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Figure 1. DemoGen generates synthetic demonstrations for robotic manipulation. It promotes the spatial generalization ability of visuo-
motor policies and can facilitate one-shot imitation by adapting one human-collected demonstration into novel object configurations.

Abstract

Visuomotor policies have shown great promise in robotic
manipulation but often require substantial human-collected
data for effective performance. A key factor driving the high
data demands is their limited spatial generalization capa-
bility, which necessitates extensive data collection across
different object configurations. In this work, we present De-
moGen, a low-cost, fully synthetic approach for automatic
demonstration generation. Using only one human-collected
demonstration per task, DemoGen generates spatially aug-
mented demonstrations by adapting the demonstrated ac-
tion trajectory to novel object configurations. Visual ob-
servations are synthesized by leveraging 3D point clouds
as the modality and rearranging the subjects in the scene
via 3D editing. Empirically, DemoGen significantly en-
hances policy performance across a diverse range of real-
world manipulation tasks, showing its applicability even in
challenging scenarios involving deformable objects, dex-

terous hand end-effectors, and bimanual platforms. Fur-
thermore, DemoGen can be extended to enable additional
out-of-distribution capabilities, including disturbance re-
sistance and obstacle avoidance.

1. Introduction

Visuomotor policy learning has demonstrated remarkable
competence for robotic manipulation tasks [4, 13, 50, 52],
yet it typically demands large volumes of human-collected
data. State-of-the-art approaches often require tens to hun-
dreds of demonstrations to achieve moderate success on
tasks such as spreading sauce on pizza [4] or making rollups
with a dexterous hand [50]. More intricate, long-horizon
tasks may necessitate thousands of demonstrations [53].

One key factor contributing to the data-intensive na-
ture of these methods is their limited spatial generaliza-
tion [37, 39] ability. Our empirical study in Sec. A suggests
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that visuomotor policies [4], even when coupled with pre-
trained or 3D visual encoders [31, 35, 50], exhibit limited
spatial capacity, typically confined to regions adjacent to
the demonstrated object configurations. Such limitation ne-
cessitates repeated data collection with repositioned objects
until the demonstrated configurations sufficiently cover the
full tabletop workspace. This creates a paradox: while the
critical actions enabling dexterous manipulation are con-
centrated in a small subset of contact-rich segments, a sub-
stantial portion of human effort is spent teaching robots to
approach objects in free space.

In this work, we introduce DemoGen, a data generation
system that can be seamlessly plugged into the policy learn-
ing workflow in both simulated and physical worlds. Rec-
ognizing the high cost of on-robot rollouts represents a ma-
jor barrier to practical deployment, DemoGen adopts a fully
synthetic pipeline that efficiently concretizes the generated
plans into spatially augmented demonstrations.

For action generation, DemoGen develops the Mimic-
Gen strategy by incorporating techniques from Task and
Motion Planning (TAMP) [2, 7, 28]. Specifically, we de-
compose the source trajectory into motion segments moving
in free space and skill segments involving on-object manip-
ulation through contact. During generation, the skill seg-
ments will be transformed as a whole according to the aug-
mented object configuration, and the motion segments will
be replanned via motion planning to connect the neighbor-
ing skill segments after transformation.

With the processed actions in hand, a core challenge is
obtaining spatially augmented visual observations without
relying on costly on-robot rollouts. DemoGen employs a
straightforward strategy: it selects point clouds as the ob-
servation modality and synthesizes the augmented visual
observations through 3D editing. The key insight is that
point clouds, which inherently live in the 3D space, can be
easily manipulated to reflect the desired spatial augmenta-
tions. Generating augmented point cloud observations is
reduced to identifying clusters of points corresponding to
the interested subjects and then applying the same spatial
transformations used in the generated action plans.

We manifest the effectiveness of DemoGen by evaluat-
ing the performance of visuomotor policies trained on De-
moGen-generated datasets from only one human collected
demonstration per task. To assess spatial generalization, we
adhere to a rigorous evaluation protocol in which the ob-
jects are placed across the entire tabletop workspace within
the end-effectors’ reach. We conduct extensive real-world
experiments, showing that DemoGen can be successfully
deployed on both single-arm and bi-manual platforms, us-
ing parallel-gripper and dexterous-hand end-effectors, from
both third-person and egocentric observation viewpoints,
and with a range of rigid-body and deformable/fluid objects.
Meanwhile, the cost of generating one demonstration trajec-

tory with DemoGen is merely 0.01 seconds of computation.
Empirically, DemoGen significantly enhances policy per-
formance, generalizing to un-demonstrated configurations
and achieving an average of 74.6% across 8 real-world
tasks. Additionally, we demonstrate that simple extensions
under the DemoGen framework can further equip imitation
learning with acquired out-of-distribution generalization ca-
pabilities such as disturbance resistance and obstacle avoid-
ance. The code and datasets will be open-sourced.

2. Related Works
Visuomotor policy learning. Represented by Diffusion
Policy [4] and its extensions [21, 33, 42, 45, 50], visuomotor
policy learning refers to the imitation learning methods that
learn to predict actions directly from visual observations in
an end-to-end fashion [24]. The end-to-end learning objec-
tive is a two-edged sword. Its flexibility enables visuomotor
policies to learn dexterous skills from human demonstra-
tions, extending beyond rigid-body pick-and-place. How-
ever, the absence of structured skill primitives makes such
policies intrinsically data-intensive. The conflicts between
the huge data demands and the great expense of robotic data
collection have driven recent data-centric research, includ-
ing data collection systems [3, 6, 25], collaborative gather-
ing of large-scale datasets [22, 32], and empirical studies on
data scaling [26, 53]. Instead of scaling up via pure human
labor, DemoGen aims to show that synthetic data generation
can help save much of the human effort.
Data-efficient imitation learning. Attempting to develop
manipulation policies from only a handful of demonstra-
tions, data-efficient imitation learning methods often build
on the principles of Task and Motion Planning (TAMP),
while incorporating imitation learning to replace some com-
ponents in the TAMP pipeline. A common approach is to
learn the end-effector poses for picking and placing [14,
38, 46, 47, 51]. The whole trajectories are generated us-
ing motion planning toolkits [23] and then executed in an
open-loop manner [8, 9, 20, 40]. While these approaches
are effective for simpler, Markovian-style tasks [41], their
reliance on open-loop execution limits their application to
more dexterous tasks requiring closed-loop retrying and re-
planning. In contrast, DemoGen leverages TAMP for syn-
thetic data generation to train closed-loop policies, thus ef-
fectively combining the merits of both approaches.
Data generation for robotic manipulation. A branch of
recent works attempts to generate demonstrations by lever-
aging LLM for task decomposition and then using plan-
ning or reinforcement learning for subtask resolution [18,
43, 44]. An alternative line of research is exemplified by
MimicGen [29] and its extensions [15, 17, 19]. Unlike
generating demonstrations from the void, MimicGen adapts
some human-collected source demonstrations to novel ob-
ject configurations by synthesizing corresponding execution



