitigate this issue, we 349
replay the source demonstration twice and capture the cor- 350
responding point cloud observations. The altogether 3 point 351
cloud trajectories enrich the diversity in visual degradations 352
and help alleviate the overfitting problem. 353

We set the generated object configurations to correspond 354
to the evaluated configurations. However, human operators 355
cannot always place objects with perfect precision in the 356
real world, yet we found visuomotor policies are sensitive to 357
even small deviations. Thus, we further augment the gener- 358
ated object configurations by adding small-range perturba- 359
tions. Specifically, for each target configuration, we gener- 360
ate 9 demonstrations with (±1.5cm)× (±1.5cm) perturba- 361
tion to mimic slight placement variations in the real world. 362
The final generated configurations are shown in Fig. 5(c). 363

In summary, the total number of generated demonstra- 364
tions is calculated as 3× (#Eval)×9, which represents the 365
3 source demonstrations, multiplied by the number of eval- 366
uated configurations, and further multiplied by the 9 pertur- 367
bations. The detailed counts are listed in Tab. 2. 368

Results analysis. The performance of visuomotor poli- 369
cies [50] trained on 3 source demonstrations and DemoGen- 370
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Source Generated

(a) (b) (c)

Figure 5. Protocol for evaluating spatial generalization. (a) Setups on the single-arm platform. (b) Illustration for the full-size evaluation
workspace. (c) Illustration for the generation strategy targeting the evaluated configurations along with small-range perturbations.

Table 3. Real-world evaluation of DemoGen for spatial generalization. The success rates are averaged on 5 repetitions for each evaluated
configuration. The evaluated configurations for each task are counted in Tab. 2, and visualized in Fig. 7.

Spatula-Egg Flower-Vase Mug-Rack Dex-Cube Dex-Rollup Dex-Drill Dex-Coffee Fruit-Basket Averaged

Source 10.0 6.3 6.3 10.0 8.3 11.1 11.1 25.0 11.0
DemoGen 88.0 82.5 85.0 78.0 76.7 55.6 40.0 90.8 74.6

Spatula-Egg Flower-Vase Mug-Rack

Dex-Rollup Dex-Drill Dex-Coffee

Figure 6. Tasks for real-world evaluation on spatial generaliza-
tion. Spatula-Egg and Dex-Rollup are one-stage tasks involving
contact-rich behaviors. Flower-Vase, Mug-Rack, Dex-Drill, and
Dex-Coffee are two-stage tasks requiring precise manipulation.

generated demonstrations are reported in Tab. 3. Agents371
trained solely on source demonstrations exhibit severe over-372
fitting behaviors, blindly replicating the demonstrated tra-373
jectory. In Appendix D.3, we evaluate the policy perfor-374
mance trained on datasets containing additional human-375
collected demonstrations. We found the spatial effec-376
tive range of the trained policies is upper-bounded by the377
demonstrations, aligned with the study in Appendix A.378

Similar to the effects of manually covering the379
workspace with human-collected demonstrations, De-380
moGen-generated datasets enable the agents to display a381
more adaptive response to diverse evaluated configurations,382
resulting in significantly higher success rates. DemoGen383
consistently enhances the performance across all the eval-384
uated tasks. To further investigate the generalization ca-385
pabilities enabled by DemoGen, we visualize the spatial386
heatmaps for the evaluated configurations in Fig. 7. The387
heatmaps reveal high success rates on configurations close388
to the demonstrated ones, while the performance dimin-389
ishes as the distance from the demonstrated configuration390
increases. We attribute this decline to the visual mismatch391
problem, as discussed in Appendix C.392

Table 4. The time cost for generating real-world demonstra-
tions. A single-core CPU process is used for computation.

