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Abstract

Customizable multilingual zero-shot singing001
voice synthesis (SVS) has various potential ap-002
plications in music composition and short video003
dubbing. However, existing SVS models overly004
depend on phoneme and note boundary anno-005
tations, limiting their robustness in zero-shot006
scenarios and producing poor transitions be-007
tween phonemes and notes. Moreover, they008
also lack effective multi-level style control via009
diverse prompts. To overcome these challenges,010
we introduce CusSinger, a multi-task multilin-011
gual zero-shot SVS model with style transfer012
and style control based on various prompts.013
CusSinger mainly includes three key modules:014
1) Blurred Boundary Content (BBC) Encoder,015
predicts duration, extends content embedding,016
and applies masking to the boundaries to enable017
smooth transitions. 2) Custom Audio Encoder,018
uses contrastive learning to extract aligned rep-019
resentations from singing, speech, and textual020
prompts. 3) Flow-based Custom Transformer,021
leverages Cus-MOE, with F0 supervision, en-022
hancing both the synthesis quality and style023
modeling of the generated singing voice. Ex-024
perimental results show that CusSinger out-025
performs baseline models in both subjective026
and objective metrics across multiple related027
tasks. Singing voice samples are available at028
https://styleaudio.github.io/Sample/.029

1 Introduction030

Zero-shot singing voice synthesis (SVS) aims to031

generate high-quality singing voices with unseen032

multi-level styles based on audio or textual prompts033

(Dai et al., 2025; Zhang et al., 2024b). This field034

has found widespread potential applications in pro-035

fessional music composition and short video dub-036

bing. Zero-shot SVS involves using an acoustic037

model to leverage lyrics and musical notations for038

content modeling, while audio or textual prompts039

can control singing styles. Finally, a vocoder is040

employed to synthesize the target singing voice.041

Although traditional SVS tasks (Zhang et al., 042

2022b; Kim et al., 2022; Cho et al., 2022) have 043

made significant strides, there is an increasing de- 044

mand for more customizable experiences. This 045

includes not only zero-shot style transfer by audio 046

prompts (Du et al., 2024), but also the need to lever- 047

age natural language textual prompts for multi- 048

level style control. Textual prompts can influence 049

global timbre by specifying the singer’s gender and 050

vocal range. Additionally, they can control broader 051

aspects of singing style, such as vocal techniques 052

(e.g., bel canto) and emotional expression (e.g., 053

happy or sad), as well as segment- or word-level 054

techniques (e.g., mixed voice or falsetto). Audio 055

prompts, in addition, enable the target to learn these 056

consistent multi-level styles while incorporating 057

accent, pronunciation, and transitions. However, 058

current models still struggle to effectively imple- 059

ment style transfer and style control based on vari- 060

ous prompts in zero-shot scenarios. Consequently, 061

achieving a natural, stable, and highly controllable 062

generation remains a significant challenge. 063

Currently, customizable multilingual zero-shot 064

SVS faces two major challenges: 1) Existing SVS 065

models heavily rely on phoneme and note boundary 066

annotations, which limits their robustness. Datasets 067

like OpenCpop (Wang et al., 2022) depend on 068

MFA and human-ear alignment, which introduces 069

significant errors at the boundaries. Additionally, 070

these SVS models often produce poor transitions 071

between phonemes and notes, especially in zero- 072

shot scenarios, where this issue becomes even more 073

pronounced. Choi and Nam (2022) introduces a 074

melody-unsupervised model to reduce reliance on 075

boundary annotations. However, the unsupervised 076

approach results in lower synthesis quality and can- 077

not ensure smooth transitions at the boundaries. 078

2) Existing SVS models with style transfer and 079

style control lack effective multi-level style con- 080

trol through diverse prompts. TCSinger (Zhang 081

et al., 2024b) achieves style control using specified 082
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labels or audio prompts. However, it still cannot083