plans. However, execution plans produced by the Mimic-
Gen framework are not ready-to-use demonstrations in the
form of observation-action pairs. To bridge this gap, the
MimicGen family [15, 17, 19, 29] relies on costly on-robot
rollouts, which poses significant challenges for the deploy-
ment on physical robots. Building upon MimicGen and its
extensions, DemoGen incorporates their strategies for gen-
erating execution plans, but replaces the expensive on-robot
rollouts with an efficient, fully synthetic generation process.
This enables DemoGen to generate real-world demonstra-
tions cost-effectively.

3. DemoGen Methods

3.1. Problem Formulation
A visuomotor policy π : O 7→ A directly maps the visual
observations o ∈ O to the predicted actions a ∈ A. To train
such a policy, a dataset D of demonstrations must be pre-
pared. We define a source demonstration Ds0 ⊆ D as a tra-
jectory of paired observations and actions conditioned on an
initial object configuration: Ds0 = (d0, d1, . . . , dL−1|s0),
where each dt = (ot, at) represents an observation-action
pair, s0 denotes the initial configuration, and L is the tra-
jectory length. DemoGen is designed to augment a human-
collected source demonstration by generating a new demon-
stration conditioned on a different initial object configura-
tion: D̂s′0

= (d̂0, d̂1, . . . , d̂L−1|s′0).
Specifically, assuming the task involves the sequential

manipulation of K objects {O1, O2, . . . , OK}, the initial
object configuration s0 is defined as the set of initial poses
of these objects: s0 = {TO1

0 ,TO2
0 , . . . ,TOK

0 }, where TO
t

denotes the SE(3) transformation from the world frame
to an object O at time step t. The action at consists of
the robot arm and robot hand commands, represented as
at = (aarmt , ahandt ), where aarmt ≜ AEE

t is the target SE(3)
end-effector pose in the world frame, and ahandt can either
be a binary signal for a parallel gripper’s open/close action
or a higher-dimensional vector for controlling the joints of a
dexterous hand. The observation ot includes both the point
cloud data and the proprioceptive feedback from the robot:
ot = (opcdt , oarmt , ohandt ), where oarmt and ohandt reflect the
current state of the end-effector, with the same dimension-
ality as the corresponding actions.

3.2. Pre-processing Source Demonstration
Segmented point cloud observations. To improve the
practical applicability in real-world scenarios, we utilize
a single-view RGBD camera for point cloud acquisition.
The raw point cloud observations are first preprocessed by
cropping the redundant points from the background and ta-
ble surface. We assume the retained points are associated
with either the manipulated object(s) or the robot’s end-
effector. A clustering operation [11] is then applied to filter
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Figure 2. Pre-processing the source demonstration. The point
cloud observations are processed by cropping, clustering, and
down-sampling. The source action trajectory is parsed into mo-
tion and skill segments by referring to the object semantic masks.

out the outlier points in noisy real-world observations. Sub-
sequently, the point cloud is downsampled to a fixed number
of points (e.g., 512 or 1024) using farthest point sampling to
facilitate policy learning [34]. For the first frame of the tra-
jectory, we employ Grounded SAM [36] to obtain the seg-
mentation masks for the manipulated objects from the RGB
image. These masks are then applied to the pixel-aligned
depth image and projected onto the 3D point cloud.
Parsing the source trajectory. Following previous
work [15, 29], we assume that the execution trajectory can
be parsed into a sequence of object-centric segments. Since
the robot must initially approach the object in free space
before engaging in on-object manipulation through contact,
each object-centric segment can be further subdivided into
two stages: motion and skill. For example, the trajectory
in Fig. 2 is divided into four stages: 1) move to the flower,
2) pick up the flower, 3) transfer the flower to the vase, 4)
insert the flower into the vase.

We can easily identify the skill segments associated with
a given object by checking whether the distance between
the geometric center of the object’s point cloud and the
robot’s end-effector falls within a predefined threshold, il-
lustrated by the spheres in Fig. 2. The intermediate tra-
jectories between two skill segments are classified as mo-
tion segments. Formally, we represent an interval of time
stamps as: τ = (tstart, tstart + 1, . . . , tend − 1, tend) ⊆
(0, 1, . . . , L − 1), which can be used as an index sequence
for the extraction of the corresponding segments from a se-
quence of demonstrations, actions, or observations. For in-
stance, d[τ ] = (dtstart , dtstart+1, . . . , dtend−1, dtend) repre-
sents the extracted subset of source demonstration indexed
by τ . Using this notation, we parse the source demon-
stration into alternating motion and skill segments accord-
ing to the index sequence (τm

1 , τ s
1 , . . . , τ

m
K , τ s

K): Ds0 =
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Figure 3. Illustrations for action generation. (L) Actions in
the motion stage are planned to connect the neighboring skill seg-
ments. (R) Actions in the skill stage are transformed uniformly.

(d[τm
1 ], d[τ s

1 ], . . . , d[τ
m
K ], d[τ s

K ]|s0).