Single o-a Pair A Trajectory Whole Dataset

MimicGen 2.1 s 2.1min 83.7 h
DemoGen 0.00015 s 0.010 s 22.0 s

Generation cost. We compare the time cost of real-world 393
demonstration generation between MimicGen [29] and De- 394
moGen. We estimate MimicGen’s time cost by multiplying 395
the duration of replaying a source trajectory by the num- 396
ber of generated demonstrations and adding an additional 397
20 seconds per trajectory for human operators to reset the 398
scene. Note that MimicGen involves continuous human in- 399
tervention, while the cost of DemoGen is purely computa- 400
tional, without any human/robot involvement. 401

5.2. Spatial Generalization (Bimanual Humanoid) 402

Task. In addition to the tasks on the single-arm platform, 403
we also designed a Fruit-Basket task on a bimanual hu- 404
manoid platform, illustrated in Fig. 8. The Fruit-Basket 405
task is distinguished from the previous tasks by three key 406
features: 1) Bimanual manipulation. The robot simultane- 407
ously grasps the basket with one arm and the banana with 408
the other. The right arm then places the basket in the cen- 409
ter of the workspace, while the left arm places the banana 410
into the basket. 2) Egocentric observation. The camera is 411
mounted on the robot’s head [49]. While the robot’s base 412
is immobilized, the first-person view opens opportunities 413
for future deployment in mobile manipulation scenarios. 3) 414
Out-of-distribution orientations. Still using a single human- 415
collected demonstration, the banana is placed with orienta- 416
tional offsets (i.e., 45◦, 90◦, and 135◦) relative to the orig- 417
inal demonstration during evaluation, while the basket is 418
randomized within a translational 10 cm× 5 cm workspace. 419
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Spatula-Egg Flower-Vase Mug-Rack Dex-Cube

Dex-Rollup Dex-Drill Dex-Coffee Fruit-Basket

= 0% > 0% > 40% > 60% > 80%

Figure 7. Spatial heatmaps for real-world evaluation. The success rate for each coordinate is calculated as the average across all relevant
trials. For example, each coordinate of the vase in the Flower-Vase task is in combination with 4 coordinates of the flower, including the
one appearing in the source demonstration. This results in a total of 20 trials, given 5 repetitions per combination.

Bimanual Humanoid O.O.D. Orientations

rot=0° rot=45°

rot=90° rot=135°

(a) (b)
Egocentric

Observation

Bimanual 
Manipulation

Figure 8. Bimanual humanoid platform. (a) Egocentric obser-
vations and bimanual manipulation. (b) The Fruit-Basket task in-
volves the out-of-distribution orientations during evaluation.

Generation strategy. The generation procedure follows a420
similar approach as on the single-arm platform. Specifi-421
cally, the human-collected demonstration is replayed twice,422
yielding 3 source demonstrations. DemoGen generates syn-423
thetic demonstrations by independently adapting the actions424
of both arms to the respective transformations of the ob-425
jects. Small-range perturbations are omitted due to lower426
precision requirements. A challenge in synthesizing point427
cloud observations with orientational offsets lies in the lim-428
ited view provided by the single camera. To address this429
issue, the humanoid robot adopts a stooping posture, en-430
abling a near bird’s-eye view perspective. This adjustment431
allows for more effective point cloud editing to simulate432
full-directional yaw rotations.433

Results analysis. The success rates for both the source and434
generated datasets are compared in Tab. 3, and the spatial435
heatmap is shown in Fig. 7. The high success rate of 90.8%436
demonstrates the effectiveness of DemoGen on bimanual437
humanoid platforms and its ability to help policies gener-438
alize to out-of-distribution orientations. A more detailed439
analysis is presented in Appendix D.4.440

(a) (b) (c)

(d) (e)

Figure 9. DemoGen for disturbance resistance. (a-c) Illustra-
tion, initial, and ending states of the Sauce-Spreading task. (d)
Disturbance applied for evaluation. (e) Standard strategy.

5.3. Disturbance Resistance 441

Task and evaluation protocol. We consider a Sauce- 442
Spreading task (Fig. 9(a)) adapted from DP [4]. Initially, 443
the pizza crust contains a small amount of sauce at its cen- 444
ter (Fig. 9(b)). The gripper maneuvers the spoon in hand 445
to approach the sauce center and periodically spread it to 446
cover the pizza crust in a spiral pattern (Fig. 9(c)). During 447
the sauce-spreading process, disturbances are introduced by 448
shifting the pizza crust twice to the neighboring spots within 449
the workspace. We consider 5 neighboring spots (Fig. 9(d)) 450
and conduct 5 trials per spot, resulting in 25 trials. For 451
quantitative evaluation, we measure the sauce coverage on 452
the pizza crust. Additionally, we report a normalized sauce 453
coverage score, where 0 represents no operation taken, and 454
100 corresponds to human expert performance. Detailed 455
calculations are provided in Appendix D.5. 456