cover a wider range of applications with more flex-084

ible prompts, including natural language textual,085

speech, or singing prompts. Moreover, its capabil-086

ity in style control is still quite limited.087

To address these challenges, we introduce088

CusSinger, a multi-task multilingual zero-shot SVS089

model with style transfer and style control based090

on various prompts. CusSinger enables effective091

style control using natural language textual, speech,092

or singing prompts. To achieve smooth and ro-093

bust phoneme/note boundary modeling, we design094

the Blurred Boundary Content (BBC) Encoder.095

This encoder predicts duration, extends content096

embedding, and applies masking to phoneme and097

note boundaries to facilitate smooth transitions098

and ensure robustness. Furthermore, to extract099

aligned representations from singing, speech, and100

textual prompts, we propose the Custom Audio En-101

coder based on contrastive learning, extending the102

model’s applicability to a broader range of related103

tasks. In addition, to generate high-quality and104

highly controllable singing voices, we introduce105

the Flow-based Custom Transformer. Within this106

framework, we utilize Cus-MOE, which, depend-107

ing on the language and textual or audio prompt,108

selects different experts to achieve better synthesis109

quality and style modeling. Moreover, we incorpo-110

rate additional supervision using F0 information to111

enhance the expressiveness of the synthesized out-112

put. Our experimental results show that CusSinger113

outperforms other baseline models in synthesis114

quality, singer similarity, and style controllability115

across various tasks, including zero-shot style trans-116

fer, cross-lingual style transfer, multi-level style117

control, and speech-to-singing (STS) style transfer.118

• We present CusSinger, a multi-task multilin-119

gual zero-shot SVS model with style transfer120

and style control based on various prompts.121

• We introduce the Blurred Boundary Content122

Encoder for robust modeling and smooth tran-123

sitions of phoneme and note boundaries.124

• We design the Custom Audio Encoder using125

contrastive learning to extract styles from var-126

ious prompts, while the Flow-based Custom127

Transformer with Cus-MOE and F0, enhances128

synthesis quality and style modeling.129

• Experimental results show that CusSinger out-130

performs baseline models in both subjective131

and objective metrics across multiple tasks.132

2 Related Works 133

Singing Voice Synthesis. Singing Voice Syn- 134

thesis (SVS) focuses on generating high-quality 135

singing voices from lyrics and musical notes. 136

VISinger 2 (Zhang et al., 2022b) enhances syn- 137

thesis quality by employing digital signal process- 138

ing techniques. SiFiSinger (Cui et al., 2024) ex- 139

tends VISinger by improving pitch control with a 140

source module that generates F0-controlled excita- 141

tion signals. Additionally, MuSE-SVS (Kim et al., 142

2023) introduces a multi-singer emotional singing 143

voice synthesizer, enhancing expressiveness. For 144

singing datasets, Opencpop (Wang et al., 2022) and 145

GTSinger (Zhang et al., 2024c) have made signifi- 146

cant contributions by releasing annotated datasets. 147

More recently, TCSinger (Zhang et al., 2024b) in- 148

troduces an adaptive normalization method that 149

enhances the details in synthesized voices. De- 150

spite the strong performance of these models in 151

generation quality, they typically require precise 152

alignment of audio, lyrics, and notes, which is lim- 153

ited by the quality of the dataset itself and leads to 154

unnatural transitions at phoneme and pitch bound- 155

aries, particularly evident in zero-shot scenarios. 156

To address this, we employ blurred boundaries. 157

Style Modeling. Style modeling is crucial for 158

generating expressive singing voices in a controlled 159

manner, typically involving the transfer of styles 160

from reference audio (Wagner and Watson, 2010). 161

Skerry-Ryan et al. (2018) is the first to integrate a 162

style reference encoder into a Tacotron-based TTS 163

system, enabling the transfer of style for similar- 164

text speech. Attentron (Choi et al., 2020) intro- 165

duces an attention mechanism to extract styles from 166

reference samples. ZSM-SS (Kumar et al., 2021) 167

proposes a Transformer-based architecture with 168

an external speaker encoder using wav2vec 2.0 169

(Baevski et al., 2020). Daft-Exprt (Zaıdi et al., 170

2021) employs a gradient reversal layer to improve 171

target speaker fidelity in style transfer. StyleTTS 172

2 (Li et al., 2024b) predicts pitch and energy 173

based on a prosody predictor (Li et al., 2022), 174

while CosyVoice (Du et al., 2024) incorporates 175

x-vectors into an LLM to model and disentangle 176

styles. PromptSinger (Wang et al., 2024) attempts 177

to control speaker identity based on text descrip- 178

tions. Although these methods can model certain 179

aspects of styles, they are unable to model multi- 180

level singing styles using natural language textual 181

prompts, as well as achieve greater customizability 182

by multilingual speech and singing prompts. 183
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Figure 1: The architecture of CusSinger BBC Encoder denotes Blurred Boundary Content Encoder. Figure (a)
shows the style transfer process. Either mel from audio prompt or textual prompt can control multi-level styles.

3 Method184

3.1 Overview185

The architecture of CusSinger is shown in Figure186

1(a). Let ygt represent the ground truth singing187

voice, and mgt ∈ R80×T represent the mel spectro-188

gram, where T denotes the target length. The Cus-189

tom Audio Encoder compresses mgt into m̂gt, and190

the generation process is given by G(ϵ | C,P ) −→191

m̂pr −→ mgt, where ϵ is Gaussian noise and C192

represents the conditions. C includes the lyrics193

l and music notation n extracted from the music194

scores. P can be one of singing prompt psi, speech195

prompt psp, and textual prompt pte. The lyrics l196

and notation n are inputted to the BBC Encoder,197

which predicts the duration, and extends the con-198

tent embedding. It also applies masking at the199

boundaries to facilitate smooth transitions and en-200

sure robustness, producing zc. The Custom Audio201

Encoder utilizes contrastive learning to extract con-202

sistent representations from singing, speech, and203

textual prompts. When transferring styles from au-204

dio prompt pa (psi or psp), it extracts a style-rich205

representation zpa. When using textual prompt pte206

for style control, it is encoded into multi-style con-207

trolling representation zpt. Finally, the Flow-Based208

Custom Transformer leverages zc, zt, as well as zpt209

or zpa to generate the predicted singing voice ypr.210

3.2 BBC Encoder211

Current SVS models rely heavily on precise212

phoneme and note boundary annotations, which are213

often automated using tools like MFA. However,214

manual post-editing datasets are rare, and even215

those based on human auditory annotations con- 216

tain many errors (Wang et al., 2022; Zhang et al., 217

2024c). This is particularly problematic in multi- 218

lingual singing datasets, where annotation errors 219

and data scarcity lead to mislearning of phonemes 220

and pitch. For example, when the latter half of 221

a phoneme’s duration actually belongs to the next 222

phoneme, the model struggles to learn the pronunci- 223

ation of both phonemes correctly. Additionally, cur- 224

rent SVS models produce poor transitions between 225

phonemes and notes, particularly in zero-shot sce- 226

narios, where this issue is more pronounced. 227

To address this issue and simultaneously expand 228

the dataset while enhancing the naturalness and 229

musicality of transitions in zero-shot settings, we 230

introduce the Blurred Boundary Content (BBC) En- 231

coder. As shown in Figure 1 (b), after separately en- 232

coding the lyrics l and notes n, we predict the dura- 233

tion and extend the content embedding, resulting in 234

a frame-level sequence [zc1, zc1, zc2, zc2, . . . , zcn] 235

with precise boundaries. Next, we randomly mask 236

m tokens at each phoneme and note boundaries 237

to produce [zc1,∅, zc2, zc2,∅, . . . , zcn]. By adjust- 238

ing m, we can strike a balance between providing 239

more supervision and achieving better robustness. 240

Considering our compression rate and sample rate, 241

we set m = 8. Note that m will not cover too short 242

contents. With the BBC Encoder, we obtain blurred 243

boundaries, then refined in the Flow-based Custom 244

Transformer, where self-attention mechanisms es- 245

tablish fine-grained implicit alignment paths. The 246

BBC Encoder expands the roughly aligned dataset, 247

improves the naturalness of transitions, and en- 248

hances the quality of zero-shot generation. 249
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Figure 2: The architecture of Custom Audio Encoder and Cus-MOE. In Figure (a), different encoders extract aligned
representations based on the input. In Figure (b), each router selects one FFN based on conditions during inference.

3.3 Custom Audio Encoder250

The style of singing is very complex, encompassing251

factors such as timbre, singing method, emotion,252

technique, accent, and more. This makes it chal-253

lenging to compress the singing voice mel while254

extracting a representation that is rich in multi-level255

style. Such a representation is crucial for both style256

transfer and style control. Additionally, to expand257

the customizable application scenarios, it is im-258

portant to extract an aligned style representation259

from speech as well. This allows users to produce260

singing voices that match their speech style.261

As shown in Figure 2 (a), based on the singing262

prompt psi, speech prompt psp, and textual prompt263

pte with content C, we extract a triplet pair264

(zpsi, zpsp, zptc). To ensure zpsi does not compro-265

mise the integrity of singing voices, we also con-266

duct reconstruction. The singing and speech en-267

coders, and the audio decoder, are based on the268

VAE model (Kingma and Welling, 2013). For the269

textual encoder, we use cross-attention to combine270

music scores and textual prompts, obtaining a repre-271

sentation with contents and multi-level styles. We272

use contrastive learning to align the triplet pair, en-273

suring they all contain unified styles. We design274

three types of contrasts: (1) same content, different275

styles; (2) similar styles, different content; and (3)276

different styles and contents. We use the contrastive277

objective (Radford et al., 2021) for training:278

Lpisi,p
i
sp

= log
exp(sim(zsi

i, zsp
i)/τ)∑N

j=1 exp(sim(zsii, zspj)/τ)