3.3. TAMP-based Action Generation

The generation process begins by selecting a target ini-
tial configuration s′0 = {TO1

′

0 ,TO2
′

0 , ...,TOK
′

0 }. We
can compute the spatial transformation under the homo-
geneous matrix representation by: ∆s0 = {(TO1

0 )−1 ·
TO1

′

0 , . . . , (TOK
0 )−1 · TOK

′

0 }. Recall that the actions con-
sist of both robot arm and robot hand commands. The robot
hand commands define the interactive actions on the object,
e.g., holding the flower or rolling up the dough. Since they
are invariant of the spatial transformation, ahandt should
remain unchanged regardless of the object configuration:
âhandt = ahandt , ∀ t, so, s

′
0.

In contrast, the robot arm commands should be spa-
tially equivariant to the object movements in order to ad-
just the trajectory according to the altered configuration.
Specifically, for the motion and skill segments involv-
ing the k-th object, we adapt the robot arm commands
AEE[τm

k ],AEE[τ s
k] following a TAMP-based procedure il-

lustrated in Fig. 3.

For the skill segments with dexterous on-object be-
haviors, the spatial relations between end-effectors and
objects must remain relatively static. Thus, the entire
skill segments are transformed following the correspond-
ing objects: ÂEE[τ s

k] = AEE[τ s
k] · (T

Ok
0 )−1 · TOk

′

0 . For
the motion segments moving in free space, the goal of
the generated actions is to chain the adjacent skill seg-
ments. Therefore, we plan the robot arm commands
in the motion stage via motion planning: ÂEE[τm

k ] =

MotionPlan(ÂEE[τ s
k−1][−1], ÂEE[τ s

k][0]), where the
starting pose for motion planning is taken from the last
frame of the previous skill segment, and the ending pose is
from the first frame of the current skill segment. For simple
uncluttered workspaces, linear interpolation suffices. For
complex environments requiring obstacle avoidance, an off-
the-shelf motion planning method [23] is employed.

3.4. Fully Synthetic Observation Generation
Adapting proprioceptive states. The observations consist
of point cloud data and proprioceptive states. Since the pro-
prioceptive states share the same semantics with the actions,
they should undergo the same transformation: ôhandt =
ohandt , ∀ t, so, s

′
0; ôarmt = oarmt · (AEE

t )−1 · ÂEE
t .

Synthesizing point cloud observations. To synthesize the
spatially augmented point clouds for the robot and objects,
we employ a simple segment-and-transform strategy. Apart
from the target transformations, the only required informa-
tion for synthesis is the segmentation masks for the K ob-
jects on the first frame of the source demonstration, ob-
tained in Sec. 3.2.

For each object, we define 3 stages. In the to-do stage,
the object is static and unaffected by the robot, and its point
cloud is transformed according to the initial object configu-
ration (TOk

0 )−1 · TOk
′

0 . In the doing stage, the object is in
contact with the robot, and its point cloud is merged with
the end-effector’s point cloud. In the done stage, the ob-
ject remains in its final state. These stages are easily identi-
fied by referencing the trajectory-level motion and skill seg-
ments. For the robot’s end-effector, its point cloud under-
goes the same transformation as indicated by the proprio-
ceptive states (AEE

t )−1 · ÂEE
t . Given the assumption of a

cropped workspace, the point clouds for the robot and the
objects in the doing stage can be separated by subtracting
the object point clouds in the to-do and done stages from
the scene point cloud. A concrete example of this process
is shown in Fig. 20. More examples of the synthetic trajec-
tories in real-world experiments can be found in Fig. 21.

4. Experiments in the Simulator

Policy. Both in the simulator and real world, we select
DP3 [50] as the visuomotor policy, which predicts actions
by consuming point cloud and proprioception observations.
For a fair comparison, we fix the total training steps counted
by observation-action pairs, resulting in an equal training
cost regardless of the dataset size. The training details are
listed in Appendix B.1.
Tasks. We design 8 tasks adapted from the MetaWorld [48]
benchmark, illustrated in Fig. 4. To strengthen the signifi-
cance of spatial generalization, these tasks are modified to
have enlarged randomization ranges in Appendix D.1.
Generation and evaluation. We write scripted policies for
these tasks and prepare only 1 source demonstration per task
for demonstration generation. We also produce 10 and 25
source demonstrations per task using the scripted policy as
a reference for human-collected datasets. Based on the one
source demonstration, we leverage DemoGen to generate
100 spatially augmented demonstrations for the tasks con-
taining the spatial randomization of one object. Since the
tasks concerning two objects have a more diverse range of



Pick-Cube Button-Small Drawer-Close Faucet-Open Handle-Press Box-Lid Stack-Cube Assembly

Figure 4. Tasks for simulated evaluation on spatial generalization. Purple and sky-blue rectangles mark the workspaces for demonstra-
tion generation and evaluation, respectively.

Table 1. Simulated evaluation of DemoGen for spatial generalization. We report the maximum/averaged success rates over 3 seeds.

Pick-Cube Button-Small Drawer-Close Faucet-Open Handle-Press Box-Lid Stack-Cube Assembly Averaged

1 Source 0/0 4/4 55/50 39/23 17/16 11/11 0/0 0/0 16/13
DemoGen 76/73 92/84 100/100 95/92 100/100 100/95 79/77 86/83 91/88

10 Source 29/29 54/52 100/100 90/89 100/99 94/89 44/38 47/45 70/68
25 Source 82/74 90/84 100/100 100/100 100/100 100/100 95/93 83/79 94/91

object configurations, 200 demonstrations are generated.
Results analysis. The evaluation results for the simulated
tasks are presented in Tab. 1. DemoGen significantly en-
hances the policy performance compared with the source
demonstration baseline. The policies trained on DemoGen-
generated datasets also outperform those trained on 10
source demonstrations and get close to 25 source demon-
strations. This indicates DemoGen has the potential to
maintain the policy performance with over 20× reduced
human effort for data collection. Additionally, we found
a visual mismatch problem between the synthetic and real-
captured observations, which poses a limitation for the ef-
fectiveness of DemoGen. Illustrations and the empirical
consequence of this problem are provided in Appendix C.