Generation strategies. A standard generation strategy se- 457
lects 15 intermediate spots (Fig. 9(e)) observed during the 458
disturbance process as the initial object configurations for a 459
standard DemoGen data generation procedure. To specifi- 460
cally enhance disturbance resistance, we propose a special- 461
ized strategy named Augmentation for Disturbance Resis- 462
tance (ADR), illustrated in Fig. 10. In ADR, the pizza crust 463
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t= 4

4

Figure 10. Illustration for the ADR strategy.

Table 5. Evaluation results for disturbance resistance.

Sauce Coverage Normalized Score

Regular DemoGen 34.2 40.4
DemoGen w/ ADR 61.2 92.3

Initial State 13.2 0
Human Expert 65.2 100

is artificially displaced to nearby positions at certain time464
steps to simulate the disturbance. The robot’s end-effector,465
holding the spoon, initially remains static and subsequently466
interpolates its motion to re-approach the displaced crust467
before continuing the periodic spreading motion.468

Results analysis. Tab. 5 presents the sauce coverage and469
normalized scores for both the standard DemoGen and the470
ADR-enhanced DemoGen strategies. Raw evaluation re-471
sults and detailed definitions for the metrics are presented472
in Appendix D.5. We found the ADR strategy signifi-473
cantly outperforms the standard DemoGen, achieving per-474
formance comparable to human experts. These findings un-475
derscore the critical role of the demonstration data in en-476
abling policy capabilities. The ability to resist disturbances477
does not emerge naturally but is acquired through targeted478
disturbance-involved demonstrations.479

5.4. Obstacle Avoidance480

Task. Similar to the case of disturbance resistance, the vi-481
suomotor policy’s ability to avoid obstacles is also imparted482
through demonstrations containing obstacle-avoidance be-483
haviors. To investigate such capability, we introduce obsta-484
cles to a Teddy-Box task, where the dexterous hand grasps485
the teddy bear and transfers it into the box on the left486
(Fig. 11(a)). Trained on the source demonstrations with-487
out obstacles, the visuomotor policy fails to account for po-488
tential collisions, e.g., it might knock over the coffee cup489
placed in the middle (Fig. 11(b)).490

Generation strategy. To generate obstacle-involved491
demonstrations, we augment the real-world point cloud ob-492
servations by sampling points from simple geometries, such493
as boxes and cones, and fusing these points into the origi-494
nal scene (Fig. 11(c)). Obstacle-avoiding trajectories are495

Source Demo     Generated Demo

(b)  Collision Obstacle Avoidance(d)

(a) (c)

Figure 11. DemoGen for obstacle avoidance. (ab) Policy trained
on the source demonstration collides with the unseen obstacle.
(cd) Policy trained on the generated dataset could avoid diverse-
shaped obstacles.

generated by a motion planning tool [23], which enables 496
collision-free actions. 497
Evaluation and results analysis. For evaluation, we po- 498
sition 5 everyday objects with diverse shapes in the mid- 499
dle of the workspace (Fig. 11(d)) and conduct 5 trials per 500
object, resulting in a total of 25 trials. The agent trained 501
on the augmented dataset successfully bypasses obstacles 502
in 22 out of 25 trials. Notably, in scenarios without obsta- 503
cles, the agent follows the lower trajectory observed in the 504
source demonstrations, indicating its responsiveness to en- 505
vironmental variations. 506

6. Conclusion 507

In this work, we introduced DemoGen, a fully synthetic data 508
generation system designed to facilitate visuomotor policy 509
learning by mitigating the need for large volumes of human- 510
collected demonstrations. Through TAMP-based action 511
adaption and 3D point cloud manipulation, DemoGen gen- 512
erates spatially augmented demonstrations with minimal 513
cost, significantly improving visuomotor policy’s spatial 514
generalization capability across a wide range of real-world 515
tasks and platforms. Furthermore, we extend DemoGen 516
to generate demonstrations incorporating disturbance re- 517
sistance and obstacle avoidance behaviors, endowing the 518
trained policies with the corresponding capabilities. 519
Limitations. Although we have demonstrated the effec- 520
tiveness of DemoGen, it has several limitations. First, De- 521
moGen relies on the availability of segmented point clouds, 522
which limits its applicability in highly cluttered or unstruc- 523
tured environments. Second, DemoGen is not suitable for 524
tasks where spatial generalization is not required, such as 525
in-hand reorientation [1] or push-T [4, 12] with a fixed tar- 526
get pose. Third, the performance of DemoGen is affected 527
by the visual mismatch problem caused by the constraint of 528
single-view observation, as discussed in Appendix C. 529
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A. Empirical Study: Spatial Generalization767