+ log
exp(sim(zsp

i, zsi
i)/τ)∑N

j=1 exp(sim(zspi, zsij)/τ)
,

(1)279

where sim(·) denotes cosine similarity. The total280

loss Lcontras = − 1
6N

∑N
i=1(Lpsi,psp + Lpisp,p

i
te
+281

Lpisi,p
i
te
). Therefore, three embeddings are aligned282

in the same space. To train the Audio Decoder, we283

use L2 loss Lrecon and LSGAN-style adversarial 284

loss Ladv (Mao et al., 2017) with a GAN discrimi- 285

nator for better reconstruction. The textual encoder 286

supervises styles and contents, enriching the audio 287

embedding with styles without losing content. For 288

more details, please refer to Appendix A.2. 289

3.4 Flow-based Custom Transformer 290

Flow-based Transformer. Singing voices are 291

highly complex and stylistically diverse, making 292

modeling particularly challenging. To address this, 293

we propose the Flow-based Custom Transformer. 294

As shown in Figure 1 (c), we combine the flow- 295

matching technique, which can generate stable and 296

smooth paths, to achieve robust and fast inference. 297

Additionally, we leverage the sequence learning 298

ability of the transformer’s attention mechanism to 299

improve the quality and style modeling of SVS. 300

During training, we add Gaussian noise ϵ to the 301

audio encoder’s output m̂gt to obtain xt at timestep 302

t, which is achieved via linear interpolation. We 303

then concatenate xt with the content embedding 304

zc from the BBC Encoder, and an optional audio 305

prompt embedding zpa (either zpsi or zpsp) from the 306

Custom Audio Encoder. This allows the model to 307

use self-attention to learn content and style transfer. 308

When using natural language textual prompts to 309

control styles, we also encode it as zpt and concate- 310

nate instead of zpa to achieve multi-level style con- 311

trol. Furthermore, we employ RMSNorm (Zhang 312

and Sennrich, 2019) and AdaLN (Peebles and Xie, 313

2023) to ensure training stability and global mod- 314

ulation with styles and timestep. RoPE (Su et al., 315

2024) is also used to enhance the model’s ability 316

to capture dependencies across sequential frames. 317

The output vector field of our model in each t is 318

trained with the flow-matching objective: 319

Lflow = Et,pt(xt) ∥vt(xt, t|C; θ)− (m̂gt − ϵ)∥2 ,
(2) 320
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where pt(xt) represent the distribution of xt at321

timestep t. Additionally, given the importance of322

pitch in singing styles (Zhang et al., 2024a), we323

use the first block’s output to predict F0, providing324

supervision and input for subsequent blocks. Dur-325

ing inference, ϵ is combined with the condition to326

generate the target m̂pr with fewer timesteps than327

in training, resulting in a smoother generation. For328

more details, please refer to Appendix A.3.329

Cus-MOE. To achieve higher-quality multilin-330

gual generation and better style modeling, we pro-331

pose Cus-MOE (Mixture of Experts), selecting suit-332

able experts based on various conditions. As shown333

in Figure 2 (b), our Cus-MOE consists of two ex-334

pert groups, each focusing on linguistic and stylis-335

tic conditions. The Lingual-MOE selects experts336

based on lyric languages, with each expert spe-337

cializing in a particular language family (such as338

Latin), using domain-specific experts to improve339

generation quality for each language family. The340

Stylistic-MOE conditions on audio or natural lan-341

guage textual prompts, adjusting inputs to match342

fine-grained styles, such as an expert specializing343

in alto range female and happy pop falsetto singing.344

Our routing strategies use a dense-to-sparse345

Gumbel-Softmax (Nie et al., 2021), which repa-346

rameterizes categorical variables to make sampling347

differentiable, enabling dynamic routing. Let h348

be the hidden representation, and g(h)i denote the349

routing score for expert i. To prevent overloading,350

we apply a load-balancing loss (Fedus et al., 2022):351

Lbalance = αN
N∑
i=1

(
1

B

∑
h∈B

g(h)i

)
, (3)352

where B is the batch size, N is the number of353

experts, and α controls regularization strength. For354

more details, please refer to Appendix A.4.355

3.5 Training and Inference Procedures356

Training Procedures For the pre-trained custom357

audio encoder and decoder, the final loss includes:358

1) Lcontras: the contrastive objective for contrastive359

learning; 2) Lrec: the L2 reconstruction loss; 3)360

Ladv: the LSGAN-styled adversarial loss in GAN361

discriminator. For CusSinger, the final loss terms362

during training consist of the following aspects:363

1) Ldur: the mean squared error (MSE) phoneme-364

level duration loss on a logarithmic scale in the365

BBC Encoder; 2) Lpitch: the MSE pitch loss in the366

log scale. 3) Lbalance: the load-balancing loss for367

each expert group in Cus-MOE; 4) Lflow: the flow 368

matching loss of Flow-based Custom Transformer. 369

Inference Procedures CusSinger supports multi- 370

ple inference tasks based on the input prompt. For 371

unseen singing prompts, it performs zero-shot style 372

transfer, whether the content and prompt are in the 373

same language or across languages. If the input 374

includes lyrics and a singing prompt in different 375

languages, the model can perform cross-lingual 376

style transfer. Given a natural language textual 377

prompt, CusSinger enables multi-level style con- 378

trol. When provided with a speech prompt, it can 379

carry out speech-to-singing (STS) style transfer. 380

To enhance generation quality and style control- 381

lability, we incorporate the classifier-free guidance 382

(CFG) strategy. During training, we randomly drop 383

input prompts with a probability of 0.2. During 384

inference, we modify the output vector field as: 385

vcfg(x, t|C,P ; θ) = γvt(x, t|C,P ; θ)+

(1− γ)vt(x, |C,∅; θ),
(4) 386

where γ is the CFG scale that balances creativity 387

and controllability. We set γ = 3 to improve gen- 388

eration quality and enhance style control. Finally, 389

by leveraging the accelerated inference capabili- 390

ties of the flow-matching method, our model can 391

efficiently and robustly generate singing voices. 392

4 Experiments 393

4.1 Experimental Setup 394

Dataset. The dataset for singing voices is quite 395

limited. However, using the blurred boundary strat- 396

egy, we expand our dataset by collecting 120 hours 397

of clean singing voices in 5 languages from online 398

sources and manually annotating them. Then, we 399

use several open-source singing datasets, including 400

Opencpop (Wang et al., 2022) (Chinese, 1 singer, 401

5 hours of singing voices), M4Singer (Zhang et al., 402

2022a) (Chinese, 20 singers, 30 hours of singing 403

voices), OpenSinger (Huang et al., 2021) (Chinese, 404

93 singers, 85 hours of singing voices), PopBuTFy 405

(Liu et al., 2022a) (English, 20 singers, 18 hours of 406

speech and singing voices), and GTSinger (Zhang 407

et al., 2024c) (9 languages, 20 singers, 80 hours 408

of singing and speech). All languages include Chi- 409

nese, English, French, Spanish, German, Italian, 410

Japanese, Korean, and Russian. We manually an- 411

notate part of these data with multi-level style la- 412

bels (like emotions). Then, we randomly select 30 413

singers as the unseen test set to evaluate zero-shot 414
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Method Parallel Cross-Lingual