5. Experiments in the Real World

5.1. Spatial Generalization (Single-Arm Platforms)
Tasks. On the Franka Panda single-arm platform, we design
3 tasks using the original Panda gripper and 4 tasks using an
Allegro dexterous hand as the end-effector. A task summary
is provided in Tab. 2. The motion and skill trajectories of
these tasks are visualized in Fig. 6 and the task descriptions
are provided in Appendix D.2. For all tasks, a single Intel
Realsense L515 camera is adopted to capture point cloud
observations, as depicted in Fig. 5(a).
Evaluation protocol. To evaluate spatial generalization,
we define a large planar evaluation workspace, the size
of which corresponds to the maximum reach of the robot
arm. Illustrated in Fig. 5(b), We uniformly sample 12 points
within this irregularly-shaped workspace as the coordinates
for potential object configurations, with a 15cm spacing be-
tween the neighbors. To determine the actual evaluated
configurations, we perform manual trials using kinematic
teaching to confirm the feasibility of each configuration.
Generation strategy. As in the simulated environments,

Table 2. Real-world tasks for spatial generalization evaluation.
ActD: action dimension. #Obj: number of manipulated objects.
#Eval: number of evaluated configurations. #GDemo: number of
generated demonstrations.

Task Platform ActD #Obj #Eval #GDemo

Spatula-Egg Gripper 6 1 10 270
Flower-Vase Gripper 7 2 4×4 432
Mug-Rack Gripper 7 2 4×4 432
Dex-Cube Dex. Hand 22 1 10 270
Dex-Rollup Dex. Hand 22 1 12 324
Dex-Drill Dex. Hand 22 2 3×3 243
Dex-Coffee Dex. Hand 22 2 3×3 243
Fruit-Basket Bimanual 14 2 4×6 72

we collect only one source demonstration for each task.
However, real-world point cloud observations are often
noisy, with issues such as flickering holes in the point clouds
or projective smearing around object outlines. The imita-
tion learning policy can overfit these irregularities if only
one demonstration is provided. To mitigate this issue, we
replay the source demonstration twice and capture the cor-
responding point cloud observations. The altogether 3 point
cloud trajectories enrich the diversity in visual degradations
and help alleviate the overfitting problem.

We set the generated object configurations to correspond
to the evaluated configurations. However, human operators
cannot always place objects with perfect precision in the
real world, yet we found visuomotor policies are sensitive to
even small deviations. Thus, we further augment the gener-
ated object configurations by adding small-range perturba-
tions. Specifically, for each target configuration, we gener-
ate 9 demonstrations with (±1.5cm)× (±1.5cm) perturba-
tion to mimic slight placement variations in the real world.
The final generated configurations are shown in Fig. 5(c).

In summary, the total number of generated demonstra-
tions is calculated as 3× (#Eval)×9, which represents the
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Figure 5. Protocol for evaluating spatial generalization. (a) Setups on the single-arm platform. (b) Illustration for the full-size evaluation
workspace. (c) Illustration for the generation strategy targeting the evaluated configurations along with small-range perturbations.

Spatula-Egg Flower-Vase Mug-Rack

Dex-Rollup Dex-Drill Dex-Coffee

Figure 6. Tasks for real-world evaluation on spatial generaliza-
tion. Spatula-Egg and Dex-Rollup are one-stage tasks involving
contact-rich behaviors. Flower-Vase, Mug-Rack, Dex-Drill, and
Dex-Coffee are two-stage tasks requiring precise manipulation.

3 source demonstrations, multiplied by the number of eval-
uated configurations, and further multiplied by the 9 pertur-
bations. The detailed counts are listed in Tab. 2.
Results analysis. The performance of visuomotor poli-
cies [50] trained on 3 source demonstrations and DemoGen-
generated demonstrations are reported in Tab. 3. Agents
trained solely on source demonstrations exhibit severe over-
fitting behaviors, blindly replicating the demonstrated tra-
jectory. In Appendix D.3, we evaluate the policy perfor-
mance trained on datasets containing additional human-
collected demonstrations. We found the spatial effec-
tive range of the trained policies is upper-bounded by the
demonstrations, aligned with the study in Appendix A.

Similar to the effects of manually covering the
workspace with human-collected demonstrations, De-
moGen-generated datasets enable the agents to display a
more adaptive response to diverse evaluated configurations,
resulting in significantly higher success rates. DemoGen
consistently enhances the performance across all the eval-
uated tasks. To further investigate the generalization ca-
pabilities enabled by DemoGen, we visualize the spatial
heatmaps for the evaluated configurations in Fig. 7. The
heatmaps reveal high success rates on configurations close
to the demonstrated ones, while the performance dimin-
ishes as the distance from the demonstrated configuration
increases. We attribute this decline to the visual mismatch
problem, as discussed in Appendix C.
Generation cost. We compare the time cost of real-world

demonstration generation between MimicGen [29] and De-
moGen. We estimate MimicGen’s time cost by multiplying
the duration of replaying a source trajectory by the num-
ber of generated demonstrations and adding an additional
20 seconds per trajectory for human operators to reset the
scene. Note that MimicGen involves continuous human in-
tervention, while the cost of DemoGen is purely computa-
tional, without any human/robot involvement.

5.2. Spatial Generalization (Bimanual Humanoid)

Task. In addition to the tasks on the single-arm platform,
we also designed a Fruit-Basket task on a bimanual hu-
manoid platform, illustrated in Fig. 8. The Fruit-Basket
task is distinguished from the previous tasks by three key
features: 1) Bimanual manipulation. The robot simultane-
ously grasps the basket with one arm and the banana with
the other. The right arm then places the basket in the cen-
ter of the workspace, while the left arm places the banana
into the basket. 2) Egocentric observation. The camera is
mounted on the robot’s head [49]. While the robot’s base
is immobilized, the first-person view opens opportunities
for future deployment in mobile manipulation scenarios. 3)
Out-of-distribution orientations. Still using a single human-
collected demonstration, the banana is placed with orienta-
tional offsets (i.e., 45◦, 90◦, and 135◦) relative to the orig-
inal demonstration during evaluation, while the basket is
randomized within a translational 10 cm× 5 cm workspace.
Generation strategy. The generation procedure follows a
similar approach as on the single-arm platform. Specifi-
cally, the human-collected demonstration is replayed twice,
yielding 3 source demonstrations. DemoGen generates syn-
thetic demonstrations by independently adapting the actions
of both arms to the respective transformations of the ob-
jects. Small-range perturbations are omitted due to lower
precision requirements. A challenge in synthesizing point
cloud observations with orientational offsets lies in the lim-
ited view provided by the single camera. To address this
issue, the humanoid robot adopts a stooping posture, en-
abling a near bird’s-eye view perspective. This adjustment
allows for more effective point cloud editing to simulate
full-directional yaw rotations.