Capability of Visuomotor Policies768

In this section, we present a brief empirical study examining769
the spatial generalization capability of visuomotor policies.770
We demonstrate how the lack of such generalization con-771
tributes to the data-intensive nature of learning visuomotor772
policies.773

A.1. Visualization of Spatial Effective Range774

Spatial generalization refers to the ability of a policy to per-775
form tasks involving objects placed in configurations that776
were not seen during training. To gain an intuitive under-777
standing of spatial generalization, we visualize the relation-778
ship between the spatial effective range of visuomotor poli-779
cies and the spatial distribution of demonstration data.780

Tasks. We evaluate a Button-Large task adapted from the781
MetaWorld [48] benchmark, where the robot approaches782
a button and presses it down. The object randomization783
range is modified to a 30 cm × 40 cm = 1200 cm2 area on784
the tabletop workspace, covering most of the end-effector’s785
reachable space. Noticing the large size of the button makes786
it pressed down even if the press motion does not precisely787
hit the center, we also examine a more precision-demanding788
variant, Button-Small, where the button size is reduced by789
a factor of 4.790

Policy. We adopt 3D Diffusion Policy (DP3)[50] as the791
studied policy, as our benchmarking results indicate that 3D792
observations provide superior spatial generalization com-793
pared to 2D approaches. Training details are provided in794
Appendix B.1.795

Evaluation. To visualize the spatial effective range, we796
uniformly sample 21 points along each axis within the797
workspace, resulting in a total of 441 distinct button place-798
ments. Demonstrations are generated using a scripted799
policy, with 4 different spatial distributions ranging from800
single to full. The performance of each configuration801
is evaluated on the 441 placements, enabling a comprehen-802
sive assessment of spatial generalization. The visualization803
result is presented in Fig. 12.804

Key findings. Overall, the spatial effective range of visuo-805
motor policies is closely tied to the distribution of object806
configurations seen in the demonstrations. Specifically, the807
effective range can be approximated by the union of the ar-808
eas surrounding the demonstrated object placements. Thus,809
to train a policy that generalizes well across the entire ob-810
ject randomization range, demonstrations must cover the811
full workspace, resulting in substantial data collection costs.812
Furthermore, as task precision requirements increase, the813
effective range shrinks to more localized areas, necessitat-814
ing a greater number of demonstrations to adequately cover815
the workspace.816