MOS-Q ↑ MOS-S ↑ FFE ↓ Cos ↑ MOS-Q ↑ MOS-S ↑

GT 4.58 ± 0.11 / / / / /
GT (vocoder) 4.36 ± 0.08 4.41 ± 0.13 0.04 0.95 / /

StyleTTS 2 3.71 ± 0.14 3.79 ± 0.09 0.42 0.71 3.58 ± 0.16 3.63 ± 0.12
CosyVoice 3.74 ± 0.10 3.93 ± 0.15 0.33 0.87 3.63 ± 0.08 3.77 ± 0.17
VISinger 2 3.79 ± 0.17 3.88 ± 0.11 0.31 0.83 3.69 ± 0.19 3.72 ± 0.06
TCSinger 3.94 ± 0.06 4.01 ± 0.18 0.26 0.91 3.77 ± 0.13 3.87 ± 0.14

CusSinger (ours) 4.13 ± 0.12 4.27 ± 0.09 0.21 0.93 3.96 ± 0.10 4.09 ± 0.07

Table 1: Synthesis quality and singer similarity of zero-shot parallel and cross-lingual style transfer.

performance for all tasks. Our dataset partitioning415

carefully ensures that training and test sets for all416

tasks contain multilingual speech and singing data.417

For more details, please refer to Appendix B.418

Implementation Details. We set the sample rate419

to 48,000 Hz, the window size to 1024, the hop size420

to 256, and the number of mel bins to 80 to derive421

mel-spectrograms from raw waveforms. The out-422

put mel-spectrograms are transformed into singing423

voices by a pre-trained HiFi-GAN vocoder (Kong424

et al., 2020). We utilize four Transformer blocks as425

the vector field estimator. Each Transformer layer426

employs a hidden size of 768 and eight attention427

heads. The Cus-MoE includes four experts per ex-428

pert group. During training, flow-matching uses429

1,000 timesteps, while inference uses 25 timesteps430

with the Euler ODE solver. We train all our models431

with eight NVIDIA RTX-4090 GPUs. For more432

model details, please refer to Appendix A.1.433

Evaluation Details. We use both objective and434

subjective evaluation metrics to validate the perfor-435

mance of CusSinger. For subjective metrics, we436

conduct the MOS (mean opinion score) evaluation.437

We employ the MOS-Q to judge synthesis quality438

(including fidelity, clarity, and naturalness), MOS-439

S to assess singer similarity (in timbre and other440

styles) between the result and prompt, and MOS-C441

to evaluate controllability (accuracy and expressive-442

ness of style control). Both these metrics are rated443

from 1 to 5 and reported with 95% confidence inter-444

vals. For objective metrics, we use Singer Cosine445

Similarity (Cos) to judge singer similarity, and F0446

Frame Error (FFE) to quantify synthesis quality.447

For more details, please refer to Appendix C.448

Baseline Models. We conduct a comprehensive449

comparative analysis of synthesis quality, style450

controllability, and singer similarity for CusSinger451

against several baseline models. Initially, we evalu-452

ate our model against the ground truth (GT) and the 453

audio generated by the pre-trained HiFi-GAN (GT 454

(vocoder)). We first compare it with two strong 455

zero-shot multilingual speech synthesis baseline 456

models, including StyleTTS 2 (Li et al., 2024b) 457

and CosyVoice (Du et al., 2024). To ensure a fair 458

comparison for singing tasks, we enhance these 459

models with a note encoder to process musical no- 460

tations and train them on our multilingual speech 461

and singing data. Next, we select a traditional 462

high-fidelity SVS model, VISinger 2 (Zhang et al., 463

2022b), and the first zero-shot SVS model with 464

style transfer and style control, TCSinger (Zhang 465

et al., 2024b). We employ their open-source codes. 466

For more details, please refer to Appendix D. 467

4.2 Main Results 468

Style Transfer. Table 1 presents the performance 469

of CusSinger compared to baseline models in the 470

zero-shot style transfer task. For the parallel ex- 471

periments, we randomly select samples with un- 472

seen singers from the test set as target voices and 473

use different utterances from the same singers to 474

form prompts. Additionally, we utilize unseen test 475

data with different lyric languages (such as En- 476

glish and Chinese) as prompts and targets for infer- 477

ence. As shown in the results, CusSinger demon- 478

strates exceptional synthesis quality in both par- 479

allel and cross-lingual experiments, evidenced by 480

the highest MOS-Q and the lowest FFE. This can 481

be attributed to the naturalness introduced by the 482

BBC Encoder, as well as the quality improvements 483

from the linguistic-MOE and F0 supervision within 484

the Flow-based Custom Transformer. Moreover, 485

CusSinger also excels in singer similarity, as re- 486

flected by the highest MOS-S and Cos values. This 487

highlights the effectiveness of the Custom Audio 488

Encoder in capturing rich style information in the 489

audio representation, as well as the improved style 490

modeling enabled by the Stylistic-MOE. Upon lis- 491
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Method Parallel Non-Parallel

MOS-Q ↑ MOS-C ↑ FFE ↓ MOS-Q ↑ MOS-C ↑

GT 4.56 ± 0.13 / / / /
GT (vocoder) 4.26 ± 0.09 4.32 ± 0.11 0.06 / /

StyleTTS 2 3.61 ± 0.18 3.67 ± 0.14 0.43 3.51 ± 0.16 3.59 ± 0.07
CosyVoice 3.72 ± 0.07 3.73 ± 0.10 0.37 3.60 ± 0.19 3.67 ± 0.13
VISinger 2 3.81 ± 0.15 3.81 ± 0.06 0.30 3.69 ± 0.08 3.75 ± 0.12
TCSinger 3.99 ± 0.12 3.97 ± 0.08 0.27 3.90 ± 0.14 3.93 ± 0.10

CusSinger (ours) 4.07 ± 0.10 4.19 ± 0.16 0.22 3.98 ± 0.11 4.11 ± 0.09

Table 2: Multi-level style control performance in parallel and non-parallel experiments based on textual prompts.