Table 3. Real-world evaluation of DemoGen for spatial generalization. The success rates are averaged on 5 repetitions for each evaluated
configuration. The evaluated configurations for each task are counted in Tab. 2, and visualized in Fig. 7.

Spatula-Egg Flower-Vase Mug-Rack Dex-Cube Dex-Rollup Dex-Drill Dex-Coffee Fruit-Basket Averaged

Source 10.0 6.3 6.3 10.0 8.3 11.1 11.1 25.0 11.0
DemoGen 88.0 82.5 85.0 78.0 76.7 55.6 40.0 90.8 74.6

Spatula-Egg Flower-Vase Mug-Rack Dex-Cube

Dex-Rollup Dex-Drill Dex-Coffee Fruit-Basket

= 0% > 0% > 40% > 60% > 80%

Figure 7. Spatial heatmaps for real-world evaluation. The success rate for each coordinate is calculated as the average across all relevant
trials. For example, each coordinate of the vase in the Flower-Vase task is in combination with 4 coordinates of the flower, including the
one appearing in the source demonstration. This results in a total of 20 trials, given 5 repetitions per combination.

Table 4. The time cost for generating real-world demonstra-
tions. A single-core CPU process is used for computation.

Single o-a Pair A Trajectory Whole Dataset

MimicGen 2.1 s 2.1min 83.7 h
DemoGen 0.00015 s 0.010 s 22.0 s

Bimanual Humanoid O.O.D. Orientations

rot=0° rot=45°

rot=90° rot=135°

(a) (b)
Egocentric

Observation

Bimanual 
Manipulation

Figure 8. Bimanual humanoid platform. (a) Egocentric obser-
vations and bimanual manipulation. (b) The Fruit-Basket task in-
volves the out-of-distribution orientations during evaluation.

Results analysis. The success rates for both the source and
generated datasets are compared in Tab. 3, and the spatial
heatmap is shown in Fig. 7. The high success rate of 90.8%
demonstrates the effectiveness of DemoGen on bimanual
humanoid platforms and its ability to help policies gener-
alize to out-of-distribution orientations. A more detailed
analysis is presented in Appendix D.4.

5.3. Disturbance Resistance
Task and evaluation protocol. We consider a Sauce-
Spreading task (Fig. 9(a)) adapted from DP [4]. Initially,

(a) (b) (c)

(d) (e)

Figure 9. DemoGen for disturbance resistance. (a-c) Illustra-
tion, initial, and ending states of the Sauce-Spreading task. (d)
Disturbance applied for evaluation. (e) Standard strategy.

the pizza crust contains a small amount of sauce at its cen-
ter (Fig. 9(b)). The gripper maneuvers the spoon in hand
to approach the sauce center and periodically spread it to
cover the pizza crust in a spiral pattern (Fig. 9(c)). During
the sauce-spreading process, disturbances are introduced by
shifting the pizza crust twice to the neighboring spots within
the workspace. We consider 5 neighboring spots (Fig. 9(d))
and conduct 5 trials per spot, resulting in 25 trials. For
quantitative evaluation, we measure the sauce coverage on
the pizza crust. Additionally, we report a normalized sauce
coverage score, where 0 represents no operation taken, and
100 corresponds to human expert performance. Detailed
calculations are provided in Appendix D.5.
Generation strategies. A standard generation strategy se-
lects 15 intermediate spots (Fig. 9(e)) observed during the
disturbance process as the initial object configurations for a
standard DemoGen data generation procedure. To specifi-
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Figure 10. Illustration for the ADR strategy.

Table 5. Evaluation results for disturbance resistance.

Sauce Coverage Normalized Score

Regular DemoGen 34.2 40.4
DemoGen w/ ADR 61.2 92.3

Initial State 13.2 0
Human Expert 65.2 100

cally enhance disturbance resistance, we propose a special-
ized strategy named Augmentation for Disturbance Resis-
tance (ADR), illustrated in Fig. 10. In ADR, the pizza crust
is artificially displaced to nearby positions at certain time
steps to simulate the disturbance. The robot’s end-effector,
holding the spoon, initially remains static and subsequently
interpolates its motion to re-approach the displaced crust
before continuing the periodic spreading motion.
Results analysis. Tab. 5 presents the sauce coverage and
normalized scores for both the standard DemoGen and the
ADR-enhanced DemoGen strategies. Raw evaluation re-
sults and detailed definitions for the metrics are presented
in Appendix D.5. We found the ADR strategy signifi-
cantly outperforms the standard DemoGen, achieving per-
formance comparable to human experts. These findings un-
derscore the critical role of the demonstration data in en-
abling policy capabilities. The ability to resist disturbances
does not emerge naturally but is acquired through targeted
disturbance-involved demonstrations.