A.2. Benchmarking Spatial Generalization Capa- 817
bility 818

The practical manifestation of the spatial generalization is 819
reflected in the number of demonstrations required for ef- 820
fective policy learning. In the following benchmarking, 821
we explore the relationship between the number of demon- 822
strations and policy performance to determine how many 823
demonstrations are sufficient for effective training. 824
Tasks. To suppress the occurrence of inaccurate but suc- 825
cessful policy rollouts, we design a Precise-Peg-Insertion 826
task. We construct a T-shaped peg, whose upper end has 827
a cross-section of 6 cm × 6 cm, and the bottom end has a 828
cross-section of 3 cm × 3 cm. The hole in the green socket 829
has a cross-section of 4 cm × 4 cm. This shape enforces a 830
strict fault tolerance of 1 cm during both the picking and in- 831
sertion stages, asking for millimeter-level precision. Both 832
objects are randomized in a 40 cm × 20 cm workspace in 833
the full setting. The randomization range is halved into 834
20 cm× 10 cm in the half setting. 835
Policies. In addition to Diffusion Policy (DP)[4] and 3D 836
Diffusion Policy (DP3)[50] trained from scratch, we ex- 837
plore the potential of pre-trained visual representations to 838
enhance spatial generalization. Specifically, we replace the 839
train-from-scratch ResNet [16] encoder in DP with pre- 840
trained encoders including R3M [30], DINOv2 [31], and 841
CLIP [35]. Detailed implementations are provided in Ap- 842
pendix B.2. 843
Demonstrations. We vary the number of demonstra- 844
tions from 25 to 400. The object configurations are ran- 845
domly sampled from a slightly larger range than the eval- 846
uation workspace to avoid performance degradation near 847
workspace boundaries. A visualization is provided in 848
Fig. 13. 849
Evaluation. In the full workspace, both the peg and 850
socket are placed on 45 uniformly sampled coordinates, re- 851
sulting in 2025 distinct configurations for evaluation. For 852
the half and fixed settings, the number of evaluated 853
configurations is 225 and 1, respectively. 854
Key findings. The degree of object randomization sig- 855
nificantly influences the required demonstrations. There- 856
fore, an effective evaluation protocol for visuomotor poli- 857
cies must incorporate a sufficiently large workspace to pro- 858
vide enough object randomization. On the other hand, 859
both 3D representations and pre-trained 2D visual encoders 860
contribute to improved spatial generalization capabilities. 861
However, none of these methods fundamentally resolve the 862
spatial generalization problem. This indicates the agent’s 863
spatial capacity is not inherently derived from the policy it- 864
self but instead develops through extensive traversal of the 865
workspace from the given demonstrations. 866
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Figure 12. Qualitative visualization of the spatial effective range. The grid maps display discretized tabletop workspaces from a
bird’s-eye view under different demonstration configurations. Dark green spots mark the locations where buttons are placed during the
demonstrations. Each grid cell corresponds to a policy rollout with the button placed at that location. Blue, yellow, green, and gray grids
denote successful executions for the Button-Large, Button-Small, both tasks, and no tasks, respectively.
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Figure 13. The Precise-Peg-Insertion task. 3 workspace sizes is
considered. Purple and sky-blue rectangles mark the workspaces
for demonstration and evaluation, respectively.
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Figure 14. Quantitative benchmarking on the spatial general-
ization capacity. We report the relationship between the agent’s
performance in success rates and the number of demonstrations
used for training when different visuomotor policies and object
randomization ranges are adopted. The results are averaged over
3 seeds.

B. Policy Training and Implementation Details867

We select 3D Diffusion Policy (DP3) [50] as the visuomo-868
tor policy used for real-world and simulated experiments.869
We compare its performance against 2D Diffusion Policy870
(DP) [4] in the empirical study in Sec. A. We list the train-871

ing and implementation details as follows. 872

B.1. Details for Policy Training 873

For a fair comparison, we fix the total training steps counted 874
by observation-action pairs to be 2M for all evaluated set- 875
tings, resulting in an equal training cost regardless of the 876
dataset size. To stabilize the training process, we use 877
AdamW [27] optimizer and set the learning rate to be 1e−4 878
with a 500 step warmup. 879

In real-world experiments, we use the DBSCAN [11] 880
clustering algorithm to discard the outlier points and down- 881
sample the number of points in the point cloud observations 882
to 1024. In the simulator, we skip the clustering stage and 883
downsample the point clouds to 512 points. 884

We follow the notation in the Diffusion Policy [4] pa- 885
per, where To denotes the observation horizon, Tp as the 886
action prediction horizon, and Ta denotes the action exe- 887
cution horizon. In real-world experiments, we set To = 888
2, Tp = 8, Ta = 5. We run the visuomotor policy at 10Hz. 889
Since Ta indicates the steps of actions executed on the robot 890
without re-planning, our horizon settings result in a closed- 891
loop re-planning latency of 0.5 seconds, responsive enough 892
for conducting dexterous retrying behaviors and disturbance 893
resistance. In the simulator, since the tasks are simpler, we 894
set To = 2, Tp = 4, Ta = 3. 895

B.2. Pre-Trained Encoders for Diffusion Policies 896

To replace the train-from-scratch ResNet18 [16] visual en- 897
coder in the original Diffusion Policy architecture, we con- 898
sider 3 representative pre-trained encoders: R3M [30], DI- 899
NOv2 [31], and CLIP [35]. R3M utilizes a ResNet [16] 900
architecture and is pre-trained on robotics-specific tasks. 901
DINOv2 and CLIP employ ViT [10] architectures and are 902
pre-trained on open-world vision tasks. These encoders are 903
widely used in previous works [5, 26] to enhance policy 904
performance. 905
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Figure 15. Illustration for the visual mismatch problem. The
appearance changes due to the perspective change.