(a) Male singer with bass vocal range (c) Female singer with alto vocal range(b) Male singer with vibrato technique

Figure 3: visualizations of style control. Figure (b) shows more F0 fluctuation than (a), highlighting vibrato. Figure
(c) exhibits higher formants and richer high-frequency details than (a), reflecting different singers’ identities.

tening to the demos, it is evident that our model492

effectively transfers various aspects of singing style,493

including timbre, singing method, emotion, accent,494

and other nuanced elements from audio prompts.495

Style Control. Table 2 presents the experimental496

results for style control using natural language tex-497

tual prompts. We add cross-attention model to base-498

line models to handle the textual prompt, and they499

also use audio prompt to learn multi-level . In the500

parallel experiments, we randomly select unseen501

audio from the test set, using the ground truth (GT)502

textual prompts as the target. For the non-parallel503

experiments, multi-level styles are randomly as-504

signed in a manner that is appropriate for the con-505

text. These styles include global timbre (such as the506

singer’s gender and vocal range), singing method507

(e.g., bel canto and pop), emotion (e.g., happy and508

sad), and segment-level or word-level techniques509

(such as mixed voice, falsetto, breathy, vibrato,510

glissando, and pharyngeal). As shown in the re-511

sults, CusSinger outperforms the baseline models512

in both the highest synthesis quality (MOS-Q and513

FFE) and style controllability (MOS-C) in both514

parallel and non-parallel experiments. This reflects515

the quality improvements brought by the BBC En-516

coder, Lingual-MOE, and F0 supervision, as well517

as the enhanced style control achieved through518

self-attention and the Stylistic-MOE. These re-519

sults demonstrate that, in addition to style transfer,520

CusSinger also performs well in style control. 521

Figure 3 shows that we can effectively control 522

diverse styles. Figure (b) demonstrates the vibrato 523

technique, appearing as regular oscillations in F0. 524

Figure (c), representing a female alto singer, ex- 525

hibits higher formant frequencies, resulting in a 526

generally upward-shifted energy distribution and 527

richer high-frequency harmonic content compared 528

to the male bass singer. Our demos also show that 529

CusSinger can control multi-level styles effectively. 530

Speech-to-Singing. We also conduct experi- 531

ments on speech-to-singing style transfer. We ran- 532

domly select unseen singers from the test set as 533

target samples and different speech samples from 534

the same singers to form the prompts. As shown 535

in Table 3, both the synthesis quality (MOS-Q and 536

FFE) and singer similarity (MOS-S and Cos) of 537

CusSinger outperform those of the baseline models. 538

This demonstrates the ability of our Custom Audio 539

Encoder to extend to a broader range of applica- 540

tions, enabling users who cannot sing to customize 541

their singing voice using only speech prompts. 542

4.3 Ablation Study 543

As depicted in Table 4, we conduct ablation studies 544

on style transfer and style control to demonstrate 545

the efficacy of various designs within CusSinger. 546

We use CMOS-Q to test variations in synthesis 547

quality, CMOS-S to measure changes in singer sim- 548
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Method FFE ↓ Cos ↑ MOS-Q ↑ MOS-S ↑

GT - - 4.53 ± 0.11 -
GT (vocoder) 0.06 0.93 4.21 ± 0.08 4.20 ± 0.13

StyleTTS 2 0.41 0.71 3.60 ± 0.15 3.52 ± 0.10
CosyVoice 0.39 0.79 3.66 ± 0.09 3.65 ± 0.14
VISinger 2 0.32 0.75 3.72 ± 0.18 3.59 ± 0.07
TCSinger 0.28 0.82 3.89 ± 0.06 3.84 ± 0.16

CusSinger (ours) 0.24 0.89 3.97 ± 0.12 3.96 ± 0.09

Table 3: Zero-shot speech-to-singing style transfer performance.

Setting Style Transfer Style Control

CMOS-Q CMOS-S CMOS-Q CMOS-C

CusSinger 0.00 0.00 0.00 0.00

w/o BBC Encoder -0.36 -0.23 -0.39 -0.26
w/o CAE -0.21 -0.37 -0.19 -0.41
w/o F0 Supervision -0.33 -0.24 -0.31 -0.27
w/o CFG -0.26 -0.22 -0.25 -0.31
w/o Cus-MOE -0.31 -0.32 -0.38 -0.35
w/o Lingual-MOE -0.29 -0.17 -0.32 -0.21
w/o Stylistic-MOE -0.21 -0.26 -0.23 -0.33

Table 4: Style transfer and style control comparisons for ablation study. CAE denotes Custom Audio Encoder.

ilarity, and CMOS-C to evaluate differences in style549

controllability. We first test the effect of removing550

the masking process from the BBC Encoder, and551

observe that CMOS-Q drops significantly, indicat-552

ing a substantial impact on the naturalness of the553

generated results. Then, we also test replacing the554

Custom Audio Encoder with a standard VAE en-555

coder for both speech and singing prompts, which556

leads to a decline in CMOS-S and CMOS-C, show-557

ing that it negatively affects style modeling.558

Next, we test several designs in the Flow-Based559

Transformer. When we do not use F0 supervision,560

we observe a decline in all metrics—CMOS-Q,561

CMOS-S, and CMOS-C, consistent with our under-562

standing of the important role pitch modeling plays563

in SVS. We also test the scenario without using the564

CFG strategy and find that CMOS-Q, CMOS-C,565

and CMOS-S decrease significantly, while CMOS-566

Q only shows a slight decline. This demonstrates567

the contribution of the CFG strategy to improving568

style transfer, style control, and synthesis quality.569

Finally, we test the performance of Cus-MOE570

and the scenario where each expert group is re-571

placed with a standard FFN. We observe that Cus-572

MOE impacts all aspects, while Lingual-MOE573

primarily affects the quality of multilingual SVS574

(CMOS-Q), and Stylistic-MOE mainly influences575

style transfer and style control (CMOS-S and576

CMOS-C). These experiments collectively demon-577

strate the effectiveness of the various designs in 578

CusSinger for multi-task multilingual zero-shot 579

SVS with style transfer and style control. For more 580

extensive experiments, please refer to Appendix E. 581

5 Conclusion 582

In this paper, we present CusSinger, a multilin- 583

gual, multi-task, zero-shot singing voice synthe- 584

sis model with advanced style transfer and style 585

control capabilities based on various prompts. To 586

ensure smooth and robust phoneme/note transi- 587

tions, we introduce the Blurred Boundary Content 588

Encoder, which applies flexible boundary mask- 589

ing on phoneme and note boundaries for seam- 590

less transitions. For aligned representations across 591

singing, speech, and textual prompts, we propose 592

the Custom Audio Encoder using contrastive learn- 593

ing, broadening the model’s applicability to a wide 594

range of tasks. Moreover, we also introduce the 595

Flow-based Custom Transformer to stably and 596

fastly generate high-quality, highly controllable 597

singing voices. The model employs Cus-MOE and 598

F0 supervision to optimize synthesis quality and 599

style modeling. Our experimental results show that 600

CusSinger outperforms other baseline models in 601

synthesis quality, singer similarity, and style con- 602

trollability across various related tasks, including 603

zero-shot style transfer, cross-lingual style transfer, 604

multi-level style control, and STS style transfer. 605
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6 Limitations606