5.4. Obstacle Avoidance

Task. Similar to the case of disturbance resistance, the vi-
suomotor policy’s ability to avoid obstacles is also imparted
through demonstrations containing obstacle-avoidance be-
haviors. To investigate such capability, we introduce obsta-
cles to a Teddy-Box task, where the dexterous hand grasps
the teddy bear and transfers it into the box on the left
(Fig. 11(a)). Trained on the source demonstrations with-
out obstacles, the visuomotor policy fails to account for po-
tential collisions, e.g., it might knock over the coffee cup
placed in the middle (Fig. 11(b)).
Generation strategy. To generate obstacle-involved
demonstrations, we augment the real-world point cloud ob-

Source Demo     Generated Demo

(b)  Collision Obstacle Avoidance(d)

(a) (c)

Figure 11. DemoGen for obstacle avoidance. (ab) Policy trained
on the source demonstration collides with the unseen obstacle.
(cd) Policy trained on the generated dataset could avoid diverse-
shaped obstacles.

servations by sampling points from simple geometries, such
as boxes and cones, and fusing these points into the origi-
nal scene (Fig. 11(c)). Obstacle-avoiding trajectories are
generated by a motion planning tool [23], which enables
collision-free actions.
Evaluation and results analysis. For evaluation, we po-
sition 5 everyday objects with diverse shapes in the mid-
dle of the workspace (Fig. 11(d)) and conduct 5 trials per
object, resulting in a total of 25 trials. The agent trained
on the augmented dataset successfully bypasses obstacles
in 22 out of 25 trials. Notably, in scenarios without obsta-
cles, the agent follows the lower trajectory observed in the
source demonstrations, indicating its responsiveness to en-
vironmental variations.

6. Conclusion
In this work, we introduced DemoGen, a fully synthetic data
generation system designed to facilitate visuomotor policy
learning by mitigating the need for large volumes of human-
collected demonstrations. Through TAMP-based action
adaption and 3D point cloud manipulation, DemoGen gen-
erates spatially augmented demonstrations with minimal
cost, significantly improving visuomotor policy’s spatial
generalization capability across a wide range of real-world
tasks and platforms. Furthermore, we extend DemoGen
to generate demonstrations incorporating disturbance re-
sistance and obstacle avoidance behaviors, endowing the
trained policies with the corresponding capabilities.
Limitations. Although we have demonstrated the effec-
tiveness of DemoGen, it has several limitations. First, De-
moGen relies on the availability of segmented point clouds,
which limits its applicability in highly cluttered or unstruc-
tured environments. Second, DemoGen is not suitable for
tasks where spatial generalization is not required, such as
in-hand reorientation [1] or push-T [4, 12] with a fixed tar-



get pose. Third, the performance of DemoGen is affected
by the visual mismatch problem caused by the constraint of
single-view observation, as discussed in Appendix C.
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A. Empirical Study: Spatial Generalization
Capability of Visuomotor Policies

In this section, we present a brief empirical study examining
the spatial generalization capability of visuomotor policies.
We demonstrate how the lack of such generalization con-
tributes to the data-intensive nature of learning visuomotor
policies.

A.1. Visualization of Spatial Effective Range

Spatial generalization refers to the ability of a policy to per-
form tasks involving objects placed in configurations that
were not seen during training. To gain an intuitive under-
standing of spatial generalization, we visualize the relation-
ship between the spatial effective range of visuomotor poli-
cies and the spatial distribution of demonstration data.
Tasks. We evaluate a Button-Large task adapted from the
MetaWorld [48] benchmark, where the robot approaches
a button and presses it down. The object randomization
range is modified to a 30 cm × 40 cm = 1200 cm2 area on
the tabletop workspace, covering most of the end-effector’s
reachable space. Noticing the large size of the button makes
it pressed down even if the press motion does not precisely
hit the center, we also examine a more precision-demanding
variant, Button-Small, where the button size is reduced by
a factor of 4.
Policy. We adopt 3D Diffusion Policy (DP3)[50] as the
studied policy, as our benchmarking results indicate that 3D
observations provide superior spatial generalization com-
pared to 2D approaches. Training details are provided in
Appendix B.1.
Evaluation. To visualize the spatial effective range, we
uniformly sample 21 points along each axis within the
workspace, resulting in a total of 441 distinct button place-
ments. Demonstrations are generated using a scripted
policy, with 4 different spatial distributions ranging from
single to full. The performance of each configuration
is evaluated on the 441 placements, enabling a comprehen-
sive assessment of spatial generalization. The visualization
result is presented in Fig. 12.
Key findings. Overall, the spatial effective range of visuo-
motor policies is closely tied to the distribution of object
configurations seen in the demonstrations. Specifically, the
effective range can be approximated by the union of the ar-
eas surrounding the demonstrated object placements. Thus,
to train a policy that generalizes well across the entire ob-
ject randomization range, demonstrations must cover the
full workspace, resulting in substantial data collection costs.
Furthermore, as task precision requirements increase, the
effective range shrinks to more localized areas, necessitat-
ing a greater number of demonstrations to adequately cover
the workspace.

A.2. Benchmarking Spatial Generalization Capa-
bility

The practical manifestation of the spatial generalization is
reflected in the number of demonstrations required for ef-
fective policy learning. In the following benchmarking,
we explore the relationship between the number of demon-
strations and policy performance to determine how many
demonstrations are sufficient for effective training.
Tasks. To suppress the occurrence of inaccurate but suc-
cessful policy rollouts, we design a Precise-Peg-Insertion
task. We construct a T-shaped peg, whose upper end has
a cross-section of 6 cm × 6 cm, and the bottom end has a
cross-section of 3 cm × 3 cm. The hole in the green socket
has a cross-section of 4 cm × 4 cm. This shape enforces a
strict fault tolerance of 1 cm during both the picking and in-
sertion stages, asking for millimeter-level precision. Both
objects are randomized in a 40 cm × 20 cm workspace in
the full setting. The randomization range is halved into
20 cm× 10 cm in the half setting.
Policies. In addition to Diffusion Policy (DP)[4] and 3D
Diffusion Policy (DP3)[50] trained from scratch, we ex-
plore the potential of pre-trained visual representations to
enhance spatial generalization. Specifically, we replace the
train-from-scratch ResNet [16] encoder in DP with pre-
trained encoders including R3M [30], DINOv2 [31], and
CLIP [35]. Detailed implementations are provided in Ap-
pendix B.2.
Demonstrations. We vary the number of demonstra-
tions from 25 to 400. The object configurations are ran-
domly sampled from a slightly larger range than the eval-
uation workspace to avoid performance degradation near
workspace boundaries. A visualization is provided in
Fig. 13.
Evaluation. In the full workspace, both the peg and
socket are placed on 45 uniformly sampled coordinates, re-
sulting in 2025 distinct configurations for evaluation. For
the half and fixed settings, the number of evaluated
configurations is 225 and 1, respectively.
Key findings. The degree of object randomization sig-
nificantly influences the required demonstrations. There-
fore, an effective evaluation protocol for visuomotor poli-
cies must incorporate a sufficiently large workspace to pro-
vide enough object randomization. On the other hand,
both 3D representations and pre-trained 2D visual encoders
contribute to improved spatial generalization capabilities.
However, none of these methods fundamentally resolve the
spatial generalization problem. This indicates the agent’s
spatial capacity is not inherently derived from the policy it-
self but instead develops through extensive traversal of the
workspace from the given demonstrations.
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Figure 12. Qualitative visualization of the spatial effective range. The grid maps display discretized tabletop workspaces from a
bird’s-eye view under different demonstration configurations. Dark green spots mark the locations where buttons are placed during the
demonstrations. Each grid cell corresponds to a policy rollout with the button placed at that location. Blue, yellow, green, and gray grids
denote successful executions for the Button-Large, Button-Small, both tasks, and no tasks, respectively.
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Figure 13. The Precise-Peg-Insertion task. 3 workspace sizes is
considered. Purple and sky-blue rectangles mark the workspaces
for demonstration and evaluation, respectively.