C. Limitation: The Visual Mismatch Problem906

While the one-shot imitation experiment verifies the effec-907
tiveness of DemoGen, it also reveals its limitation: synthetic908
demonstrations generated from one source demonstration909
are not as effective as the same number of human-collected910
demonstrations. We attribute the performance gap to the911
visual mismatch problem under the constraint of a single-912
view observation perspective. When objects move through913
3D space, their appearance changes due to variations in per-914
spective. An illustration is provided in Fig. 15. However,915
synthetic demonstrations consistently reflect a fixed side of916
the object’s appearance seen in the source demonstration.917
This discrepancy causes a visual mismatch between the syn-918
thetic and real-captured data.919

C.1. Performance saturation.920

A notable consequence of the visual mismatch problem is921
the phenomenon of performance saturation. An empirical922
analysis is conducted on the Pick-Cube task. In Fig. 16(a),923
we fix the spatial density of target object configurations in924
the synthetic demonstrations and increase their spatial cov-925
erage by adding more synthetic demonstrations. The curve926
indicates that the performance improvement plateaus once927
the spatial coverage exceeds a certain threshold. This satu-928
ration occurs because the visual mismatch intensifies as the929
distance between the source and synthetic object configura-930
tions increases, making additional synthetic demonstrations931
ineffective. In Fig.16(b), similar performance saturation is932
observed when we increase the density while fixing the spa-933
tial coverage. This indicates excessive demonstrations are934
unnecessary once they sufficiently cover the workspace.935

Figure 16. Performance Saturation. We report the policy perfor-
mance boost w.r.t. the increase of synthetic demonstrations over 3
seeds.

D. Experimental Details 936

D.1. Randomization Ranges for Simulated Tasks 937

In Fig. 4, we illustrated the simulated tasks for the evalua- 938
tion on spatial generalization. To strengthen the significance 939
of spatial generalization, we enlarge the original object ran- 940
domization ranges in the MetaWorld [48] tasks. For demon- 941
stration generation, we select a slightly larger range than 942
the evaluation workspace to avoid performance degradation 943
near the workspace boundaries. The detailed workspace 944
sizes are listed in Tab. 6. 945

D.2. Task Descriptions for Real-World Tasks 946

In Fig. 6, we illustrated the real-world tasks for the evalu- 947
ation on spatial generalization. We describe these tasks in 948
the text as follows, where we mark the verbs for motion and 949
skill actions in the corresponding colors. 950

1. Spatula-Egg. The gripper holds a spatula in hand. The 951
robot maneuvers the spatula to first move toward the 952
fried egg and then 1) slide beneath the egg, 2) lift the 953
egg leveraging the contact with the plate’s rim, 3) carry 954
the egg and maintain stable suspension. 955

2. Flower-Vase. The gripper moves toward the flower, 956
picks it up, reorients it in the air while transferring to- 957
ward the vase, and finally inserts it into the vase. 958

3. Mug-Rack. The gripper moves toward the mug, picks 959
it up, reorients it in the air while transferring toward the 960
rack, and hangs it onto the rack. 961

4. Dex-Cube. The dexterous hand moves toward the cube 962
and grasps up the cube. 963

5. Dex-Rollup. The dexterous hand moves toward a piece 964
of plasticine and wraps it multiple times until it is fully 965
coiled. The required times of the wrapping motion may 966
vary due to the distinct plasticity of every hand-molded 967
piece of plasticine. 968

6. Dex-Drill. The dexterous hand moves toward the drill, 969
grasps it up, transfers it toward the cube, and finally 970
touches the cube with the drill. 971

7. Dex-Coffee. The dexterous hand moves toward the ket- 972
tle, grasps it up, transfers it toward the coffee filter, and 973
finally pours water into the filter. 974

D.3. Increased Human-Collected Demonstrations 975

In Tab. 3, we compare the DemoGen-generated dataset 976
against 3 human-collected source demonstrations. In 977
Fig. 18, we provide a reference on how the increase of 978
source demonstrations leads to the enhancement of policy 979
performance on the Dex-Cube task. To further understand 980
the policy capacity enabled by human-collected demonstra- 981
tions, we visualize the spatial heatmaps of human-collected 982
datasets in Fig. 17. By comparing the demonstrated con- 983
figurations and the spatial effective range of the resulting 984
policies, we found the policy capacity is upper-bounded by 985
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Table 6. Object randomization ranges in simulated tasks. All the reported sizes have the units in centimeters.