Our method has two main limitations. First, it still607

relies on manually labeled styles, which introduces608

errors in style annotations and is constrained by the609

high cost of dataset labeling. Future work will ex-610

plore the use of automatic labeling tools to expand611

datasets at a lower cost, thereby improving the SVS612

model’s generalization ability. Second, although613

our model accelerates inference speed through the614

flow-matching structure, the generation speed still615

does not meet higher industrial demands. In fu-616

ture work, we will investigate streaming generation617

methods to reduce latency.618

7 Ethics Statement619

CusSinger, with its ability to adapt and manipulate620

various singing styles, carries the potential for mis-621

use in the dubbing of entertainment content, which622

could lead to violations of singers’ intellectual prop-623

erty rights. Moreover, the model’s capability to624

control styles using diverse prompts introduces the625

risk of unfair competition and the possible displace-626

ment of professionals in the singing industry. To627

address these concerns, we plan to impose strict628

regulations on the model’s usage to prevent uneth-629

ical and unauthorized applications. Additionally,630

we will investigate methods like vocal watermark-631

ing to ensure the protection of individual privacy.632
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A Details of Models820

A.1 Architecture Details821

For the custom audio encoder and decoder, we822

adopt a Variational Autoencoder (VAE) architec-823

ture (Kingma and Welling, 2013). The Mel-824

spectrograms are derived from waveforms sam-825

pled at 48 kHz, with a 1024 window size, a 256826

hop size, and 80 Mel bins. HiFi-GAN (Kong827

et al., 2020) is utilized as the vocoder to synthe-828

size waveforms from the Mel-spectrograms. The829

model architecture consists of three layers for both830

the encoder and decoder, with a hidden size of831

384 and a Conv1D kernel size of five. The mel-832

spectrogram, with dimensions B, 80, T , is com-833

pressed to B, 20, T/8, facilitating further process-834

ing by the Transformer. Textual prompts are en-835

coded with FLAN-T5-large (Chung et al., 2024).836

During training, fixed-length batches containing837

2000 mel-spectrogram frames are used. The Adam838

optimizer is employed with a learning rate of839

1 × 10−4, β1 = 0.9, β2 = 0.999, and a warm-up840

period of 10K steps.841

For the Flow-based Custom Transformer, we uti-842

lize four Transformer blocks as the vector field843

estimator. Each transformer layer uses a hidden844

size of 768 and eight attention heads. The Cus-845

MoE architecture includes four experts per expert846

group. The total number of parameters is 105 mil-847

lion. Flow-matching during training uses 1,000848

timesteps, while inference uses 25 timesteps with849

the Euler ODE solver. During training, we use850

eight NVIDIA RTX-4090 GPUs, with a batch size851

of 12K frames per GPU, for 100K steps. The Adam852

optimizer is applied with a learning rate of 5×10−5,853

β1 = 0.9, β2 = 0.999, and 10K warm-up steps.854

A.2 Custom Audio Encoder855

Multi-level styles encompass global-level singing856

methods (such as bel canto) and emotions The sys-857

tem incorporates both emotional elements (such as858

happy or sad) and segment-level or word-level tech-859

niques (such as mixed voice and falsetto). It also ac-860

counts for natural elements influenced by personal861

habits, such as accent, pronunciation, and transi-862

tions. Audio prompts (either singing or speech)863

enable the target singing voice to learn and mimic864

all of these styles, while textual prompts offer the865

flexibility to control both global and word-level866

styles. We design three types of contrasts: (1) same867

content, different styles; (2) similar styles, differ-868

ent content; and (3) different styles and different869

content. For the first type of contrast, we use dif- 870

ferent multi-level styles for the same song. For 871

the second type, we apply similar labels but dif- 872

ferent song contents (e.g., different phrases from 873

the same song). For speech and singing contrasts 874

in the first type, we use different singers (speak- 875

ers) performing the same lyrics, which introduces 876

various natural elements. For the second type, we 877

use the same singer for different parts of the song 878

(e.g., different phrases of the same song). In the 879

comparison between textual prompts and speech, 880

we contrast the global styles of the lyrics in the 881

speech to those in the textual prompts. 882

A.3 Flow-based Custom Transformer 883

In generative models, the true data distribution is 884

denoted by q(x1), which can be sampled but lacks 885

an explicit probability density function. A prob- 886

abilistic path pt(xt) links the standard Gaussian 887

distribution x0 ∼ p0(x) to the actual data distri- 888

bution x1 ∼ p1(x). The flow-matching technique 889

(Liu et al., 2022b) models this transformation by 890

solving the ordinary differential equation (ODE): 891

dx = u(x, t) dt, t ∈ [0, 1], (5) 892

where u(x, t) represents the target vector field and 893

t is the time parameter. With access to u(x, t), real- 894

istic data can be generated by reversing the flow. To 895

estimate u(x, t), a vector field estimator v(x, t; θ) 896

is employed, and the flow-matching objective is: 897

LFM(θ) = Et,pt(x) ∥v(x, t; θ)− u(x, t)∥2 . (6) 898

For conditional data, the objective is modified as: 899

LCFM(θ) = Et,p1(x1),pt(x|x1)