# demos

DP Scratch 1 8 18 22 38 44 56 44

25 50 75 100 150 200 300 400

DP+R3M

DP+CLIP

DP+DINOv2

DP3

4 17 50 61 79 83 89 92

2 8 39 53 78 89 94 96

3 11 29 49 86 92 96 98

17 49 66 91 96 100 100 100

100 100 100 100 100 100 100 100

> 95%> 80%> 50%< 50%Visuomotor
Polices

Obj. Random.
Range

DP3

DP3

Full

Full

Full

Full

Full

Half

Fixed

0 2 9 9 16 17 17 21

Figure 14. Quantitative benchmarking on the spatial general-
ization capacity. We report the relationship between the agent’s
performance in success rates and the number of demonstrations
used for training when different visuomotor policies and object
randomization ranges are adopted. The results are averaged over
3 seeds.

B. Policy Training and Implementation Details

We select 3D Diffusion Policy (DP3) [50] as the visuomo-
tor policy used for real-world and simulated experiments.
We compare its performance against 2D Diffusion Policy
(DP) [4] in the empirical study in Sec. A. We list the train-

ing and implementation details as follows.

B.1. Details for Policy Training
For a fair comparison, we fix the total training steps counted
by observation-action pairs to be 2M for all evaluated set-
tings, resulting in an equal training cost regardless of the
dataset size. To stabilize the training process, we use
AdamW [27] optimizer and set the learning rate to be 1e−4

with a 500 step warmup.
In real-world experiments, we use the DBSCAN [11]

clustering algorithm to discard the outlier points and down-
sample the number of points in the point cloud observations
to 1024. In the simulator, we skip the clustering stage and
downsample the point clouds to 512 points.

We follow the notation in the Diffusion Policy [4] pa-
per, where To denotes the observation horizon, Tp as the
action prediction horizon, and Ta denotes the action exe-
cution horizon. In real-world experiments, we set To =
2, Tp = 8, Ta = 5. We run the visuomotor policy at 10Hz.
Since Ta indicates the steps of actions executed on the robot
without re-planning, our horizon settings result in a closed-
loop re-planning latency of 0.5 seconds, responsive enough
for conducting dexterous retrying behaviors and disturbance
resistance. In the simulator, since the tasks are simpler, we
set To = 2, Tp = 4, Ta = 3.

B.2. Pre-Trained Encoders for Diffusion Policies
To replace the train-from-scratch ResNet18 [16] visual en-
coder in the original Diffusion Policy architecture, we con-
sider 3 representative pre-trained encoders: R3M [30], DI-
NOv2 [31], and CLIP [35]. R3M utilizes a ResNet [16]
architecture and is pre-trained on robotics-specific tasks.
DINOv2 and CLIP employ ViT [10] architectures and are
pre-trained on open-world vision tasks. These encoders are
widely used in previous works [5, 26] to enhance policy
performance.



Figure 15. Illustration for the visual mismatch problem. The
appearance changes due to the perspective change.

C. Limitation: The Visual Mismatch Problem
While the one-shot imitation experiment verifies the effec-
tiveness of DemoGen, it also reveals its limitation: synthetic
demonstrations generated from one source demonstration
are not as effective as the same number of human-collected
demonstrations. We attribute the performance gap to the
visual mismatch problem under the constraint of a single-
view observation perspective. When objects move through
3D space, their appearance changes due to variations in per-
spective. An illustration is provided in Fig. 15. However,
synthetic demonstrations consistently reflect a fixed side of
the object’s appearance seen in the source demonstration.
This discrepancy causes a visual mismatch between the syn-
thetic and real-captured data.

C.1. Performance saturation.
A notable consequence of the visual mismatch problem is
the phenomenon of performance saturation. An empirical
analysis is conducted on the Pick-Cube task. In Fig. 16(a),
we fix the spatial density of target object configurations in
the synthetic demonstrations and increase their spatial cov-
erage by adding more synthetic demonstrations. The curve
indicates that the performance improvement plateaus once
the spatial coverage exceeds a certain threshold. This satu-
ration occurs because the visual mismatch intensifies as the
distance between the source and synthetic object configura-
tions increases, making additional synthetic demonstrations
ineffective. In Fig.16(b), similar performance saturation is
observed when we increase the density while fixing the spa-
tial coverage. This indicates excessive demonstrations are
unnecessary once they sufficiently cover the workspace.

Figure 16. Performance Saturation. We report the policy perfor-
mance boost w.r.t. the increase of synthetic demonstrations over 3
seeds.