Pick-Cube Button-Small Drawer-Close Faucet-Open Handle-Press Box-Lid Stack-Cube Assembly

Object(s) Cube Button Drawer Faucet Toaster Box × Lid Red × Green Pillar × Hole
Evaluation 40×40 40×40 15×15 30×30 20×30 (2.5×30)2 (15×15)2 (10×30)2

DemoGen 48×48 48×48 20×20 40×40 25×40 (7.5×40)2 (20×20)2 (15×40)2

3 Source 5 Source 8 Source 10 Source

= 0% > 0% > 40% > 60% > 80%

Figure 17. Visualization of the policy performance trained on human-collected datasets. (Upper row) The demonstrated configura-
tions. (Bottom row) The spatial heatmaps with success rates averaged on 5 trials.
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Figure 18. Real-world comparison between DemoGen-
generated and human-collected datasets. The DemoGen-
generated dataset is based on 3 source demonstrations.

the demonstrated configurations. This is in line with the986
findings in the empirical study.987

D.4. Detailed Analysis of the Bimanual Humanoid988
Experiment989

The orientational augmentations share the same visual mis-990
match problem as translational augmentation. The policy991
performs as expected when the generated orientations are992
close to the orientation in the source demonstration. As the993
orientational difference increases, we observed the policy994
might react to the orientation in the current visual observa-995
tion with actions for mismatched orientations.996

Additionally, we found the spatial generalization prob-997
lem persists in mobile manipulation scenarios. This is998
mainly due to the physical constraints of real-world envi-999
ronments, such as kitchen countertops or fruit stands, as1000
demonstrated in our experiments, where terrain limitations1001
prevent the base from approaching objects at arbitrary dis-1002

tances. Consequently, the base typically moves to a fixed 1003
point at a specific distance from the object, after which the 1004
robot conducts a standard non-mobile manipulation process 1005
at the fixed base position. 1006

D.5. Disturbance Resistance Experiments Details 1007

D.5.1. Evaluation Metrics 1008

The sauce coverage score is computed as follows. First, we 1009
distinguish between green background and red sauce in the 1010
HSV color space. The identified background is set to black, 1011
the sauce is set to red, and the rest which should be the un- 1012
covered crust is set to white. Second, due to the highlights 1013
on the sauce liquid, some small fragmented points of the 1014
sauce may be identified as the crust. To address this, we 1015
apply smoothing filtering followed by dilation and erosion, 1016
where the kernel size is 9×9. Finally, the coverage is calcu- 1017
lated as the ratio of red areas (sauce) over non-black areas 1018
(sauce + uncovered crust). 1019

D.5.2. Raw Evaluation Results 1020

For quantitative evaluation, we perform 5 repetitions for 1021
each of the 5 disturbance directions, resulting in 25 trials 1022
for both strategies. 1023

D.6. Visualization of DemoGen-Generated Trajecto- 1024
ries 1025

In Fig. 20, we gave a concrete example of the trajectory of 1026
synthetic visual observations. We provide more examples 1027
in Fig. 21 by showcasing the key frames of source and gen- 1028
erated demonstrations. 1029
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Regular DemoGen DemoGen w/ ADR
Figure 19. Raw evaluation results in the Sauce-Spreading task. (Top) Examples of the processing results for metric calculation.
(Bottom) Compared with the regular DemoGen, the policy trained with the ADR strategy better spreads the sauce to cover the crust under
external disturbance.
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Figure 20. Illustrations for synthetic visual observation generation. Objects in the to-do stage are segmented and transformed by the
target configurations. Objects in the doing stage are merged with the end-effector and transformed according to the proprioceptive states.
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Figure 21. More examples of the trajectories consisting of synthetic visual observations.
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