∥v(x, t|C; θ)− u(x, t|x1, C)∥2 .
(7) 900

Flow-matching directly transforms Gaussian noise 901

into real data by linearly interpolating between x0 902

and x1 to generate samples at a given time t: 903

xt = (1− t)x0 + tx1. (8) 904

Thus, the conditional vector field becomes 905

u(x, t|x1, C) = x1 − x0, and the rectified flow- 906

matching (RFM) loss is: 907

∥v(x, t|C; θ)− (x1 − x0)∥2 . (9) 908

Once the vector field is accurately estimated, realis- 909

tic data can be generated by solving the ODE using 910

an Euler solver: 911

xt+ϵ = x+ ϵv(x, t|C; θ), (10) 912
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where ϵ represents the step size. Flow-matching913

models typically require hundreds or even thou-914

sands of training iterations. However, by utilizing915

linear interpolation, this number can be reduced916

to 25 steps or fewer during inference, resulting in917

significant computational efficiency improvements.918

This interpolation guarantees smooth transitions919

from noise to data, generating high-quality outputs920

without artifacts and ensuring consistency across921

different conditions.922

To enhance training stability and prevent nu-923

merical instability, we apply RMSNorm (Zhang924

and Sennrich, 2019). The global embedding zg925

is computed by averaging the audio prompt zpa926

or textual prompt embedding zpt over the tempo-927

ral dimension, with the time step embedding zt928

added. This global embedding is processed through929

a global adaptor using adaptive layer normalization930

(AdaLN) (Peebles and Xie, 2023) to ensure consis-931

tent style. The AdaLN operation is defined as:932

AdaLN(h, c) = γc × LayerNorm(h) + βc,
(11)933

where h represents the hidden representation, and934

the batch normalization scale γ is initialized to zero935

(Peebles and Xie, 2023). Rotary positional embed-936

dings (RoPE) (Su et al., 2024) are employed to937

encode temporal positional information, improv-938

ing the model’s capacity to capture dependencies939

across sequential frames.940

A.4 Cus-MOE941

Our routing mechanism leverages the dense-to-942

sparse Gumbel-Softmax technique (Nie et al.,943

2021) for efficient and adaptive expert selection.944

This method employs the Gumbel-Softmax trick to945

reparameterize categorical variables, making sam-946

pling differentiable and enabling dynamic routing.947

For a given hidden state h, the routing score as-948

signed to expert i, denoted as g(h)i, is :949

g(h)i =
exp((h ·Wg + ζi)/τ)∑N
j=1 exp((h ·Wg + ζj)/τ)

, (12)950

where Wg is the trainable gating weight, ζ is noise951

sampled from a Gumbel(0, 1) distribution, and τ952

represents the softmax temperature. At the start953

of training, τ is set to a high value to encourage954

denser routing, allowing multiple experts to con-955

tribute to the processing of the same input. As956

training progresses, τ is gradually reduced, result-957

ing in more selective routing with fewer experts958

Dataset Languages Singing/h Speech/h

Opencpop 1 5 0
M4Singer 1 30 0
OpenSinger 1 85 0
BuTFy 1 8 10
GTSinger 9 80 16
Extended 5 120 15

Total/h 9 328 41

Table 5: Time distribution of our datasets.

involved. When τ approaches zero, the output dis- 959

tribution becomes nearly one-hot, with each token 960

being assigned to the most relevant expert. Follow- 961

ing the approach outlined by (Nie et al., 2021), we 962

reduce τ from 2.0 to 0.3 during training, transition- 963

ing from dense to sparse routing. During inference, 964

deterministic routing is employed, ensuring that 965

only one expert is chosen for each token. 966

In our implementation, the regularization 967

strength for the load balance loss is set to 0.1. The 968

load-balancing mechanism promotes a more bal- 969

anced distribution of tokens across experts, improv- 970

ing training efficiency by preventing underutiliza- 971

tion or overload of specific experts. This routing 972

strategy not only facilitates dynamic expert selec- 973

tion but also ensures an even distribution of com- 974

putational resources. 975

B Details of Dataset 976

The dataset for singing voices is quite limited. 977

However, using the blurred boundary strategy, we 978

expand our dataset by collecting 120 hours of clean 979

singing voices in 5 languages (Chinese, English, 980

Korean, Japanese, and French) from online sources 981

and manually annotating them. We also use several 982

open-source singing datasets, including Opencpop 983

(Wang et al., 2022) (Chinese, 1 singer, 5 hours of 984

singing voices), M4Singer (Zhang et al., 2022a) 985

(Chinese, 20 singers, 30 hours of singing voices), 986

OpenSinger (Huang et al., 2021) (Chinese, 93 987

singers, 85 hours of singing voices), PopBuTFy 988

(Liu et al., 2022a) (English, 20 singers, 18 hours of 989

speech and singing voices), and GTSinger (Zhang 990

et al., 2024c) (9 languages, 20 singers, 80 hours of 991

singing and speech). We use all these datasets un- 992

der the CC BY-NC-SA 4.0 license. All languages 993

include Chinese, English, French, Spanish, Ger- 994

man, Italian, Japanese, Korean, and Russian. The 995

time distribution of our datasets is listed in Table 5. 996

Then, we manually annotate part of these data 997

with multi-level style labels, such as timbre, singing 998
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methods, emotions, and techniques. For datasets999