D. Experimental Details
D.1. Randomization Ranges for Simulated Tasks
In Fig. 4, we illustrated the simulated tasks for the evalua-
tion on spatial generalization. To strengthen the significance
of spatial generalization, we enlarge the original object ran-
domization ranges in the MetaWorld [48] tasks. For demon-
stration generation, we select a slightly larger range than
the evaluation workspace to avoid performance degradation
near the workspace boundaries. The detailed workspace
sizes are listed in Tab. 6.

D.2. Task Descriptions for Real-World Tasks
In Fig. 6, we illustrated the real-world tasks for the evalu-
ation on spatial generalization. We describe these tasks in
the text as follows, where we mark the verbs for motion and
skill actions in the corresponding colors.
1. Spatula-Egg. The gripper holds a spatula in hand. The

robot maneuvers the spatula to first move toward the
fried egg and then 1) slide beneath the egg, 2) lift the
egg leveraging the contact with the plate’s rim, 3) carry
the egg and maintain stable suspension.

2. Flower-Vase. The gripper moves toward the flower,
picks it up, reorients it in the air while transferring to-
ward the vase, and finally inserts it into the vase.

3. Mug-Rack. The gripper moves toward the mug, picks
it up, reorients it in the air while transferring toward the
rack, and hangs it onto the rack.

4. Dex-Cube. The dexterous hand moves toward the cube
and grasps up the cube.

5. Dex-Rollup. The dexterous hand moves toward a piece
of plasticine and wraps it multiple times until it is fully
coiled. The required times of the wrapping motion may
vary due to the distinct plasticity of every hand-molded
piece of plasticine.

6. Dex-Drill. The dexterous hand moves toward the drill,
grasps it up, transfers it toward the cube, and finally
touches the cube with the drill.

7. Dex-Coffee. The dexterous hand moves toward the ket-
tle, grasps it up, transfers it toward the coffee filter, and
finally pours water into the filter.

D.3. Increased Human-Collected Demonstrations
In Tab. 3, we compare the DemoGen-generated dataset
against 3 human-collected source demonstrations. In
Fig. 18, we provide a reference on how the increase of
source demonstrations leads to the enhancement of policy
performance on the Dex-Cube task. To further understand
the policy capacity enabled by human-collected demonstra-
tions, we visualize the spatial heatmaps of human-collected
datasets in Fig. 17. By comparing the demonstrated con-
figurations and the spatial effective range of the resulting
policies, we found the policy capacity is upper-bounded by



Table 6. Object randomization ranges in simulated tasks. All the reported sizes have the units in centimeters.

Pick-Cube Button-Small Drawer-Close Faucet-Open Handle-Press Box-Lid Stack-Cube Assembly

Object(s) Cube Button Drawer Faucet Toaster Box × Lid Red × Green Pillar × Hole
Evaluation 40×40 40×40 15×15 30×30 20×30 (2.5×30)2 (15×15)2 (10×30)2

DemoGen 48×48 48×48 20×20 40×40 25×40 (7.5×40)2 (20×20)2 (15×40)2

3 Source 5 Source 8 Source 10 Source

= 0% > 0% > 40% > 60% > 80%

Figure 17. Visualization of the policy performance trained on human-collected datasets. (Upper row) The demonstrated configura-
tions. (Bottom row) The spatial heatmaps with success rates averaged on 5 trials.
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Figure 18. Real-world comparison between DemoGen-
generated and human-collected datasets. The DemoGen-
generated dataset is based on 3 source demonstrations.

the demonstrated configurations. This is in line with the
findings in the empirical study.

D.4. Detailed Analysis of the Bimanual Humanoid
Experiment

The orientational augmentations share the same visual mis-
match problem as translational augmentation. The policy
performs as expected when the generated orientations are
close to the orientation in the source demonstration. As the
orientational difference increases, we observed the policy
might react to the orientation in the current visual observa-
tion with actions for mismatched orientations.

Additionally, we found the spatial generalization prob-
lem persists in mobile manipulation scenarios. This is
mainly due to the physical constraints of real-world envi-
ronments, such as kitchen countertops or fruit stands, as
demonstrated in our experiments, where terrain limitations
prevent the base from approaching objects at arbitrary dis-

tances. Consequently, the base typically moves to a fixed
point at a specific distance from the object, after which the
robot conducts a standard non-mobile manipulation process
at the fixed base position.

D.5. Disturbance Resistance Experiments Details
D.5.1. Evaluation Metrics
The sauce coverage score is computed as follows. First, we
distinguish between green background and red sauce in the
HSV color space. The identified background is set to black,
the sauce is set to red, and the rest which should be the un-
covered crust is set to white. Second, due to the highlights
on the sauce liquid, some small fragmented points of the
sauce may be identified as the crust. To address this, we
apply smoothing filtering followed by dilation and erosion,
where the kernel size is 9×9. Finally, the coverage is calcu-
lated as the ratio of red areas (sauce) over non-black areas
(sauce + uncovered crust).

D.5.2. Raw Evaluation Results
For quantitative evaluation, we perform 5 repetitions for
each of the 5 disturbance directions, resulting in 25 trials
for both strategies.

D.6. Visualization of DemoGen-Generated Trajecto-
ries

In Fig. 20, we gave a concrete example of the trajectory of
synthetic visual observations. We provide more examples
in Fig. 21 by showcasing the key frames of source and gen-
erated demonstrations.



Regular DemoGen DemoGen w/ ADR
Figure 19. Raw evaluation results in the Sauce-Spreading task. (Top) Examples of the processing results for metric calculation.
(Bottom) Compared with the regular DemoGen, the policy trained with the ADR strategy better spreads the sauce to cover the crust under
external disturbance.
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Figure 20. Illustrations for synthetic visual observation generation. Objects in the to-do stage are segmented and transformed by the
target configurations. Objects in the doing stage are merged with the end-effector and transformed according to the proprioceptive states.



So
ur
ce

G
en

er
at
ed

So
ur
ce

G
en

er
at
ed

Dex-Rollup Spatula-Egg

Flower-Vase

So
ur
ce

G
en

er
at
ed

Obstacle Avoidance

So
ur
ce

G
en

er
at
ed

Fruit-Basket

Figure 21. More examples of the trajectories consisting of synthetic visual observations.
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