without music scores and alignments, we use1000

ROSVOT (Li et al., 2024a) for coarse music1001

score annotations and the Montreal Forced Aligner1002

(MFA) (McAuliffe et al., 2017) for coarse align-1003

ment between lyrics and audio. Moreover, with1004

the assistance of music experts, we manually anno-1005

tate part of the singing data with multi-level style1006

labels. We label the timbre of these data, includ-1007

ing gender and vocal range. We categorize songs1008

as happy or sad based on emotion. For singing1009

methods, we classify songs as bel canto or pop.1010

These classifications are then combined into the fi-1011

nal style class labels, which will serve as the global1012

text prompts. We also annotate segment-level and1013

word-level techniques for these singing data. These1014

techniques include mixed voice, falsetto, breathy,1015

vibrato, glissando, and pharyngeal. These tech-1016

nique labels form the segment-level and word-level1017

text prompts. All music experts and annotators1018

we hire have musical backgrounds, and they are1019

compensated at a rate of $300 per hour. They have1020

agreed to make their contributions available for re-1021

search purposes. Finally, we use GPT-4o to convert1022

these labels into natural language textual prompts,1023

like A female singer with an alto vocal range per-1024

forming a happy pop song. She begins with a mixed1025

voice in the first half of the song, showcasing a1026

smooth and bright tone, before transitioning into1027

falsetto for the second half, bringing an uplifting1028

and energetic feel to the performance. Notably, we1029

will make our multi-level annotations of current1030

datasets and our new dataset open-source for future1031

singing research.1032

C Details of Evaluation1033

C.1 Subjective Evaluation1034

For each evaluation task, we randomly select 401035

pairs of sentences from our test set for subjective1036

assessment. Each pair consists of an audio prompt1037

or a textual prompt that defines styles, along with1038

a synthesized singing voice. These pairs are pre-1039

sented to at least 10 professional listeners for re-1040

view. We utilize MOS (Mean Opinion Score) and1041

CMOS (Comparative Mean Opinion Score) as the1042

subjective evaluation metrics. In the MOS-Q and1043

CMOS-Q evaluations, listeners are instructed to1044

focus on the synthesis quality, including clarity,1045

naturalness, and stylistic richness, without consid-1046

ering singer similarity (in terms of timbre and other1047

styles). In contrast, for MOS-S and CMOS-S evalu-1048

ations, listeners are asked to evaluate singer similar- 1049

ity, specifically the resemblance to the timbre and 1050

other styles of the audio prompt, while disregard- 1051

ing any differences in content or synthesis quality. 1052

For MOS-C evaluations, listeners are directed to 1053

assess controllability, focusing on the accuracy and 1054

expressiveness of style control, without factoring in 1055

content or synthesis quality. In all MOS-Q, MOS-S, 1056

and MOS-C evaluations, listeners rate the various 1057

singing voice samples on a Likert scale from 1 to 5. 1058

In the CMOS-Q and CMOS-S evaluations, listeners 1059

are tasked with comparing pairs of singing voices 1060

produced by different systems and expressing their 1061

preferences. The preference scale is as follows: 0 1062

for no difference, 1 for a slight difference, and 2 for 1063

a significant difference. It is important to note that 1064

all participants are fairly compensated for their time 1065

and effort. Each participant is paid $10 per hour, 1066

resulting in a total expenditure of approximately 1067

$300 for participant compensation. Participants are 1068

also informed that the results will be used for scien- 1069

tific research purposes. The instruction screenshots 1070

are shown in Figure 4. 1071

C.2 Objective Evaluation 1072

To objectively assess the timbre similarity and syn- 1073

thesis quality of the test set, we utilize two primary 1074

metrics: Cosine Similarity (Cos) and F0 Frame 1075

Error (FFE). Cosine Similarity is employed to eval- 1076

uate the resemblance in singer identity between the 1077

synthesized singing voice and the audio prompt. 1078

This is achieved by calculating the average cosine 1079

similarity between the embeddings of the synthe- 1080

sized singing voices and the GT singing voices, 1081

offering an objective measure of the singer simi- 1082

larity. Specifically, we extract singer embeddings 1083

using the WavLM model (Chen et al., 2022), which 1084

has been fine-tuned for speaker verification 1. In 1085

addition, we use F0 Frame Error (FFE), which com- 1086

bines two key aspects: voicing decision errors and 1087

F0 errors. FFE serves as a comprehensive metric, 1088

effectively capturing crucial information related to 1089

the synthesis quality. 1090

D Details of Baselines 1091

StyleTTS 2 (Li et al., 2024b) integrates style dif- 1092

fusion and adversarial training with large speech 1093

language models (SLMs) for high-quality text-to- 1094

speech synthesis. It represents style as a latent 1095

1https://huggingface.co/microsoft/wavlm-base-plus-sv
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Figure 4: The instructions of our subjective evaluation on MOS.

variable using diffusion models. We use and revise1096

their official code 2.1097

CosyVoice (Du et al., 2024) encodes speech with1098

supervised semantic tokens derived from a multilin-1099

gual speech recognition model and employs vector1100

quantization in the encoder. It uses a large lan-1101

guage model (LLM) for text-to-token generation1102

and a conditional flow matching model for speech1103

synthesis. We use and revise their official code 3.1104

VISinger 2 (Zhang et al., 2022b) combines dig-1105

ital signal processing (DSP) with VISinger to im-1106

prove synthesis quality. By incorporating a DSP1107

synthesizer with harmonic and noise components,1108

it generates both periodic and aperiodic signals1109

from the latent representation. The modified HiFi-1110

GAN produces high-quality singing voices. We1111

use their official code 4.1112

TCSinger (Zhang et al., 2024b) introduces three1113

2https://github.com/yl4579/StyleTTS2
3https://github.com/FunAudioLLM/CosyVoice
4https://github.com/zhangyongmao/VISinger2

key components: 1) a clustering style encoder to 1114

condense style information, 2) a Style and Duration 1115

Language Model (S&D-LM) to predict style and 1116

phoneme duration, and 3) a style-adaptive decoder 1117

for enhanced detail in the singing voice. We use 1118

their official code 5. 1119

E Details of Results 1120

E.1 CFG 1121

We experiment with various parameter settings to 1122

verify the γ value in the CFG, as shown in Table 1123

6. For style transfer and style control evaluation, 1124

we conduct CMOS assessments. When γ = 1, 1125

vcfg becomes equivalent to the original formulation 1126

vt(x, t|C,P ; θ). When γ ranges from 1 to 3, the 1127

generated singing voices are more consistent with 1128

the styles of the audio or textual prompts. However, 1129

when γ exceeds 5, the styles become exaggerated 1130

and unnatural, introducing artifacts and degrading 1131

5https://github.com/AaronZ345/TCSinger
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γ
Style Transfer Style Control

CMOS-Q CMOS-S CMOS-Q CMOS-C

1 -0.26 -0.22 -0.25 -0.31
2 -0.21 -0.14 -0.19 -0.25
3 0.00 0.00 0.00 0.00
5 -0.25 -0.02 -0.27 -0.02

Table 6: Style transfer and style control comparisons for
ablation study. CAE denotes Custom Audio Encoder.

Expert CMOS-Q

1 -0.53
2 -0.41
3 -0.20
4 0.00
5 0.03

Table 7: Ablation study for Cus-MOE.

the overall audio quality. This negatively impacts1132

CMOS-Q. By setting γ = 3, we achieve improved1133

generation quality and ensure better style control.1134

E.2 Cus-MOE1135

To examine the impact of the expert count within1136

the Cus-MOE architecture, we conduct a series of1137

style control experiments, varying the number of1138

experts and assessing the results. These findings1139

are summarized in Table 7. We employ CMOS1140

evaluation to quantify perceptual differences in1141

the generated singing voices. Our analysis indi-1142

cates a trend where the quality of generation im-1143

proves with an increase in the number of experts.1144

Specifically, increasing the expert count from the1145

baseline configuration leads to noticeable improve-1146

ments. However, this improvement plateaus after1147

four experts. The diminishing returns observed be-1148

yond this point can be attributed to several factors:1149

1) model complexity: A larger number of experts1150

may introduce redundant parameters, increasing1151

model complexity and potentially hindering effec-1152

tive training convergence, thus making the learning1153

process less efficient. 2) computational overhead:1154

Employing more experts significantly raises com-1155

putational demands during both training and infer-1156

ence. However, the performance benefits do not1157

scale proportionally with this increased resource1158

consumption. Considering the trade-off between1159

performance and computational efficiency, we opt1160

for a configuration of four experts per group. This1161

choice strikes a favorable balance between synthe-1162

sis quality and resource utilization.1163
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